
A Glimpse and Demo of LRgrep

Frédéric Bour & François Pottier

April 3, 2025

What we have today

A syntactically incorrect OCaml program:

let x = 3;
let y = 4
let z = x + y

Today, OCaml produces this syntax error message:

File "foo.ml", line 3, characters 0-3:
3 | let z = x + y

^^^
Error: Syntax error

What we have today

A syntactically incorrect OCaml program:

let x = 3;
let y = 4
let z = x + y

Today, OCaml produces this syntax error message:

File "foo.ml", line 3, characters 0-3:
3 | let z = x + y

^^^
Error: Syntax error

What we want

A syntactically incorrect OCaml program:

let x = 3;
let y = 4
let z = x + y

What we would (perhaps) like to see:

File "foo.ml" (3:0-3):
Syntax error.
A local declaration has been read (2:0-9):
let y = 4

The keyword ‘in‘ is now expected.
Suggestion: deleting the semicolon
that precedes this declaration (1:9-10)
would allow it to be interpreted as a global declaration.

The setting

Have:

• Deterministic LR(1) parsing.
• Static non-ambiguity check.

• Some people in this room will advocate SGLR instead!

Want:

• A tool that helps visualize the landscape of syntax error situations.
• A way of expressing a declarative and programmable mapping

of syntax error situations to syntax error messages.
• Support for detecting useless and redundant entries in this mapping.
• To separate this mapping from the description of the grammar.

The setting

Have:

• Deterministic LR(1) parsing.
• Static non-ambiguity check.

• Some people in this room will advocate SGLR instead!

Want:

• A tool that helps visualize the landscape of syntax error situations.
• A way of expressing a declarative and programmable mapping

of syntax error situations to syntax error messages.
• Support for detecting useless and redundant entries in this mapping.
• To separate this mapping from the description of the grammar.

Plan of attack

We wish to write a declarative specification:

error situation → { code that produces an error message }

What is an error situation?

What state does an LR parser maintain?

a stack | the remaining input
a list of states

a list of symbols
past input (re-interpreted)

To describe an error situation is to describe a set of stack suffixes.

We need a language for this purpose.

Plan of attack

We wish to write a declarative specification:

error situation → { code that produces an error message }

What is an error situation?

What state does an LR parser maintain?

a stack | the remaining input
a list of states

a list of symbols
past input (re-interpreted)

To describe an error situation is to describe a set of stack suffixes.

We need a language for this purpose.

Plan of attack

We wish to write a declarative specification:

error situation → { code that produces an error message }

What is an error situation?

What state does an LR parser maintain?

a stack | the remaining input
a list of states

a list of symbols
past input (re-interpreted)

To describe an error situation is to describe a set of stack suffixes.

We need a language for this purpose.

Plan of attack

We wish to write a declarative specification:

error situation → { code that produces an error message }

What is an error situation?

What state does an LR parser maintain?

a stack | the remaining input

a list of states
a list of symbols

past input (re-interpreted)

To describe an error situation is to describe a set of stack suffixes.

We need a language for this purpose.

Plan of attack

We wish to write a declarative specification:

error situation → { code that produces an error message }

What is an error situation?

What state does an LR parser maintain?

a stack | the remaining input
a list of states

a list of symbols
past input (re-interpreted)

To describe an error situation is to describe a set of stack suffixes.

We need a language for this purpose.

Plan of attack

We wish to write a declarative specification:

error situation → { code that produces an error message }

What is an error situation?

What state does an LR parser maintain?

a stack | the remaining input
a list of states

a list of symbols

past input (re-interpreted)

To describe an error situation is to describe a set of stack suffixes.

We need a language for this purpose.

Plan of attack

We wish to write a declarative specification:

error situation → { code that produces an error message }

What is an error situation?

What state does an LR parser maintain?

a stack | the remaining input
a list of states

a list of symbols
past input (re-interpreted)

To describe an error situation is to describe a set of stack suffixes.

We need a language for this purpose.

Plan of attack

We wish to write a declarative specification:

error situation → { code that produces an error message }

What is an error situation?

What state does an LR parser maintain?

a stack | the remaining input
a list of states

a list of symbols
past input (re-interpreted)

To describe an error situation is to describe a set of stack suffixes.

We need a language for this purpose.

LRgrep expressions

To describe a set of stacks, we use regexps plus a few ad hoc constructs:

e ::= symbol – terminal or non-terminal
(e e) | (e | e) | e⋆

[e] – matching up to reduction
/item – filtering

Examples:

• [expr] matches all stacks that can be reduced to . . . expr .
• [(expr / expr : (expr •)︸ ︷︷ ︸

an LR(0) item

]

matches all stacks that can be reduced to . . . (expr
and whose top state contains the item expr : (expr •).

LRgrep expressions

To describe a set of stacks, we use regexps plus a few ad hoc constructs:

e ::= symbol – terminal or non-terminal
(e e) | (e | e) | e⋆

[e] – matching up to reduction
/item – filtering

Examples:

• [expr] matches all stacks that can be reduced to . . . expr .

• [(expr / expr : (expr •)︸ ︷︷ ︸
an LR(0) item

]

matches all stacks that can be reduced to . . . (expr
and whose top state contains the item expr : (expr •).

LRgrep expressions

To describe a set of stacks, we use regexps plus a few ad hoc constructs:

e ::= symbol – terminal or non-terminal
(e e) | (e | e) | e⋆

[e] – matching up to reduction
/item – filtering

Examples:

• [expr] matches all stacks that can be reduced to . . . expr .
• [(expr / expr : (expr •)︸ ︷︷ ︸

an LR(0) item

]

matches all stacks that can be reduced to . . . (expr
and whose top state contains the item expr : (expr •).

DEMO

