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Local generic solvers

A family of related algorithms for computing the least solution of a
system of recursive equations:

• Le Charlier and Van Hentenryck (1992).

• Vergauwen and Lewi (1994).

• Fecht and Seidl (1999) coin the term “local generic solver”.

• F. P. (2009) releases Fix and asks how to verify it.
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API of a solver

A solver computes the least fixed point of a user-supplied monotone
second-order function:

type valuation = variable -> property
val lfp: ( valuation -> valuation ) -> valuation

lfp eqs returns a function phi that purports to be the least fixed point.

We are interested in on-demand, incremental, memoizing solvers.

Nothing is computed until phi is applied to a variable v. Minimal work
is then performed: the least fixed point is computed at v and at the
variables that v depends upon. It is memoized to avoid recomputation.
Dependencies are discovered at runtime via spying.
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A challenge

F. P. (2009) offers the verification of a local generic solver as a challenge.

Why is it difficult?

A solver offers a pure API, yet uses mutable internal state:

• for memoization – use a lock and its invariant;

• for spying on the user-supplied function eqs.
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What we would like

In short, we want a modular specification in higher-order separation logic:

E is monotone ⇒
{eqs implements flip E}

lfp eqs
{get. get implements µ̄E}

µ̄E is the optimal least fixed point of E .
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The essence of spying

The essence of spying can be distilled in a single combinator, modulus,
so named by Longley (1999).

val modulus :
((’a -> ’b) -> ’c ) ->
((’a -> ’b) -> ’c * (’a list ))

The call “modulus ff f” returns a pair of

• the result of the call “ff f”, and

• the list of arguments with which ff has queried f during this call.

This is a complete list of points on which ff depends.

9 / 52



Implementation of modulus

Here is a simple-minded imperative implementation of modulus:

let modulus ff f =
let xs = ref [] in
let spy x =

(* Record a dependency on x: *)
xs := x :: !xs;
(* Forward the call to f: *)
f x

in
let c = ff spy in
(c, !xs)

Longley (1999) gives this code and claims (without proof) that it has the
desired denotational semantics in the setting of a pure λ-calculus.
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Specification of modulus

What is a plausible specification of modulus?

{f implements φ ∗ ff implements F}
modulus ff f

{(c ,ws). dc = F(φ)e}

The postcondition means that c is the result of the call “ff f”...

and
that c does not depend on the values taken by f outside of the list ws.

“f implements φ” is sugar for the triple ∀x . {true} f x {y . dy = φ(x)e}.

“ff implements F” means ∀f , φ. {f implements φ} ff f {c . dc = F(φ)e}.
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Why verifying modulus seems challenging

let modulus ff f =
let xs = ref [] in
let spy x =

xs := x :: !xs; f x
in let c = ff spy in
(c, !xs)

{f implements φ ∗ ff implements F}
modulus ff f

{(c ,ws). d∀φ′. φ′ =ws φ⇒ c = F(φ′)e}

ff expects an apparently pure function as an argument, so we must prove
“spy implements φ′” for some φ′, and we will get c = F(φ′). However,

• Proving c = F(φ′) for one function φ′ is not good enough. It seems
as though as we need spy to implement all functions φ′ at once.

• The set of functions φ′ over which we would like to quantify is not
known in advance — it depends on ws, a result of modulus.

• What invariant describes xs? Only in the end does it hold a
complete list ws of dependencies.
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Ingredients of a solution

• We need spy to implement all functions φ′ at once...

— Use a conjunction rule to focus on one function φ′ at a time.

• The list ws is not known in advance...

— Use a prophecy variable to name this list ahead of time.

• What invariant describes xs?

— The elements currently recorded in !xs, concatenated with
those that will be recorded in the future, form the list ws.
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Past, present and future in Hoare Logic

In Hoare Logic and Separation Logic, assertions describe the current state.

• e.g., “at this point, !xs is the empty list []”

The current state, possibly enriched with ghost state, reflects the past.

There is no way of talking about the future!

Enter prophecy variables (Abadi and Lamport 1988; Jung et al. 2020).
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A prophecy variable primer

A ghost variable with three operations: allocation, assignment, disposal.

The reasoning rules allow referring to the sequence xs of future writes.

Prophecy Allocation
{true}

newProph()
{p. ∃xs. p will receive xs}

Prophecy Assignment
{p will receive xs}
resolveProph p x{

(). ∃xs ′.
dxs = x :: xs ′e
p will receive xs ′

}
Prophecy Disposal
{p will receive xs}

disposeProph p
{(). dxs = []e}
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A weaker specification for modulus

Instead of establishing this strong specification for modulus...

∀φ′.

 {f implements φ ∗ ff implements F}
modulus ff f

{(c ,ws). d∀φ′. φ′ =ws φ⇒ c = F(φ′)e}



...let us first establish a weaker specification.

Then (later), use an infinitary conjunction rule to argue (roughly) that
the weaker spec implies the stronger one.
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Proof of modulus

Assume φ′ is given.

let modulus ff f =
let xs , p, lk = ref [], newProph (), newLock () in
let spy x =

let y = f x in
withLock lk (fun () ->

xs := x :: !xs; resolveProph p x);
y

in
let c = ff spy in
acquireLock lk; disposeProph p; (c, !xs)

Step 1. Allocate a prophecy variable p.
Introduce the name ws to stand for the list of future writes to p.
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Proof of modulus

Assume φ′ is given.

let modulus ff f =
let xs , p, lk = ref [], newProph (), newLock () in
let spy x =

let y = f x in
withLock lk (fun () ->

xs := x :: !xs; resolveProph p x);
y

in
let c = ff spy in
acquireLock lk; disposeProph p; (c, !xs)

Step 2. Allocate a lock lk , which owns xs and p. Its invariant is that the
list ws of all writes to p can be split into two parts:
• the past writes, the reverse of the current contents of xs;
• the remaining future writes to p.

Moving x from one part to the other preserves the invariant.
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Proof of modulus

Assume φ′ is given.

let modulus ff f =
let xs , p, lk = ref [], newProph (), newLock () in
let spy x =

let y = f x in
withLock lk (fun () ->

xs := x :: !xs; resolveProph p x);
y

in
let c = ff spy in
acquireLock lk; disposeProph p; (c, !xs)

Because acquireLock exhales the invariant and disposeProph guarantees
there are no more future writes, !xs on the last line yields ws (reversed).

Thus, the name ws in the postcondition of modulus and the name ws
introduced by newProph denote the same set of points.
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Proof of modulus

Assume φ′ is given.

let modulus ff f =
let xs , p, lk = ref [], newProph (), newLock () in
let spy x =

let y = f x in
withLock lk (fun () ->

xs := x :: !xs; resolveProph p x);
y

in
let c = ff spy in
acquireLock lk; disposeProph p; (c, !xs)

Step 3. Reason by cases:
• If φ′ =ws φ does not hold, then the postcondition of modulus is true.

Then, it suffices to prove that modulus is safe, which is not difficult.
• If φ′ =ws φ does hold, continue on to the next slides...
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Proof of modulus

Assume φ′ is given. Assume φ′ =ws φ holds.

let modulus ff f =
let xs , p, lk = ref [], newProph (), newLock () in
let spy x =

let y = f x in
withLock lk (fun () ->

xs := x :: !xs; resolveProph p x);
y

in
let c = ff spy in
acquireLock lk; disposeProph p; (c, !xs)

Step 4. Prove that spy implements φ′.
• We have y = φ(x). We wish to prove y = φ′(x).

• Because φ and φ′ coincide on ws, the goal boils down to x ∈ ws.
• x ∈ ws holds because we make it hold by writing x to p.

— “there, let me bend reality for you”
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Proof of modulus

Assume φ′ is given. Assume φ′ =ws φ holds.

let modulus ff f =
let xs , p, lk = ref [], newProph (), newLock () in
let spy x =

let y = f x in
withLock lk (fun () ->

xs := x :: !xs; resolveProph p x);
y

in
let c = ff spy in
acquireLock lk; disposeProph p; (c, !xs)

Step 5. From “ff implements F” and “spy implements φ′”, deduce that
the call “ff spy” is permitted and that c = F(φ′) holds.

c = F(φ′) is the postcondition of modulus. We are done!
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Motivation

Recall that, from this weak specification of modulus...

∀φ′.

 {f implements φ ∗ ff implements F}
modulus ff f

{(c ,ws). d

∀φ′.

φ′ =ws φ⇒ c = F(φ′)e}



...we need to deduce this stronger specification.

This is where an infinitary conjunction rule is needed.
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An array of conjunction rules

Binary, Non-Dependent

{P} e { . dQ1e}
{P} e { . dQ2e}

{P} e { . dQ1 ∧ Q2e}

Binary, Dependent

{P} e {y . dQ1 ye}
{P} e {y . dQ2 ye}

{P} e {y . dQ1 y ∧ Q2 ye}

Infinitary, Non-Dependent

∀x . {P} e { . dQ xe}
{P} e { . d∀x .Q xe}

Infinitary, Dependent

∀x . {P} e {y . dQ x ye}
{P} e {y . d∀x .Q x ye}

The non-dependent variants are sound.

The dependent variants may be sound (open question!).
We can derive an approximation that’s good enough for our purposes.
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An unsound conjunction rule

All of the previous rules are restricted to pure postconditions.

An unrestricted conjunction rule is unsound in the presence of ghost state.

Impure (Unsound!)

{P} e { . Q1}
{P} e { . Q2}

{P} e { . Q1 ∧ Q2}

Open question!
Would this rule be sound if every ghost update was apparent in the code?
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Proof outline — infinitary, non-dependent case

Hypothesis: ∀x . {P} e { . dQ xe}
Goal: {P} e { . d∀x . Q xe}

{P}

Case split: (∀x . Q x) ∨ (∃x . ¬ Q x)

{P ∗ d∀x . Q xe}
e

{d∀x . Q xe}

{P ∗ d∃x . ¬ Q xe}

{∃x . P ∗ d¬ Q xe}
e

{∃x . dQ xe ∗ d¬ Q xe}

{ false }

{ d∀x . Q xe }

38 / 52



Proof outline — infinitary, non-dependent case

Hypothesis: ∀x . {P} e { . dQ xe}
Goal: {P} e { . d∀x . Q xe}

{P}

Case split: (∀x . Q x) ∨ (∃x . ¬ Q x)

{P ∗ d∀x . Q xe}
e

{d∀x . Q xe}

{P ∗ d∃x . ¬ Q xe}

{∃x . P ∗ d¬ Q xe}
e

{∃x . dQ xe ∗ d¬ Q xe}

{ false }

{ d∀x . Q xe }

39 / 52



Proof outline — infinitary, non-dependent case

Hypothesis: ∀x . {P} e { . dQ xe}
Goal: {P} e { . d∀x . Q xe}

{P}

Case split: (∀x . Q x) ∨ (∃x . ¬ Q x)

{P ∗ d∀x . Q xe}
e

{d∀x . Q xe}

{P ∗ d∃x . ¬ Q xe}

{∃x . P ∗ d¬ Q xe}
e

{∃x . dQ xe ∗ d¬ Q xe}

{ false }

{ d∀x . Q xe }

40 / 52



Proof outline — infinitary, non-dependent case

Hypothesis: ∀x . {P} e { . dQ xe}
Goal: {P} e { . d∀x . Q xe}

{P}

Case split: (∀x . Q x) ∨ (∃x . ¬ Q x)

{P ∗ d∀x . Q xe}
e

{d∀x . Q xe}

{P ∗ d∃x . ¬ Q xe}

{∃x . P ∗ d¬ Q xe}
e

{∃x . dQ xe ∗ d¬ Q xe}

{ false }

{ d∀x . Q xe }

41 / 52



Proof outline — infinitary, non-dependent case

Hypothesis: ∀x . {P} e { . dQ xe}
Goal: {P} e { . d∀x . Q xe}

{P}

Case split: (∀x . Q x) ∨ (∃x . ¬ Q x)

{P ∗ d∀x . Q xe}
e

{d∀x . Q xe}

{P ∗ d∃x . ¬ Q xe}
{∃x . P ∗ d¬ Q xe}

e
{∃x . dQ xe ∗ d¬ Q xe}

{ false }

{ d∀x . Q xe }

42 / 52



Proof outline — infinitary, non-dependent case

Hypothesis: ∀x . {P} e { . dQ xe}
Goal: {P} e { . d∀x . Q xe}

{P}

Case split: (∀x . Q x) ∨ (∃x . ¬ Q x)

{P ∗ d∀x . Q xe}
e

{d∀x . Q xe}

{P ∗ d∃x . ¬ Q xe}
{∃x . P ∗ d¬ Q xe}

e
{∃x . dQ xe ∗ d¬ Q xe}

{ false }

{ d∀x . Q xe }

43 / 52



Proof outline — infinitary, non-dependent case

Hypothesis: ∀x . {P} e { . dQ xe}
Goal: {P} e { . d∀x . Q xe}

{P}

Case split: (∀x . Q x) ∨ (∃x . ¬ Q x)

{P ∗ d∀x . Q xe}
e

{d∀x . Q xe}

{P ∗ d∃x . ¬ Q xe}
{∃x . P ∗ d¬ Q xe}

e
{∃x . dQ xe ∗ d¬ Q xe}

{ false }
{ d∀x . Q xe }

44 / 52



The infinitary, dependent case

Same idea, but a prophecy variable must be used to name y ahead of
time and allow the case split (∀x .Q x y) ∨ ¬(∀x .Q x y).

Infinitary, Dependent

∀x . {P} e {y . dQ x ye}
{P} e ′ {y . d∀x .Q x ye}

Because of this, e ′ in the conclusion is a copy of e instrumented with
newProph and resolveProph instructions. (Ouch.)
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Contributions

• Extension of Iris’s prophecy API: disposeProph; typed prophecies.

• Proof of the conjunction rule.

• Specification and proof of modulus.

• Specification and proof of a slightly simplified version of Fix:

E is monotone ⇒
{eqs implements flip E}

lfp eqs
{get. get implements µ̄E}

where µ̄E is the optimal least fixed point of E .
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Limitations

A few optimizations are missing, e.g.,

• Fix uses a more efficient representation of the dependency graph.

Caveats:

• Termination is not proved.

• Deadlock-freedom is not proved.

Wishes:

• Is there any way of not polluting the code
with operations on prophecy variables?
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Take-home messages

Spying is another archetypical use of hidden state.

Prophecy variables are fun,
and they can be useful not just in concurrent code,

but also in sequential code.
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