TYPE INFERENCE

François Pottier

The Programming Languages Mentoring Workshop @ ICFP
August 30, 2015
What is type inference?

What is the type of this OCaml function?

```ocaml
let f verbose msg = if verbose then msg else ""
```
What is type inference?

What is the type of this OCaml function?

```ocaml
let f verbose msg = if verbose then msg else ""
```

OCaml infers it:

```ocaml
# let f verbose msg = if verbose then msg else "";;
val f : bool -> string -> string = <fun>
```
What is type inference?

What is the type of this OCaml function?

```ocaml
let f verbose msg = if verbose then msg else ""
```

OCaml infers it:

```ocaml
# let f verbose msg = if verbose then msg else "";;
val f : bool -> string -> string = <fun>
```

Type inference is mostly a matter of finding out the obvious.
Where is type inference?

Everywhere.
Where is type inference?

Everywhere.

Every typed programming language has some type inference.

- Pascal, C, etc. have a tiny amount
 - the type of every expression is “inferred” bottom-up
- C++ and Java have a bit more
 - C++ has auto, decltype, inference of template parameters...
 - Java infers type parameters to method calls and new (slowly... see next)
- Scala has a lot
 - a form of “local type inference”
 - “bidirectional” (bottom-up in places, top-down in others)
- SML, OCaml, Haskell have a lot, too
 - “non-local” (based on unification / \texttt{constraint solving})
- Haskell, Scala, Coq, Agda infer not just types, but also terms (that is, code)!
An anecdote

Anyone who has ever used the “diamond” in Java 7...

List<Integer> xs =
 new Cons<> (1,
 new Cons<> (1,
 new Cons<> (2,
 new Cons<> (3,
 new Cons<> (3,
 new Cons<> (5,
 new Cons<> (6,
 new Cons<> (6,
 new Cons<> (8,
 new Cons<> (9,
 new Cons<> (9,
 new Cons<> (9,
 new Cons<> (9,
 new Nil<> ()
)))))))))); // Tested with javac 1.8.0_05
An anecdote

Anyone who has ever used the “diamond” in Java 7...

```java
List<Integer> xs =
    new Cons<>(1, // 0.5 seconds
              new Cons<>(1, // 0.5 seconds
                        new Cons<>(2, // 0.5 seconds
                                  new Cons<>(3, // 0.6 seconds
                                            new Cons<>(3, // 0.7 seconds
                                                      new Cons<>(5, // 0.9 seconds
                                                                new Cons<>(6, // 1.4 seconds
                                                                          new Cons<>(6, // 6.0 seconds
                                                                                new Cons<>(8, // 6.5 seconds
                                                                                       new Cons<>(9, // 10.5 seconds
                                                                                             new Cons<>(9, // 26 seconds
                                                                                                       new Cons<>(9, // 76 seconds
                                                                                                                 new Nil<>(())
                                                                                                             )))))))))))); // Tested with javac 1.8.0_05
```

... may be interested to hear that this feature seems to have exponential cost. 😐
What is type inference good for?

How does it work?

Should I do research in type inference?
Benefits

What does type inference do for us, programmers? Obviously,

- it reduces *verbosity* and *redundancy*,
- giving us *static type checking* at little syntactic cost.
What does type inference do for us, programmers? Obviously,

- it reduces *verbosity* and *redundancy*,
- giving us *static type checking* at little syntactic cost.

Less obviously,

- it sometimes *helps us figure out* what we are doing...
Example: sorting

What is the type of `sort`?

```ocaml
let rec sort (xs : 'a list) =
  if xs = [] then
    []
  else
    let pivot = List.hd xs in
    let xs1, xs2 = List.partition (fun x -> x <= pivot) xs in
    sort xs1 @ sort xs2
```
Example: sorting

What is the type of `sort`?

```ocaml
let rec sort (xs : 'a list) =
  if xs = [] then
    []
  else
    let pivot = List.hd xs in
    let xs1, xs2 = List.partition (fun x -> x <= pivot) xs in
    sort xs1 @ sort xs2
```

Oops... This is a lot more general than I thought!?

```ocaml
val sort : 'a list -> 'b list
```

This function never returns a non-empty list.
Example: searching a binary search tree

type 'a tree = Empty | Node of 'a tree * 'a * 'a tree

What is the type of find?

let rec find compare x = function
| Empty -> raise Not_found
| Node(l, v, r) ->
 let c = compare x v in
 if c = 0 then v
 else find compare x (if c < 0 then l else r)
Example: searching a binary search tree

```ocaml
type 'a tree = Empty | Node of 'a tree * 'a * 'a tree

What is the type of `find`?

```ocaml
let rec find compare x = function
| Empty -> raise Not_found
| Node(l, v, r) ->
 let c = compare x v in
 if c = 0 then v
 else find compare x (if c < 0 then l else r)
```

It may well be more general than you expected:

```ocaml
val find : ('a -> 'b -> int) -> 'a -> 'b tree -> 'b

Good – this allows us to implement lookup in a map using `find`.```
Example: groking delimited continuations

This 1989 paper by Danvy and Filinski...

A Functional Abstraction of Typed Contexts

Olivier Danvy & Andrzej Filinski

DIKU – Computer Science Department, University of Copenhagen
Universitetsparken 1, 2100 Copenhagen Ø, Denmark
uucp: danvy@diku.dk & andrzej@diku.dk
Example: groking delimited continuations

This 1989 paper contains typing rules like this:

\[
\frac{
\rho, \sigma \vdash E : \sigma, \tau
}{
\rho, \alpha \vdash \text{reset}(E) : \tau, \alpha
}\]
This 1989 paper contains typing rules like this:

\[
\frac{\rho, \sigma \vdash E : \sigma, \tau}{\rho, \alpha \vdash \text{reset}(E) : \tau, \alpha}
\]

and this:

\[
\frac{\left[f \mapsto (\tau/\delta \rightarrow \alpha/\delta) \right] \rho, \sigma \vdash E : \sigma, \beta}{\rho, \alpha \vdash \text{shift } f \text{ in } E : \tau, \beta}
\]
This 1989 paper contains typing rules like this:

\[
\frac{\rho, \sigma \vdash E : \sigma, \tau}{\rho, \alpha \vdash \text{reset}(E) : \tau, \alpha}
\]

and this:

\[
\frac{[f \mapsto (\tau/\delta \rightarrow \alpha/\delta)] \rho, \sigma \vdash E : \sigma, \beta}{\rho, \alpha \vdash \text{shift } f \text{ in } E : \tau, \beta}
\]

How does one make sense of these rules? How does one guess them?
Example: groking delimited continuations

Well, the **semantics** of `shift` and `reset` is known...

```ocaml
let return x k = k x
let bind c f k = c (fun x -> f x k)
let reset c = return (c (fun x -> x))
let shift f k = f (fun v -> return (k v)) (fun x -> x)
```

...so their types can be **inferred**.
Example: groking delimited continuations

Let us introduce a little notation:

```plaintext
type ('alpha, 'tau, 'beta) komputation = ('tau -> 'alpha) -> 'beta

type ('sigma, 'alpha, 'tau, 'beta) funktion = 'sigma -> ('alpha, 'tau, 'beta) komputation
```
Example: groking delimited continuations

What should be the typing rule for \texttt{reset}? Ask OCaml:

\begin{verbatim}
(reset : (_, _, _) komputation -> (_, _, _) komputation);;
- : ('a, 'a, 'b) komputation -> ('c, 'b, 'c) komputation
\end{verbatim}
Example: groking delimited continuations

What should be the typing rule for \texttt{reset}? Ask \texttt{OCaml}:

\begin{verbatim}
(reset : (_, _, _) komputation -> (_, _, _) komputation);;
- : ('a, 'a, 'b) komputation -> ('c, 'b, 'c) komputation
\end{verbatim}

So Danvy and Filinski were right:

\[
\frac{
\rho, \sigma \vdash E : \sigma, \tau
}{
\rho, \alpha \vdash \text{reset}(E) : \tau, \alpha
}
\]

('a is σ, 'b is τ, 'c is α.)'
Example: groking delimited continuations

What should be the typing rule for \texttt{shift}? Ask OCaml:

```ocaml
# (shift : ((_, _, _, _) funktion -> (_, _, _) komputation) ->
   (_, _, _) komputation);;
- : (('a, 'b, 'c, 'b) funktion -> ('d, 'd, 'e) komputation) ->
  ('c, 'a, 'e) komputation
```
Example: groking delimited continuations

What should be the typing rule for shift? Ask OCaml:

```ocaml
# (shift : ((_, _, _, _) funktion -> (_, _, _) komputation) ->
   (_, _, _) komputation);;
- : (('a, 'b, 'c, 'b) funktion -> ('d, 'd, 'e) komputation) ->
   ('c, 'a, 'e) komputation
```

So Danvy and Filinski were right:

\[
\frac{\rho, \alpha \vdash shift \ f \ in \ E : \tau, \beta}{{f \mapsto (\tau/\delta \rightarrow \alpha/\delta)}\rho, \sigma \vdash E : \sigma, \beta}
\]

('a is \(\tau\), 'b is \(\delta\), 'c is \(\alpha\), 'd is \(\sigma\), 'e is \(\beta\).)
Sometimes, type inference helps us figure out what we are doing.
Drawbacks

In what ways could type inference be a bad thing?

- Liberally quoting Reynolds (1985), type inference allows us to make code succinct to the point of unintelligibility.
- Reduced redundancy makes it harder for the machine to locate and explain type errors.

Both issues can be mitigated by adding well-chosen type annotations.
What is type inference good for?

How does it work?

Should I do research in type inference?
A look at simple type inference

Let us focus on a simply-typed programming language.

- base types (int, bool, ...), function types (int -> bool, ...), pair types, etc.
- no polymorphism, no subtyping, no nuthin’

Type inference in this setting is particularly simple and powerful.
Simple type inference, very informally

```
let f verbose msg = if verbose then msg else ""
```
Simple type inference, very informally

```ml
let f verbose msg = if verbose then msg else ""
```

Say f has unknown type α.
let f verbose msg = if verbose then msg else ""

Say f has unknown type α.

f is a function of two arguments.
Simple type inference, very informally

```ml
let f verbose msg = if verbose then msg else ""
```

Say \(f \) has unknown type \(\alpha \).
\(f \) is a function of two arguments.
So \(\alpha = \alpha_1 \rightarrow \alpha_2 \rightarrow \beta \).
Simple type inference, very informally

```ml
let f verbose msg = if verbose then msg else ""
```

Say \(f \) has unknown type \(\alpha \).
\(f \) is a function of two arguments.
So \(\alpha = \alpha_1 \rightarrow \alpha_2 \rightarrow \beta. \)

verbose has type \(\alpha_1 \).
Simple type inference, very informally

```
let f verbose msg = if verbose then msg else ""
```

Say f has unknown type α.
f is a function of two arguments.
verbose has type α_1.
msg has type α_2.

So $\alpha = \alpha_1 \rightarrow \alpha_2 \rightarrow \beta$.

The "if" expression must have type β.
So $\alpha_1 = \text{bool}$.
And $\alpha_2 = \text{string} = \beta$.
Solving these equations reveals that f has type $\text{bool} \rightarrow \text{string} \rightarrow \text{string}$.
Simple type inference, very informally

```plaintext
let f verbose msg = if verbose then msg else ""
```

Say \(f \) has unknown type \(\alpha \).
\(f \) is a function of two arguments. So \(\alpha = \alpha_1 \rightarrow \alpha_2 \rightarrow \beta \).

\(\text{verbose} \) has type \(\alpha_1 \).
\(\text{msg} \) has type \(\alpha_2 \).

The "\(\text{if} \)" expression must have type \(\beta \).
Simple type inference, very informally

```ocaml
let f verbose msg = if verbose then msg else ""
```

Say f has unknown type α.

f is a function of two arguments. So $\alpha = \alpha_1 \rightarrow \alpha_2 \rightarrow \beta$.

`verbose` has type α_1.

`msg` has type α_2.

The "if" expression must have type β. So $\alpha_1 = \text{bool}$.
Simple type inference, very informally

```ocaml
let f verbose msg = if verbose then msg else ""
```

Say \(f \) has unknown type \(\alpha \).
\(f \) is a function of two arguments.
\(\text{verbose} \) has type \(\alpha_1 \).
\(\text{msg} \) has type \(\alpha_2 \).
The \texttt{if} expression must have type \(\beta \).

So \(\alpha = \alpha_1 \rightarrow \alpha_2 \rightarrow \beta \).

So \(\alpha_1 = \text{bool} \).
And \(\alpha_2 = \text{string} = \beta \).
let f verbose msg = if verbose then msg else ""

Say f has unknown type α.

f is a function of two arguments.

verbose has type α₁.

msg has type α₂.

The "if" expression must have type β.

So α₁ = bool.

And α₂ = string = β.

Solving these equations reveals that f has type bool -> string -> string.
A partial history of simple type inference

Let us see how it has been explained / formalized through history...
The 1970s

The 1970s

Milner (1978) invents type inference and ML polymorphism.
He re-discovers, extends, and popularizes an earlier result by Hindley (1969).
Milner's description

Milner publishes a “declarative” presentation, Algorithm W,
Milner’s description

Milner publishes a “declarative” presentation, Algorithm W,

(ii) If \(f \) is \((de)\), then:

- Let \((R, d_o) = \text{USR}(\overline{p}, d)\), and \((S, \bar{e}_o) = \text{USR}(R\overline{p}, e)\);
- Let \(U = \text{USR}(S\rho, \sigma \rightarrow \beta) \), \(\beta \) new;
- Then \(T = USR \), and \(f = USR((S\overline{d})\bar{e}_{\delta})_{\rho} \).
Milner’s description

Milner publishes a “declarative” presentation, Algorithm W,

and an “imperative” one, Algorithm J.

(ii) If \(f \) is \((de)\), then:

\[
\begin{align*}
&\text{let } (R, d, v) = \mathcal{W}(\bar{p}, d), \text{ and } (S, e_a) = \mathcal{W}(R\bar{p}, e); \\
&\text{let } U = \mathcal{U}(S\bar{p}, \sigma \rightarrow \beta), \beta \text{ new;}
\end{align*}
\]

then \(T = USR \), and \(f = U((S\bar{d})\bar{e})_\beta \).
Milner's description

Milner publishes a “declarative” presentation, Algorithm W,
and an “imperative” one, Algorithm J.

(ii) If f is (de), then:

\begin{align*}
&\text{let } (R, d, \bar{d}_o) = \mathcal{W}(\bar{p}, d), \text{ and } (S, \bar{e}_o) = \mathcal{W}(R\bar{p}, \bar{e}); \\
&\text{let } U = \Upsilon(S\rho, \sigma \rightarrow \beta), \beta \text{ new}; \\
&\text{then } T = USR, \text{ and } f = U(((S\bar{d})\bar{e})_o).
\end{align*}

(ii) If f is (de) then:

\begin{align*}
&\rho := J(\bar{p}, d); \sigma := J(\bar{p}, \bar{e}); \\
&\text{UNIFY } (\rho, \sigma \rightarrow \beta); \text{ (} \beta \text{ new)} \\
&\tau := \beta
\end{align*}
Milner’s description

Milner publishes a “declarative” presentation, Algorithm W,

and an “imperative” one, Algorithm J.

Algorithm J maintains a current substitution in a global variable.

(ii) If \(f \) is \((de)\), then:

let \((R, \bar{d}) = \mathcal{W}(\bar{p}, \bar{d})\), and \((S, \bar{e}_a) = \mathcal{W}(R\bar{p}, \bar{e})\);
let \(U = \mathcal{U}(Sp, \sigma \rightarrow \beta) \), \(\beta \) new;
then \(T = USR \), and \(f = U((S\bar{d}\bar{e})_0) \).

(ii) If \(f \) is \((de)\) then:

\[\rho := \mathcal{I}(\bar{p}, \bar{d}); \quad \sigma := \mathcal{I}(\bar{p}, \bar{e}); \]
\[\text{UNIFY} \ (\rho, \sigma \rightarrow \beta) \); \((\beta \text{ new}) \)
\[\tau := \beta \]
Milner's description

Milner publishes a "declarative" presentation, Algorithm W,

and an "imperative" one, Algorithm J.

Algorithm J maintains a current substitution in a global variable.

Both compose substitutions produced by unification, and create "new" variables as needed.

(ii) If \(f \) is \((de)\), then:

\[
\begin{align*}
&\text{let } (R, d_o) = \mathcal{W}(\bar{p}, d), \text{ and } (S, \bar{e}_o) = \mathcal{W}(R\bar{p}, e); \\
&\text{let } U = \mathcal{U}(Sp, \sigma \rightarrow \beta), \beta \text{ new}; \\
&\text{then } T = USR, \text{ and } f = U((S\bar{d}\bar{e})_0).
\end{align*}
\]

(ii) If \(f \) is \((de)\) then:

\[
\begin{align*}
\rho &:= \mathcal{I}(\bar{p}, d); \sigma := \mathcal{I}(\bar{p}, e); \\
\text{UNIFY } (\rho, \sigma \rightarrow \beta); \beta \text{ new} \\
\tau &:= \beta
\end{align*}
\]
Milner’s description

Milner publishes a “declarative” presentation, Algorithm W,

and an “imperative” one, Algorithm J.

Algorithm J maintains a current substitution in a global variable.

Both compose substitutions produced by unification, and create “new” variables as needed.

(ii) If f is (de), then:

\begin{align*}
\text{let } (R, \tilde{d}_v) &= \mathcal{W}(\tilde{p}, d), \text{ and } (S, \tilde{e}_o) = \mathcal{W}(R\tilde{p}, \tilde{e}); \\
\text{let } U &= \mathcal{U}(S\rho, \sigma \rightarrow \beta), \beta \text{ new}; \\
\text{then } T &= USR, \text{ and } f = U((S\bar{d}\bar{e})_\beta).
\end{align*}

\begin{align*}
\text{(ii) If } f \text{ is } (de) \text{ then:}
\rho &:= \mathcal{I}(\tilde{p}, d); \sigma := \mathcal{I}(\tilde{p}, \epsilon); \\
\text{UNIFY}(\rho, \sigma \rightarrow \beta); (\beta \text{ new}) \\
\tau &:= \beta
\end{align*}

Milner does not describe UNIFY.

Naive unification (Robinson, 1965) has exponential complexity due to lack of sharing.
The 1980s

Cardelli (1987), Wand (1987) and others formulate type inference as a two-stage process: generating and solving a conjunction of equations. This leads to a higher-level, more modular presentation, which matches the informal explanation.
Cardelli (1987), Wand (1987) and others formulate type inference as a two-stage process: generating and solving a conjunction of equations.

Case 3. $(A, (\lambda x. M), t)$. Let τ_1 and τ_2 be fresh type variables. Generate the equation $t = \tau_1 \to \tau_2$ and the subgoal $((A[x \leftarrow \tau_1])_M, M, \tau_2)$.

This leads to a higher-level, more modular presentation, which matches the informal explanation.
The 1990s

Kirchner & Jouannaud (1990), Rémy (1992) and others push this approach further. They explain constraint solving as rewriting. They explain sharing by using variables as memory addresses. They explain "new" variables as existential quantification.
Kirchner & Jouannaud (1990), Rémy (1992) and others push this approach further.

- They explain constraint solving as rewriting.
- They explain sharing by using variables as memory addresses.
- They explain “new” variables as existential quantification.
Constraints

An intermediate language for describing type inference problems.

\[
\begin{align*}
\tau & ::= \alpha \mid \tau \rightarrow \tau \mid \ldots \\
C & ::= \bot \mid \tau = \tau \mid C \land C \mid \exists \alpha.C
\end{align*}
\]

A constraint generator transforms the program into a constraint.

A constraint solver determines whether the constraint is satisfiable (and computes a description of its solutions).
Constraint generation

A function of a type environment Γ, a term t, and a type τ to a constraint.

Defined by cases:

\[
\begin{align*}
\llbracket \Gamma \vdash x : \tau \rrbracket &= (\Gamma(x) = \tau) \\
\llbracket \Gamma \vdash \lambda x. u : \tau \rrbracket &= \exists \alpha_1 \alpha_2. \left(\tau = \alpha_1 \rightarrow \alpha_2 \land \llbracket \Gamma[x \mapsto \alpha_1] \vdash u : \alpha_2 \rrbracket \right) \\
\llbracket \Gamma \vdash t_1 \ t_2 : \tau \rrbracket &= \exists \alpha. (\llbracket \Gamma \vdash t_1 : \alpha \rightarrow \tau \rrbracket \land \llbracket \Gamma \vdash t_2 : \alpha \rrbracket)
\end{align*}
\]
Constraint solving as rewriting

Transform the constraint, step by step, obeying a set of rewriting rules.

If:

- every rewriting step preserves the meaning of the constraint,
- every sequence of rewriting steps terminates,
- a constraint that cannot be further rewritten either is \(\bot \) or is satisfiable,

then we have a solver, i.e., an algorithm for deciding satisfiability.
Variables as addresses

A new variable \(\alpha \) can be introduced to stand for a sub-term \(\tau \):

\[
(\alpha \mapsto \tau)(e) \\
\exists \alpha \cdot (e \land \alpha \vdash \tau)
\]

Think of \(\alpha \) as the address of \(\tau \) in the machine.

Instead of duplicating a whole sub-term, one duplicates its address:

\[
f(\tau_1, \ldots \tau_p) \doteq f(\beta_1, \ldots \beta_p) \doteq e \\
\tau_1 \doteq \beta_1 \land \ldots \land \tau_p \doteq \beta_p \land f(\beta_1, \ldots \beta_p) \doteq e
\]

This accounts for sharing. Robinson’s exponential blowup is avoided.
Unification, the right way

Rény works with multi-equations, equations with more than two members:

\[
\begin{align*}
\alpha \triangleright e & \land \alpha \triangleright \xi' \\
\hline
\alpha \triangleright e \triangleright e'
\end{align*}
\] (FUSE)

In the machine, one maintains equivalence classes of variables using a union-find data structure.

The occurs-check (which detects cyclic equations) takes place once at the end. (Doing it at every step, like Robinson, would cause a quadratic slowdown.)

This is Huet’s quasi-linear-time unification algorithm (1976).
What is type inference good for?

How does it work?

Should I do research in type inference?
A takeaway message

Just as in a compiler, an intermediate language is a useful abstraction.

- think declarative, not imperative
- say what you want computed, not how to compute it
- build a constraint, then “optimize” it step by step until it is solved

The constraint-based approach scales up and handles

- Hindley-Milner polymorphism (Pottier and Rémy, 2005)
- elaboration (Pottier, 2014)
- type classes, OCaml objects, and more.
Is type inference a hot topic?

Not really. Not at this moment.
Is type inference a hot topic?

Not really. Not at this moment.

At ICFP 2015, 4 out of 35 papers seem directly or indirectly concerned with it:

- 1ML – Core and Modules United (F-ing First-Class Modules) (Rossberg)
- Bounded Refinement Types (Vazou, Bakst, Jhala)
- A Unification Algorithm for Coq Featuring Universe Polymorphism and Overloading (Ziliani, Sozeau)
- Practical SMT-Based Type Error Localization (Pavlinovic, King, Wies)
Is type inference a hot topic?

Not really. Not at this moment.

At ICFP 2015, 4 out of 35 papers seem directly or indirectly concerned with it:

- 1ML – Core and Modules United (F-ing First-Class Modules) (Rossberg)
- Bounded Refinement Types (Vazou, Bakst, Jhala)
- A Unification Algorithm for Coq Featuring Universe Polymorphism and Overloading (Ziliani, Sozeau)
- Practical SMT-Based Type Error Localization (Pavlinovic, King, Wies)

Yet, people still get drawn into it by necessity.

- remember, every typed programming language needs some type inference!
What are the open problems?

Inference for powerful / complex type systems.

- universal and existential types
- dependent types (Ziliani and Sozeau) and refinement types (Vazou et al.)
- linear and affine types
- subtyping
- first-class modules (Rossberg)

Inference for tricky / ugly languages.

- e.g., JavaScript – which was not designed as a typed language, to begin with

Locating and explaining type errors.

- show all locations, or a most likely one? (Pavlinovic et al.)

Identifying re-usable building blocks for type inference algorithms.
What’s the potential impact?

Type inference makes the difference between an awful language and a great one.

- if you care about language design, you will care about type inference
What are the potential pitfalls?

Type inference is (often) an **undecidable** problem.

Type error explanation is (often) an **ill-specified** problem.

Your algorithm may “work well in practice”,

- but it could be difficult to **formally argue** that it does,
- hence difficult to **publish**.
YOU TOO COULD BE SUCKED INTO IT.

GOOD LUCK and HAVE FUN!