Depth-first search and strong connectivity in Coq

François Pottier

January 9, 2015
The problem

Finding the strongly connected components of a directed graph.

- **Pedagogical** value:

 The first nontrivial graph algorithm.

- **Practical** value:

 Applications in program analysis, constraint solving, model-checking, etc.
Known algorithms

Several known algorithms run in linear time:

- **Tarjan** (1972).
 - One pass. Maintains auxiliary data ("lowpoint values", etc.).
 - Two passes. Maintains no auxiliary data.
 - Described in Cormen/Leiserson/Rivest’s textbook.
 - Explained by Wegener (2002).
- **Gabow** (2000), improving on Purdom (1968) and Munro (1971).
 - One pass. Maintains a union-find data structure.
Kosaraju’s algorithm

The algorithm is as follows:

1. Perform a DFS traversal of the graph E, producing a forest f_1.
2. Perform a DFS traversal of the reverse graph \bar{E}, visiting the roots in the reverse post-order of f_1, producing a forest f_2.

Then, f_2 is a list of the strongly connected components. Magic!

– Note: the second traversal does not have to be depth-first.

Really Easy to implement if you have done DFS already.
Why does this work?
Complete discovery

The left side of every dashed boundary is closed w.r.t. E.
The right side of every dashed boundary is closed w.r.t. \bar{E}.
Every component is contained within some tree.
Let \(r \) be the root of the \textit{last} tree in \(f_1 \).

The component of \(r \) must be \(\overline{E}^*(r) \).
Let r be the root of the \textit{last} tree in f_1.

The component of r must be $\overline{E^*(r)}$.

So it is exactly the \textit{first} tree in f_2.

Furthermore, it is a prefix of the last tree in f_1. So, if we remove it by thought... we end up where we started, ... only with a smaller graph. (Induction!)
Let r be the root of the \textit{last} tree in f_1.
The component of r must be $\bar{E}^*(r)$.
So it is exactly the \textit{first} tree in f_2.
Furthermore,
it is a \textit{prefix} of the last tree in f_1.
Let r be the root of the last tree in f_1. The component of r must be $\overline{E^*}(r)$.

So it is exactly the first tree in f_2.

Furthermore, it is a prefix of the last tree in f_1.

So, if we remove it by thought... we end up where we started, ... only with a smaller graph. (Induction!)
Now, in Coq (briefly)
Forests

A non-empty forest:

```
 washed

 washed

 washed
```

Forests form an inductive type:

\[f, \vec{v}, \vec{w} ::= \epsilon \mid \frac{w}{\vec{w}} :: \vec{v} \]
We define an inductive predicate \(dfs \ (i) \ \vec{v} \ (o) \).

- It has a certain declarative flavor:
 \(\vec{v} \) is a DFS forest.

- It still has a certain imperative flavor:
 if the vertices in \(i \) are marked at the beginning, then a DFS algorithm may construct \(\vec{v} \), and the vertices in \(o \) are marked at the end.
DFS forests

\[
\text{DFS-EMPTY} \\
\frac{\text{dfs} (i) \in (i)}{}
\]
\textbf{DFS-NONEMPTY}
\begin{align*}
& w \not\in i \\
& dfs \ (\{w\} \cup i) \ \vec{w} \ (m) \\
& roots(\vec{w}) \subseteq E(\{w\}) \\
& E(\{w\}) \subseteq m \\
& dfs \ (m) \ \vec{v} \ (o) \\
\hline
& dfs \ (i) \ \frac{w}{\vec{w}} :: \vec{v} \ (o)
\end{align*}

\begin{itemize}
 \item w was not initially marked
 \item after marking w, the DFS forest \vec{w} was built
 \item every root of \vec{w} is a successor of w
 \item every successor of w was marked at this point
 \item then, the DFS forest \vec{v} was built
\end{itemize}

\begin{itemize}
 \item the DFS forest $\vec{w} :: \vec{v}$ was built
\end{itemize}
Complete discovery
Complete discovery

Lemma (Complete discovery)

dfs \((i) \overset{\theta}{\rightarrow} (o) \) and \(E(i) \subseteq i \) imply \(E(o) \subseteq o \).

Easy. (The paper summary of the proof is a few lines long.)
François Pottier Depth-first search and strong connectivity in Coq
Kosaraju’s algorithm

Theorem (Kosaraju’s algorithm is correct)

Let \((V, E)\) be a directed graph. If the following hypotheses hold,

\[
\begin{align*}
\text{dfs}_E (\emptyset) & \quad f_1 (V) \\
\text{dfs}_{\overline{E}} (\emptyset) & \quad f_2 (V) \\
\text{rev} (\text{post}(f_1)) & \quad \text{orders} \ f_2
\end{align*}
\]

then the toplevel trees of \(f_2\) are the components of the graph \(E\).

Slightly involved. (The paper summary of the proof is two pages.)
Towards an executable* DFS in Coq

(*executable = extractible)
Parameters

A set V of vertices.

V must be finite.

– Slightly too strong an assumption, but OK for now.
A mathematical graph \(E \).

A runtime function \texttt{successor } \(v \)
producing an iterator on the successors of \(v \).
Parameters

A runtime representation of sets of vertices.

Record SET (V : Type) := MkSET {
 repr : Type;
 meaning : repr -> (V -> Prop);
 void : repr;
 mark : V -> repr -> repr;
 marked : V -> repr -> bool;
 ... // 3 more hypotheses about void, mark, marked
}.
A recursive formulation

Notation state := (repr * forest V)%type.

A state records the marked vertices and the forest built so far.
A recursive formulation

One would like to write something like this:

Definition visitf : state -> V -> state := ...

This *cannot work*, though.

Because the recursive call sits in a loop, the proof of termination must use the fact that *a vertex, once marked, remains marked*.

So, we must build this information into the postcondition...
A recursive formulation

This states that s_1 has at least as many marked vertices as s_0:

Definition visitf_dep:
 forall s0 : state, V -> { s1 | lift le s0 s1 }.
Proof.
 eapply (Fix (...) (...)).
 ...
Defined.

Works. Unpleasant.
A tail-recursive formulation

Work in progress.

Termination is relatively easy to prove. (Generic library: \textit{Loop}.)

Parameterized by user hooks (on_entry, on_exit, on_rediscovery).

Nice (?) most general (?) specification:

Theorem dfs_main_spec:
 \[
 \exists vs, \quad \text{rev roots} = \text{rrootsl} vs \land \\
 \text{rdfs E (marked base) (marked dfs_main) vs} \land \\
 \text{dfs_main} = \text{rfold dfs_init_spec} vs.
 \]

Running the iterative DFS algorithm is equivalent to \textit{guessing} a DFS forest and recursively \textit{folding} over this forest.
Conclusion
Conclusion

Contributions:

▶ Proofs of basic properties of DFS.
▶ A proof of (the principle of) Kosaraju’s algorithm.
▶ Embryo of a certified DFS library. (More to come.)

Lessons:

▶ Separation between mathematics and code is desirable, and quite easy to achieve in Coq.
▶ Writing, specifying, proving generic executable code is a lot of work!
▶ We need a certified library of basic graph algorithms!