Hiding local state in direct style:
a higher-order anti-frame rule

Frangois Pottier

January 2&6th, 2006

B INRIA

Introduction

Basice of the type system

A higher-order anti-frame rule

Applications

Conclusion

Bibliography

2/68

Hidden state

» o«

Many “objects” (or “modules”, “components”, “functions”) rely on a
piece of modifiable internal state, yet publish an informal specification
that does not reveal the existence of such a state.

Hidden state

For instance, a memory manager might maintain a linked list of freed
memory blocks.

Yet, clients need not know anything about it.

It is safe for them to consider that the allocation and deallocation
functions have no side effect, other than the obvious effect of
providing the client with, or depriving the client from, ownership of a
unique memory block.

Hiding versus abstraction

Hiding is not abstraction. Hiding pretends that there is no internal
state, while abstraction acknowledges that there is one, but makes its
type (and properties) abstract.

Both protect the internal state from interference by clients, and
protect clients from changes in the representation of the internal
state.

Hiding versus abstraction

Hiding offers the additional advantage that objects with internal state
appear as ordinary objects, hence can be untracked. It is not
necessary to ask how they are aliased or who owns them.

Abstraction offers the additional advantage that clients can reason

about state changes. The computational state, which has abstract

type, can be declared to represent some logical state, at a concrete
type. For instance, the internal state of a hash table represents a
mathematical finite map.

In practice, both hiding and abstraction are useful.

Hiding versus abstraction

Consider an object that produces the stream of the prime numbers.

If it is epecified that each invocation returns the next prime number,
then the internal state can only be abstract.

If it is only specified that each invocation returns some prime number,
then the state can be hidden.

Hiding versus abstraction

Whether an object’s internal state can be hidden depends not just on
the object’s actual behavior, but also on ite specification.

As specifications become less precise, opportunities for hiding state
increase!

Towards a formalization

How could the concept of hidden state be made precise in a formal
framework for reasoning about programe?

This talk attempts to provide an answer...

Towards a formalization

Which formal frameworks provide an appropriate setting in which to ask
(and anewer) this question?

There are several. Separation logic is one. A type system with regions
and capabilities is another.

In fact, the two are quite close: both keep track of aliasing and
ownership properties. Both allow assigning pre- and post-conditions to
code.

Towards a formalization

Hidden state has been previously studied in the setting of separation
logic [O'Hearn et al., 2004, Birkedal et al., 2006].

In this talk, | use the vocabulary of a type system
[Charguéraud and FPottier, 2007] for an ML-like programming language.

It should be possible to transpose the main idea to the eetting of
separation logic.

Introduction

Basice of the type system

A higher-order anti-frame rule

Applications

Conclusion

Bibliography

12/68

The host type system

This type system is the setting in which | develop a rule for hiding
state and prove (syntactic) type soundness.

The details of the type system are somewhat unimportant for this
talk. | just wish to convey a flavor of the system before we embark on
a journey towards hidden state...

Regions

A region p ie a static name for a set of values.
The type [p] is the type of the values that inhabit the region p.

In this talk, there are only singleton regions, so a region p is a static
name for a value, and [p] is a singleton type. My paper with Arthur
Charguéraud [2007] also has group regions, which become necessary
when there is aliasing.

Capabilities

A singleton capability {p:6} is a static token that serves two roles.

First, it carries a memory type 0, which describes the structure and
extent of the memory area to which the value p gives access. Second,
it represents ownership of this area.

For instance, {p:refint} asserts that the value p is the address of
a reference cell, and asserts ownership of this cell.

Capabilities (summary)

On top of singleton capabilities, one builde composite capabilities:

C u= ¢ empty heap
| {p:0} singleton heap
| CiNnCo (separating) conjunction
| JpC embedded region
| Ci®Co (explained later on)

There is a clear analogy between capabilities and separation logic
assertions.

Memory types

Here is a summary of memory types:

g == L I unit I 64+ 6o I 2 data
| o4 — o2 functions
| [p] indirection via a region
| refé reference cell
| CAQ embedded capability
| Jpb embedded region
| 6®C (explained later on)

Memory types express ownership, so they are linear.

Type-level recursion

| assume that capabilities and types can be recursive. For instance,
the unique solution to the following equation:

R={p:ref (RANo1) = (RA02))}
is a singleton capability R for a reference cell that contains a function

that requires, and preserves, R.

Recursive capabilities are required in many applications, and, in this
system, appear necessary for the subject reduction proof to go
through.

Value types (summary)

Values receive value types:

v = L|unit|oi+roo|v X2 data
| oy — o2 functions
| [¢] indirection via a region
| t®C (explained later on)

Values are non-linear: they can be discarded or duplicated at will,

Value types form a subset of memory types, deprived of references and
embedded capabilities.

Judgements about values

Judgements about values take the form:
FrEvee

Type environments I associate value types with variables.

Values do not involve computation, which is why this judgement form
does not involve any capabilities, either as input or as output.

Judgements about terms

Judgements about terms take the form:
CkHt:o

The capability C serves a pre-condition, while the computation type o
serves as a post-condition. Judgements about terms are analogous to
Hoare triples in separation logic.

Computation types are:

gu=t|CAc|Ipo|orC

Typing rules for references

References are tracked. allocation produces a singleton capability, which
i later required for access. Read and write accesses are restricted
to non-linear value types, because they duplicate or discard a value.

ref : ©—Jp{p:reft}[p]
get : {p:refc}p] = {p:reft}c
set : {p:refry}([p] xv2) = {p:ref v} unit

References to non-value types can be created and exploited via
focusing:

(focus-ref) {p4 :ref 8} =3po.{p4 : ref [p2]}{p2 : 0}

@ Introduction

Basice of the type system

A higher-order anti-frame rule

Applications

Conclusion

Bibliography

23/68

The first-order frame rule

The first-order frame rule states that, if a term behaves correctly in a
certain store, then it also behaves correctly in a larger store, and
does not affect the part of the store that it does not know about:

CoFt:o
r;(C4 /\C2) Ft: (C/| /\J)

This rule can also take the form of a simple subtyping axiom:

o1 -0 < (CAoy)— (CA0R)

The first-order frame rule

The frame rule makes a capability unknown to a term, while known to
its context.

To hide a piece of local state is the exact dual: to make a capability
known to a term, yet unknown to its context.

Hidden state via frame rules

In a programming language with higher-order functions, one could hope
to be able to exploit the duality between terms and contexts.

By viewing the context as a term, a continuation, one could perhaps
use a frame rule to hide a piece of local state.

This is the approach of Birkedal, Torp-Smith, and Yang [2006], who
follow up on earlier work by O’Hearn, Yang, and Reynolds [2004].

Hidden state via frame rules

Imagine that we have a provider, a term of type:
C A ((C Aunit) = (C Aint))

The provider initially establishes C and returns a function that requires
C and preserves it.

This could be the type of a stream of integers, with internal state.

Hidden state via frame rules

We now wish to hide C and pretend that the provider is an ordinary
function, of type unit — int.

Applying the frame rule to the provider would not help.

We must apply the frame rule to the client, assuming it is known.

Hidden state via frame rules

Imagine that we also have a client, a term of type:
(unit — int) — a

This client is explicitly abstracted over the provider. The type a is
some answer type.

The client does not know about the invariant C. It views the provider
as an ordinary function, without side effects.

Hidden state via frame rules

At first, the function application (client provider) seems ill-typed. The
provider offers:
(C Aunit) — (C Aint)

while the client requires:
unit — int

The former is not a subtype of the latter: in fact, according to the
first-order frame rule, it is the other way around!

Hidden state via frame rules

This is where Birkedal et al’s higher-order frame rule [2006] comes
into play. The rule guarantees:

(unit =int) - a < (CA(CAunit—=CAint)) = (CAa)

That is, if C holds initially and if the provider preserves C, then, the
client will unwittingly preserve it as well.

Here, the first-order frame rule would yield a weaker statement:

(unit = int) - a < (CA(unit = int)) = (CAa)

The higher-order frame rule

The general form of the higher-order frame rule is:
c < o&C

The type 0 ®C (“o under C”) describes the same behavior as o, and
additionally requires C to be available at every interaction between the
term and its context.

The higher-order frame rule

The operator - ®C makes C a new pre-condition and a new
post-condition of every arrow within its left-hand argument:

(01 =2 02)®C = (CA(01RC)) = (CA(028C(C))

The operator - ® C commutes with products, sums, references, etc. It
vanishes at base types.

Hidden state via frame rules

After applying the higher-order frame rule, the client has type:
(CA(CAunit = CAint)) — (CAa)
Recall that the provider has type:
C A ((C Aunit) = (C Aint))

So the function application (client provider) is in fact well-typed, and
has type CAa.

Hidden state via frame rules

In a modular setting, the client is unknown. One can then abstract

the provider over the client. If one admits the subtyping axiom C <,
then the value:

Aclient.(client provider)
has type:

((unit = int) — a) — a
This is the double negation of the desired type.

We succeeded, but were led to use continuation-passing style.

Hidden state via frame rules

ls this approach to hidden state realistic?
| claim not: continuation-passing style is not practical.

What is a direct-style analogue of the higher-order frame rule?

Towards a higher-order anti-frame rule

We need a higher-order anti-frame rule, that is, a rule that applies
not to the term, but to its context, without requiring an explicit
switch to continuation-passing style.

Towards a higher-order anti-frame rule

An approximation of such a rule ie:
CAlowC) < o (unsound)

The left-hand side of the rule states that:

e Term must guarantee C when abandoning control to Context;

e Term may assume C when receiving control from Context;

In that case, it should be safe for Context to not know about C. The
intended invariant is, C holds whenever Context has control.

Towards a higher-order anti-frame rule

The candidate rule on the previous slide is sound only for closed terms
that run in an empty store.

In general, interaction between Term and Context takes place also via
the (function) values that can be reached via the environment or the
store.

As a result, the type environment and the type of the store too must
come in two versions. Term’s view is that C holds at every interaction,
while Context’s view does not even mention C.

A higher-order anti-frame rule

A sound version of the rule is:

Anti-frame
TRC1;CoRCH Et:CiNn(c®Cy)

CokFt:o

This is dual to the frame rule: the invariant C4 is known inside,
unknown outside.

Type soundness

The type system is proven sound via a standard eyntactic argument,
which involves subject reduction and progress theorems.

A key lemma is Revelation: roughly epeaking, a valid type derivation
would remain valid if all hidden capabilities were revealed to the world.

Revelation

A valid judgement remains valid after a previously hidden invariant R is
revealed:

Lemma (Revelation)

Frverce implies T®&R Fv:T®R
N CEt:o implies TRR;RA(C®R) Ft:RA(C®R)

Revelation: excerpt of promc

Here is the case of an application:

Fr'kFv:og—oo F'®REFv:(0q—>02)®KR

M Ckt:oy MRAC®R)Ft:RA(041®R)
becomes

ekt : oo FrOR; RA(CRR) F (vt) : RA(02®R)

This is still a valid applioation, thanks to the equality:

(04 = o2)®R = (RA (04 ®R)) = (RA (02 ®R))

How Revelation is used

The gist of the subject reduction proof is that anti-frame extrudes up
through evaluation contexts:

A A
FF@R;C@RI—t:RA(J@R) F'®R;CRRFt:RA(C®R)
MCkt:o
- ®R
"QRR; RA(C'®R) F E[t] : RA(0"®R) Al
" ¢+ E[t]: o "¢k E[t]: o

The proof is immediate: apply Revelation to (the type derivation for) the
evaluation context E[-].

How Revelation is used

This proof technique backs up the intuition that an application of the

anti-frame rule amounts to an application of the higher-order frame
rule to the evaluation context.

Note: | am quite confident that the type system is sound, but am not
done writing the proof yet.

Introduction

Basice of the type system

A higher-order anti-frame rule

Applications

Conclusion

Bibliography

Application5

If there is time, | would like to present three applications of the
anti-frame rule:

e untracked references, in the style of ML;
e untracked lazy thunks;

® a generic fixed point combinator.

Untracked references

In this type system, references are tracked: a reference cannot be read
or written unless an appropriate capability is presented. This is heavy
— capabilities are linear — but allows reasoning about state changes.

In ML, references are untracked: no capability is required to read or
write a cell, and references can be aliased. This is lightweight, but the
type of a reference must remain fixed forever.

Untracked references

Tracked and untracked references have different qualities, so it seems
desirable for a programming language to offer both.

But wouldnt that be redundant?

Yes. Type theoriste will be happy to hear that, at least in principle,
untracked references can be encoded in terms of tracked references and
the anti-frame rule.

Untracked references

The following two slides present the encoding.

For simplicity, the first slide shows integer references. The second slide
presents the general case of references to an arbitrary value type a.

Untracked integer references

def type uref =
(unit — int) x (int — unit)

a non-linear type!

let mkuref : int — uref =
Alv : int).
let p, (r: [p]) = ref v in — got { pr ref int }
hide R = { p: ref int } outside of
let uget : (R A unit) — (R A int) =
A). get r
and uset : (R A int) — (R A unit) =
Alv @ int). set (r, v)
in (uget, uset) — this pair has type uref ® R
— to the outside, uref

Generic untracked references

def type uref a = parameterize over a
(unit — a) x (a — unit)

let mkuref : Ya.a — uref a =

Alv @ a).
let p, (r: [p]) = ref v in —got { p: ref a }
hide R = { p: ref a } ® R outside of —got { prefa} ®K
let uget : (R A unit) - (R A (g ® R)) = — that is, R
A). get r —also { p: ref (a ® R) }

and uset : (R A (a ® R)) — (R A unit) =

Alv: a ® R). set (r, v)
in (uget, uset) — type: (uref a) ® R
to the outside, uref a

Lazy thunks

| how define lazy thunks, which are built once and can be forced any
number of times.

Thunks are untracked and can be freely aliased. Yet, the type system
guarantees that each thunk is evaluated at most once.

A thunk contains a hidden reference to an internal state with three
possible colors (unevaluated, being evaluated, evaluated). Any attempt
to ighore the dangers of re-entrancy and use only two colors would be
ill-typed, by virtue of the anti-frame rule.

Lazy thunks — part A

def type thunk a =

unit — a
def type state y a = — internal state:
W (y A unit) + G unit + B a — white/grey/black

let mkthunk : VYya.(y A ((y A unit) — a)) — thunk a =
Af : (y A unit) — a). — got y
let p, (r: [p]) = ref (W () in — got { p: ref (state y a) }
hide R = { p: ref (state y a) } ® R outside of
: — got R
—f ((y Aunit) - a) ® R
—f (RA(W®K) Aut) > (RA (@ R)

Lazy thunks — part 2

let force : (R A unit) - (R A a ® R) =
(). state y a = W (y A unit) + G unit + B a

case get r of —got R = { p: ref (state y a) } ® R
| W () — —got { prref Wunt + G L+B L)} A ®
set (r, G ()); —got R A (y ® R)
let v: (a ® R) = f() in — got R (y ® R) was consumed by f
set (r, B v); — got R
v
| G () — fail — without y ® R, invoking f is forbidden
|B(v:a®R) —v
in force — force: (thunk a) ® R

— to the outside, thunk a

A fixed point combinator

The fixed point combinator ties a knot in the store in the style of
Landin.

[t is perhape not very surprising, but illustrates:

® a use of the anti-frame rule at order 3;
® a delayed initialization, via a strong update;

® a hidden invariant that does not hold upon entry, but does hold
upon exit, of the hide construct.

A fixed point combinator

let fix : Yajaz.((a4 — a2) — (a4 — a2)) = a4 — ado =
A(‘F : (a4 g 612) — (a4 — 02)).
let p, (r: [p]) = ref () in — got { p: ref unit }
hlde R = { p: ref (a1 — a2) } ® R outside of
— haven’t got R yet!

let g : (a4 — a2) ® R = — g invokes Ir
Ax : a4 ® R). get r x — within g, got R

inlet h: (a4 — a2) ® R = — h invokes f, routing recursive calls to g
Ax: a4 ® R). f g x —f (o = a2) = (a1 — a2)) ® R

in set (r‘, h); — a strong update establishes R

h — got R now, as required by anti-frame

—h (a4 = a2) ® R
to the outside, a4 — ao

Introduction

Basice of the type system

A higher-order anti-frame rule

Applications

Conclusion

Bibliography

58/68

Conclusion

In summary, a couple of key ideas are:

e a practical rule for hiding state must be in direct style;

e it is safe for a piece of hidden state to be untracked, as long as
its invariant holds at every interaction between Term and Context.

There are more details in the paper [Pottier, 2008].

Future work

Here are a few directions for future research:

o formally relate frame and anti-frame via a CPS transform;

e extend the functional interpretation developed with Charguéraud in
the absence of anti-frame.

Appendix: typing rules for values

var unit inj Prim
(x:7) €T FFv:wg p:t
FEx:t () : unit CE (infv): (o4 +12) TeEp:c
fun
pair NLx:t);CkHt:o
I’i—w:m r]—Vgi'l;g ﬁ#r,d

rF (V/|,V2) : ('D/] X'Dg) M= (Ax. t) : (HP(C/\'D)) — 0

Appendix: typing rules for terms

app sub-left sub-right
val [’l—v:a4—>ag r;Cgl—tZO" [’;Cl—t:m
Frcv:erce I’;Cl—t:m] C/{SCZ o4 < 0o
MCrv:CAT M CE(vt): o2 i kEt:o M CEt: oo
Jp-elim frame
MCkt:o p#T,0 McCkt:o
HEpO)Ft:o T (CANC) Et: (CoADO)
anti-frame

FRC1;CoRCHt:CiN(c®Cy)
M CokFt:o

func
free

embed-rgn
embed-cap

Appendix: some subtyping rules

t=3p{p:t}[p]
C<J

{p1:3p2.0} =Fpo{p1: 6}
{P/l ZC/\@}EC/\{P4 9}

Appendix: pairs

proj' : {p:tax G2} [p] = {p: T4 x G2} T4
focus-pair’ = {p:64x 02} =3p1{p:[p1]x b2} p1: 61}

Appendix: sums

case : {p:01+062}([p]
X (Fpa{p:lpal+ LHp1: 64} [p4]) — 0)
X ((Fp2{p: L+ [p2lH{pa: 62} [p2]) m o)) >0

sub-sum’ 1 {p:61+ L} <{p:61+065}
focus-sum® : {p: 04+ L} =3ps{p:[pa]+ LHp1:64}

Introduction

Basice of the type system

A higher-order anti-frame rule

Applications

Conclusion

Bibliography

Bibliography |

(Most titles are clickable links to online versions.)

[§ Birkedal, L., Torp-Smith, N., and Yang, H. 2006.
Semantics of separation-logic typing and higher-order frame rules
for Algol-like languages.
Logical Methods in Computer Science 2, 5 (Nov.).

[d Charguéraud, A. and Pottier, F. 2007.
Functional translation of a calculus of capabilities.
Submitted.

@ O’Hearn, P., Yang, H., and Reynolds, J. C. 2004.
Separation and information hiding.

In ACM Symposium on Frinciples of Frogramming Languages (FOFL).
20686—280.

http://arxiv.org/pdf/cs.LO/0610081
http://arxiv.org/pdf/cs.LO/0610081
http://cristal.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf
http://www.dcs.qmul.ac.uk/~ohearn/papers/separation-and-hiding.pdf

[

Bibliography]Bibliography

[Pottier, F. 2008.
Hiding local state in direct style: a higher-order anti-frame rule.
Submitted.

http://cristal.inria.fr/~fpottier/publis/fpottier-antiframe-2008.pdf

	Introduction
	Basics of the type system
	A higher-order anti-frame rule
	Applications
	Conclusion
	Bibliography

