An overview of alphaCaml

François Pottier

September 2005
Introduction

A specification language

Implementation techniques

Translating specifications

Conclusion
Motivation

Our programming languages do not support *abstract syntax with binders* in a satisfactory way.

Hand-coding the operations that deal with lexical scope (capture-avoiding substitution, etc.) is tedious and error-prone.

How about a more *declarative, robust, automated* approach?

— cf. Shinwell’s Fresh O’Caml, Cheney’s FreshLib.
Three facets

Let’s distinguish three facets of the problem:

▷ a specification language,
▷ an implementation technique,
▷ an automated translation of the former to the latter.

In this talk, I emphasize the first aspect.
Introduction

A specification language

Implementation techniques

Translating specifications

Conclusion
Prior art

There have been a few proposals to enrich algebraic specification languages with *names* and *abstractions*.

An abstraction usually takes the form $\langle a \rangle e$, or $\langle a_1, \ldots, a_n \rangle e$, or, as in Fresh Objective Caml, $\langle e_1 \rangle e_2$.

Abstraction is always *binary*: the names (or *atoms*) a that appear on the left-hand side are bound, and their scope is the expression e that appears on the right-hand side.
Example: pure λ-calculus

Pure λ-calculus:

$$M := a \mid MM \mid \lambda a.M$$

is modelled in Fresh Objective Caml as follows:

```haskell
bindable_type var

type term =
  | EVar of var
  | EApp of term * term
  | ELam of \langle var\rangle term
```
A more delicate example

Let’s add simultaneous definitions:

\[M ::= \ldots \mid \text{let } a_1 = M_1 \text{ and } \ldots \text{ and } a_n = M_n \text{ in } M \]

The atoms \(a_i \) are bound, so they must lie within the abstraction’s left-hand side. The terms \(M_i \) are outside the abstraction’s lexical scope, so they must lie outside of the abstraction:

```haskell
type term =
    | ...
    | ELet of term list * \langle\text{var list}\rangle\text{term}
```

Franc \(\acute{\text{O}} \)ois Pottier
An overview of alphaCaml
Another delicate example

Simultaneous *recursive* definitions pose a similar problem:

\[M ::= \ldots \mid \text{letrec } a_1 = M_1 \text{ and } \ldots \text{ and } a_n = M_n \text{ in } M \]

The terms \(M_i \) are now inside the abstraction’s lexical scope, so they must lie within the abstraction’s right-hand side:

```plaintext
type term =
    | ...
    | ELetRec of ⟨var list⟩(term list * term)
```
The problem

The root of the problem is the assumption that *lexical* and *physical* structure should coincide.
A solution

Within an abstraction, alphaCaml distinguishes three basic components: *binding occurrences* of names, expressions that lie within the abstraction’s lexical scope, and expressions that lie *outside* the scope.

These components are assembled using sums and products, giving rise to a syntactic category of so-called *patterns*. Abstraction becomes *unary* and holds a pattern.

\[
\begin{align*}
 t &::= \text{unit} \mid t \times t \mid t + t \mid \text{atom} \mid \langle u \rangle \\
 u &::= \text{unit} \mid u \times u \mid u + u \mid \text{atom} \mid \text{inner } t \mid \text{outer } t
\end{align*}
\]

Expression types

Pattern types
Back to pure \(\lambda \)-calculus

Pure \(\lambda \)-calculus is modelled in alphaCaml as follows:

```ocaml
sort var

type term =
  | EVar of atom var
  | EApp of term \* term
  | ELam of \langle lamp \rangle

type lamp binds var =
  atom var \* inner term
```
Simultaneous definitions are modelled without difficulty:

```
type term =
    | ...
    | ELet of ⟨letp⟩
```

```
type letp binds var =
    binding list * inner term
```

```
type binding binds var =
    atom var * outer term
```
More advanced examples

Abstract syntax for patterns in an Objective Caml-like programming language could be declared like this:

```ocaml
type pattern binds var =
  | PWildcard
  | PVar of atom var
  | PRecord of pattern StringMap.t
  | PInjection of [ constructor ] * pattern list
  | PAnd of pattern * pattern
  | POr of pattern * pattern
```
Introduction

A specification language

Implementation techniques

Translating specifications

Conclusion
Three known techniques

1. **de Bruijn** indices. Require *shifting*, which is fragile. No freshening. Generic equality and hashing functions respect α-equivalence.

3. **Pollack mix**: free names as atoms and bound names as indices. Analogous to 2, except generic equality and hashing respect α-equivalence.

alphaCaml follows 2.
Some more details

Atoms are represented as pairs of an integer and a string. The latter is used only as a hint for display.

Sets of atoms and renamings are encoded as Patricia trees.

Renamings are suspended and composed at abstractions, which allows linear-time term traversals.

Even though the fresh atom generator has state, closed terms can safely be marshalled to disk.
Introduction

A specification language

Implementation techniques

Translating specifications

Conclusion
Types

The specification of pure λ-calculus is translated down to Objective Caml as follows. Atoms and abstractions are abstract.

```ocaml
type var = Var.Atom.t

type term =
    | EVar of var
    | EApp of term * term
    | ELam of opaque_lamp

and lamp =
    var * term

and opaque_lamp
```
Opening an abstraction automatically freshens its bound atoms.

```ocaml
val open_lamp : opaque_lamp -> lamp
val create_lamp : lamp -> opaque_lamp
```

This enforces Barendregt’s informal convention.

More boilerplate is generated for computing sets of free or bound atoms, applying renamings, helping clients succinctly define transformations (such as capture-avoiding substitution), etc.
Introduction

A specification language

Implementation techniques

Translating specifications

Conclusion
Status

alphaCaml is available. There are very few known users so far.

The distribution comes with two demos:

- a naïve typechecker and evaluator for F_\leq
- a naïve evaluator for a calculus of mixins (Hirschowitz et al.)

These limited experiments are encouraging.
Limitations

One must go through open functions to examine abstractions. Deep pattern matching is impossible.

Clients can write meaningless code, such as a function that pretends to collect the bound atoms in an expression.
Towards alpha-(your-favorite-prover-here)?

How about translating a specification language like alphaCaml’s into theorems (recursion and induction principles) and proofs?

— cf. Pitts, Urban and Tasson, Norrish...