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Abstract

We present a Hoare logic for a call-by-value programming lan

guage equipped with recursive, higher-order functiongeladaic

data types, and a polymorphic type system in the style of Hind

ley and Milner. It is the theoretical basis for a tool thatragts
proof obligations out of programs annotated with logicakations.
These proof obligations, expressed in a typed, higherrdodgc,
are discharged using off-the-shelf automated or interattieorem
provers. Although the technical apparatus that we ex@diyinow
standard, its application to call-by-value functional gnaamming
languages appears to be new, and (we claim) deserves aittefs
a sample application, we check the partial correctness aleabed
binary search tree implementation.

Categories and Subject Descriptors D.3.3 [Programming Lan-

guage§ Language Constructs and Features—Data types and struc-

tures; Polymorphism; Procedures, functions, and subresitiRe-
cursion; F.3.1 [Logics and Meanings of PrografsSpecifying

and Verifying and Reasoning about Programs—Assertions; Me

chanical verification
General Terms Theory

Keywords Hoare logic, extended static checking

1. Introduction

Hoare logic [24, 30, 14] is a discipline for annotating prams
with logical formulae, known as assertions, and for exinackog-
ical formulae, known as proof obligations, out of such aated
programs. The validity of the proof obligations, which canJeri-
fied either manually or mechanically, entails the correxsra the
annotated program. Thatis, it guarantees that the asse€ie cor-
rect static predictions of the program’s dynamic behavibe pro-
cess of constructing and checking proof obligations is sones
known as “extended static checking” [19].

Hoare logic was originally designed for a “while languagbgt
is, a simple imperative programming language, equippeld avitit-
eration construct and a fixed number of global, mutable ket
Recursive, higher-order procedures were the subject ohratien-

tion in the late 1970’s and early 1980's [12, 5, 15, 26, 27].r&lo

recently, heap-allocated, mutable data structures, dsagebject-
oriented features, have been deeply investigated. Thietas the
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development of practical specification languages and taogget-
ing, for instance, C [21], Java [9, 22, 41], and C# [6].

We would like to put forth the thesis that this traditionatts
on imperative programming languages has been, to sometgexten
detrimental: it has consumed a great amount of energy, white
paratively little effort was being devoted to the key featuthat
will be required in order for the methodology to scale up,hsas
modularity and abstraction. We would also like to raise astjoa:
since functional programs are significantly easier to ctieckor-
rectness, why hasn't this activity become routine in thecfiomal
programming community, forty years after Floyd and Hoasels-
inal papers?

On the cost of imperative programming There are several rea-
sons why functional programming can be considered supagior
imperative programming [32]. One of them is that functiopia-
grams are easier to reason about. In other words, there ist &oco
reasoning about state.

In a typical modern imperative programming language, all
heap-allocated data is mutable. As a result, instead oforeas
ing in terms of high-level entities such as, say, pairsslitees,
etc., programmers are forced to reason in terms of a vieweof th
heap as a graph. More concretely, they must write down angpro
formulae that involve mappings of memory addresses to mgmor
blocks [42, 21].

The possibility of aliasing means that, whenever some mem-
ory block is written, the memory that is accessible througerg
type-compatible pointer is potentially affected. This malkt dif-
ficult to reason about the effects of a single write operatard
creates the problem of representation exposure [18, 36fder to
address this issue, researchers have developed lineardppere-
gions [25], ownership types [11], and separation logic [ahjong
other approaches.

Our research agenda We do not claim that the above issues are
not worth investigating: on the contrary, they are quiteifaating.
However, it is a pity that we do not, today, have mature tools
for checking the correctness of functional programs. Thgans
why, in this paper, we study a Hoare logic for (call-by-value
functional programs without state.

The programs that we are interested in checking rely heavily
on (possibly higher-order) functions, algebraic datacétnes, and
type polymorphism. We claim that it is quite easy to extraat-s
cinct and natural proof obligations out of such programeyjoted,
of course, that they are annotated with specifications.

There are two benefits to be reaped by not reasoning aboeit stat
As far as the user is concerned, this leads to simpler spetifits
and proof obligations. As far as the implementor is conagrtigs
saves a large part of the “implementation budget”, which tbam
be spent on features such as type polymorphism, type atistrac
and modularity. The importance of these features cannot/ee o
stated: in the end, the key to success is the ability to dpvehal
check program components independently.
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Today, to the best of our knowledge, no tool exists that can
extract proof obligations out of a call-by-value functibpeogram
and pass them on to an off-the-shelf, interactive or autedhat
theorem prover. (SegB for a more precise discussion of related
work.) We would like to fill this gap.

Contribution In this paper, we present the design of a typed,
polymorphic, higher-order programming language, where- pr
grams can be annotated with assertions expressed in a pyqlgd,
morphic, higher-order logic. We define a procedure for exing
proof obligations out of programs, and show that it is sodnglro-
totype tool [52] has been developed, which works in conjionct
with the interactive theorem prover Coq [56], with the auébed
first-order theorem prover Ergo [13], or with both at onceisThol
has been used to check the partial correctness of severtiviaih
data structure implementations, including balanced pisaarch
trees and persistent double-ended queues [33]. We hopdlisipu
detailed accounts of these implementations in the future.

Highlights of our approach Here are some of the key technical
features of our approach.

We focus on partial correctness. We do not require programs t
terminate, and do not generate proof obligations to ensuneina-
tion. It is up to the user to determine which properties ofdbde
are of sufficient interest to deserve proof, and to inserrtisss
where desired. At one extreme, a program that contains res-ass
tions leads to no proof obligations. There is no cost to bd pai
front for using our methodology.

Our preconditions are prescriptive: it is impossible tol eal
function unless its preconditiof’; holds. A descriptive interpre-
tation of preconditions can be simulated by using the prditiom
true and the postconditiody = F5. This allows unconditional
invocation, and states that the function’s result mussgaft’ if
its argument satisfieB; .

Values, programs, types, and logical formulae are distgnt
tactic categories. Proofs do not necessarily appear witttigrams:
proof obligations are delegated to an external theorem goyov
which may or may not require or produce explicit proof terms.

We do not embed values, programs, or formulae within types.
Thus, our types are first-order terms: they include typeatdes,
parameterized algebraic data types, and function typssagiin
ML. As a result, type inference in the style of Milner [44] is
possible, and implemented in our tool [52]. Type inferenceshot
generate any proof obligations. We do not have dependesstyp
such as lists indexed with an integer length [58], but sitteulhem
as follows. Instead of declaring thathas typelist n, we declare
thatz has typelist, and assert the logical formulangth(z) = n,
where the functiordength is inductively defined at the logical level.

Formulae can refer to values, but not to expressions. Tliis-is
portant, because values are pure, whereas expressionstare p
tially impure. Although our logic cannot explicitly reas@bout
state, it is nevertheless soundly applicable to prograatsitkiolve
non-termination, non-determinism, input/output, or nblgestate.
(Reading an input stream, or dereferencing a pointer to Inleita
storage, can be viewed as non-deterministic operationsthat
case, it allows establishing properties that do not depertti®be-
havior of any impure operation. This means, for instancat, we
can prove the partial correctness of a functional prograem évit
has been instrumented with possibly impure debugging, lipfi
or logging instructions.

In our programming language, functions, which are poténtia
impure, are values, so they can appear within formulae. Bwtw
does it mean for a formula to refer to a computational fumcifo
of type, say,;1 —— 72? Our answer is to viev, at the logical
level, as a pair of predicates, which represgatprecondition and
postcondition. In other words, when used within a formyldas

Logical Types

0 = o« Variable
| do Data

| 0—06 Function

| 0x0 Product

| prop Proposition
S = Va.6 Scheme
Logical Type Environments

A u= 0 Nil
| A (z:g) Variable
| A& Type Variables

Logical Terms

t,F,P == z0 Variable
DO(t,...,t) Data

Az :0).t Abstraction

t(t) Application

(t,t) Product

T Projection (also writterpre)

T2 Projection (also writterpost)

true Truth

t=t Equality

tAtL Conjunction

-t Negation
V(z:g).t Universal Quantification
Va.t Type Quantification

Figure 1. The logic (syntax)

type (roughly)(m1 — prop) x (11 — 72 — prop). The two
pair projections, writterpre andpost, can be used to refer to the
pair components. That iqre(f) and post(f) offer lightweight
notations for referring tg’'s precondition and postcondition. When
f is a known [et-bound) function, this mechanism can be viewed
merely as offering abbreviations for known formulae. Hoarev
when f is unknown @- or V-bound), it becomes key to writing
natural specifications for higher-order functio§%.6).

In summary, although the technical apparatus that we exiploi
by now standard, we believe that it is worth drawing attentio
the combination of power and simplicity offered by our teicah
choices. If extended with a suitable module system, ancpped
with a compilation path down to, say, Objective Caml [38]; tmol
could be used to construct correct purely functional progcam-
ponents, possibly for use within larger, partly imperapvegrams.

Outline of the paper The paper is laid out as follows. First, we
briefly introduce a higher-order logic, in which assertians proof
obligations are expresse@2). Then, we present the syntax and
call-by-value semantics of a core functional programmargjliage
whose expressions carry explicit assertio§®).(We describe the
type system, as well as the procedure for extracting protf ob
gations out of programs;4). We present a few extensions of the
language 5) and discuss how proof obligations are transformed
for submission to external theorem prove§6)( Last, we present
a few excerpts of our balanced binary search tree implerienta
(§7) and review related worlg8).

2. The underlying logic
2.1 Syntax

We rely on a mostly standard higher-order logic [4] whoseety/p
and terms appear in Figure 1. Typednclude type variables, pa-
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A @)@ = s
(A, (z1:9))(a2) = Alwz) if z1 # a2
(Aya)(z) = A(z) ifas# Ax)
D:Va.6; x...x0, —da
Az) =Va.6 Vi AFt:[aw— 0]6;
AFx0:[a— 00 AFDO(t1,...,ts):dO

Akt1201—>02
A"t2291

A [ tl(tQ) : 02

A,(x:&l)}—tzeg
AF)\($291).2§:91—>92

Vi A}_tlel A"t191><92

A+ (t17t2):91 X 02 APm-(t):bh- AFtI’UEIpI’Op
Vi Akt :0 Vi Ak t; : prop
At =to: prop At Aty prop

AFt:prop A, (xz:s)Ft:prop A, a bt :prop

AF —t:prop AFY(x:g).t:prop A FVYa.t : prop

Figure 2. The logic (type system)

rameterized inductive types, function types, product $ypad the
type prop of logical propositions. In the following, the syntax of
terms is extended with standard syntactic sugar for faldisjunc-
tion, implication, equivalence, existential quantifioatj etc.

The typing rules appear in Figure 2. In general, we wrifer
terms of arbitrary type. We writ&' for formulae that is, terms of
type prop, and P for predicatesthat is, terms of typd — prop.
The binary operato#, used in several definitions, expresses the
fact that two objects have no common free nhames.

Our logic is not simply-typed. Because our computationat la
guage §3) is polymorphic, and because we wish to lift every com-
putational value up to the logical level, we need polymosphi
at the logical level as well. For this reason, we have logigpé
schemes ::= Va.#, and every use of a variableis explicitly
annotated with a type vectd; which states how the type scheme
associated withr is instantiated. For this reason also, the syntax
of formulae offers universal quantification over type vhhés, so a
fact can be asserted to hold at all types.

The logic offers parameterized inductive types. We assinaie t
each inductive type constructdrcarries a fixed integer arity, and
that every applicatiod f is arity-consistent. We further assume that
d comes with a finite number of data constructbrseach of which
is assigned a type scheme of the form:

Va.0y X ... x 0, —>da

We impose a positivity condition [48], which is informallysmmed
up as follows: in the above type scheme, the type constrdcfor
any type constructor whose definition is mutually recursiuth
the definition ofd) must not appear under the left-hand side of an
arrow withinéy, ..., 0,.

Although there is an introduction form for inductive types,
namely the application of a data construdiamo elimination form
is provided here. We can get away with this omission becéwese t
process okextractingproof obligations, which is the focus of the
present paper, requires no such forms. Of course, when iegom
to dischargingproof obligations, that is, proving theorems, then
inductive definitions and proofs become necessary.

Computational Types

T = «o Variable
| dT Data
| 7—1 Function

o u= Va.rt Scheme

Computational Type Environments

r == 0 Nil
| T,(x:0) Variable
| T,& Type Variables
| T,F Assumption

Values

= xT Variable

| D7 (v,...,v) Data
| funf(z:7/F):(x:7/F)= e Recursive Function

Patterns

P T Variable
| D%(p7 7p) Data

Expressions

e = v Value
| v(v) Function Application
| let(za:7/F)=c¢cine Local Binding
| casevofc Pattern Matching

Cases
=0 Nil
| (p—e)fc Cons
Figure 3. The computation language (syntax)
2.2 Interpretation

We assume that the logic is equipped with a consistent irgt&p
tion in a model [4], so that, in particular, every well-fordhelosed
formula evaluates, in the model, to a truth value. We asshatelie
model validategin.-equivalence. These abstract hypotheses about
the model suffice to establish the soundness of our sy<jé:8)(

3. The computational language
3.1 Syntax

The syntax of our programming language appears in Figurass. |
equipped with an ML-style type system [44], so typeand type
schemegw are distinguished. Types include type variables, param-
eterized algebraic data types, and function types. We w#itefor

the computational function type constructor, so as tomstish it
from the logical function type constructor, written (Figure 1).

We impose a syntactic separation between values and expres-
sions, and require both operands of the function applinatiger-
ator, as well agasescrutinees, to be values. This imposes a style,
reminiscent ofA-normal form, where the result of every intermedi-
ate computation is named videt construct. Of course, such a style
is quite user-unfriendly, so, in practice, we offer an utrieted
surface language, and automatically translate it downedémnel
language described here.

The language supports type inference in the style of Hindley
and Milner. However, in this paper, we are not concerned with
type inference, so we work with explicitly-typed prograrhbis is
visible (i) in the syntax of values and patterns, where \deiaand
data constructors are annotated with vectors of types tidatate
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how polymorphic type schemes are instantiated, (ifuatandlet
constructs, where bound variables are annotated with tygreb
(iii) at let constructs, where a vector of type variablesan be
explicitly bound.

A function definition takes the general form:

fun f(z1: 11 /F1) : (z2:m2/F2) = e

The keyword/ should be read “where”. Every function is recur-
sive, so thatf is bound withine. The formal parametet; is
bound within the preconditiof’ , within the postconditiorf, and
within e. The variablers, which stands for the result of the func-
tion, is bound within the postconditiof.. We require every func-
tion to be annotated with an explicit precondition and postiition
(if missing, true is assumed).

A local variable definition takes the general form:

let(xa:7/F)=e1inex

The local variable: is bound withinZ” and withines. The type vari-
ablesa are bound withinr, F', ande;. The propositionF' serves
a postcondition fow;. If it is missing, a default postcondition is
assumed, whose definition is deferred 303.

A case analysis takes the general form:

casev of ¢

Here,c is a possibly empty sequence of cases (i.e., branches). Eacl*h0

branch is of the forn{p — e¢), where the variables that appear in
the patterrp are bound withire. Patterns must be linear.

3.2 Lifting computational entities to the logical level

In a Hoare logic, formulae refer to values. That isgifs bound,
at the computational level, by fan, let, or caseconstruct, then
it is possible for a formulaF’, embedded in the code within the
scope ofz, to refer toxz. This raises two questions: first,f has
computational typer, what is its logical type, to be used when
typecheckingF'? Second, if, for the purposes of evaluationis
substituted with a computational valugwhat is the corresponding
logical value, to be used when interpretiA@

We answer these questions by lifting both computationagyp
and computational values up to the logical level (FigureTdat
is, to each computational type we associate a logical tyge |,
and to each computational valugwe associate a logical terf],
with the intended property thatif has computational type, then
[v] has logical typd T].

As announced§(l), computational functions are reflected, at the
logical level, as pairs of a precondition and postconditibimis is
made explicit in the lifting of computational function tyze

[71 == 72] = ([m1] — prop) x ([7] — [r2] — prop)

The first component of the pair, which represents the funigiore-
condition, is abstracted over the function’s argument)athie sec-
ond component, which represents the postcondition, igatistl
over both argument and result.

As a result of this definition, if is bound, at the computational
level, to a function of type;, — 7, then a formula embedded
within the code, in the scope ¢f views f as a pair of predicates,
and can refer tpre(f) andpost(f). (Recall that, as per Figure 1,
pre andpostare sugar for the projections andrs.)

Values of computational function type (that isabstractions)
are lifted up to the logical level in a way that is consisterithw
this definition. A function’s precondition and postconditialone
determine how it is lifted: its code is ignored. (The confamoe of
a function’s body to its declared pre- and postconditiorhisoked,
of course, via a proof obligation: see rul@w in Figure 7.) This
reflects a philosophy in which the only way of reasoning albloeit
behavior of a function is via its specification: it is not pibss, in
our approach, to reason directly about the code of a function

In order to lift algebraic data types, we lift every algebrdata
type definition into an isomorphic inductive type definiti@o, for
every computational-level algebraic data type constru¢tdhere
must be a logical-level inductive type constructor, alsdtem d, of
identical arity. For every computational-level data comstior

D:Va.m X ...X1, —da,
there must be a logical-level data constructor
D :Va.[n] x...x [m] —da.

Due to the manner in which computational function typesiétes,
the positivity condition §2) requires the type constructdrto not
appeawunder any sidef a computational arrow withim, , ..., 7,.
This can be a limitation$@).

3.3

In order to simplify the definition of the procedure that exts
proof obligations, we have required evdst construct to carry
an explicit postcondition for its left-hand sub-expressf¢3.1). In
practice, however, annotating evedst construct would be quite
unpleasant, so itis desirable to construct a reasonabiegrmiition
when the user does not provide one.

Ideally, the formula that we should construct in such a situa
n is thestrongest postconditioaf the left-hand sub-expression.
Our logic is, in fact, sufficiently powerful to express stgast post-
conditions for every construct in our programming langudgm
instance, the strongest postcondition for a valigAz.(x = [v]).
The strongest postcondition for a function applicatiar{vz) is
post([v1])([v2]). We could go on and explain how to construct
strongest postconditions féet and caseconstructs. However, in
these two cases, they would be complex formulae, involviisr e
tential quantification and disjunction.

Eventually, the postconditions carried ley constructs become
part of proof obligations, where they appear as hypothéseghis
reason, we do not want them to be too complex: we wish to peduc
simple, comprehensible proof obligations.

Our answer to this issue is to construct strongest posttondi
for values and function applications, as suggested abatendt
for let and caseconstructs: instead, we rely on the user-provided
postcondition, if there is one, or use the trivial postctinditrue,
otherwise.

It is possible, via a conversion té-normal form, to ensure that
the left-hand sub-expression ofet construct is never anothést
construct. So, the only case where our simple-minded approa
may call for an explicit, user-provided annotation is thaadet
construct whose left-hand sub-expression éaseconstruct.

Inferring strongest postconditions

3.4 Notions of substitution

Neither types nor formulae influence execution, but theykerst
around in order to make a subject reduction statement ang pro
the soundness of our Hoare logic. So, the operational sérsant
reduces expressions that contain explicit types and faeaulo
ensure that these annotations remain consistent as exnesse
transformed, we must define a few slightly non-standarcnetof
substitution.

A single type variablen: can appear within logical types as
well as within computational types. Similarly, a single iahte =
can appear within formulae as well as within expressions. Fo
this reason, we writgae — 7] for the substitution that replaces
every free occurrence ef at the computational level with and
every free occurrence ef at the logical level with[~]. Similarly,
we write [z — o] for the substitution that replaces every free
occurrence ofr at the computational level with and every free
occurrence of at the logical level with v].
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Types [a] = «
fdr] = dJ7]
[ — 7] = ([m]—prop) x ([n] — [72] — prop)
Type schemes [Va.r] = Va.[7]
Type environments [0y = 0
[T, (z: 0): = [I7, (}" : [o])
T,al = [T,a
o, F = [T
Values [x7] = z[T]
[DT (v1,...,vn)] = DI[7]([o1],...,[va])
[fun f(z1: 7 /F1) : (o :m2/Fa) = €] = (Ma1:[n]).Fi, N1 : [11])Az2 : [12]).F2)

Figure 4. Lifting computational types and values to the logical level

vi(v2) — [z v][f — vile if viisfun f(z:7/F):(...)=¢
let(za:7/F)=vine — [z~ Aa.ve
casewof (pr—e)lc — [pr—]e if [p — v] is defined
— casevofc otherwise
let(za:7/F)=e1ines — let(za:7/F)=clines ifer — e}

Figure 5. Operational semantics

We have annotatdét constructs with explicit type abstractions

and occurrences of variables with explicit type appliaagioAs Fvaid  T'Ev(:[o)F LCgEval TER=R

a result, contracting Eet-redex requires contracting type-leva 0EF Li(z:o) EF LagEF LB P
redexes as well. In order to do so, we wrjte — Aa.v] for a
substitution that replaces every variable occurrence efftiim Figure 6. Emitting proof obligations

27 with [@ — 7]v. Again, this replacement is performed at both
computational and logical levels, up to a lifting operatianthe

latter case. . ) o In practice, our tool [52] first checks that the program islwel

Last, the notatiorjz +— v], which denotes a substitution of a  typed, and, at the same time, infers any omitted type arinotat
value for a variable, is extended to the notatjpn— v], which, Then, a set of proof obligations, expressed in our typeddrigh
whenp does not match, is undefined, and, whendoes matchy, order logic, is extracted. The fact that the program (iniclgdem-
denotes a simultaneous substitution of values for varalale fol- bedded formulae) is well-typed guarantees that the probfab
lows. The formal definition is: tions are in turn well-typed.

DT N ) 0—>D7_"U7...7'Un H
[DT (p1 pn) (01 )l 4.1 Environments

stands for The syntax of type environmenksappears in Figure 3. As is stan-
[p1 = v U U pn = vn] dard, type environments bind variables and type varial#esi-

Because patterns are linear, this is a union of substitsitiamose ronments also contain assumptions, that is, formulae tabrne

domains are pairwise disjoint. hypotheses when proof obligations are emitted. An enviemtrof

3.5 Operational semantics the formT, F' is well-formed whenF’ has typeprop under[T"].

A standard small-step, call-by-value operational seraamtppears 4.2 Proof obligations
in Figure 5. There are three kinds of redex@slét, andcasg and A PRSP ;

. . proof obligation is a judgement of the form F, where
one eva_luat_lon context _(the Ief_t-hand side dbaconstrgct). An F has typeprop under [I']. This judgement is ('j:efined by the
expression istuckif it is irreducible and not a value. It is easy to rules of Figure 6. When read from bottom to top, the rules can
check that an expression is stuck if and only if it containshiw be understood as translating a proof obligation to a closeddla
an evaluation con.te>]§t, a §ub-exp:cef]su]3n of the f?[@'(n’Q)’ where of type prop, which must be valid for the judgement to hold. The
v1 Is not a syntactic function, or of the foroasev of 9. validity of a formula is decided via an external theorem grov

4. The type system and proof system 4.3 Judgements

We now equip the computational language with an ML-styletyp  The proof system is defined via three judgements, which state
system and with a proof system (a Hoare logic), which can be properties about values, patterns, and expressions ciaspg:
viewed as an algorithm for extracting proof obligations olwell-

typed programs. For the sake of succinctness, both areilesgcr Values FFov:T (Figure 7)
using a single set of judgements, which assert at once thai-a p Patterns Lhp:r (Figure 8)
gram is well-typed and is annotated with consistent formula Expressons I'te:7{P} (Figure9)
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C@io)e) = o
(T (z1:0))(x2) = T(x2) !f T1 F# 22
T,a)(z) = T(zx) ifa#Tl(v)
I F)(z) = I(z)
DATA
VAR D:Va.m1 X ...X1, —da
I(z) =Va.r Vi Phow:la—7n
Pka7:[a— 77T D7 (vi,...,vn): dT
FUN
[ # Fu, Py

[T, (x1:71)] F F1: prop
[T, (z1:71), (z2: 72)] F F> : prop
F, (f T —— Tg),f = [funf...'\,(xl : Tl),F1
Fe:m {\z2: [12]).F2}
PHfun f(zr:m/F) : (z2:me/Fo)=e:T1 — T2

Figure 7. The computation language (proof system: values)

PAT-DATA
D:Va.1i X...XTh = da
Vi Dibpi:lam—7n
Fl,...,l—‘nl_D'?t(ply--wpn):d%

PAT-VAR
(z:m)bFax:7T

Figure 8. The computation language (proof system: patterns)

APP
VALUE I'Fovi:im — 1 I'Foy:m
T'kFo:T I = pre([vi])([v2])
I' = P([v]) I' = post([vi])([v2]) = P
'tov:7{P} 'k oi(ve) : 12 {P}
LET
r# P

[T,&,(x:7m)] - F :prop
Takter:m {\z:[n]).F}
I, (z:Va.m),Va. [z — za]F Fex: 12 {P}
PHlet(za:n/F)=eiines: m {P}

CASE-NIL
F'kFov:r I' |= false

I't-casevof §: 7' {P}

CAse-CONs
I'Fo:r I'bFp:T p#H v, P
LI, [v] = [p] Fe:7 {P}
T, (VI'.[v] # [p]) F casevof c: 7' {P}
I'+casevof (p—e)[c:7 {P}

Figure 9. The computation language (proof system: expressions)

4.4 Values

The judgement” + v : 7 (Figure 7) states that, under the type
environmentl’, the valuev has typer. No precondition or post-
condition appear in the judgement. Indeed, because vatagsre
no computation, they never have a precondition. Furthesiruoe-
cause all values can be lifted up to the logical level, thaytdweed
an explicit postcondition: the strongest possible posiita@n of a
valuev is simply equality with[v].

Rules \AR and DaTA are straightforward. Rule W is more
complex. Two premises require the preconditiénand postcon-
dition F> to be well-formed formulae, under appropriate environ-
ments. The last premise, which spans two lines, checks ligat t
function’s body conforms to the function’s specificatiomorder to
do so, the type environment is extended with bindingsfandz; .

It is also extended with the hypothesis

f=TIfunf...7],
which by definition of lifting (Figure 4) is synonymous for
f=(z1: [1]).Fi, N1 : [11])Az2 : [12]).Fa).

This hypothesis gives meaning to occurrencesprd(f) and
post(f) within the body of the function, allowing recursive calls
to f to be checked. Last, the environment is also extended wéth th
preconditionFy , which means that, within the body of the function,
the precondition is assumed to hold. Under this extendentamv
ment, the body of the function is required to produce a vathag t
meets the postconditioN(zs : [72]). Fb.

It is not difficult to see that’ - v : 7 implies[T'] F [v] : [7].
This property is required for the typing rules to construdyavell-
formed formulae.

4.5 Patterns

The judgement” F p : 7 (Figure 8) states that a value of type
can safely be matched against the patggmgiving rise to (exactly)

the bindings described b¥/. These bindings are monomorphic
(see RT-VAR). Because patterns are linear, the type environments
Ty,...,T» in PAT-DATA have disjoint domains.

4.6 Expressions

The judgement - e : 7 { P} (Figure 9) states that, under the type
environmentl’, the expressiorm has typer and (if it terminates)
produces a value whose logical reflection satisfies the qaesip.

In such a judgement? has type[~] — prop under[T'].

Rule VALUE directly reflects this intended meaning: the judge-
mentl’ - v : 7 {P} holds if and only ifv has typer underI" and
its logical reflection[v] provably satisfied® under the hypotheses
found inI". The premisd’ = P([v]) is a proof obligation.

Rule App requires the function; and its actual argument,
to have matching computational types. Furthermore, it b
proof obligations, stating that (i) the actual argument nsagisfy
the function’s precondition, and (ii) the function’s pasclition
must imply the desired postconditiaB. In the last premise, we
write P’ = P, where P’ and P have type[r»] — prop, for
Y(z : [12]).(P'(z) = P(z)), wherex is fresh forP’ and P.

Rule LET checks that; has typer; and thate; complies with
the postconditiort’. Then, the rule performs type generalization, in
the style of Milner [44], so thad- is checked under the assignment
(z : Ya.11). The hypothesid’ is changed int&/a.[z +— z &]F,
so as to reflect the fact thatnow has polymorphic type.

Rule Case-NiL emits the proof obligatiod® |= false, which
requires the conjunction of hypotheses found withirio be in-
consistent. This ensures that@seconstruct with zero branches is
never executed.

Rule Case-CoNsrequires the value and the patterp to have
a common type-. The environmenE’ collects the variables bound
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by p, together with their types. Under the hypothesis that aagert
instance op matches), which is expressed by extendibigwith I
and with the hypothesi§v] = [p], the branche must have the
desired type-’ and meet the desired postconditiBnFurthermore,
under the hypothesis that no instancepomatchesv, which is
written VI'.[v] # [p], the remaining branches must have type
and meet the postconditioR. (Our use of[p] plays on the fact
that patterns form a subset of values, a welcome but unéasksent
property.)

When checking @aseconstruct withn branches, thék + 1)-th
branch is checked under the assumption that none of themsatte
p1, - - ., pr Match the value. In particular, fork = n, the conjunc-
tion of all hypotheses of the forr(wI';.[v] # [p;]) is required
to be inconsistent. This ensures that control cannot fathefend

of a caseconstruct, or, in other words, that the case analyses are

exhaustive. Today’s ML and Haskell compilers implementansb
approximation to this check, using a purely syntactic dote We

also implement this syntactic criterion: when it succeedsitting

a proof obligation is unnecessary.

4.7 Algorithmic reading

The judgement’ + e : 7 { P} defines an algorithm for generating
proof obligations. All four parameters of the judgementnety T,

e, 7, and P, are inputs of the algorithm, which attempts to build
a derivation of the judgement by starting at the root of theres-
sion e and working its way down into the sub-expressions of
As the algorithm descends, enteriful, let, andcaseconstructs,
the environment' grows, accumulating new bindings and assump-
tions. At the same time, the postconditiris propagated down, in
a very straightforward process. At constructs, this propagation
process relies on the (default or user-provided §8c®) annotation
in order to determine which postcondition must be propabet®
the left-hand sub-expression. The output of the algoritbmsists
of the proof obligations, of the forf = F, carried by the leaves
of the derivation (see M.UE, APP, and CASE-NIL).

4.8 Soundness

The soundness of our type system and proof system is estadblis
in a standard, syntactic manner. It states that the types$ogichl
assertions carried by a program are a sound approximatiits of
dynamic semantics.

Lemma 4.1 (Environment Weakening)['y, F,T'2 + e : 7 {P}
andl’'y £ FimplyI'y,T'a Fe: 7 {P}. o
Lemma 4.2 (Postcondition Weakening)l' + e : = {Pi} and

PE P = PimplyI'ke: 7 {P}. o
Lemma 4.3 (Type Substitution) Let ¢ stand for[a — 7]. Then,
I',al2Fe:r{P}anda # domTz) imply

F1,6(I'2) = ¢(e) : d(72) {6(P)} °
Lemma 4.4 (Value Substitution) Let p stand for[z — Aa.v].

Then,T'1,(z : Va.71),T2 F e : o {P}andT1,a F v : 7
andz ¢ dom(I'2) imply

Iy, p(T2) F ple) : 72 {p(P)} o
Lemma 4.5 (Pattern Matching) Let® - v : 7 andI” + p : 7

andp # v. Then,[p — v] is defined if and only if the formula
Ir’.[v] = [p] is valid. o

Theorem 4.6 (Subject Reduction)l" - ¢ : 7 {P} ande — ¢’
implyT ¢’ : 7 {P}. S

Theorem 4.7 (Progress)) + e : 7 {P} implies thate is either
reducible or a valuey such thatP([v]) is valid. o

5. Afew extensions

Extra assertions The following construct allows inserting an as-
sertion at an arbitrary point in the code:

assertF'in e

This construct require$’ to hold: a proof obligation is emitted.
It has no computational content: dynamically, it behavks é.
Here, it can be viewed as syntactic sugar fdetaconstruct. It is
particularly useful when our tool is used in conjunction twén
automated theorem prover: if the theorem prover fails toldisge
a proof obligation, the user can uassertto cut the proof into
smaller, easier steps (if the proof obligation is in factidjabr to
find out what is wrong with the specification (if the proof @altion
is in fact invalid).

The constructabsurd, which requiresfalse to hold, marks a
piece of code as inaccessible. Here, it can be viewed ascsignta
sugar for acaseconstruct with zero branches.

Ghost variables and ghost parameters It is sometimes desirable
to explicitly introduce aghost variable that is, a name for a wit-
ness to an existentially quantified hypothesis. For thippse, we
suggest writing
letlogicz : 0/F ine

This construct binds: within ' and e. It requires the assertion
3(z : 0).F to hold, and introduce$’ as a new hypothesis into
the context. Assertions embedded withincan refer tox, and
their proofs can exploit the hypothedis However, computational
occurrences of within e are forbidden, sincelét logic” has no
computational content.

Similarly, it is sometimes desirable to abstract a functiotih
respect to a ghost parametetike this:

fun f(logicz : 0)(z1 : 71 /F1) : (w2 : 72/ F2) = e

This construct bindsg within Fy, F», ande. Note that? can be an
arbitrary logical type, so this extension allows explicdbstracting
a function with respect to a proposition or predicate, ificks(see
§7.5). Ghost variables and ghost parameters can in prinbiple
viewed as syntactic sugar and translated away [46]. In astieal
implementation, however, they should be primitive notions

6. Interfacing with external theorem provers
6.1 Coq

Our typed, higher-order logic is easily embedded within @a-
culus of Inductive Constructions, which underlies Coq [5% a
result, exporting proof obligations towards Coq is a simplter
of pretty-printing.

Coq is an interactive theorem prover. In order to discharge a
proof obligation, the user writes a proof script. An openkpem
is how to maintain these scripts as the source code of thegrog
evolves. The location in the code where a proof obligatiosear
might change. The statement of a proof obligation might gleaas
well. Perhaps a solution would be to allow only explicithated,
explicitly-named, lemmas to be proved interactively, aoddly
solely on an automated theorem prover for discharging anong
proof obligations, possibly by appeal to an explicit lemma.

6.2 Ergo

Ergo [13] is a fully automated theorem prover for a typedypuir-
phic, first-order logic. Its design is partly inspired by $iify [17].
However, Ergo’s logic is typed and polymorphic, whereas -Sim
plify’s is untyped. This makes Ergo superior, from our poarfit
view, to Simplify. Indeed, provided our proof obligations in the
first-order fragment of our logic, they can be directly expdrto-
wards Ergo. If, on the other hand, we wished to use Simplify, w
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would have to encode our typed, polymorphic logic into Sifgjsl
untyped logic. Such encodings have been studied [39], but@an-
plex and costly. Of course, the trivial encoding that eradletypes
is unsound.

In addition to first-order logic, Ergo has native support for
linear arithmetic and for the theory of constructors (tkaftinction
symbolsf such thatf(z) = f(y) impliesz = y). The latter is
useful for reasoning efficiently about algebraic data stmes.

In the general case, our proof obligations are most nayueaH
pressed in a higher-order logic, as shown in this paper. Meue
higher-order logic can be encoded into first-order logic.téns
dard encoding introduces “apply” predicates that help &heys-
conversion [34].

Perhaps surprisingly, in our case, this encoding can be made

to look fairly natural. The symbolsre andpost, which so far have
stood for the pair projections, can be turned into predgartel sim-
ulate not only projection, but also application. Furtherejeve can
makepre a binary predicate angost a ternary predicate, avoiding
curried function applications. That is, instead of the kighrder
formula:

f=M(z1: [1]).Fi, M1 : [11]) A(z2
we can write:

[12]).F2),

V(l‘1 : [T{D.(pf@(f, 1’1) <~ F1)
A1 : [r])¥(@s : [72]).(POSKf, 21, w2) < Fy)

The pair and the threg-abstractions have beepexpanded, and
the projection and application symbols have been fusedappdi-
cations ofpre andpost ProvidedF; andFx are first-order formu-
lae, this is a first-order formula.

Under this encoding, the definition of the lifting operation
computational types is modified so that the computationation
type constructor is no longer interpreted:

[T1 — 72| = [11] — [72]

That is, we make—— an uninterpreted binary type constructor at
the logical level, so that the lifting of types becomes theniity.
Thus, in the above formuld, has logical type-, — 2. The type
schemes assigned poe andpostare as follows:

pre : Vaias. (1 —— az) X ay — prop
post: Vajas. (n — ai2) X a1 X az — prop

These declarations are admissible by Ergo. We believe that i
should be possible to go a long way with first-order logic alon
even when the program exploits higher-order functions. e,

at present, more practical experience is needed in orderpjoost
this conjecture.

7. Application: finite sets as binary search trees

As an initial benchmark for our tool [52], we have transcdbe
Objective Caml’s library implementation of finite sets, regented
as balanced binary search trees, into our programming #&gggu

7.1 Parameters

In the following, we fix a type “elt” of elements. We assumettha
an algebraic data type “bool”, whose data constructors tate™
and “false”, is available. We assume that an equality chegk o
elements, written =", is given. It is a function of computational
type eltx elt — bool, whose specification could be written as
follows:

post(=, z1,x2,b) & (b =trues =, = x2)

Similarly, we assume that an ordering relation, written”," of
logical type elt— elt — prop, is given, together with an ordering

type tree =
Empty : tree
Node : (eltx tree x tree x int) — tree

logic fun elements : tree~ setelt =
Empty — 0
Node (x, I, r,-) — {x} U elements (I)J elements (r)

inductive predicate bst : tree— prop =

bst (Empty)

VXl rh.
(Vy. y € elements ()= y < x) A bst (I) A
(Vy. y € elements (r}= x <y) A bst (NA
= bst (Node (x, I, r, h))

Figure 10. Definitions for binary search trees

check, also written<”, of computational type elk elt — bool,
such that the latter decides the former.

In a full-scale programming language, our balanced binary
search tree implementation would be a functor, parameigizer
the type “elt”, the function £”, the relation ‘<", the ordering
axioms for ‘<”, and the function <”.

We assume that an abstract type of sets of elements, written
“setelt”, is available at the logical level, together wittetstandard
operations (empty set, singleton set, union, memberstuy),and a
number of axioms or theorems that describe the propertidesé
operations. In a full-scale programming language, this ld/dne
provided by a (logical-level) standard library.

7.2 Definitions

Figure 10 contains the definition of the algebraic data typee”,
of the logical-level inductive function “elements”, andtb& induc-
tive predicate “bst”. (The concrete syntax is provisionAlbinary
tree is either empty or a binary node, carrying a root elepiefit
and right sub-trees, and a cached measure of the tree’sth@igh
binary search trees are intended to implement a finite sétaabs
tion. The logical function “elements” maps a binary treetefinite
set that it represents. It is defined by induction over theladaic
data type “tree”. The property of being a binary search tseder
fined by the inductive predicate “bst”.

In the definition of “bst”, the types of the universally quified
variables “x”, “I", “r", “h”, “y” are inferred. The types of he func-
tion “elements” and of the predicate “bst” could also beirdd, if
desired. In practice, type annotations can always be aibecept
where polymorphic recursion is required.

The definition of “bst” constrains neither the shape of tletr
nor the cached height information. This is done by another in
ductive predicate, named “avl” (not shown). In contrasthviiie
“dependent types” [58, 3, 55] and “generalized algebraita da
types” [59] schools, we favor a programming style in whicVairi-
ants are not necessarily hardwired into data structuresfatition
time.

7.3 Membership in a binary search tree

Figure 11 shows a function, “member”, that checks whether an
element “x” is @ member of a tree “t". The precondition “ti$t
requires “t” to be a binary search tree, but does not reqtiteebie
balanced, since this is not necessary for correctnesselfvished
to (informally) ensure a logarithmic complexity bound, arwaild
strengthen the precondition by adding the requirement(tgvl
This illustrates how a single data structure can be equipygtd
multiple invariants, not all of which are necessarily ectat at all
times. The postcondition states that the Boolean residtdlether
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let rec member (x, t)
where bst (t)
returns uwhere b = true< x € elements (u)
= match t with
| Empty — false
| Node (y, I, r,.) —
if x=ythen
true
else ifx <y then
member (x, 1)
else
member (X, r)
end

Figure 11. Membership in a binary search tree

type iterator = list tree
logic fun remaining : iterator— setelt = ...

inductive predicate ok : iterator— prop =

| ok ()

| V', ts. elements (th remaining (ts)= 0 A
bst () A ok (ts)=- ok (t :: ts)

let iterator (t)returns i
where ok (i) A elements (t)= remaining (i)

=M

let next (i)
where ok (i)
returns oix : option (iteratorx elt)
where 0ix = None=- remaining (i) =0
Vi', X. oix = Some (i’, X) =
remaining (i)= {x} U remaining (i")
x ¢ remaining (i) A ok (i")
=match i with
|l — None
| Empty :: ts— next (ts)
| Node (x, I, r,0) ;i ts— Some (I :: r :: ts, X)
end

Figure 12. Iterators over binary search trees

“x” is a member of the set implemented by the tree “t”. No type
annotations are needed in this definition. All types areriefi

7.4 First-order iteration

We now define and specify first-order, persistent iteratomsr o
binary search trees. Their expressive power surpassesftfiaid”
(§7.5), yet their specification is simpler.

The implementation appears in Figure 12. An iterator isgepr

let cardinal (t)returns nwheren = || elements (t}| =
let rec count (i, n)
where ok(i) A n +|| remaining (i)|| = || elements ()]
returns N’ wheren’ = || elements (t)|
= match next (i) with
| None— n
| Some (i’,-) — count (", n + 1)
end
in count (iterator (t), 0)

Figure 13. A sample client of the iterator abstraction

not, coincide with definitional equality). This initial itator is sim-
ply the singleton list [t].

The function “next”, when applied to an iterator “i", ret@wn
either nothing or a pair of a new iterator “i”” and an elemexit.“
The postcondition describes how these values are related.

Figure 13 shows how iterators are used. Here, the client is a
function that counts the number of elements in a tree. It coes
depend on the internals of the tree data structure: it orgdds on
the specification of iterators, which is expressed in terfiadbstract
(logical-level) sets. So, this client code could be placedriother
module, without access to the definition of trees.

The “cardinal” function performs a loop, expressed as an in-
ternal recursive function, with an integer accumulator ne pre-
condition of this internal function represents the loopaitant: the
number of elements counted so far, plus the number of eleament
remaining to be seen, equals the total number of elementseof t
set. The postcondition is simply the precondition, spéwsal to
the case where no elements remain.

The precondition of “count” must also state that “i” is an "ok
iterator, even though it does not have to know about the diefini
of “ok”. This is somewhat undesirable. In the future, we wint
to allow defining a dependent sum type of the form “i : iterator
where ok(i)", and exporting it as an abstract type.

The definition of “cardinal” is syntactically somewhat hgaas
it is expressed in our core language. In a full-scale prognamg
language, a more palatable syntax for loops could be int@diu
and desugared into recursive functions and iterators. @lesifor-
mula, the loop invariant, would have to be written down, éast of
two formulae in this low-level version of the code.

7.5 Higher-order iteration

We now present a specification of the classic “fold” highetes
function over sets implemented as binary search trees. jée s
ification is rather more complex than that of first-orderaters,
for at least two reasons. First, the specification must roarttie
client’s state (the accumulator) and invariant. Secondabse the
code is not tail-recursive, some information is implicitpcoded
within the stack, and a ghost parameter is used to make ito&xpl
in the specification.

The definition “isinvariant” summarizes the required invariant.
Its parameters are “inv”, the client’s invariant, whicheifsis pa-
rameterized over and accumulator and a set of remainingesiesn

sented as a list of trees, which can be thought of as a stack in a“sy”, a set of remaining elements; ;%5 the initial set of all ele-

depth-first traversal of some larger tree.

To an iterator “i” corresponds a set of elements, which we
write “remaining(i)”. Its inductive definition (omitted) is simply
the union of the sets of elements of the trees in the list.

An iterator is well-formed only if the trees that it contains
have disjoint sets of elements. This is expressed by thectivau
predicate “ok”.

The function “iterator” creates an iterator “i” out of a tr&g,
and satisfies the postcondition “@kAelementst) = remainindi)”,

ments; the client function “f”; and an accumulator “a” ccthel
definition states, in short, that: the set of remaining elemé a
subset of the initial set of all elements; the current acdatmuand
the current set of remaining elements satisfy the clientiaiiant;
and, at any time, if an element “x” is picked among the remain-
ing elements, the invariant guarantees that it is legal foyaff”
to the current accumulator and to “x”, and guarantees tleahéw
accumulator thus obtained will still satisfy the invariant

The function “fold” is parameterized over two ghost vared)l

where= stands for extensional equality of sets (which may, or may namely the client invariant “inv” and a sety'sof remaining el-
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predicate is_invariant (inv, s, si, f, accu) =
s € st Ainv (accu, §) A
V s X s’ accu accu'.
sCssAs=s'U{x} Ax¢s Ainv (accu, Sy=
pre (f) (accu, x)A
post (f) (accu, x) (accu’)= inv (accu’, s')

let rec fold (logic so, logic inv, accu, t, f)
whereis_invariant (inv, g, elements (t), f, accu) bst (t)
returns accu’'whereinv (accu’, $\ elements (t)) =
match t with
| Empty — accu
| Node (x, I, r,0) —
let accu =fold (s, inv, accu, |, f)in
let accu =f (accu, x)n
fold (so\ (elements (I {x}), inv, accu, r, f)
end

predicate cardinalinv (t) =
A (accu, s). accu  s|| = || elements (t)|

let cardinal (t)returns x where x = || elements (t)| =
fold (elements (t), cardinahv (t), 0, t, A (accu, x). accu + 1)

Figure 14. Folding over binary search trees

ements. In the case of first-order iterators, the former waec-
essary because the client retains control over the desivadant,
and the latter was unnecessary because the set of remalaing e
ments was directly expressed as “remairijig Here, the set of
remaining elements is implicit in the stack, so a ghost @eianust

be used in order to refer to it.

This definition is certainly somewhat overwhelming. It slsow
at the same time, that it is possible to specify and explgjhéi-
order functions in our framework, and that there is a cosbim-
plexity to be paid for doing so. More experience is neededneef
we can tell how easily higher-order functions can be definetl a
used in practice.

8. Related work

The roots of our work lie in Hoare logic [24, 30]. Extensiorfs o
Hoare logic with support for recursive, higher-order pidoes
were heavily studied in the late 1970’s and early 1980's B.2,
15, 26, 27]. In particular, the issue of completeness reckav ot
of attention after Clarke [12] proved that there can be nmd@and
complete Hoare logic for a programming language equippéid wi
recursive, higher-order procedures and global varialilidearke’s
result, however, is based upon the assumption that formarde
proof obligations are expressed in a first-order logic. Daend
Josko [15] point out that, by moving to higher-order logicjsi
possible to work around Clarke’s negative result. In thiggrawe
follow Damm and Josko and allow specifications to be expresse
in higher-order logic. The intuitive justification for thapproach
is that, if functions can abstract over functions, then gjgations
must abstract over specifications.

Our work has been strongly inspired by several existing;tpra
cal tools for checking imperative programs [19, 22, 20, 211,6}.
This paper is an attempt to exploit the strengths of these&svor
while steering away from imperative programming and plgci
newed emphasis on polymorphism and modularity.

Our method for generating proof obligations is particylarl
straightforward: it appears in its entirety in Figures 6ircompar-
ison with the method used in ESC/Java [23], we avoid a tréinsla
to “passive form” because we have no assignments to begim wit

10

We avoid the exponential explosion that could follow frore th-
terplay between sequences and alternatives by requirquesees
(thatis,let constructs) to carry user-provided postconditidyJ).

Our system is not sound with respect to a call-by-name dymami
semantics. There are at least two reasons for this fact, Bome
divergent expressions adnfitlse as a valid postcondition. If such
an expressior; is made the first component of a sequence, as in
“letz/false = e1 in e2”, then second component is checked
under the assumpticfalse. As a result, all of the the proof obli-
gations found withire; are vacuously satisfied. This can be sound
only if es is never executed, which is the case under call-by-value
evaluation, but not under call-by-name evaluation. Thesécea-
son is that, in a call-by-name semantics, every type is indeby a
bottom value, and some types are inhabited by infinite vallieis
is not reflected in the way we lift computational values anukty
up to the logical level.

Scott’s logic of computable functions [53] interpretderms in
a denotational model, where equality implies, or coincidé$,
observational equivalence. It comes with a set of sound atamtu
rules, and allows explicit reasoning about divergence apaigy
of computations. It admits call-by-value and call-by-naragants.

It was implemented as early as 1972 by Milner [43]. More récen
implementations [2, 8, 45] embed Scott's LCF within somarfor
of higher-order logic. In a somewhat similar vein, Longlayda
Pollack [40] embed the functional core of Standard ML, vialéyf
abstract denotational semantics, into higher-order logic

Our approach is less elaborate: by focusing on partial cbrre
ness, by adopting a call-by-value semantics, and by lifbinlg val-
ues, as opposed to expressions, up to the logical level, evatde
to ignore non-termination issues entirely, and to work wishue
spaces that do not have bottom elements or definednessrmysleri
By contrast, tools or approaches that focus on lazy funatipro-
grams, such as Programatica [35, 29], the Cover translaipof
Honda and Yoshida’s logic of higher-order functions [3¥quire
reasoning about non-termination, resulting in proof dadtiigns that
can become cluttered with definedness side conditions. ifine s
plicity of our approach comes at a cost: our system can neghe
tablish termination of an expression nor reason about vhgenal
equality of expressions.

ESC/Haskell [60] allows annotating Haskell programs witp
conditions and postconditions that are also expressedskdfiaA
special-purpose theorem prover, based on symbolic evatuat
Haskell terms, is developed.

The theorem prover Coq [56] can be used as a programming lan-
guage, in which programs are both developed and provedatorre
The Compcert certified compiler [37] offers an example ofrgda
program developed in this style. However, there is somecageat
that Coq is not (yet) a convenient programming languageinfor
stance, it only allows writing pure, terminating functions

The programming language Russell [55] extends Coq with fa-
cilities for defining programs annotated with assertionshe style
of Hoare logic. There are many similarities between Rusmsdl
our work. One important technical difference is that we safga
the typechecking process, which is performed first and nesrtaa-
ditional, and the process of extracting proof obligatiansich runs
as a second phase, whereas, in Russell, as in Coq, typespecid
proving are one and the same activity. In particular, Rlisseour-
ages the use of indexed types, liket n, so that typechecking can
give rise to proof obligations: for instance, supplying atual ar-
gument of typdist m to a function that expects a formal parameter
of type list n generates the proof obligation = n. Another dif-
ference is that Russell terms are elaborated into Coq tevheseas
we adopt a less foundational approach and are happy to trest-a
ternal theorem prover.
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Hoare Type Theory [47, 46] is somewhat similar to our system,
insofar as it offers decidable basic typechecking and abxdéd
generation of proof obligations. It also shares our use ghéi-
order logic and our emphasis on polymorphism and abstradtio
is much more ambitious than our proposal, in that it attenpts
deal not only with algebraic data types and higher-ordections,
but also with heap-allocated, mutable state. As a ressaltésign
and metatheory are considerably more involved.

Some authors [7, 28, 60, 46] allow code to appear in specifi-
cations. This is motivated partly by a desire to make formds-
ecutable, so as to allow assertions to be checked at rungéintk,
partly by fear that, otherwise, a single functionality ntiglave to
be implemented twice: once at the computational level, atee
logical level. Our technical and philosophical choice ifedent:
we consider all code as potentially impure, and do not allodec
to appear within specifications. We do not check assertibnsa
time: if the programmer wishes to insert a runtime check,nshst
do so explicitly. Furthermore, we believe that, in practioppor-
tunities for code sharing between computational and lddgeals
are rare: the oft-cited case of lists is one of only a few situes
where implementation and specification coincide.

Indexed types [61, 58] and refinement types [16] rely on
called indices. Indices are elements of some mathematcahah,
such as an arbitrary finite set, or the set of all natural numbe
Types are enriched with constraints over indices, allovinvari-
ants, preconditions, and postconditions to be express$esyintax
of constraints is carefully restricted so as to ensure tbastraint
entailment is decidable. This allows proof obligations &auto-
matically checked. Generalized algebraic data types [EQh#so
an instance of this idea, where indices are types, that$s;dider
terms. The appeal of this approach resides in the high de§me
tomation that it allows. On the other hand, this comes at tieep
of a restriction to a decidable logic. In fact, our decisidnusing a
highly expressive, hence undecidable, logic was motivatedur
earlier study of generalized algebraic data types [50, 49].

SO-

Going beyond indexed types, several programming languages

offer full dependent types [3, 10, 54, 57]. By exploiting Berry-
Howard isomorphism, they allow code and proofs to be exprkss

and combined within a single language. This allows programs

to appear more self-contained, but means that a fragmerteof t
programming language must be a consistent logic, and ejuir
mechanisms to assist the user in building proofs. Our desijich
relies on an off-the-shelf theorem prover, is more modular.

9. Conclusion

We have presented a simple methodology for extracting bl
gations out of call-by-value functional programs. Our mregd fu-
ture work includes:

¢ publishing a useable prototype implementation, equippigd w
a compilation path down to Objective Caml;

e relaxing our positivity condition§3.2), which restricts the use
of functions within data structures, preventing, for imsta, the
standard definition of infinite streams;

e internalizing type equality, that is, introducing equasobe-
tween types into the syntax of formulae, together with fléta
conversion rules for exploiting such equations; indeed,ame
other authors [46], have noticed that such an extensiondvoul
subsume generalized algebraic data types [59];

e studying the issues raised by modularity and mutable state.

Acknowledgement The authors wish to thank the anonymous re-
viewers of a previous version of this paper for contradigtrfalse
claim and offering useful comments and suggestions.
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