
Draft, July 2007

Extended Static Checking of Call-by-Value Functional Programs

Francois Pottier
INRIA

Francois.Pottier@inria.fr

Yann Régis-Gianas
INRIA

Yann.Regis-Gianas@inria.fr

Abstract
We present a Hoare logic for a call-by-value programming lan-
guage equipped with recursive, higher-order functions, algebraic
data types, and a polymorphic type system in the style of Hind-
ley and Milner. It is the theoretical basis for a tool that extracts
proof obligations out of programs annotated with logical assertions.
These proof obligations, expressed in a typed, higher-order logic,
are discharged using off-the-shelf automated or interactive theorem
provers. Although the technical apparatus that we exploit is by now
standard, its application to call-by-value functional programming
languages appears to be new, and (we claim) deserves attention. As
a sample application, we check the partial correctness of a balanced
binary search tree implementation.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures; Polymorphism; Procedures, functions, and subroutines; Re-
cursion; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—Assertions; Me-
chanical verification

General Terms Theory

Keywords Hoare logic, extended static checking

1. Introduction
Hoare logic [24, 30, 14] is a discipline for annotating programs
with logical formulae, known as assertions, and for extracting log-
ical formulae, known as proof obligations, out of such annotated
programs. The validity of the proof obligations, which can be veri-
fied either manually or mechanically, entails the correctness of the
annotated program. That is, it guarantees that the assertions are cor-
rect static predictions of the program’s dynamic behavior.The pro-
cess of constructing and checking proof obligations is sometimes
known as “extended static checking” [19].

Hoare logic was originally designed for a “while language”,that
is, a simple imperative programming language, equipped with an it-
eration construct and a fixed number of global, mutable variables.
Recursive, higher-order procedures were the subject of much atten-
tion in the late 1970’s and early 1980’s [12, 5, 15, 26, 27]. More
recently, heap-allocated, mutable data structures, as well as object-
oriented features, have been deeply investigated. This hasled to the

[Copyright notice will appear here once ’preprint’ option is removed.]

development of practical specification languages and toolstarget-
ing, for instance, C [21], Java [9, 22, 41], and C# [6].

We would like to put forth the thesis that this traditional focus
on imperative programming languages has been, to some extent,
detrimental: it has consumed a great amount of energy, whilecom-
paratively little effort was being devoted to the key features that
will be required in order for the methodology to scale up, such as
modularity and abstraction. We would also like to raise a question:
since functional programs are significantly easier to checkfor cor-
rectness, why hasn’t this activity become routine in the functional
programming community, forty years after Floyd and Hoare’ssem-
inal papers?

On the cost of imperative programming There are several rea-
sons why functional programming can be considered superiorto
imperative programming [32]. One of them is that functionalpro-
grams are easier to reason about. In other words, there is a cost to
reasoning about state.

In a typical modern imperative programming language, all
heap-allocated data is mutable. As a result, instead of reason-
ing in terms of high-level entities such as, say, pairs, lists, trees,
etc., programmers are forced to reason in terms of a view of the
heap as a graph. More concretely, they must write down and prove
formulae that involve mappings of memory addresses to memory
blocks [42, 21].

The possibility of aliasing means that, whenever some mem-
ory block is written, the memory that is accessible through every
type-compatible pointer is potentially affected. This makes it dif-
ficult to reason about the effects of a single write operation, and
creates the problem of representation exposure [18, 36]. Inorder to
address this issue, researchers have developed linear types and re-
gions [25], ownership types [11], and separation logic [51], among
other approaches.

Our research agenda We do not claim that the above issues are
not worth investigating: on the contrary, they are quite fascinating.
However, it is a pity that we do not, today, have mature tools
for checking the correctness of functional programs. This explains
why, in this paper, we study a Hoare logic for (call-by-value)
functional programs without state.

The programs that we are interested in checking rely heavily
on (possibly higher-order) functions, algebraic data structures, and
type polymorphism. We claim that it is quite easy to extract suc-
cinct and natural proof obligations out of such programs, provided,
of course, that they are annotated with specifications.

There are two benefits to be reaped by not reasoning about state.
As far as the user is concerned, this leads to simpler specifications
and proof obligations. As far as the implementor is concerned, this
saves a large part of the “implementation budget”, which canthen
be spent on features such as type polymorphism, type abstraction,
and modularity. The importance of these features cannot be over-
stated: in the end, the key to success is the ability to develop and
check program components independently.

1 2007/7/17



Today, to the best of our knowledge, no tool exists that can
extract proof obligations out of a call-by-value functional program
and pass them on to an off-the-shelf, interactive or automated,
theorem prover. (See§8 for a more precise discussion of related
work.) We would like to fill this gap.

Contribution In this paper, we present the design of a typed,
polymorphic, higher-order programming language, where pro-
grams can be annotated with assertions expressed in a typed,poly-
morphic, higher-order logic. We define a procedure for extracting
proof obligations out of programs, and show that it is sound.A pro-
totype tool [52] has been developed, which works in conjunction
with the interactive theorem prover Coq [56], with the automated
first-order theorem prover Ergo [13], or with both at once. This tool
has been used to check the partial correctness of several non-trivial
data structure implementations, including balanced binary search
trees and persistent double-ended queues [33]. We hope to publish
detailed accounts of these implementations in the future.

Highlights of our approach Here are some of the key technical
features of our approach.

We focus on partial correctness. We do not require programs to
terminate, and do not generate proof obligations to ensure termina-
tion. It is up to the user to determine which properties of thecode
are of sufficient interest to deserve proof, and to insert assertions
where desired. At one extreme, a program that contains no asser-
tions leads to no proof obligations. There is no cost to be paid up
front for using our methodology.

Our preconditions are prescriptive: it is impossible to call a
function unless its preconditionF1 holds. A descriptive interpre-
tation of preconditions can be simulated by using the precondition
true and the postconditionF1 ⇒ F2. This allows unconditional
invocation, and states that the function’s result must satisfy F2 if
its argument satisfiesF1.

Values, programs, types, and logical formulae are distinctsyn-
tactic categories. Proofs do not necessarily appear withinprograms:
proof obligations are delegated to an external theorem prover,
which may or may not require or produce explicit proof terms.

We do not embed values, programs, or formulae within types.
Thus, our types are first-order terms: they include type variables,
parameterized algebraic data types, and function types, just as in
ML. As a result, type inference in the style of Milner [44] is
possible, and implemented in our tool [52]. Type inference does not
generate any proof obligations. We do not have dependent types,
such as lists indexed with an integer length [58], but simulate them
as follows. Instead of declaring thatx has typelist n, we declare
thatx has typelist , and assert the logical formulalength(x) = n,
where the functionlength is inductively defined at the logical level.

Formulae can refer to values, but not to expressions. This isim-
portant, because values are pure, whereas expressions are poten-
tially impure. Although our logic cannot explicitly reasonabout
state, it is nevertheless soundly applicable to programs that involve
non-termination, non-determinism, input/output, or mutable state.
(Reading an input stream, or dereferencing a pointer to mutable
storage, can be viewed as non-deterministic operations.) In that
case, it allows establishing properties that do not depend on the be-
havior of any impure operation. This means, for instance, that we
can prove the partial correctness of a functional program even if it
has been instrumented with possibly impure debugging, profiling,
or logging instructions.

In our programming language, functions, which are potentially
impure, are values, so they can appear within formulae. But what
does it mean for a formula to refer to a computational function f
of type, say,τ1

.
−→ τ2? Our answer is to viewf , at the logical

level, as a pair of predicates, which representf ’s precondition and
postcondition. In other words, when used within a formula,f has

Logical Types
θ ::= α Variable

| d θ̄ Data
| θ → θ Function
| θ × θ Product
| prop Proposition

ς ::= ∀ᾱ. θ Scheme

Logical Type Environments
∆ ::= ∅ Nil

| ∆, (x : ς) Variable
| ∆, ᾱ Type Variables

Logical Terms
t, F, P ::= x θ̄ Variable

| D θ̄ (t, . . . , t) Data
| λ(x : θ).t Abstraction
| t(t) Application
| (t, t) Product
| π1 Projection (also writtenpre)
| π2 Projection (also writtenpost)
| true Truth
| t = t Equality
| t ∧ t Conjunction
| ¬ t Negation
| ∀(x : ς).t Universal Quantification
| ∀ᾱ.t Type Quantification

Figure 1. The logic (syntax)

type (roughly)(τ1 → prop) × (τ1 → τ2 → prop). The two
pair projections, writtenpre andpost, can be used to refer to the
pair components. That is,pre(f) and post(f) offer lightweight
notations for referring tof ’s precondition and postcondition. When
f is a known (let-bound) function, this mechanism can be viewed
merely as offering abbreviations for known formulae. However,
when f is unknown (λ- or ∀-bound), it becomes key to writing
natural specifications for higher-order functions (§7.5).

In summary, although the technical apparatus that we exploit is
by now standard, we believe that it is worth drawing attention to
the combination of power and simplicity offered by our technical
choices. If extended with a suitable module system, and equipped
with a compilation path down to, say, Objective Caml [38], our tool
could be used to construct correct purely functional program com-
ponents, possibly for use within larger, partly imperativeprograms.

Outline of the paper The paper is laid out as follows. First, we
briefly introduce a higher-order logic, in which assertionsand proof
obligations are expressed (§2). Then, we present the syntax and
call-by-value semantics of a core functional programming language
whose expressions carry explicit assertions (§3). We describe the
type system, as well as the procedure for extracting proof obli-
gations out of programs (§4). We present a few extensions of the
language (§5) and discuss how proof obligations are transformed
for submission to external theorem provers (§6). Last, we present
a few excerpts of our balanced binary search tree implementation
(§7) and review related work (§8).

2. The underlying logic
2.1 Syntax

We rely on a mostly standard higher-order logic [4] whose types
and terms appear in Figure 1. Typesθ include type variables, pa-

2 2007/7/17



(∆, (x : ς))(x) = ς
(∆, (x1 : ς))(x2) = ∆(x2) if x1 # x2

(∆, ᾱ)(x) = ∆(x) if ᾱ # ∆(x)

∆(x) = ∀ᾱ. θ

∆ ⊢ x θ̄ : [ᾱ 7→ θ̄]θ

D : ∀ᾱ. θ1 × . . . × θn → d ᾱ
∀i ∆ ⊢ ti : [ᾱ 7→ θ̄]θi

∆ ⊢ D θ̄ (t1, . . . , tn) : d θ̄

∆, (x : θ1) ⊢ t : θ2

∆ ⊢ λ(x : θ1).t : θ1 → θ2

∆ ⊢ t1 : θ1 → θ2

∆ ⊢ t2 : θ1

∆ ⊢ t1(t2) : θ2

∀i ∆ ⊢ ti : θi

∆ ⊢ (t1, t2) : θ1 × θ2

∆ ⊢ t : θ1 × θ2

∆ ⊢ πi(t) : θi ∆ ⊢ true : prop

∀i ∆ ⊢ ti : θ

∆ ⊢ t1 = t2 : prop
∀i ∆ ⊢ ti : prop
∆ ⊢ t1 ∧ t2 : prop

∆ ⊢ t : prop
∆ ⊢ ¬ t : prop

∆, (x : ς) ⊢ t : prop
∆ ⊢ ∀(x : ς).t : prop

∆, ᾱ ⊢ t : prop
∆ ⊢ ∀ᾱ.t : prop

Figure 2. The logic (type system)

rameterized inductive types, function types, product types, and the
type prop of logical propositions. In the following, the syntax of
terms is extended with standard syntactic sugar for falsity, disjunc-
tion, implication, equivalence, existential quantification, etc.

The typing rules appear in Figure 2. In general, we writet for
terms of arbitrary type. We writeF for formulae, that is, terms of
typeprop, andP for predicates, that is, terms of typeθ → prop.
The binary operator#, used in several definitions, expresses the
fact that two objects have no common free names.

Our logic is not simply-typed. Because our computational lan-
guage (§3) is polymorphic, and because we wish to lift every com-
putational value up to the logical level, we need polymorphism
at the logical level as well. For this reason, we have logicaltype
schemesς ::= ∀ᾱ. θ, and every use of a variablex is explicitly
annotated with a type vector̄θ, which states how the type scheme
associated withx is instantiated. For this reason also, the syntax
of formulae offers universal quantification over type variables, so a
fact can be asserted to hold at all types.

The logic offers parameterized inductive types. We assume that
each inductive type constructord carries a fixed integer arity, and
that every applicationd θ̄ is arity-consistent. We further assume that
d comes with a finite number of data constructorsD, each of which
is assigned a type scheme of the form:

∀ᾱ. θ1 × . . . × θn → d ᾱ

We impose a positivity condition [48], which is informally summed
up as follows: in the above type scheme, the type constructord (or
any type constructor whose definition is mutually recursivewith
the definition ofd) must not appear under the left-hand side of an
arrow withinθ1, . . . , θn.

Although there is an introduction form for inductive types,
namely the application of a data constructorD, no elimination form
is provided here. We can get away with this omission because the
process ofextractingproof obligations, which is the focus of the
present paper, requires no such forms. Of course, when it comes
to dischargingproof obligations, that is, proving theorems, then
inductive definitions and proofs become necessary.

Computational Types
τ ::= α Variable

| d τ̄ Data
| τ

.
−→ τ Function

σ ::= ∀ᾱ. τ Scheme

Computational Type Environments
Γ ::= ∅ Nil

| Γ, (x : σ) Variable
| Γ, ᾱ Type Variables
| Γ, F Assumption

Values
v ::= x τ̄ Variable

| D τ̄ (v, . . . , v) Data
| fun f(x : τ/F ) : (x : τ/F ) = e Recursive Function

Patterns
p ::= x τ̄ Variable

| D τ̄ (p, . . . , p) Data

Expressions
e ::= v Value

| v(v) Function Application
| let (x ᾱ : τ/F ) = e in e Local Binding
| casev of c Pattern Matching

Cases
c ::= ∅ Nil

| (p 7→ e) 8 c Cons

Figure 3. The computation language (syntax)

2.2 Interpretation

We assume that the logic is equipped with a consistent interpreta-
tion in a model [4], so that, in particular, every well-formed, closed
formula evaluates, in the model, to a truth value. We assume that the
model validatesβηι-equivalence. These abstract hypotheses about
the model suffice to establish the soundness of our system (§4.8).

3. The computational language
3.1 Syntax

The syntax of our programming language appears in Figure 3. It is
equipped with an ML-style type system [44], so typesτ and type
schemesσ are distinguished. Types include type variables, param-
eterized algebraic data types, and function types. We write

.
−→ for

the computational function type constructor, so as to distinguish it
from the logical function type constructor, written→ (Figure 1).

We impose a syntactic separation between values and expres-
sions, and require both operands of the function application oper-
ator, as well ascasescrutinees, to be values. This imposes a style,
reminiscent ofA-normal form, where the result of every intermedi-
ate computation is named via alet construct. Of course, such a style
is quite user-unfriendly, so, in practice, we offer an unrestricted
surface language, and automatically translate it down to the kernel
language described here.

The language supports type inference in the style of Hindley
and Milner. However, in this paper, we are not concerned with
type inference, so we work with explicitly-typed programs.This is
visible (i) in the syntax of values and patterns, where variables and
data constructors are annotated with vectors of types that indicate

3 2007/7/17



how polymorphic type schemes are instantiated, (ii) atfun andlet
constructs, where bound variables are annotated with types, and
(iii) at let constructs, where a vector of type variablesᾱ can be
explicitly bound.

A function definition takes the general form:

fun f(x1 : τ1/F1) : (x2 : τ2/F2) = e

The keyword/ should be read “where”. Every function is recur-
sive, so thatf is bound withine. The formal parameterx1 is
bound within the preconditionF1, within the postconditionF2, and
within e. The variablex2, which stands for the result of the func-
tion, is bound within the postconditionF2. We require every func-
tion to be annotated with an explicit precondition and postcondition
(if missing,true is assumed).

A local variable definition takes the general form:

let (x ᾱ : τ/F ) = e1 in e2

The local variablex is bound withinF and withine2. The type vari-
ablesᾱ are bound withinτ , F , ande1. The propositionF serves
a postcondition fore1. If it is missing, a default postcondition is
assumed, whose definition is deferred to§3.3.

A case analysis takes the general form:

casev of c

Here,c is a possibly empty sequence of cases (i.e., branches). Each
branch is of the form(p 7→ e), where the variables that appear in
the patternp are bound withine. Patterns must be linear.

3.2 Lifting computational entities to the logical level

In a Hoare logic, formulae refer to values. That is, ifx is bound,
at the computational level, by afun, let, or caseconstruct, then
it is possible for a formulaF , embedded in the code within the
scope ofx, to refer tox. This raises two questions: first, ifx has
computational typeτ , what is its logical type, to be used when
typecheckingF? Second, if, for the purposes of evaluation,x is
substituted with a computational valuev, what is the corresponding
logical value, to be used when interpretingF?

We answer these questions by lifting both computational types
and computational values up to the logical level (Figure 4).That
is, to each computational typeτ , we associate a logical type⌈τ⌉,
and to each computational valuev, we associate a logical term⌈v⌉,
with the intended property that ifv has computational typeτ , then
⌈v⌉ has logical type⌈τ⌉.

As announced (§1), computational functions are reflected, at the
logical level, as pairs of a precondition and postcondition. This is
made explicit in the lifting of computational function types:

⌈τ1

.
−→ τ2⌉ = (⌈τ1⌉ → prop) × (⌈τ1⌉ → ⌈τ2⌉ → prop)

The first component of the pair, which represents the function’s pre-
condition, is abstracted over the function’s argument, while the sec-
ond component, which represents the postcondition, is abstracted
over both argument and result.

As a result of this definition, iff is bound, at the computational
level, to a function of typeτ1

.
−→ τ2, then a formula embedded

within the code, in the scope off , viewsf as a pair of predicates,
and can refer topre(f) andpost(f). (Recall that, as per Figure 1,
pre andpostare sugar for the projectionsπ1 andπ2.)

Values of computational function type (that is,λ-abstractions)
are lifted up to the logical level in a way that is consistent with
this definition. A function’s precondition and postcondition alone
determine how it is lifted: its code is ignored. (The conformance of
a function’s body to its declared pre- and postcondition is checked,
of course, via a proof obligation: see rule FUN in Figure 7.) This
reflects a philosophy in which the only way of reasoning aboutthe
behavior of a function is via its specification: it is not possible, in
our approach, to reason directly about the code of a function.

In order to lift algebraic data types, we lift every algebraic data
type definition into an isomorphic inductive type definition. So, for
every computational-level algebraic data type constructor d, there
must be a logical-level inductive type constructor, also writtend, of
identical arity. For every computational-level data constructor

D : ∀ᾱ. τ1 × . . . × τn → d ᾱ,

there must be a logical-level data constructor

D : ∀ᾱ. ⌈τ1⌉ × . . . × ⌈τn⌉ → d ᾱ.

Due to the manner in which computational function types are lifted,
the positivity condition (§2) requires the type constructord to not
appearunder any sideof a computational arrow withinτ1, . . . , τn.
This can be a limitation (§9).

3.3 Inferring strongest postconditions

In order to simplify the definition of the procedure that extracts
proof obligations, we have required everylet construct to carry
an explicit postcondition for its left-hand sub-expression (§3.1). In
practice, however, annotating everylet construct would be quite
unpleasant, so it is desirable to construct a reasonable postcondition
when the user does not provide one.

Ideally, the formula that we should construct in such a situa-
tion is thestrongest postconditionof the left-hand sub-expression.
Our logic is, in fact, sufficiently powerful to express strongest post-
conditions for every construct in our programming language. For
instance, the strongest postcondition for a valuev is λx.(x = ⌈v⌉).
The strongest postcondition for a function applicationv1(v2) is
post(⌈v1⌉)(⌈v2⌉). We could go on and explain how to construct
strongest postconditions forlet andcaseconstructs. However, in
these two cases, they would be complex formulae, involving exis-
tential quantification and disjunction.

Eventually, the postconditions carried bylet constructs become
part of proof obligations, where they appear as hypotheses.For this
reason, we do not want them to be too complex: we wish to produce
simple, comprehensible proof obligations.

Our answer to this issue is to construct strongest postconditions
for values and function applications, as suggested above, but not
for let andcaseconstructs: instead, we rely on the user-provided
postcondition, if there is one, or use the trivial postcondition true,
otherwise.

It is possible, via a conversion toA-normal form, to ensure that
the left-hand sub-expression of alet construct is never anotherlet
construct. So, the only case where our simple-minded approach
may call for an explicit, user-provided annotation is that of a let
construct whose left-hand sub-expression is acaseconstruct.

3.4 Notions of substitution

Neither types nor formulae influence execution, but they arekept
around in order to make a subject reduction statement and prove
the soundness of our Hoare logic. So, the operational semantics
reduces expressions that contain explicit types and formulae. To
ensure that these annotations remain consistent as expressions are
transformed, we must define a few slightly non-standard notions of
substitution.

A single type variableα can appear within logical types as
well as within computational types. Similarly, a single variable x
can appear within formulae as well as within expressions. For
this reason, we write[α 7→ τ ] for the substitution that replaces
every free occurrence ofα at the computational level withτ and
every free occurrence ofα at the logical level with⌈τ⌉. Similarly,
we write [x 7→ v] for the substitution that replaces every free
occurrence ofx at the computational level withv and every free
occurrence ofx at the logical level with⌈v⌉.

4 2007/7/17



Types ⌈α⌉ = α
⌈d τ̄⌉ = d ⌈τ̄⌉

⌈τ1

.
−→ τ2⌉ = (⌈τ1⌉ → prop) × (⌈τ1⌉ → ⌈τ2⌉ → prop)

Type schemes ⌈∀ᾱ. τ⌉ = ∀ᾱ. ⌈τ⌉

Type environments ⌈∅⌉ = ∅
⌈Γ, (x : σ)⌉ = ⌈Γ⌉, (x : ⌈σ⌉)

⌈Γ, ᾱ⌉ = ⌈Γ⌉, ᾱ
⌈Γ, F ⌉ = ⌈Γ⌉

Values ⌈x τ̄⌉ = x ⌈τ̄⌉
⌈D τ̄ (v1, . . . , vn)⌉ = D ⌈τ̄⌉ (⌈v1⌉, . . . , ⌈vn⌉)

⌈fun f(x1 : τ1/F1) : (x2 : τ2/F2) = e⌉ = (λ(x1 : ⌈τ1⌉).F1, λ(x1 : ⌈τ1⌉).λ(x2 : ⌈τ2⌉).F2)

Figure 4. Lifting computational types and values to the logical level

v1(v2) → [x 7→ v2][f 7→ v1]e if v1 is fun f(x : τ/F ) : (. . .) = e
let (x ᾱ : τ/F ) = v in e → [x 7→ Λᾱ.v]e

casev of (p 7→ e) 8 c → [p 7→ v]e if [p 7→ v] is defined
→ casev of c otherwise

let (x ᾱ : τ/F ) = e1 in e2 → let (x ᾱ : τ/F ) = e′1 in e2 if e1 → e′1

Figure 5. Operational semantics

We have annotatedlet constructs with explicit type abstractions
and occurrences of variables with explicit type applications. As
a result, contracting alet-redex requires contracting type-levelβ-
redexes as well. In order to do so, we write[x 7→ Λᾱ.v] for a
substitution that replaces every variable occurrence of the form
x τ̄ with [ᾱ 7→ τ̄ ]v. Again, this replacement is performed at both
computational and logical levels, up to a lifting operationin the
latter case.

Last, the notation[x 7→ v], which denotes a substitution of a
value for a variable, is extended to the notation[p 7→ v], which,
whenp does not matchv, is undefined, and, whenp does matchv,
denotes a simultaneous substitution of values for variables, as fol-
lows. The formal definition is:

[D τ̄ (p1, . . . , pn) 7→ D τ̄ (v1, . . . , vn)]

stands for
[p1 7→ v1] ∪ . . . ∪ [pn 7→ vn]

Because patterns are linear, this is a union of substitutions whose
domains are pairwise disjoint.

3.5 Operational semantics

A standard small-step, call-by-value operational semantics appears
in Figure 5. There are three kinds of redexes (β, let, andcase) and
one evaluation context (the left-hand side of alet construct). An
expression isstuckif it is irreducible and not a value. It is easy to
check that an expression is stuck if and only if it contains, within
an evaluation context, a sub-expression of the formv1(v2), where
v1 is not a syntactic function, or of the formcasev of ∅.

4. The type system and proof system
We now equip the computational language with an ML-style type
system and with a proof system (a Hoare logic), which can be
viewed as an algorithm for extracting proof obligations outof well-
typed programs. For the sake of succinctness, both are described
using a single set of judgements, which assert at once that a pro-
gram is well-typed and is annotated with consistent formulae.

F valid

∅ |= F

Γ |= ∀(x : ⌈σ⌉).F

Γ, (x : σ) |= F

Γ |= ∀ᾱ.F

Γ, ᾱ |= F

Γ |= F1 ⇒ F2

Γ, F1 |= F2

Figure 6. Emitting proof obligations

In practice, our tool [52] first checks that the program is well-
typed, and, at the same time, infers any omitted type annotations.
Then, a set of proof obligations, expressed in our typed higher-
order logic, is extracted. The fact that the program (including em-
bedded formulae) is well-typed guarantees that the proof obliga-
tions are in turn well-typed.

4.1 Environments

The syntax of type environmentsΓ appears in Figure 3. As is stan-
dard, type environments bind variables and type variables.Envi-
ronments also contain assumptions, that is, formulae that become
hypotheses when proof obligations are emitted. An environment of
the formΓ, F is well-formed whenF has typeprop under⌈Γ⌉.

4.2 Proof obligations

A proof obligation is a judgement of the formΓ |= F , where
F has typeprop under ⌈Γ⌉. This judgement is defined by the
rules of Figure 6. When read from bottom to top, the rules can
be understood as translating a proof obligation to a closed formula
of typeprop, which must be valid for the judgement to hold. The
validity of a formula is decided via an external theorem prover.

4.3 Judgements

The proof system is defined via three judgements, which state
properties about values, patterns, and expressions, respectively:

Values Γ ⊢ v : τ (Figure 7)
Patterns Γ ⊢ p : τ (Figure 8)
Expressions Γ ⊢ e : τ {P} (Figure 9)

5 2007/7/17



(Γ, (x : σ))(x) = σ
(Γ, (x1 : σ))(x2) = Γ(x2) if x1 # x2

(Γ, ᾱ)(x) = Γ(x) if ᾱ # Γ(x)
(Γ, F )(x) = Γ(x)

VAR
Γ(x) = ∀ᾱ. τ

Γ ⊢ x τ̄ : [ᾱ 7→ τ̄ ]τ

DATA
D : ∀ᾱ. τ1 × . . . × τn → d ᾱ
∀i Γ ⊢ vi : [ᾱ 7→ τ̄ ]τi

Γ ⊢ D τ̄ (v1, . . . , vn) : d τ̄

FUN
f # F1, F2

⌈Γ, (x1 : τ1)⌉ ⊢ F1 : prop
⌈Γ, (x1 : τ1), (x2 : τ2)⌉ ⊢ F2 : prop

Γ, (f : τ1

.
−→ τ2), f = ⌈fun f . . .⌉, (x1 : τ1), F1

⊢ e : τ2 {λ(x2 : ⌈τ2⌉).F2}

Γ ⊢ fun f(x1 : τ1/F1) : (x2 : τ2/F2) = e : τ1

.
−→ τ2

Figure 7. The computation language (proof system: values)

PAT-VAR
(x : τ ) ⊢ x : τ

PAT-DATA
D : ∀ᾱ. τ1 × . . . × τn → d ᾱ
∀i Γi ⊢ pi : [ᾱ 7→ τ̄ ]τi

Γ1, . . . , Γn ⊢ D τ̄ (p1, . . . , pn) : d τ̄

Figure 8. The computation language (proof system: patterns)

VALUE
Γ ⊢ v : τ

Γ |= P (⌈v⌉)

Γ ⊢ v : τ {P}

APP
Γ ⊢ v1 : τ1

.
−→ τ2 Γ ⊢ v2 : τ1

Γ |= pre(⌈v1⌉)(⌈v2⌉)
Γ |= post(⌈v1⌉)(⌈v2⌉) ⇒ P

Γ ⊢ v1(v2) : τ2 {P}

LET
x # P

⌈Γ, ᾱ, (x : τ1)⌉ ⊢ F : prop
Γ, ᾱ ⊢ e1 : τ1 {λ(x : ⌈τ1⌉).F}

Γ, (x : ∀ᾱ. τ1),∀ᾱ.[x 7→ x ᾱ]F ⊢ e2 : τ2 {P}

Γ ⊢ let (x ᾱ : τ1/F ) = e1 in e2 : τ2 {P}

CASE-NIL
Γ ⊢ v : τ Γ |= false

Γ ⊢ casev of ∅ : τ ′ {P}

CASE-CONS

Γ ⊢ v : τ Γ′ ⊢ p : τ p # v, P
Γ, Γ′, ⌈v⌉ = ⌈p⌉ ⊢ e : τ ′ {P}

Γ, (∀Γ′.⌈v⌉ 6= ⌈p⌉) ⊢ casev of c : τ ′ {P}

Γ ⊢ casev of (p 7→ e) 8 c : τ ′ {P}

Figure 9. The computation language (proof system: expressions)

4.4 Values

The judgementΓ ⊢ v : τ (Figure 7) states that, under the type
environmentΓ, the valuev has typeτ . No precondition or post-
condition appear in the judgement. Indeed, because values require
no computation, they never have a precondition. Furthermore, be-
cause all values can be lifted up to the logical level, they don’t need
an explicit postcondition: the strongest possible postcondition of a
valuev is simply equality with⌈v⌉.

Rules VAR and DATA are straightforward. Rule FUN is more
complex. Two premises require the preconditionF1 and postcon-
dition F2 to be well-formed formulae, under appropriate environ-
ments. The last premise, which spans two lines, checks that the
function’s body conforms to the function’s specification. In order to
do so, the type environment is extended with bindings forf andx1.
It is also extended with the hypothesis

f = ⌈fun f . . .⌉,

which by definition of lifting (Figure 4) is synonymous for

f = (λ(x1 : ⌈τ1⌉).F1, λ(x1 : ⌈τ1⌉).λ(x2 : ⌈τ2⌉).F2).

This hypothesis gives meaning to occurrences ofpre(f) and
post(f) within the body of the function, allowing recursive calls
to f to be checked. Last, the environment is also extended with the
preconditionF1, which means that, within the body of the function,
the precondition is assumed to hold. Under this extended environ-
ment, the body of the function is required to produce a value that
meets the postconditionλ(x2 : ⌈τ2⌉).F2.

It is not difficult to see thatΓ ⊢ v : τ implies⌈Γ⌉ ⊢ ⌈v⌉ : ⌈τ⌉.
This property is required for the typing rules to construct only well-
formed formulae.

4.5 Patterns

The judgementΓ ⊢ p : τ (Figure 8) states that a value of typeτ
can safely be matched against the patternp, giving rise to (exactly)
the bindings described byΓ. These bindings are monomorphic
(see PAT-VAR). Because patterns are linear, the type environments
Γ1, . . . , Γn in PAT-DATA have disjoint domains.

4.6 Expressions

The judgementΓ ⊢ e : τ {P} (Figure 9) states that, under the type
environmentΓ, the expressione has typeτ and (if it terminates)
produces a value whose logical reflection satisfies the predicateP .
In such a judgement,P has type⌈τ⌉ → prop under⌈Γ⌉.

Rule VALUE directly reflects this intended meaning: the judge-
mentΓ ⊢ v : τ {P} holds if and only ifv has typeτ underΓ and
its logical reflection⌈v⌉ provably satisfiesP under the hypotheses
found inΓ. The premiseΓ |= P (⌈v⌉) is a proof obligation.

Rule APP requires the functionv1 and its actual argumentv2

to have matching computational types. Furthermore, it emits two
proof obligations, stating that (i) the actual argument must satisfy
the function’s precondition, and (ii) the function’s postcondition
must imply the desired postconditionP . In the last premise, we
write P ′ ⇒ P , whereP ′ and P have type⌈τ2⌉ → prop, for
∀(x : ⌈τ2⌉).(P

′(x) ⇒ P (x)), wherex is fresh forP ′ andP .
Rule LET checks thate1 has typeτ1 and thate1 complies with

the postconditionF . Then, the rule performs type generalization, in
the style of Milner [44], so thate2 is checked under the assignment
(x : ∀ᾱ. τ1). The hypothesisF is changed into∀ᾱ.[x 7→ x ᾱ]F ,
so as to reflect the fact thatx now has polymorphic type.

Rule CASE-NIL emits the proof obligationΓ |= false, which
requires the conjunction of hypotheses found withinΓ to be in-
consistent. This ensures that acaseconstruct with zero branches is
never executed.

Rule CASE-CONS requires the valuev and the patternp to have
a common typeτ . The environmentΓ′ collects the variables bound

6 2007/7/17



by p, together with their types. Under the hypothesis that a certain
instance ofp matchesv, which is expressed by extendingΓ with Γ′

and with the hypothesis⌈v⌉ = ⌈p⌉, the branche must have the
desired typeτ ′ and meet the desired postconditionP . Furthermore,
under the hypothesis that no instance ofp matchesv, which is
written∀Γ′.⌈v⌉ 6= ⌈p⌉, the remaining branches must have typeτ ′

and meet the postconditionP . (Our use of⌈p⌉ plays on the fact
that patterns form a subset of values, a welcome but unessential
property.)

When checking acaseconstruct withn branches, the(k+1)-th
branch is checked under the assumption that none of the patterns
p1, . . . , pk match the valuev. In particular, fork = n, the conjunc-
tion of all hypotheses of the form(∀Γ′

i.⌈v⌉ 6= ⌈pi⌉) is required
to be inconsistent. This ensures that control cannot fall off the end
of a caseconstruct, or, in other words, that the case analyses are
exhaustive. Today’s ML and Haskell compilers implement a sound
approximation to this check, using a purely syntactic criterion. We
also implement this syntactic criterion: when it succeeds,emitting
a proof obligation is unnecessary.

4.7 Algorithmic reading

The judgementΓ ⊢ e : τ {P} defines an algorithm for generating
proof obligations. All four parameters of the judgement, namelyΓ,
e, τ , andP , are inputs of the algorithm, which attempts to build
a derivation of the judgement by starting at the root of the expres-
sion e and working its way down into the sub-expressions ofe.
As the algorithm descends, enteringfun, let, andcaseconstructs,
the environmentΓ grows, accumulating new bindings and assump-
tions. At the same time, the postconditionP is propagated down, in
a very straightforward process. Atlet constructs, this propagation
process relies on the (default or user-provided, see§3.3) annotation
in order to determine which postcondition must be propagated into
the left-hand sub-expression. The output of the algorithm consists
of the proof obligations, of the formΓ |= F , carried by the leaves
of the derivation (see VALUE, APP, and CASE-NIL ).

4.8 Soundness

The soundness of our type system and proof system is established
in a standard, syntactic manner. It states that the types andlogical
assertions carried by a program are a sound approximation ofits
dynamic semantics.

Lemma 4.1 (Environment Weakening)Γ1, F, Γ2 ⊢ e : τ {P}
andΓ1 |= F implyΓ1, Γ2 ⊢ e : τ {P}. ⋄

Lemma 4.2 (Postcondition Weakening)Γ ⊢ e : τ {P1} and
Γ |= P1 ⇒ P2 implyΓ ⊢ e : τ {P2}. ⋄

Lemma 4.3 (Type Substitution)Let φ stand for[ᾱ 7→ τ̄ ]. Then,
Γ1, ᾱ, Γ2 ⊢ e : τ {P} andᾱ # dom(Γ2) imply

Γ1, φ(Γ2) ⊢ φ(e) : φ(τ2) {φ(P )} ⋄

Lemma 4.4 (Value Substitution)Let ρ stand for [x 7→ Λᾱ.v].
Then,Γ1, (x : ∀ᾱ. τ1), Γ2 ⊢ e : τ2 {P} and Γ1, ᾱ ⊢ v : τ1

andx 6∈ dom(Γ2) imply

Γ1, ρ(Γ2) ⊢ ρ(e) : τ2 {ρ(P )} ⋄

Lemma 4.5 (Pattern Matching) Let ∅ ⊢ v : τ and Γ′ ⊢ p : τ
and p # v. Then,[p 7→ v] is defined if and only if the formula
∃Γ′.⌈v⌉ = ⌈p⌉ is valid. ⋄

Theorem 4.6 (Subject Reduction)Γ ⊢ e : τ {P} and e → e′

implyΓ ⊢ e′ : τ {P}. ⋄

Theorem 4.7 (Progress)∅ ⊢ e : τ {P} implies thate is either
reducible or a valuev such thatP (⌈v⌉) is valid. ⋄

5. A few extensions
Extra assertions The following construct allows inserting an as-
sertion at an arbitrary point in the code:

assertF in e

This construct requiresF to hold: a proof obligation is emitted.
It has no computational content: dynamically, it behaves like e.
Here, it can be viewed as syntactic sugar for alet construct. It is
particularly useful when our tool is used in conjunction with an
automated theorem prover: if the theorem prover fails to discharge
a proof obligation, the user can useassert to cut the proof into
smaller, easier steps (if the proof obligation is in fact valid) or to
find out what is wrong with the specification (if the proof obligation
is in fact invalid).

The constructabsurd, which requiresfalse to hold, marks a
piece of code as inaccessible. Here, it can be viewed as syntactic
sugar for acaseconstruct with zero branches.

Ghost variables and ghost parameters It is sometimes desirable
to explicitly introduce aghost variable, that is, a name for a wit-
ness to an existentially quantified hypothesis. For this purpose, we
suggest writing

let logic x : θ/F in e

This construct bindsx within F and e. It requires the assertion
∃(x : θ).F to hold, and introducesF as a new hypothesis into
the context. Assertions embedded withine can refer tox, and
their proofs can exploit the hypothesisF . However, computational
occurrences ofx within e are forbidden, since “let logic” has no
computational content.

Similarly, it is sometimes desirable to abstract a functionwith
respect to a ghost parameterx, like this:

fun f(logic x : θ)(x1 : τ1/F1) : (x2 : τ2/F2) = e

This construct bindsx within F1, F2, ande. Note thatθ can be an
arbitrary logical type, so this extension allows explicitly abstracting
a function with respect to a proposition or predicate, if desired (see
§7.5). Ghost variables and ghost parameters can in principlebe
viewed as syntactic sugar and translated away [46]. In a realistic
implementation, however, they should be primitive notions.

6. Interfacing with external theorem provers
6.1 Coq

Our typed, higher-order logic is easily embedded within theCal-
culus of Inductive Constructions, which underlies Coq [56]. As a
result, exporting proof obligations towards Coq is a simplematter
of pretty-printing.

Coq is an interactive theorem prover. In order to discharge a
proof obligation, the user writes a proof script. An open problem
is how to maintain these scripts as the source code of the program
evolves. The location in the code where a proof obligation arises
might change. The statement of a proof obligation might change as
well. Perhaps a solution would be to allow only explicitly-stated,
explicitly-named, lemmas to be proved interactively, and to rely
solely on an automated theorem prover for discharging anonymous
proof obligations, possibly by appeal to an explicit lemma.

6.2 Ergo

Ergo [13] is a fully automated theorem prover for a typed, polymor-
phic, first-order logic. Its design is partly inspired by Simplify [17].
However, Ergo’s logic is typed and polymorphic, whereas Sim-
plify’s is untyped. This makes Ergo superior, from our pointof
view, to Simplify. Indeed, provided our proof obligations lie in the
first-order fragment of our logic, they can be directly exported to-
wards Ergo. If, on the other hand, we wished to use Simplify, we

7 2007/7/17



would have to encode our typed, polymorphic logic into Simplify’s
untyped logic. Such encodings have been studied [39], but are com-
plex and costly. Of course, the trivial encoding that erasesall types
is unsound.

In addition to first-order logic, Ergo has native support for
linear arithmetic and for the theory of constructors (that is, function
symbolsf such thatf(x) = f(y) implies x = y). The latter is
useful for reasoning efficiently about algebraic data structures.

In the general case, our proof obligations are most naturally ex-
pressed in a higher-order logic, as shown in this paper. However,
higher-order logic can be encoded into first-order logic. A stan-
dard encoding introduces “apply” predicates that help simulateβ-
conversion [34].

Perhaps surprisingly, in our case, this encoding can be made
to look fairly natural. The symbolspre andpost, which so far have
stood for the pair projections, can be turned into predicates and sim-
ulate not only projection, but also application. Furthermore, we can
makepre a binary predicate andpost a ternary predicate, avoiding
curried function applications. That is, instead of the higher-order
formula:

f = (λ(x1 : ⌈τ1⌉).F1, λ(x1 : ⌈τ1⌉).λ(x2 : ⌈τ2⌉).F2),

we can write:

∀(x1 : ⌈τ1⌉).(pre(f, x1) ⇔ F1)

∧ ∀(x1 : ⌈τ1⌉).∀(x2 : ⌈τ2⌉).(post(f, x1, x2) ⇔ F2)

The pair and the threeλ-abstractions have beenη-expanded, and
the projection and application symbols have been fused intoappli-
cations ofpre andpost. ProvidedF1 andF2 are first-order formu-
lae, this is a first-order formula.

Under this encoding, the definition of the lifting operationon
computational types is modified so that the computational function
type constructor is no longer interpreted:

⌈τ1

.
−→ τ2⌉ = ⌈τ1⌉

.
−→ ⌈τ2⌉

That is, we make
.

−→ an uninterpreted binary type constructor at
the logical level, so that the lifting of types becomes the identity.
Thus, in the above formula,f has logical typeτ1

.
−→ τ2. The type

schemes assigned topre andpost are as follows:

pre : ∀α1α2. (α1

.
−→ α2) × α1 → prop

post : ∀α1α2. (α1

.
−→ α2) × α1 × α2 → prop

These declarations are admissible by Ergo. We believe that it
should be possible to go a long way with first-order logic alone,
even when the program exploits higher-order functions. However,
at present, more practical experience is needed in order to support
this conjecture.

7. Application: finite sets as binary search trees
As an initial benchmark for our tool [52], we have transcribed
Objective Caml’s library implementation of finite sets, represented
as balanced binary search trees, into our programming language.

7.1 Parameters

In the following, we fix a type “elt” of elements. We assume that
an algebraic data type “bool”, whose data constructors are “true”
and “false”, is available. We assume that an equality check over
elements, written “=”, is given. It is a function of computational
type elt× elt

.
−→ bool, whose specification could be written as

follows:

post(=, x1, x2, b) ⇔ (b = true⇔ x1 = x2)

Similarly, we assume that an ordering relation, written “<”, of
logical type elt→ elt → prop, is given, together with an ordering

type tree =
| Empty : tree
| Node : (elt× tree× tree× int) → tree

logic fun elements : tree→ set elt =
| Empty→ ∅
| Node (x, l, r, ) → {x} ∪ elements (l)∪ elements (r)

inductive predicatebst : tree→ prop =
| bst (Empty)
| ∀ x, l, r. h.

(∀y. y ∈ elements (l)⇒ y < x) ∧ bst (l)∧
(∀y. y ∈ elements (r)⇒ x < y) ∧ bst (r)∧
⇒ bst (Node (x, l, r, h))

Figure 10. Definitions for binary search trees

check, also written “<”, of computational type elt× elt
.

−→ bool,
such that the latter decides the former.

In a full-scale programming language, our balanced binary
search tree implementation would be a functor, parameterized over
the type “elt”, the function “=”, the relation “<”, the ordering
axioms for “<”, and the function “<”.

We assume that an abstract type of sets of elements, written
“set elt”, is available at the logical level, together with the standard
operations (empty set, singleton set, union, membership, etc.) and a
number of axioms or theorems that describe the properties ofthese
operations. In a full-scale programming language, this would be
provided by a (logical-level) standard library.

7.2 Definitions

Figure 10 contains the definition of the algebraic data type “tree”,
of the logical-level inductive function “elements”, and ofthe induc-
tive predicate “bst”. (The concrete syntax is provisional.) A binary
tree is either empty or a binary node, carrying a root element, left
and right sub-trees, and a cached measure of the tree’s height. Our
binary search trees are intended to implement a finite set abstrac-
tion. The logical function “elements” maps a binary tree to the finite
set that it represents. It is defined by induction over the algebraic
data type “tree”. The property of being a binary search tree is de-
fined by the inductive predicate “bst”.

In the definition of “bst”, the types of the universally quantified
variables “x”, “l”, “r”, “h”, “y” are inferred. The types of the func-
tion “elements” and of the predicate “bst” could also be inferred, if
desired. In practice, type annotations can always be omitted, except
where polymorphic recursion is required.

The definition of “bst” constrains neither the shape of the tree
nor the cached height information. This is done by another in-
ductive predicate, named “avl” (not shown). In contrast with the
“dependent types” [58, 3, 55] and “generalized algebraic data
types” [59] schools, we favor a programming style in which invari-
ants are not necessarily hardwired into data structures at definition
time.

7.3 Membership in a binary search tree

Figure 11 shows a function, “member”, that checks whether an
element “x” is a member of a tree “t”. The precondition “bst(t)”
requires “t” to be a binary search tree, but does not require it to be
balanced, since this is not necessary for correctness. If one wished
to (informally) ensure a logarithmic complexity bound, onecould
strengthen the precondition by adding the requirement “avl(t)”.
This illustrates how a single data structure can be equippedwith
multiple invariants, not all of which are necessarily enforced at all
times. The postcondition states that the Boolean result tells whether

8 2007/7/17



let rec member (x, t)
wherebst (t)
returns u whereb = true⇔ x ∈ elements (u)
= match t with

| Empty→ false
| Node (y, l, r, ) →

if x = y then
true

else ifx < y then
member (x, l)

else
member (x, r)

end

Figure 11. Membership in a binary search tree

type iterator = list tree

logic fun remaining : iterator→ set elt = ...

inductive predicateok : iterator→ prop =
| ok ([])
| ∀ t, ts. elements (t)∩ remaining (ts)= ∅ ∧

bst (t)∧ ok (ts)⇒ ok (t :: ts)

let iterator (t)returns i
whereok (i) ∧ elements (t)≡ remaining (i)
= [t]

let next (i)
whereok (i)
returns oix : option (iterator× elt)
whereoix = None⇒ remaining (i) =∅

∀i’, x. oix = Some (i’, x)⇒
remaining (i)≡ {x} ∪ remaining (i’)
x /∈ remaining (i’)∧ ok (i’)

= match i with
| [] → None
| Empty :: ts→ next (ts)
| Node (x, l, r, ) :: ts→ Some (l :: r :: ts, x)
end

Figure 12. Iterators over binary search trees

“x” is a member of the set implemented by the tree “t”. No type
annotations are needed in this definition. All types are inferred.

7.4 First-order iteration

We now define and specify first-order, persistent iterators over
binary search trees. Their expressive power surpasses thatof “fold”
(§7.5), yet their specification is simpler.

The implementation appears in Figure 12. An iterator is repre-
sented as a list of trees, which can be thought of as a stack in a
depth-first traversal of some larger tree.

To an iterator “i” corresponds a set of elements, which we
write “remaining(i)”. Its inductive definition (omitted) is simply
the union of the sets of elements of the trees in the list.

An iterator is well-formed only if the trees that it contains
have disjoint sets of elements. This is expressed by the inductive
predicate “ok”.

The function “iterator” creates an iterator “i” out of a tree“t”,
and satisfies the postcondition “ok(i)∧elements(t) ≡ remaining(i)”,
where≡ stands for extensional equality of sets (which may, or may

let cardinal (t)returns n wheren = ‖ elements (t)‖ =
let rec count (i, n)
whereok(i) ∧ n + ‖ remaining (i)‖ = ‖ elements (t)‖
returns n’ wheren’ = ‖ elements (t)‖

= match next (i)with
| None→ n
| Some (i’, ) → count (i’, n + 1)
end

in count (iterator (t), 0)

Figure 13. A sample client of the iterator abstraction

not, coincide with definitional equality). This initial iterator is sim-
ply the singleton list [t].

The function “next”, when applied to an iterator “i”, returns
either nothing or a pair of a new iterator “i’” and an element “x”.
The postcondition describes how these values are related.

Figure 13 shows how iterators are used. Here, the client is a
function that counts the number of elements in a tree. It doesnot
depend on the internals of the tree data structure: it only depends on
the specification of iterators, which is expressed in terms of abstract
(logical-level) sets. So, this client code could be placed in another
module, without access to the definition of trees.

The “cardinal” function performs a loop, expressed as an in-
ternal recursive function, with an integer accumulator n. The pre-
condition of this internal function represents the loop invariant: the
number of elements counted so far, plus the number of elements
remaining to be seen, equals the total number of elements of the
set. The postcondition is simply the precondition, specialized to
the case where no elements remain.

The precondition of “count” must also state that “i” is an “ok”
iterator, even though it does not have to know about the definition
of “ok”. This is somewhat undesirable. In the future, we willwant
to allow defining a dependent sum type of the form “i : iterator
whereok(i)”, and exporting it as an abstract type.

The definition of “cardinal” is syntactically somewhat heavy, as
it is expressed in our core language. In a full-scale programming
language, a more palatable syntax for loops could be introduced,
and desugared into recursive functions and iterators. A single for-
mula, the loop invariant, would have to be written down, instead of
two formulae in this low-level version of the code.

7.5 Higher-order iteration

We now present a specification of the classic “fold” higher-order
function over sets implemented as binary search trees. The spec-
ification is rather more complex than that of first-order iterators,
for at least two reasons. First, the specification must mention the
client’s state (the accumulator) and invariant. Second, because the
code is not tail-recursive, some information is implicitlyencoded
within the stack, and a ghost parameter is used to make it explicit
in the specification.

The definition “isinvariant” summarizes the required invariant.
Its parameters are “inv”, the client’s invariant, which itself is pa-
rameterized over and accumulator and a set of remaining elements;
“s0”, a set of remaining elements; “s1”, the initial set of all ele-
ments; the client function “f”; and an accumulator “a” ccu. The
definition states, in short, that: the set of remaining elements is a
subset of the initial set of all elements; the current accumulator and
the current set of remaining elements satisfy the client’s invariant;
and, at any time, if an element “x” is picked among the remain-
ing elements, the invariant guarantees that it is legal to apply “f”
to the current accumulator and to “x”, and guarantees that the new
accumulator thus obtained will still satisfy the invariant.

The function “fold” is parameterized over two ghost variables,
namely the client invariant “inv” and a set “s0” of remaining el-

9 2007/7/17



predicate is invariant (inv, s0, s1, f, accu) =
s0 ⊆ s1 ∧ inv (accu, s0) ∧
∀ s x s’ accu accu’.

s⊆ s0 ∧ s = s’∪ {x} ∧ x /∈ s’ ∧ inv (accu, s)⇒
pre (f) (accu, x)∧
post (f) (accu, x) (accu’)⇒ inv (accu’, s’)

let rec fold (logic s0, logic inv, accu, t, f)
where is invariant (inv, s0, elements (t), f, accu)∧ bst (t)
returns accu’where inv (accu’, s0\ elements (t)) =

match t with
| Empty→ accu
| Node (x, l, r, ) →

let accu = fold (s0, inv, accu, l, f)in
let accu = f (accu, x)in

fold (s0\ (elements (l)∪ {x}), inv, accu, r, f)
end

predicatecardinalinv (t) =
λ (accu, s). accu +‖ s‖ = ‖ elements (t)‖

let cardinal (t)returns x wherex = ‖ elements (t)‖ =
fold (elements (t), cardinalinv (t), 0, t,λ (accu, x). accu + 1)

Figure 14. Folding over binary search trees

ements. In the case of first-order iterators, the former was unnec-
essary because the client retains control over the desired invariant,
and the latter was unnecessary because the set of remaining ele-
ments was directly expressed as “remaining(i)”. Here, the set of
remaining elements is implicit in the stack, so a ghost variable must
be used in order to refer to it.

This definition is certainly somewhat overwhelming. It shows,
at the same time, that it is possible to specify and exploit higher-
order functions in our framework, and that there is a cost in com-
plexity to be paid for doing so. More experience is needed before
we can tell how easily higher-order functions can be defined and
used in practice.

8. Related work
The roots of our work lie in Hoare logic [24, 30]. Extensions of
Hoare logic with support for recursive, higher-order procedures
were heavily studied in the late 1970’s and early 1980’s [12,5,
15, 26, 27]. In particular, the issue of completeness received a lot
of attention after Clarke [12] proved that there can be no sound and
complete Hoare logic for a programming language equipped with
recursive, higher-order procedures and global variables.Clarke’s
result, however, is based upon the assumption that formulaeand
proof obligations are expressed in a first-order logic. Dammand
Josko [15] point out that, by moving to higher-order logic, it is
possible to work around Clarke’s negative result. In this paper, we
follow Damm and Josko and allow specifications to be expressed
in higher-order logic. The intuitive justification for thisapproach
is that, if functions can abstract over functions, then specifications
must abstract over specifications.

Our work has been strongly inspired by several existing, practi-
cal tools for checking imperative programs [19, 22, 20, 21, 41, 6].
This paper is an attempt to exploit the strengths of these works
while steering away from imperative programming and placing re-
newed emphasis on polymorphism and modularity.

Our method for generating proof obligations is particularly
straightforward: it appears in its entirety in Figures 6–9.In compar-
ison with the method used in ESC/Java [23], we avoid a translation
to “passive form” because we have no assignments to begin with.

We avoid the exponential explosion that could follow from the in-
terplay between sequences and alternatives by requiring sequences
(that is,let constructs) to carry user-provided postconditions (§3.3).

Our system is not sound with respect to a call-by-name dynamic
semantics. There are at least two reasons for this fact. First, some
divergent expressions admitfalseas a valid postcondition. If such
an expressione1 is made the first component of a sequence, as in
“ let x/false = e1 in e2”, then second componente2 is checked
under the assumptionfalse. As a result, all of the the proof obli-
gations found withine2 are vacuously satisfied. This can be sound
only if e2 is never executed, which is the case under call-by-value
evaluation, but not under call-by-name evaluation. The second rea-
son is that, in a call-by-name semantics, every type is inhabited by a
bottom value, and some types are inhabited by infinite values. This
is not reflected in the way we lift computational values and types
up to the logical level.

Scott’s logic of computable functions [53] interpretsλ-terms in
a denotational model, where equality implies, or coincideswith,
observational equivalence. It comes with a set of sound deduction
rules, and allows explicit reasoning about divergence and equality
of computations. It admits call-by-value and call-by-namevariants.
It was implemented as early as 1972 by Milner [43]. More recent
implementations [2, 8, 45] embed Scott’s LCF within some form
of higher-order logic. In a somewhat similar vein, Longley and
Pollack [40] embed the functional core of Standard ML, via a fully
abstract denotational semantics, into higher-order logic.

Our approach is less elaborate: by focusing on partial correct-
ness, by adopting a call-by-value semantics, and by liftingonly val-
ues, as opposed to expressions, up to the logical level, we are able
to ignore non-termination issues entirely, and to work withvalue
spaces that do not have bottom elements or definedness orderings.
By contrast, tools or approaches that focus on lazy functional pro-
grams, such as Programatica [35, 29], the Cover translator [1], or
Honda and Yoshida’s logic of higher-order functions [31], require
reasoning about non-termination, resulting in proof obligations that
can become cluttered with definedness side conditions. The sim-
plicity of our approach comes at a cost: our system can neither es-
tablish termination of an expression nor reason about observational
equality of expressions.

ESC/Haskell [60] allows annotating Haskell programs with pre-
conditions and postconditions that are also expressed in Haskell. A
special-purpose theorem prover, based on symbolic evaluation of
Haskell terms, is developed.

The theorem prover Coq [56] can be used as a programming lan-
guage, in which programs are both developed and proved correct.
The Compcert certified compiler [37] offers an example of a large
program developed in this style. However, there is some agreement
that Coq is not (yet) a convenient programming language: forin-
stance, it only allows writing pure, terminating functions.

The programming language Russell [55] extends Coq with fa-
cilities for defining programs annotated with assertions, in the style
of Hoare logic. There are many similarities between Russelland
our work. One important technical difference is that we separate
the typechecking process, which is performed first and remains tra-
ditional, and the process of extracting proof obligations,which runs
as a second phase, whereas, in Russell, as in Coq, typechecking and
proving are one and the same activity. In particular, Russell encour-
ages the use of indexed types, likelist n, so that typechecking can
give rise to proof obligations: for instance, supplying an actual ar-
gument of typelist m to a function that expects a formal parameter
of type list n generates the proof obligationm = n. Another dif-
ference is that Russell terms are elaborated into Coq terms,whereas
we adopt a less foundational approach and are happy to trust an ex-
ternal theorem prover.

10 2007/7/17



Hoare Type Theory [47, 46] is somewhat similar to our system,
insofar as it offers decidable basic typechecking and decidable
generation of proof obligations. It also shares our use of higher-
order logic and our emphasis on polymorphism and abstraction. It
is much more ambitious than our proposal, in that it attemptsto
deal not only with algebraic data types and higher-order functions,
but also with heap-allocated, mutable state. As a result, its design
and metatheory are considerably more involved.

Some authors [7, 28, 60, 46] allow code to appear in specifi-
cations. This is motivated partly by a desire to make formulae ex-
ecutable, so as to allow assertions to be checked at runtime,and
partly by fear that, otherwise, a single functionality might have to
be implemented twice: once at the computational level, onceat the
logical level. Our technical and philosophical choice is different:
we consider all code as potentially impure, and do not allow code
to appear within specifications. We do not check assertions at run-
time: if the programmer wishes to insert a runtime check, shemust
do so explicitly. Furthermore, we believe that, in practice, oppor-
tunities for code sharing between computational and logical levels
are rare: the oft-cited case of lists is one of only a few situations
where implementation and specification coincide.

Indexed types [61, 58] and refinement types [16] rely on so-
called indices. Indices are elements of some mathematical domain,
such as an arbitrary finite set, or the set of all natural numbers.
Types are enriched with constraints over indices, allowinginvari-
ants, preconditions, and postconditions to be expressed. The syntax
of constraints is carefully restricted so as to ensure that constraint
entailment is decidable. This allows proof obligations to be auto-
matically checked. Generalized algebraic data types [59] are also
an instance of this idea, where indices are types, that is, first-order
terms. The appeal of this approach resides in the high degreeof au-
tomation that it allows. On the other hand, this comes at the price
of a restriction to a decidable logic. In fact, our decision of using a
highly expressive, hence undecidable, logic was motivatedby our
earlier study of generalized algebraic data types [50, 49].

Going beyond indexed types, several programming languages
offer full dependent types [3, 10, 54, 57]. By exploiting theCurry-
Howard isomorphism, they allow code and proofs to be expressed
and combined within a single language. This allows programs
to appear more self-contained, but means that a fragment of the
programming language must be a consistent logic, and requires
mechanisms to assist the user in building proofs. Our design, which
relies on an off-the-shelf theorem prover, is more modular.

9. Conclusion
We have presented a simple methodology for extracting proofobli-
gations out of call-by-value functional programs. Our proposed fu-
ture work includes:

• publishing a useable prototype implementation, equipped with
a compilation path down to Objective Caml;

• relaxing our positivity condition (§3.2), which restricts the use
of functions within data structures, preventing, for instance, the
standard definition of infinite streams;

• internalizing type equality, that is, introducing equations be-
tween types into the syntax of formulae, together with suitable
conversion rules for exploiting such equations; indeed, we, and
other authors [46], have noticed that such an extension would
subsume generalized algebraic data types [59];

• studying the issues raised by modularity and mutable state.

Acknowledgement The authors wish to thank the anonymous re-
viewers of a previous version of this paper for contradicting a false
claim and offering useful comments and suggestions.

References
[1] Andreas Abel, Marcin Benke, Ana Bove, John Hughes, and Ulf Norell.

Verifying Haskell programs using constructive type theory. In Haskell
workshop, pages 62–73, September 2005.

[2] Sten Agerholm. A HOL basis for reasoning about functional pro-
grams. Technical Report RS-94-44, BRICS, December 1994.

[3] Thorsten Altenkirch, Conor McBride, and James McKinna.Why
dependent types matter. Unpublished, April 2005.

[4] Peter B. Andrews.An introduction to mathematical logic and type
theory: to truth through proof. Academic Press, 1986.

[5] Krzysztof R. Apt. Ten years of Hoare’s logic: A survey—part I. ACM
Transactions on Programming Languages and Systems, 3(4):431–483,
1981.

[6] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec#
programming system: An overview. InInternational Workshop on
Construction and Analysis of Safe, Secure and Interoperable Smart
devices (CASSIS), volume 3362 ofLecture Notes in Computer Science.
Springer Verlag, 2004.

[7] Mike Barnett, David A. Naumann, Wolfram Schulte, and Qi Sun.
99.44% pure: Useful abstractions in specifications. InFormal Tech-
niques for Java-like Programs, 2004.

[8] Frank Bartels, Friedrich von Henke, Holger Pfeifer, andHarald Rueß.
Mechanizing domain theory. Ulmer Informatik-Berichte 96-10, Uni-
versiẗat Ulm, Fakulẗat für Informatik, 1996.

[9] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe Kiniry,
Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview of
JML tools and applications.International Journal on Software Tools
for Technology Transfer, 7(3):212–232, June 2005.

[10] Chiyan Chen and Hongwei Xi. Combining programming withtheo-
rem proving. InACM International Conference on Functional Pro-
gramming (ICFP), September 2005.

[11] David G. Clarke, John M. Potter, and James Noble. Ownership
types for flexible alias protection. InACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), pages 48–64, 1998.

[12] Edmund Clarke. Programming language constructs for which it is
impossible to obtain good Hoare axiom systems.Journal of the ACM,
26(1):129–147, January 1979.

[13] Sylvain Conchon and Evelyne Contejean. The Ergo automatic theo-
rem prover, 2006.http://ergo.lri.fr/.

[14] Patrick Cousot. Methods and logics for proving programs. InFormal
Models and Semantics, volume B ofHandbook of Theoretical Com-
puter Science, chapter 15, pages 841–993. Elsevier Science, 1990.

[15] Werner Damm and Bernhard Josko. A sound and relatively∗ complete
axiomatization of Clarke’s language L4. InLogic of Programs, volume
164 of Lecture Notes in Computer Science, pages 161–175. Springer
Verlag, 1983.

[16] Rowan Davies. Practical refinement-type checking. Technical Re-
port CMU-CS-05-110, School of Computer Science, Carnegie Mellon
University, May 2005.

[17] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a theorem
prover for program checking.Journal of the ACM, 52(3):365–473,
2005.

[18] David L. Detlefs, K. Rustan M. Leino, and Greg Nelson. Wrestling
with rep exposure. Research Report 156, SRC, July 1998.

[19] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B.
Saxe. Extended static checking. Research Report 159, Compaq SRC,
December 1998.

[20] Jean-Christophe Filliâtre. Why: a multi-language multi-prover verifi-
cation tool. Research Report 1366, LRI, Université Paris Sud, March
2003.

[21] Jean-Christophe Filliâtre and Claude Marché. Multi-prover verifica-
tion of C programs. InInternational Conference on Formal Engineer-

11 2007/7/17



ing Methods (ICFEM), volume 3308 ofLecture Notes in Computer
Science, pages 15–29. Springer Verlag, November 2004.

[22] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge,Greg Nel-
son, James B. Saxe, and Raymie Stata. Extended static checking for
Java. InACM Conference on Programming Language Design and Im-
plementation (PLDI), pages 234–245, 2002.

[23] Cormac Flanagan and James B. Saxe. Avoiding exponential explosion:
generating compact verification conditions. InACM Symposium on
Principles of Programming Languages (POPL), pages 193–205, 2001.

[24] R. W. Floyd. Assigning meanings to programs. InMathematical As-
pects of Computer Science, volume 19 ofProceedings of Symposia in
Applied Mathematics, pages 19–32. American Mathematical Society,
1967.

[25] Manuel F̈ahndrich and Robert DeLine. Adoption and focus: practical
linear types for imperative programming. InACM Conference on
Programming Language Design and Implementation (PLDI), pages
13–24, June 2002.

[26] Steven German, Edmund Clarke, and Joseph Halpern. Reasoning
about procedures as parameters. InLogic of Programs, volume 164 of
Lecture Notes in Computer Science, pages 206–220. Springer Verlag,
1983.

[27] Andreas Goerdt. A Hoare calculus for functions defined by recursion
on higher types. InLogic of Programs, volume 193 ofLecture Notes
in Computer Science, pages 106–117. Springer Verlag, 1985.

[28] Jessica Gronski, Kenneth Knowles, Aaron Tomb, StephenN. Freund,
and Cormac Flanagan. Sage: Hybrid checking for flexible specifica-
tions. InScheme and Functional Programming, September 2006.

[29] Thomas Hallgren, James Hook, Mark P. Jones, and RichardKieburtz.
An overview of the Programatica toolset. High Confidence Software
and Systems Conference (HCSS), 2004.

[30] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 1969.

[31] Kohei Honda and Nobuko Yoshida. A compositional logic for poly-
morphic higher-order functions. InInternational ACM Conference on
Principles and Practice of Declarative Programming (PPDP), pages
191–202, August 2004.

[32] John Hughes. Why functional programming matters.Computer
Journal, 32(2):98–107, 1989.

[33] Haim Kaplan and Robert E. Tarjan. Purely functional, real-time
deques with catenation.Journal of the ACM, 46(5):577–603, 1999.

[34] Manfred Kerber. How to prove higher order theorems in first order
logic. In International Joint Conferences on Artificial Intelligence,
pages 137–142, 1991.

[35] Richard B. Kieburtz.P -logic: Property verification for Haskell pro-
grams. Draft, August 2002.

[36] K. Rustan M. Leino and Greg Nelson. Data abstraction andinfor-
mation hiding. ACM Transactions on Programming Languages and
Systems, 24(5):491–553, 2002.

[37] Xavier Leroy. Formal certification of a compiler back-end or: pro-
gramming a compiler with a proof assistant. InACM Symposium on
Principles of Programming Languages (POPL), pages 42–54, January
2006.

[38] Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and
Jérôme Vouillon.The Objective Caml system, October 2005.

[39] Stéphane Lescuyer. Codage de la logique du premier ordre polymor-
phe multi-sort́ee dans la logique sans sortes. Master’s thesis, Master
Parisien de Recherche en Informatique, 2006.

[40] John Longley and Randy Pollack. Reasoning about CBV functional
programs in Isabelle/HOL. InInternational Conference on Theorem
Proving in Higher Order Logics (TPHOLs), volume 3223 ofLecture
Notes in Computer Science, pages 201–216. Springer Verlag, Septem-
ber 2004.

[41] Claude Marché, Christine Paulin-Mohring, and XavierUrbain. The
Krakatoa tool for certification of Java/JavaCard programs annotated in
JML. Journal of Logic and Algebraic Programming, 58(1–2):89–106,
2004.

[42] Farhad Mehta and Tobias Nipkow. Proving pointer programs in
higher-order logic.Information and Computation, 199(1–2):200–227,
2005.

[43] Robin Milner. Implementation and applications of Scott’s logic for
computable functions. InProceedings of the ACM conference on
proving assertions about programs, pages 1–6, January 1972.

[44] Robin Milner. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17(3):348–375, December
1978.

[45] Olaf Müller, Tobias Nipkow, David von Oheimb, and Oskar Slotosch.
HOLCF = HOL + LCF. Journal of Functional Programming, 9:191–
223, 1999.

[46] Aleksandar Nanevski, Amal Ahmed, Greg Morrisett, and Lars
Birkedal. Abstract predicates and mutable ADTs in Hoare type theory.
In European Symposium on Programming (ESOP), Lecture Notes in
Computer Science. Springer Verlag, March 2007.

[47] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymor-
phism and separation in Hoare type theory. InACM International Con-
ference on Functional Programming (ICFP), pages 62–73, September
2006.

[48] Christine Paulin-Mohring. Inductive definitions in the system Coq:
rules and properties. Research Report RR1992-49, ENS Lyon,1992.

[49] François Pottier and Yann Régis-Gianas. Stratified type inference for
generalized algebraic data types. InACM Symposium on Principles of
Programming Languages (POPL), January 2006.

[50] François Pottier and Yann Régis-Gianas. Towards efficient, typed LR
parsers. InACM Workshop on ML, volume 148 ofElectronic Notes in
Theoretical Computer Science, pages 155–180, March 2006.

[51] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. InIEEE Symposium on Logic in Computer Science (LICS),
pages 55–74, 2002.

[52] Yann Régis-Gianas. Extended static checking of call-by-value func-
tional programs: Prototype tool. http://gallium.inria.fr/
∼regisgia, July 2007.

[53] Dana S. Scott. A type-theoretical alternative to ISWIM, CUCH,
OWHY. Theoretical Computer Science, 121(1–2):411–440, 1993.

[54] Tim Sheard. Putting Curry-Howard to work. InHaskell workshop,
2005.

[55] Matthieu Sozeau. Subset coercions in Coq. InTYPES, 2006.

[56] The Coq development team.The Coq Proof Assistant, 2006.

[57] Edwin Westbrook, Aaron Stump, and Ian Wehrman. A language-based
approach to functionally correct imperative programming.In ACM
International Conference on Functional Programming (ICFP), pages
268–279, 2005.

[58] Hongwei Xi.Dependent Types in Practical Programming. PhD thesis,
Carnegie Mellon University, December 1998.

[59] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive
datatype constructors. InACM Symposium on Principles of Program-
ming Languages (POPL), pages 224–235, January 2003.

[60] Dana N. Xu. Extended static checking for Haskell. InHaskell
workshop, pages 48–59. ACM Press, 2006.

[61] Christoph Zenger. Indexed types.Theoretical Computer Science, 187:
147–165, 1997.

12 2007/7/17


