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Abstract
We offer a solution to the type inference problem for an extension
of Hindley and Milner’s type system with generalized algebraic
data types. Our approach is in twostrata. The bottom stratum is
a core language that marries typeinferencein the style of Hindley
and Milner with typecheckingfor generalized algebraic data types.
This results in an extremely simple specification, wherecase con-
structs must carry an explicit type annotation and type conversions
must be made explicit. The top stratum consists of (two variants of)
an independentshape inferencealgorithm. This algorithm accepts
a source term that contains some explicit type information,propa-
gates this information in a local, predictable way, and produces a
new source term that carries more explicit type information. It can
be viewed as a preprocessor that helps produce some of the type
annotations required by the bottom stratum. It is provensoundin
the sense that it never inserts annotations that could contradict the
type derivation that the programmer has in mind.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures; Polymorphism; F.3.3 [Logics and Meanings of Programs]:
Studies of Program Constructs—Type structure

1. Introduction
1.1 Generalized algebraic data types

Generalized algebraic data typesare a simple generalization of
the algebraic data types of ML and Haskell. They are strongly
reminiscent of theinductive typesthat have long existed in the
Calculus of Inductive Constructions [10, 27]. In the programming
languages area, Crary, Weirich and Morrisett [3] have exploited one
particular generalized algebraic data type, known asR, to encode
a correspondence between compile-time types and run-time type
representations. More recently, generalized algebraic data types
have been put to a large variety of uses, under diverse names,
by many authors, among whom Cheney and Hinze [1, 2], Xiet
al. [28], Hinze [5], Sheard [21], Sheard and Pasalic [22], Pottier
and Gauthier [14], and Pottier and Régis-Gianas [16].

A typical use of generalized algebraic data types is writinga
safe evaluator for a simply-typed object language that doesnot
require values to carry run-time tags. The algebraic data typeterm
of abstract syntax trees is given a type parameterα so that values of
type term α are abstract syntax trees for object-level expressions
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of typeα. For instance, Peyton Jones, Washburn, and Weirich [12]
defineterm by associating the following data constructors with it:

Lit :: int → term int
Inc :: term int → term int
IsZ :: term int → term bool
If :: ∀α.term bool → term α → term α → term α

Pair :: ∀αβ.term α → term β → term (α × β)
Fst :: ∀αβ.term (α × β) → term α
Snd :: ∀αβ.term (α × β) → term β

This definition allows writing an evaluator that does not perform
any tagging or untagging of object-level values:

µ(eval : ∀α.term α → α).λt.
case t of

| Lit i → i
| Inc t → eval t + 1
| IsZ t → eval t = 0
| If b t e → if eval b then eval t else eval e
| Pair a b → (eval a, eval b)
| Fst t → fst (eval t)
| Snd t → snd (eval t)

This program is well-typed in an extension of Milner and Mycroft’s
type system [7] with generalized algebraic data types, suchas
the type system MLGI defined in§3. A key mechanism is the
introduction, atcase constructs, of type equations into the typing
context. For instance, in the first branch ofeval , the variablet,
which has typeterm α, is known to match the patternLit i, which,
according to the declaration ofLit , has typeterm int . As a result,
the equationα = int must hold within that branch. This equation
is added to the typing context and exploited by the typechecker to
prove that the outcome of this branch, that is, the integer variablei,
has typeα, as required byeval ’s signature. Nontrivial equations
are also exploited in theInc, IsZ , andPair cases.

1.2 Type inference

The papers cited above explain at length why generalized algebraic
data types are useful. Here, we take this fact for granted andfocus
on thetype inferenceproblem. It is well-known that, provided re-
cursive definitions carry an explicit type annotation, typeinference
for Milner and Mycroft’s type system reduces to first-order unifica-
tion under a mixed prefix, that is, to satisfiability of formulas made
up of equations between finite trees, conjunction, and existential
and universal quantification. Now, what happens when generalized
algebraic data types are thrown into the mix?

In short, “things become more difficult.” Indeed, when an equa-
tion such asα = int is available, a type inference system is faced
with choices. For instance, the integer variablei can be assigned
type int or typeα. Outside of thiscase branch,α andint cannot
be considered equal, so this choice becomes observable. Howdo
we resolve it without resorting to combinatorial search? Further-
more, how do we know that the equationα = int is available?
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That is, how do we determine which equations are available inthe
first place? Inferring which equations are introduced at acase con-
struct requires inferring the type of the scrutinee. Thus, inference
of types and inference of equation systems are interdependent.

1.3 Related work

Simonet and Pottier [23] show that type inference forHMG(X),
an extension ofHM(X) [8] with generalized algebraic data types,
can be reduced to satisfiability of formulas in the first-order theory
of equality of finite trees, that is, of formulas made up of equa-
tions between finite trees, conjunction, existential and universal
quantification, andimplication. Unfortunately, this problem is in-
tractable [26]. Simonet and Pottier suggest relying onexplicit type
annotationsin order to produce formulas in a less expressive, more
tractable theory, but leave that as future work.

Stuckey and Sulzmann [25, 24] also reduce type inference to
solving constraints that involve implications. They then develop
incomplete constraint solvers. Unfortunately, this approach seems
expensive, because solving can involve combinatorial search, and
makes it hard to understand why a program is accepted or rejected.

Peyton Jones, Washburn, and Weirich [12] describe a proposal,
implemented in version 6.4 of the Glasgow Haskell compiler,
which appears to work well in practice. They also suggest ex-
ploiting programmer-supplied type annotations. They argue that,
in the definition ofeval , it is “clear” that t has typeterm α,
which implies that the equationα = int becomes available in the
Lit branch. It is similarly “clear” that the outcome of this branch
should have typeα. Instead of reasoning with implications, Peyton
Joneset al.apply the substitution[α 7→ int ] to the expected typeα,
so that the expressioni is checked against the expected typeint ,
with success.

Although Peyton Joneset al.’s system aims at simplicity, its
definition is quite involved. To ensure that “type refinement [...] is
insensitive to the order in which the inference algorithm traverses
the tree,” they distinguishwobbly types, which are inferred via first-
order unification, andrigid types (our terminology), which are also
inferred, but in a simpler and hopefully morepredictableway: rigid
types are found in explicit type annotations and propagatedup and
down the tree according to a predetermined set of rules.

Wobbly types are identified by a dedicated type constructor,
written · . This type constructor has no computational meaning. It
sometimes has to be erased or pushed out of the way: for instance,
τ1 → τ2 is converted toτ1 → τ2 at application nodes. Its
behavior is sometimes surprising: for instance, the application of a
type substitution to a wobbly typeτ is defined to beτ itself. These
and other aspects make it difficult to understand the deep meaning
of “wobbliness” and to predict when a type has to be wobbly.

1.4 Our approach

In short, we believe that the ideas behind “wobbly types” aregood,
but that they could and should be better presented and explained.
In particular, one should clearly separate two subsystems:

• one that performstraditional type inferencein the style of
Hindley and Milner, and enjoys aprincipal typesproperty, so
that it produces types that are indeed “insensitive to the order
in which the inference algorithm traverses the tree,” and

• one that performslocal type inference, that is,ad hocpropaga-
tion of explicit type annotations, either in Peyton Joneset al.’s
bidirectional style, or in other ways.

This separation makes the presentation of the system more modular
and more compelling. Furthermore, it allows identifying choices
and issues in the design of the local type inference component that
were not explicit in Peyton Joneset al.’s paper. In particular, we

highlight and discuss asoundnessissue that was not addressed by
Peyton Joneset al.

We first set the stage by introducing a type system that extends
Milner and Mycroft’s type system with generalized algebraic data
types (§2 and §3). This type system defines the programs that
we deem sound and would ultimately like to accept. It does not
require any explicit type annotations (except, following common
practice, at recursive definitions), because it is not meantto allow
type inference. We refer to it as MLGI (read: “ML with generalized
algebraic data types inimplicit style”).

Then (§4), we introduce a type system that restricts MLGI by
requiring explicit type annotations wherever generalizedalgebraic
data types are involved. More specifically, type equations can be
introduced into the typing context, at acase construct, only if
the scrutinee carries an explicit type annotation. Furthermore, type
equations can beexploitedonly via explicit type coercions. We re-
fer to this type system as MLGX (read: “ML with generalized alge-
braic data types in explicit style”). The benefit of these restrictions
is that MLGX enjoys traditional type inference in the style of Hind-
ley and Milner: that is, type inference for MLGX can be reduced to
first-order unification under a mixed prefix.

Programming directly in MLGX would be quite painful, be-
cause of the many explicit type annotations that MLGX requires.
To alleviate this burden, we next designlocal type inferenceal-
gorithms that accept a program that contains some explicit type
annotations, propagates this information in a predictableway, and
produces a new program that carries more type annotations. These
algorithms can be viewed as preprocessors that help producesome
of the type annotations required by MLGX.

Our local type inference algorithms propagateshapes(§5).
Roughly speaking, shapes are types that contain holes. A hole ap-
pears where a wobbly type would appear in Peyton Joneset al.’s
proposal. This formalizes the intuition that the types “inside the
wobbly boxes” should be invisible to the local type inference com-
ponent. Our shapes have pleasant algebraic properties and seem
particularly well-suited for expressingincompleteknowledge about
types in (variants of) Hindley and Milner’s type system.

We present two local type inference (orshape inference) algo-
rithms. The former (§6) closely follows Peyton Joneset al.’s bidi-
rectional propagation technique. The latter (§7) enhances the for-
mer by performing checking and inferencesimultaneouslyand by
supportingiteratedshape inference. These features lead, in partic-
ular, to a more accurate and lessad hoctreatment of application.

All proofs are omitted. Some can be found in an extended
version of this paper [15].

2. Preliminary definitions
Algebraic data type constructorsWe assume that a number of
algebraic data type constructors, writtenε, are given. Every alge-
braic data type constructorε is parameterized overtwo groups of
type parameters: that is, applications ofε are of the formε τ̄1 τ̄2,
whereτ̄1 andτ̄2 are vectors of types. We refer to parameters in the
first group asordinary and to parameters in the second group as
generalized. When the second group is empty,ε is said to be an or-
dinary algebraic data type; when it is nonempty,ε is a generalized
algebraic data type. For instance, the algebraic data type construc-
tor term of §1 has one generalized type parameter and no ordinary
type parameters.

Data constructors We assume that every algebraic data type con-
structorε comes with a number of data constructors, writtenK.
Every data constructorK is assigned a closed type scheme by a
declaration of the form

K :: ∀ᾱβ̄.τ1 × . . . × τn → ε ᾱ τ̄ ,
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Types τ ::=
Type variable α
Function type | τ → τ

Algebraic data type | ε τ̄ τ̄
Type schemes σ ::= ∀ᾱ.τ

Simple type annotations θ ::= ∃γ̄.τ
Polymorphic type annotations ς ::= ∃γ̄.σ

Type coercions κ ::= ∃γ̄.(τ ⊲ τ )
Terms t ::=

Variable x
Function | λ(x : θ).t

Function application | t t
Local definition | letx = t in t

Fixpoint | µ(x : ς).t
Data constructor application | K t . . . t

Case analysis | case t of c̄
Type variable introduction | ∀ᾱ.t

Type annotation | (t : θ)
Type coercion | (t : κ)

Clauses c ::= p.t

Patterns p ::= K β̄ x̄
Equation systems E ::= true | τ = τ | E ∧ E

Constraints C ::=
Equations and conjunction true | τ = τ | C ∧ C

Existential quantification | ∃γ̄.C
Universal quantification | ∀ᾱ.C

Figure 1. Types, terms, constraints

whereᾱ # β̄ andftv(τ̄) ⊆ β̄. Here and elsewhere,̄α stands for a
vector of distinct type variables. The length of the vectorβ̄ is the
number of type variablesintroduced byK. Whenε is an ordinary
algebraic data type constructor, it is zero. We writeK � σ whenσ
is an instance of the type scheme assigned toK.

Types A number of syntactic categories that are used throughout
the paper are defined in Figure 1. Atypeτ is a type variableα,
a function typeτ1 → τ2, or an application of an algebraic data
type constructorε to vectors of type parameters̄τ1 andτ̄2. A type
scheme∀ᾱ.τ binds a vector̄α of type variables within a typeτ .
Every type of the form[ᾱ 7→ τ̄ ]τ is aninstanceof the type scheme
∀ᾱ.τ . We write σ � τ whenτ is an instance ofσ. Similarly, a
simple type annotation∃γ̄.τ bindsγ̄ within a typeτ ; apolymorphic
type annotation∃γ̄.σ binds γ̄ within a type schemeσ; and a
coercion∃γ̄.(τ1 ⊲ τ2) binds γ̄ within a pair of types(τ1 ⊲ τ2).
The instance relationsθ � τ , ς � σ, andκ � (τ1 ⊲ τ2) are
defined accordingly.

Terms In everyλ-abstraction, the bound variablex carries a sim-
ple type annotationθ. The unannotated abstractionλx.t can be de-
fined as syntactic sugar forλ(x : ∃γ.γ).t, since every type is an
instance of the uninformative annotation∃γ.γ. Similarly, in every
fixpoint, the bound variablex carries a polymorphic type annota-
tion ς, so as to avoid the difficulties associated with polymorphic
recursion in the absence of any annotation [4]. Whenς is ∃γ.γ, the
type ofx is inferred, but must be monomorphic.

Everycase construct involves a vector of clausesc̄. A clauseis
a pair of apatternof the formK β̄ x̄ and of a termt, whereβ̄ and
x̄ are bound withint. For simplicity, we deal with shallow patterns
only. The length ofβ̄ must match the number of type variables
introduced byK.

In the construct∀ᾱ.t, the type variables̄α are bound withint.
They are interpreted as universally bound, which means thatt
should be well-typed under every instantiation of these type vari-
ables. In practice, one should also introduce the dual construct

∃ᾱ.t, where the type variables are existentially bound, so thatt
must be well-typed under some instantiation of them. Instead, in
this paper, we build existential quantifiers into type annotationsθ
and ς and type coercionsκ. This simplifies our presentation, be-
cause every type variable that appears free inside a type annotation
or type coercion can be assumed to berigid, that is, to be univer-
sally quantified somewhere up in the term.

Equation systems and constraintsAn equation systemE is a
(possibly empty) conjunction of type equations. Equation systems
are used in typing judgments to keep track of the type equations
introduced atcase constructs.Constraintsencode unification prob-
lems, where “unification” means first-order unification under a
mixed prefix. Constraints are used to express type inferenceprob-
lems.Satisfiability, entailment, andequivalenceof constraints are
defined via a standard interpretation in the Herbrand universe, that
is, in the finite tree model. We writeC1  C2 whenC1 entails
C2. We also defineC  ∃γ̄.(τ1 ⊲ τ2) as syntactic sugar for
C  ∀γ̄.(τ1 = τ2). Intuitively, C  κ means that, according
to the constraintC, all instances of the coercionκ are valid. This is
further explained in§3.

3. An ideal type system
MLGI is an extension of Milner and Mycroft’s type system with
explicit type annotations and generalized algebraic data types. It
is the “ideal” type system that we are interested in. MLGI is ex-
pressive, but type inference for it is not easy. As a result, we later
develop type systems where some type annotations are mandatory,
and prove them sound with respect to MLGI.

Presentation MLGI’s typing judgments are of the formE, Γ ⊢
t : σ, whereE is an equation system,Γ assigns type schemes to
variables,t is a term, andσ is a type scheme. The type system is
defined in Figure 2.

The presence of generalized algebraic data types in the language
requires keeping track of the equations that have been discovered
at case constructs. This is the role ofE. This equation system
is augmented by rule CLAUSE and is exploited by rules CONV
and COERCE, which perform implicit and explicit type coercions,
respectively.

CONV allows replacing a typeτ1 with another typeτ2 at any
time, providedE  τ1 = τ2 holds, that is, providedE guaran-
tees that this conversion is valid. This rule is not syntax-directed.
COERCEserves the same purpose, but is syntax-directed: the spe-
cial construct(t : κ) is interpreted as an explicit request for a co-
ercion. In the simplest case,κ is of the form(τ1 ⊲ τ2). In that
case, the second premise vanishes, and the third premise becomes
E  τ1 = τ2, so COERCEand CONV have identical premises. In
the general case, the structure ofτ1 andτ2 is only partially speci-
fied by the programmer, that is,κ is of the form∃γ̄.(τ ′

1 ⊲ τ ′

2). This
is interpreted as a request to convert betweenτ ′

1 andτ ′

2, for some
value of the “flexible” type variables̄γ. To ensure soundness,all
such coercions should be valid, which is whyE  κ is defined in
that case asE  ∀γ̄.τ ′

1 = τ ′

2.
Explicit type coercions really are of no use in MLGI, since

implicit coercions are also allowed. They become essentialin
MLGX (§4), where CONV is suppressed.

Rule CLAUSE is invoked by rule CASE to typecheck a clause
of the formp.t. The patternp binds variables and type variables
within the termt, and also introduces new equations. To reflect
this, CLAUSE’s first premise confrontsp with the typeτ1 of the
scrutinee, giving rise to new type variablesβ̄, equationsE′, and
variable bindingsΓ′, which are used in the second premise to
typecheck the termt.

Rule PAT confronts a patternK β̄ x1 . . . xn with the type of the
scrutinee. Obviously, this type must be of the formε τ̄1 τ̄2, where
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VAR
(x : σ) ∈ Γ

E, Γ ⊢ x : σ

LAM
E, (Γ; x : τ1) ⊢ t : τ2 θ � τ1

E, Γ ⊢ λ(x : θ).t : τ1 → τ2

APP
E, Γ ⊢ t1 : τ1 → τ2

E, Γ ⊢ t2 : τ1

E, Γ ⊢ t1 t2 : τ2

LET
E, Γ ⊢ t1 : σ E, (Γ; x : σ) ⊢ t2 : τ

E, Γ ⊢ letx = t1 in t2 : τ

FIX
E, (Γ; x : σ) ⊢ t : σ ς � σ

E, Γ ⊢ µ(x : ς).t : σ

CSTR
K � τ1 × . . . × τn → ε τ̄1 τ̄2

∀i E, Γ ⊢ ti : τi

E, Γ ⊢ K t1 . . . tn : ε τ̄1 τ̄2

CASE
E, Γ ⊢ t : τ1

∀i E, Γ ⊢ ci : τ1 → τ2

E, Γ ⊢ case t of c1 . . . cn : τ2

FORALL
E, Γ ⊢ t : τ ᾱ # ftv(E, Γ)

E, Γ ⊢ ∀ᾱ.t : ∀ᾱ.τ

ANNOT
E, Γ ⊢ t : τ θ � τ

E, Γ ⊢ (t : θ) : τ

COERCE
E, Γ ⊢ t : τ1 κ � (τ1 ⊲ τ2) E  κ

E, Γ ⊢ (t : κ) : τ2

CONV
E, Γ ⊢ t : τ1 E  τ1 = τ2

E, Γ ⊢ t : τ2

GEN
E, Γ ⊢ t : τ ᾱ # ftv(E, Γ, t)

E, Γ ⊢ t : ∀ᾱ.τ

INST
E, Γ ⊢ t : σ σ � τ

E, Γ ⊢ t : τ

CLAUSE

p : ε τ̄1 τ̄2 ⊢ (β̄, E
′
, Γ′) E ∧ E

′
, ΓΓ′ ⊢ t : τ2

β̄ # ftv(E, Γ, τ2)

E, Γ ⊢ p.t : ε τ̄1 τ̄2 → τ2

PAT

K � ∀β̄.τ1 × . . . × τn → ε τ̄1 τ̄ β̄ # ftv(τ̄1, τ̄2)

K β̄ x1 . . . xn : ε τ̄1 τ̄2 ⊢ (β̄, τ̄2 = τ̄ , (x1 : τ1; . . . ; xn : τn))

Figure 2. ML with generalized algebraic data types inimplicit style (MLGI)

ε is the algebraic data type constructor thatK is associated with.
The rule is simple but subtle: the main point is that ordinaryand
generalized type parameters are dealt with in different ways. Let
the type scheme associated withK be of the form

K :: ∀ᾱβ̄. ⋆ × . . . × ⋆ → ε ᾱ τ̄

(Note that we choose the type variablesβ̄ that appear in this type
scheme to be the same as the type variablesβ̄ that appear in
the pattern. Furthermore, here and elsewhere in the paper, every
occurrence of⋆ stands for a distinct anonymous metavariable. We
exploit this convention to avoid assigning explicit names to entities
that we are not interested in.) PAT’s first premise is somewhat
different:

K � ∀β̄.τ1 × . . . × τn → ε τ̄1 τ̄

That is, we take an instance of the type scheme associated with
K by substituting the actual ordinary type parametersτ̄1 for the
formal ordinary type parameters̄α. (This leaves the generalized
type parameters̄τ unaffected, since their free type variables form
a subset of̄β.) This substitution determines the typesτ1, . . . , τn.
We are now ready to read PAT ’s conclusion: the body of the clause
guarded by this pattern should be typechecked in the scope ofthe
rigid type variablesβ̄, under the assumption that the equations
τ̄2 = τ̄ hold, and under the assumption that everyxi has typeτi.
The equations̄τ2 = τ̄ are obtained by confronting the generalized
type parameters found in the scrutinee’s type, namelyτ̄2, with those
found in the definition ofK, namelyτ̄ .

When ε is an ordinary algebraic data type,β̄ is empty, and
there are no generalized type parameters. No new equations appear.
In that case, CLAUSE degenerates to the standard rule for pattern
matching in Hindley and Milner’s type system.

Soundness A closed term, orprogram, is well-typed if it admits
a type under an empty equation system and in the empty environ-
ment. Programs can be given a call-by-name or call-by-valuese-
mantics using operational or denotational techniques; this defines
what it means for a program to “go wrong.”

Claim 3.1 (Soundness for MLGI) Well-typed MLGI programs do
not go wrong. ⋄

4. A type system with explicit annotations
We now define a type system, known as MLGX, where the diffi-
culties associated with generalized algebraic data types are avoided
thanks to mandatory type annotations. The idea is simple. First, we
forbid implicit type conversions, so the only way of exploiting E is
now via explicit coercions. Second, we require everycase scrutinee
to carry a type annotation, so that it becomes easy to determineE.
In short, MLGX could be described as a type system that marries
traditionaltype inferencefor Hindley and Milner’s type system and
type checkingfor generalized algebraic data types.

Presentation MLGX is defined in Figure 3. Most of the rules are
shared with MLGI and are not repeated.

As announced earlier, implicit type conversions are disallowed
in MLGX. That is, rule CONV is suppressed, so that COERCEmust
be used instead. We maintain the invariant thatthe equation system
is rigid, that is, all of the type variables that appear withinE can
be interpreted as universally bound. As a result, in terms oftype
inference, COERCE’s last premise,E  κ, now meanscheck that
E implies the validity ofκ, rather thansolve for the flexible type
variables withinE so thatE implies the validity ofκ. This is the
key idea that drives the design of MLGX.

We do still allow implicit conversions in one specific situation,
namely, whenE is false. Indeed, rule X-FALSE states that, under
such an inconsistent assumption, every termt admits every typeτ .
This is convenient, because it allows the local type inference algo-
rithms described later in the paper to give up as soon they findthat
E is inconsistent. Although X-FALSE is not a syntax-directed rule,
its presence does not give rise to combinatorial choices.

Rule CASE is suppressed and replaced with X-CASE. In the
new rule, the termt must carry an explicit type annotationθ. The
first premise passesθ on to ANNOT, thus checking that the type
ascribed tot is indeed an instance ofθ. The second premise passes
θ on to X-CLAUSE, where it is exploited to determine which new
equations arise inside the clause.

We define the unannotatedcase constructcase t of c1 . . . cn as
syntactic sugar forcase (t : ∃γ̄1γ̄2.ε γ̄1 γ̄2) of c1 . . . cn, where
the appropriate type constructorε is determined by examining the
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X-FALSE
fv(t) ⊆ dom(Γ)

false, Γ ⊢ t : σ

X-CASE
E, Γ ⊢ (t : θ) : τ1

∀i E, Γ ⊢ (pi : θ).ti : τ1 → τ2

E, Γ ⊢ case (t : θ) of p1.t1 . . . pn.tn : τ2

X-CLAUSE

p : ε τ̄1 τ̄
′

2 ⊢ (β̄, E
′
, Γ′) E ∧ E

′
, ΓΓ′ ⊢ t : τ2

β̄ # ftv(E, Γ, τ2) γ̄ # ftv(E, Γ, t, τ2)

E, Γ ⊢ (p : ∃γ̄.ε ⋆ τ̄
′

2).t : ε τ̄1 ⋆ → τ2

All of the rules that define MLGI, except CONV, CASE, and CLAUSE, repeated here.

Figure 3. ML with generalized algebraic data types in explicit style (MLGX)

patterns that guard the clausesc1 . . . cn. Thanks to this convention,
legacy programs that do not exploit generalized algebraic data types
need not be annotated at all: that is, MLGX is a conservative
extension of ML.

Rule CLAUSE is suppressed and replaced with X-CLAUSE. The
key change is in the first premise. In CLAUSE, the generalized
type parameters̄τ2, found in the type of the scrutinee, are used to
determine which new equations appear. In terms of type inference,
this is problematic, since the types̄τ2 are initially unknown and
have to be inferred. For this reason, in X-CLAUSE, these types are
disregarded—which we emphasize by writing⋆ instead ofτ̄2 in
the rule’s conclusion. Instead, the generalized type parametersτ̄ ′

2,
found in the explicit type annotation, are used to determine which
new equations appear. In terms of type inference, this is good—no
guessing is involved.

The types̄τ ′

2 contain occurrences of the type variablesγ̄. As a
result, so does the equation systemE′. These type variables stand
for yet unknown types, so they must be considered abstract when
typecheckingt, that is, in the second premise. This is guaranteed by
the last side condition. Thus, the invariant that the equation system
is rigid is maintained in the second premise.

Determining which new equations arise by relying on a possibly
incomplete type annotation, as in MLGX, instead of on the actual
type of the scrutinee, as in MLGI, entails a loss of information. In-
deed,̄τ2 is a possibly strict instance of∃γ̄.τ̄ ′

2, so the new equations
obtained by relying on̄τ ′

2 are implied by, but possibly weaker than,
those that would be obtained by relying onτ̄2. As a result, the equa-
tions available in an MLGX type derivation are in general weaker
than those available in an analogous MLGI type derivation. On the
other hand, when the type annotations are sufficiently specific, that
is, whenγ̄ # ftv(τ̄ ′

2) holds, then the vectors̄τ2 andτ̄ ′

2 coincide, so
the equations available in MLGX are identical to those available in
MLGI.

Soundness and completenessIt is straightforward to show that
every well-typed MLGX program is a well-typed MLGI program.
In combination with Claim 3.1, this implies that MLGX is sound,
that is, well-typed MLGX programs do not go wrong.

Theorem 4.1 (Soundness for MLGX)If E, Γ ⊢ t : σ holds in
MLGX, then it holds in MLGI as well. ⋄

It is also clear that every well-typed MLGI program can be turned
into a well-typed MLGX program by adding enough type annota-
tions. In short, it is sufficient to replace every implicit type conver-
sion with an explicit type coercion, to add an explicit type anno-
tation to everycase expression over a generalized algebraic data
type, and to explicitly bind the type variables that appear inside
these new annotations.

Theorem 4.2 (Completeness with assistance for MLGX) De-
fineequivalence up to annotations, written≡, as the reflexive and
congruence closure of the following axioms:

t ≡ t
′

ᾱ # ftv(t)

t ≡ ∀ᾱ.t
′

t ≡ t
′

t ≡ (t′ : θ)

t ≡ t
′

t ≡ (t′ : κ)

If E, Γ ⊢ t : σ holds in MLGI, then there exists a termt′ such that
t ≡ t′ holds andE, Γ ⊢ t′ : σ holds in MLGX. ⋄

Example Here is theeval example of§1, augmented with enough
explicit type annotations to make it a well-typed MLGX term:

µ(eval : ∀α.term α → α).∀α.λt.
case (t : term α) of
| Lit i → (i : (int ⊲ α))
| Inc t → (eval t + 1 : (int ⊲ α))
| IsZ t → (eval t = 0 : (bool ⊲ α))
| If b t e → if eval b then eval t else eval e
| Pair β1 β2 a b → ((eval a, eval b) : (β1 × β2 ⊲ α))
| Fst β2 t → fst (eval t)
| Snd β1 t → snd (eval t)

The first change is the explicit introduction of the type variableα,
on the first line. This is required in order to allow references toα in
the type annotations that follow. In a surface language, onecould
add sugar and adopt the convention that the first occurrence of ∀α
bindsα not only in the typeterm α → α, but also in the term
that follows. Glasgow Haskell, for instance, allows this. In fact,
this turns out to be helpful for local type inference, so we introduce
this convention (and writeµ⋆ instead ofµ) in §6 and§7.

The case scrutineet now carries the explicit type annotation
term α, so as to allow X-CASE and X-CLAUSE to determine
which type equations arise within each clause.

In theLit clause, the variablei has typeint , which we want to
convert toα, so an explicit type coercion is required. Analogous
coercions appear in theInc, IsZ , andPair clauses. In thePair
clause,α is known to be equal to a product typeβ1 × β2.

Type inference for MLGX Type inference for MLGX is analo-
gous to type inference for an extension of Milner and Mycroft’s
type system with explicit type annotations. There exists a standard
reduction of the latter to solving constraints, that is, to first-order
unification under a mixed prefix [18, 17]. It can be presented as
a transformation, writtenL · M and known asconstraint generation,
that maps a candidate judgementE, Γ ⊢ t : τ to a constraint.
In short,Γ and τ can be thought of as an “expected typing” for
the termt, and the constraintLE, Γ ⊢ t : τ M expresses the re-
quirements that the type variables inftv(Γ, t, τ) must meet for this
typing to become valid.

We do not repeat the standard reduction of type inference to
constraint solving. Instead, we show how it is extended to cover the
new constructs in MLGX. This requires four constraint generation
rules (Figure 4). For clarity, the side conditions that require all type
variables to be chosen “sufficiently fresh” are omitted.

Rule G-FALSE states that, if the equation systemE collected
so far is inconsistent, then it is permissible to stop examining the
term t and simply produce the constrainttrue. This rule is not
syntax-directed: it is applied in preference to all other constraint
generation rules.

Rule G-COERCE first checks thatE entails the validity of the
coercion∃γ̄.(τ1 ⊲ τ2). This check is easy to implement: provided
γ̄ # ftv(E) holds, it is equivalent to computing a most general
unifier of E and checking that it is also a unifier ofτ1 = τ2.
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G-FALSE

L false, Γ ⊢ t : τ M
= true

G-COERCE

L E, Γ ⊢ (t : ∃γ̄.(τ1 ⊲ τ2)) : τ M
= ∃γ̄.(L E, Γ ⊢ t : τ1 M ∧ τ2 = τ )

if E  ∀γ̄.τ1 = τ2

G-CASE

L E, Γ ⊢ case (t : θ) of p1.t1 . . . pn.tn : τ M
= ∃γ.(L E, Γ ⊢ (t : θ) : γ M ∧

∧

i
L E, Γ ⊢ (pi : θ).ti : γ → τ M)

G-CLAUSE

L E, Γ ⊢ (K β̄ x1 . . . xn : ∃γ̄.ε ⋆ τ̄ ′

2).t : τ ′ → τ M
= ∃ᾱ.(∃γ̄′

2.(τ
′ = ε ᾱ γ̄′

2) ∧
∀β̄γ̄.L E ∧ τ̄ ′

2 = τ̄ , Γ; x1 : τ1; . . . ; xn : τn ⊢ t : τ M)

if K :: ∀ᾱβ̄.τ1 × . . . × τn → ε ᾱ τ̄

Figure 4. Constraint generation for MLGX (excerpt)

If the check fails, constraint generation fails as well. If the check
succeeds, then constraint generation proceeds. The termt is now
expected to have typeτ1, but the type that is made visible to the
outside isτ2. The constraint that is produced is identical to what
would be obtained by applying a function of type∀γ̄.τ1 → τ2 to t.

G-CASE is simple. The type annotationθ is transmitted down
both sides. The flexible type variableγ stands for the unknown type
of the scrutinee.

G-CLAUSE paraphrases X-CLAUSE. The type scheme assigned
to K is looked up. The constraint first binds the ordinary type pa-
rameters̄α existentially: they are inferred. Then comes a conjunc-
tion. The conjunct∃γ̄′

2.(τ
′ = ε ᾱ γ̄′

2) determines appropriate val-
ues forᾱ by equating the scrutinee’s expected typeτ ′ with ε ᾱ γ̄′

2.
The type variables̄γ′

2 do not occur elsewhere: they serve only to
discard the generalized type parameters. In the second conjunct,E
is augmented with the equationsτ̄ ′

2 = τ̄ , obtained by confronting
the type annotation with the type scheme assigned toK. The type
variables that occur within these equations are (a subset of) β̄γ̄.
These type variables areuniversallyquantified up front, maintain-
ing the invariant that the equation system is rigid. The typing envi-
ronmentΓ is extended with appropriate bindings, and a constraint
that requires the clause bodyt to have typeτ is produced.

It is worth noting that the expected typeτ ′ of the scrutinee does
not influence the new equations that arise. As in MLGX, these are
determined solely by exploiting the information̄τ ′

2 found in the
explicit type annotation.

The constraint generation rules can be proven sound and com-
plete with respect to the specification of MLGX. The extra proof
cases that must be added to the standard proof are straightforward.

Theorem 4.3 (Type inference for MLGX) Letφ be a type substi-
tution whose domain is disjoint withftv(E, t). Then,φ is a unifier
of L E, Γ ⊢ t : τ M if and only if E, φ(Γ) ⊢ t : φ(τ) holds in
MLGX. ⋄

This means, in particular, that MLGX has principal type sche-
mes, like Hindley and Milner’s type system.

Comparison with wobbly typesThe flexible type variables in our
type annotations (and in our shapes, see§5) play exactly the same
rôle as wobbly types in Peyton Joneset al.’s proposal [12]. They
write: “when performing match-unification[that is, when deter-

mining which new equations arise, in this paper’s terminology],
we make no use of information inside wobbly types.” In our pre-
sentation, this goes without saying: flexible type variables are type
variables—that is, they stand for unknown types—so of course they
carry no information!

Peyton Joneset al. further write: “This simple intuition is sur-
prisingly tricky to formalise.” Indeed, their formalization requires
excising the wobbly types, performing unification, and re-inserting
the excised types back into the result. Technically, this involves
computing, composing, and restricting type substitutions—tricky
business. Here, no such tricks are necessary, because the unwanted
information simply isn’t there in the first place. In other words,
in MLGX, the building of equation systemsE, which are used to
validate coercions, isentirely separatefrom the production (and
later solving) of constraintsC, which are used to perform tradi-
tional type inference in the style of Hindley and Milner. In Peyton
Joneset al.’s presentation, the two are mixed, at least in appearance.
(They are also mixed with a form of local type inference, which we
discuss later on.)

There is in fact a slight difference between the flexible type
variables in our type annotations and Peyton Joneset al.’s wobbly
types: a type variable hasidentity, whereas a “wobbly box” doesn’t.
For instance, the type annotation∃γ.term (γ × γ) has two holes,
but the two have the same identityγ. This annotation is more pre-
cise than∃γ1γ2.term (γ1 × γ2), which appears to correspond to
term ( τ1 × τ2 ) in Peyton Joneset al.’s formalization. We conjec-
ture that, in the Glasgow Haskell implementation, wobbly boxesdo
have an identity—indeed, Peyton Joneset al.write: “wobbly types
[...] simply arethe flexible meta variables that the inference engine
already uses.” Our formalization may well be more faithful with
respect to such an implementation.

Towards stratified type inferenceThe strength of MLGX lies
in its simplicity and in the fact that it enjoys type inference and
principal types in the style of Hindley and Milner. Its design, which
marries type inference for the core language with type checking for
generalized algebraic data types, appears to be robust, in the sense
that no variations have come to mind so far.

Unfortunately, from a user’s standpoint, MLGX is not very
expressive. In theeval example, it requires a lot of explicit type
information. One might say that MLGX does not attempt to do
type inferencefor generalized algebraic data types; it only does
type inferencein their presence.

In the case ofeval , it should not be very hard to guess which
explicit type annotations must be added to the program. The signa-
ture given at theµ binder specifies thateval has typeterm α → α,
so it is “clear” that the variablet should have typeterm α and that
every branch of thecase construct should have typeα. The for-
mer remark allows inserting the type annotation(t : term α). The
latter, applied to theLit branch and combined with the fact thati
“clearly” has typeint , allows inserting the coercion(int ⊲ α). It
is similarly “clear” which coercions should be added to the other
branches. Isn’t it a shame for a type inference system to be unable
to take advantage of information that is so “clearly” apparent in the
program?

Our answer is to design a separate transformation that discovers
the explicit type information in the original program, propagates it,
and exploits it to produce a transformed program that containsmore
explicit type annotations and coercions. The transformed program
can then be passed on to MLGX’s type inference algorithm. We
refer to this two-stage approach asstratified type inference.

Contrary to what one might think, propagating explicit type
information is not easy—if it were, we would have built this feature
into MLGX in the first place. Many design choices soon arise, and
most designs are incomplete, that is, reject programs that are valid
in MLGI. From this remark, we draw two conclusions:
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⊥ = γ.γ
(γ̄1.τ1) → (γ̄2.τ2) = γ̄1γ̄2.τ1 → τ2

γ̄1 # ftv(τ2), γ̄2 # ftv(τ1)
D(⊥) = ⊥
D(γ̄.τ1 → ⋆) = γ̄.τ1

C(⊥) = ⊥
C(γ̄.⋆ → τ2) = γ̄.τ2

Figure 5. Basic operations on shapes

• it is worth separatingthe robust, well-understood back-end
(MLGX) from the moread hocfront-end.

• because its design isad hoc, the front-end should besimpleand
predictable.

Ad hocmethods of type inference have been studied, for instance,
by Pierce and Turner [13], who introducelocal type inference as a
means of achieving simplicity and predictability. They write: “miss-
ing annotations [should be] recovered using only information from
adjacent nodes in the syntax tree, without long-distance constraints
such as unification variables.” Other, more recent type inference
systems, such as Peyton Jones and Shields’ approach to introducing
arbitrary-rank predicate polymorphism into Haskell [11],or Peyton
Joneset al.’s “wobbly types” proposal [12], also use forms of local
type inference.

In the following, we design two such local type inference sys-
tems. The first design (§6) closely follows Peyton Joneset al.’s
“wobbly types” proposal, with a few changes and improvements,
and explains how “wobbly types” are recast in terms of stratified
type inference. The second design (§7) addresses improves in accu-
racy over the previous one. Neither is definitive: many more could
be imagined.

Because the program produced by the front-end is submitted to
MLGX, the local type inference algorithm has no obligation of re-
jecting invalid programs, or of fully determining the type of every
expression. Instead, it is perfectly fine for it to manipulate incom-
plete(that is,approximate) type information, and to produce new
type annotations and coercions only where enough information is
available. For this reason, both of our designs are based onshapes,
that is, approximate type schemes. Shapes, introduced next(§5),
can sharerigid type variables, but cannot shareflexible(“unifica-
tion”) variables. This is why shape-based algorithms can be deemed
“local.”

5. Shapes
Shapesare defined by

s ::= γ̄.τ

where the type variables̄γ are bound within the typeτ . We refer to
the type variables̄γ asflexible. A flexible type variable represents
a type that is either unknown (so the shapeγ.γ → γ would ade-
quately describe a value of type, say,int → int) or a polymorphic
type variable (so the shapeγ.γ → γ also describes the polymor-
phic identity function, whose type scheme is∀γ.γ → γ). Shapes
are not necessarily closed. Their free type variables are interpreted
asrigid—that is, they are type variables that have been explicitly
universally quantified by the programmer. For instance, theshape
γ.α × γ describes a pair whose first component has typeα, where
the rigid type variableα was introduced by the programmer, and
whose second component has unknown type.

Shapes bear close resemblance to simple type annotations. We
often implicitly convert the simple type annotation∃γ̄.τ into the
shapēγ.τ . We also convert polymorphic type annotations∃γ̄.∀ᾱ.τ
into shapes, but that is done explicitly.

Figure 5 introduces a few basic operations on shapes. Thebot-
tomshapeγ.γ is written⊥. This shape carries no information what-
soever. Out of two arbitrary shapess1 ands2, one can build afunc-
tion shapes1 → s2. Conversely, out of an arbitrary shapes, one
can attempt to extractdomainandcodomainshapesD(s) andC(s).
These operations are defined ifs is the bottom shape or a function
shape, and undefined otherwise.

5.1 Ordering shapes

Shapes are equipped with a standard instantiation ordering, defined
by the single axiom

γ̄2 # ftv(γ̄1.τ1)

γ̄1.τ1 � γ̄2.[γ̄1 7→ τ̄1]τ1

Example 5.1We have(γ1.α × γ1) � (γ2.α × (α → γ2)). ⋄

This confers a rich structure to the set of shapes [6, chapter5]:

Theorem 5.2 (Huet)Shapes form a well-founded lower semi-lat-
tice, whose least element is⊥. ⋄

This result implies that any finite set of shapes that admits an upper
bound must in fact admit a least upper bound. The least upper
bound of two shapess1 ands2 is writtens1 ⊔ s2, when it exists,
and can be computed via first-order unification.

Example 5.3Recall thatint → ⊥ stands forγ.int → γ. Then, it
is easy to check that(γ.γ → γ) ⊔ (int → ⊥) is int → int . ⋄

Shapes do not share flexible type variables, so that no “long-
distance” unification takes place during shape inference: this was
announced as the key property that makes inference “local.”Yet,
the least upper bound operation over shapesdoesinvolve unifica-
tion. This is important: a local type inference algorithm that did not
involve anykind of unification would be quite imprecise.

The definition of the ordering can be generalized so as to make
it relative to an equation systemE. The original definition is recov-
ered whenE is true.

Definition 5.4 We writeE  s1 � s2 if and only if there exists
a shapes such thats1 � s and E  s = s2 hold. We write
E  s1 = s2 whenE  s1 � s2 andE  s2 � s1 hold. ⋄

Example 5.5Let s1 beγ1.α × γ1 ands2 beγ2.int × (α → γ2).
Then,s1 � s2 does not hold, because the rigid type variableα
cannot be instantiated toint , butα = int  s1 � s2 does. ⋄

5.2 Normalization

Shapes that are syntactically incompatible (that is, do nothave a
common upper bound) should sometimes be viewed as compatible.
For instance, letE consist of the equationα = β1 → β2. If some
expression is found to have both shapeα and shapeγ.β1 → γ, then
a sensible shape inference algorithm should not fail, nor should it
conclude that this expression has shape⊥. Instead, the two shapes
should be successfully combined, yieldingβ1 → β2, as opposed
to α, because the latter ismore informative: it exposes the fact
that the expression can only evaluate to a function. (If the domain
operatorD(·) is later applied toβ1 → β2, it will successfully yield
β1, whereas applyingD(·) to α would fail.)

To extract as much information as possible out of a shape,
we normalizeit with respect toE. WhenE contains an equation
α = τ , whereτ is not a type variable, then normalization rewrites
α into τ .

The definition of normalization is simple, but introduces a mea-
sure of arbitrariness into the system: indeed, whenE relates two
type variablesα andβ, a choice has to be made between rewriting
α to β or vice versa. This choice influences how the program is
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transformed by the front-end, which means that it also has anim-
pact on the type error messages produced by the back-end (MLGX)
when the transformed program doesn’t typecheck.

In the following, we assume thatE isn’t equivalent tofalse.
Because we interpret constraints in a finite tree model, thisimplies
thatE is acyclic. This hypothesis guarantees that normalization, as
defined below, terminates. It is in fact possible to deal withcyclic
equation systems, and doing so is indeed necessary when the type
system features equirecursive types. We omit this discussion.

Definition 5.6 Let < be a fixed, arbitrarily chosen total ordering
overftv(E). Then, the rewriting relation E on types is generated
by the axioms:

α  E α′ if E  α = α′ andα′ < α
α  E ε τ̄1 τ̄2 if E  α = ε τ̄1 τ̄2

α  E τ1 → τ2 if E  α = τ1 → τ2

This relation is confluent and terminating. We writeτ ⇂E for the
normal form of the typeτ . We writes⇂E for γ̄.(τ ⇂E ) whens is
γ̄.τ andγ̄ # ftv(E) holds. The notationsθ ⇂E andς ⇂E are defined
similarly. ⋄

In Peyton Joneset al.’s proposal [12], normalization is per-
formed by picking an (arbitrary) most general unifierφ of E and
applying it to the type that should be normalized. This substitution
process stops at “wobbly boxes,” that is,φ( τ ) is defined asτ .
Here, this corresponds to the fact that normalization does not affect
flexible type variables.

5.3 Pruning

One problem still hasn’t been discussed: can we guarantee that the
front-end issound, that is, that the type annotations and coercions
inserted by the front-end arecorrect with respect to the program-
mer’s intent?

Assume the original program is well-typed in MLGI (although
perhaps not in MLGX, by lack of explicit type information). We
certainly cannot expect the transformed program to always be well-
typed in MLGX, because that would amount to requiring the front-
end to performcompletetype inference for MLGI. However, we
should be able to guarantee that the transformed program is also
well-typed in MLGI. Indeed, if that is not the case, then the trans-
formation is counter-productive: it inserts annotations that break
the program! We claim that, when in doubt, one should insert no
annotations at all, rather than insert incorrect ones.

Achieving soundness requires some care. Imagine that the equa-
tion α = β is made available within acase branch. Imagine further
that this branch has typeα. In MLGI, it is also true that this branch
has typeβ. As a result, it is fine to reason with shapes that are cor-
rect only “up toE.” A shapes implicitly denotes the set of typesτ
such thatE  s � τ holds. However, outside of the branch, the
equationα = β is no longer available, so itdoesmake a differ-
ence whether the branch is deemed to have shapeα or β. That is,
interpreting shapes “up toE” requires extra care whenE shrinks.
An arbitrary choice betweenα andβ could produce a transformed
program that is ill-typed in MLGI. Instead, one must abandonthis
unreliable piece of information and report that the branch has shape
⊥, which certainly is a sound approximation. We refer to this pro-
cess aspruning.

Definition 5.7 The denotation ofs underE is the set of all typesτ
such thatE  s � τ holds. The shape obtained by prunings′ with
respect toE andE′, written s′ ↾E,E′ , is the least upper bound of
the shapess such thats � s′ holds and the denotation ofs under
E contains that ofs′ underE ∧ E′. ⋄

Pruning is performed at the boundary between an equation
systemE and a richer equation systemE∧E′. A shapes′ is given.

The denotation ofs′ underE is always a subset of its denotation
underE ∧ E′. If we are unlucky, it is a strict subset, which means
that the denotation ofs′ silently changes when we move from
E ∧ E′ back toE. Prunings′ consists in discarding information
in order to avoid this phenomenon, that is, in determining the most
precise shapes such thats � s′ holds and the denotation ofs under
E contains that ofs′ underE ∧ E′.

Example 5.8Let E betrue andE′ beα = β1×β2. Then, pruning
the shapes′ = γ.α → γ with respect toE andE′ yields the shape
s = γ1γ2.γ1 → γ2. Indeed, the denotation ofs′ underE ∧ E′

contains all types of the form(β1 × β2) → τ , which its denotation
underE does not contain, so the sub-termα must be pruned. The
denotation ofs underE does contain all such types.

Of course, pruning cannot guarantee soundness unless we have
exact knowledge of the current equation system. Indeed, pruning
with respect to an under-approximation ofE andE′ might lead
to keeping sub-terms that would be discarded when pruning with
respect toE and E′. In other words, pruning with respect to
under-approximations of the equation systems is just as good as no
pruning at all: it is unsound! As a result, in§6 and§7, we insist
on determining the current equation system with precision.An
opposite decision is made by Peyton Joneset al. [12]. We compare
the two alternatives in§6.

6. The shape inference systemW
The shape toolbox developed in§5 provides the building blocks
to develop a local type inference (orshape inference) algorithm
that can be placed in front of MLGX in a stratified type inference
system. In fact, it is easy to think ofmanysuch algorithms that
differ in how information is propagated through the abstract syntax
tree. Here, in§6, we describe one such algorithm, which we callW .
It is intended to emulate Peyton Joneset al.’s “wobbly types”
proposal [12], with a few differences. Next, in§7, we describe
another, more accurate algorithm.

Following Peyton Joneset al., W is bidirectional: it operates
either in inference modeor in checking mode. An inference mode
judgement takes the formE, Γ ⊢ t ⇑ s  t′. Its inputs are
the equation systemE, the environmentΓ, which maps variables
to shapes, and the termt. Its outputs are the inferred shapes
and the transformed termt′. A checking mode judgement takes
the form E, Γ ⊢ t ⇓ s  t′. It is analogous to an inference
mode judgement, except the expected shapes is now an input. The
definition of the judgments appears in Figure 6.

An invariant is that, in either mode, the shapes is normalized
with respect toE. As explained in§5.2, normalizing shapes is
required in order to avoid “silly” unification errors. When we write
s1 ⊔ s2, we ensure thats1 ands2 are both normalized. When we
writeD(s) orC(s), we ensure thats is normalized. The shapes that
appear inΓ arenot necessarily normalized.

In general, the transformed termt′ is identical tot, except (i) all
explicit type annotations are normalized, (ii) new type annotations
are inserted aroundcase scrutinees, and (iii) type coercions are in-
serted at uses of variables and around somecase clauses. Normal-
izing type annotations can be viewed as a heuristic that attempts to
increase the likelihood that the transformed term is well-typed in
MLGX.

We suppress the constructµ(x : ∃γ̄.∀ᾱ.τ).t and replace it with
the new constructµ⋆(x : ∃γ̄.∀ᾱ.τ ).t, which is identical, except the
type variables̄α are considered bound not only inτ , but also int.
In other words, the new construct can be viewed as syntactic sugar
for µ(x : ∃γ̄.∀ᾱ.τ ).∀ᾱ.t. This is exploited in the formulation of
the rules FIX -⇑ and FIX -⇓.

We disallow explicit type coercions insourceterms, because
they are redundant with type annotations. Indeed, for∃γ̄.(τ1 ⊲ τ2)
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FALSE-⇑
false, Γ ⊢ t ⇑ ⊥ t

FALSE-⇓
false, Γ ⊢ t ⇓ s t

VAR-⇑
(x : s) ∈ Γ

E, Γ ⊢ x ⇑ s⇂E  (x ↓E s)

VAR-⇓
(x : s) ∈ Γ

E, Γ ⊢ x ⇓ s
′
 (x ↓E s)

LAM -⇑
E, Γ; x : θ ⇂E ⊢ t ⇑ s t

′

E, Γ ⊢ λ(x : θ).t ⇑ (θ ⇂E → s) λ(x : θ ⇂E ).t′

LAM -⇓
s
′ = s ⊔ (θ⇂E → ⊥)

E, Γ; x : D(s′) ⊢ t ⇓ C(s′) t
′

E, Γ ⊢ λ(x : θ).t ⇓ s λ(x : θ ⇂E ).t′

APP-⇑
E, Γ ⊢ t1 ⇑ s t

′

1

E, Γ ⊢ t2 ⇓ D(s) t
′

2

E, Γ ⊢ t1 t2 ⇑ C(s) t
′

1 t
′

2

APP-⇓
E, Γ ⊢ t1 ⇑ s1  t

′

1

E, Γ ⊢ t2 ⇓ D(s1 ⊔ (⊥ → s)) t
′

2

E, Γ ⊢ t1 t2 ⇓ s t
′

1 t
′

2

LET-m

E, Γ ⊢ t1 ⇑ s1  t
′

1

E, Γ; x : s1 ⊢ t2 m s2  t
′

2

E, Γ ⊢ letx = t1 in t2 m s2  let x = t
′

1 in t
′

2

FIX -⇑
ᾱ # ftv(E, Γ)

E, Γ; x : γ̄ᾱ.τ ⇂E ⊢ t ⇓ γ̄.τ ⇂E  t
′

E, Γ ⊢ µ
⋆(x : ∃γ̄.∀ᾱ.τ ).t ⇑ γ̄ᾱ.τ ⇂E  µ

⋆(x : ∃γ̄.∀ᾱ.τ ⇂E ).t′

FIX -⇓
ᾱ # ftv(E, Γ, s)

E, Γ; x : (γ̄ᾱ.τ ⇂E ⊔ s) ⊢ t ⇓ (γ̄.τ ⇂E ⊔ s) t
′

E, Γ ⊢ µ
⋆(x : ∃γ̄.∀ᾱ.τ ).t ⇓ s µ

⋆(x : ∃γ̄.∀ᾱ.τ ⇂E ).t′

CSTR-⇑
K :: s ∀i E, Γ ⊢ ti ⇑ si  t

′

i

E, Γ ⊢ K t1 . . . tn ⇑ C(s ⊔ (s1 × . . . × sn → ⊥)) 
K t

′

1 . . . t
′

n

CSTR-⇓
K :: s ∀i E, Γ ⊢ ti ⇓ Di(s ⊔ (⊥× . . . ×⊥ → s

′)) t
′

i

E, Γ ⊢ K t1 . . . tn ⇓ s
′
 K t

′

1 . . . t
′

n

CASE-⇑
E, Γ ⊢ t ⇑ s

′
 t

′ ∀i E, Γ ⊢ (pi : s
′).ti ⇑ si  pi.t

′

i

E, Γ ⊢ case t of p1.t1 . . . pn.tn ⇑ ⊔isi  

case (t′ : s
′) of p1.t

′

1 . . . pn.t
′

n

CASE-⇓
E, Γ ⊢ t ⇑ s

′
 t

′ ∀i E, Γ ⊢ (pi : s
′).ti ⇓ s pi.t

′

i

E, Γ ⊢ case t of p1.t1 . . . pn.tn ⇓ s 

case (t′ : s
′) of p1.t

′

1 . . . pn.t
′

n

FORALL-⇑
ᾱ # ftv(E, Γ)

E, Γ ⊢ t ⇑ s t
′

E, Γ ⊢ ∀ᾱ.t ⇑ ᾱ.s ∀ᾱ.t
′

FORALL-⇓
ᾱ # ftv(E, Γ, s)

E, Γ ⊢ t ⇓ s t
′

E, Γ ⊢ ∀ᾱ.t ⇓ s ∀ᾱ.t
′

ANNOT-⇑
E, Γ ⊢ t ⇓ θ⇂E  t

′

E, Γ ⊢ (t : θ) ⇑ θ ⇂E  

(t′ : θ ⇂E )

ANNOT-⇓
E, Γ ⊢ t ⇓ (θ⇂E ⊔ s) t

′

E, Γ ⊢ (t : θ) ⇓ s (t′ : θ⇂E )

CLAUSE-⇑
p : ε τ̄1 τ̄2 ⊢ (β̄, E

′
, Γ′) E ∧ E

′
, Γ(γ̄.Γ′) ⊢ t ⇑ s t

′

β̄ # ftv(E, Γ, s↾E,E′) γ̄ # ftv(E, Γ, τ̄2, t)

E, Γ ⊢ (p : γ̄.ε τ̄1 τ̄2).t ⇑ s↾E,E′  p.t
′

CLAUSE-⇓
p : ε τ̄1 τ̄2 ⊢ (β̄, E

′
, Γ′) E ∧ E

′
, Γ(γ̄.Γ′) ⊢ t ⇓ s⇂E∧E′  t

′

β̄ # ftv(E, Γ, s) γ̄ # ftv(E, Γ, τ̄2, t, s)

E, Γ ⊢ (p : γ̄.ε τ̄1 τ̄2).t ⇓ s p.(t′ ↑E∧E′ s)

Figure 6. The shape inference systemW

to be a valid coercion,E  ∀γ̄.τ1 = τ2 must hold, which implies
that normalizingτ1 andτ2 produces the same result. BecauseW
normalizes all programmer-supplied types, a type coercionin the
source term would degenerate to a simple type annotation in the
transformed term.

Presentation Rules FALSE-⇑ and FALSE-⇓ state that the trans-
formation stops whenE is found to be (equivalent to)false. These
rules are not syntax-directed: they are applied in preference to all
other rules. This allows us to assume, elsewhere, thatE is satisfi-
able.

Rule VAR-⇑ looks up the shapes associated withx in the
environment. It produces the inferred shapes⇂E , thus satisfying
the invariant that the inferred shape is normalized with respect toE.
This normalization step corresponds to a type conversion: the type
of x, an instance ofs, is turned into an instance ofs⇂E . This must
be reflected in the transformed term by inserting an explicittype
coercion, so that the MLGX back-end knows what is going on. The
rule produces the term(x ↓E s), where(t ↓E γ̄.τ) is defined

as syntactic sugar for(t : ∃γ̄.(τ ⊲ τ ⇂E )), providedγ̄ # ftv(E)
holds. That is, for some value of the flexible type variablesγ̄, to
be inferred by MLGX, the typeτ is being converted toτ ⇂E . Rule
VAR-⇓ is analogous. The expected shapes′ is ignored.

Rule LAM -⇑ extracts the explicit type annotationθ that dec-
oratesx, and replaces it withθ ⇂E in the transformed term. Ac-
cordingly, the shape environmentΓ is extended with the binding
x : θ ⇂E , and the function’s inferred shape isθ ⇂E → s if t’s
inferred shape iss. Rule LAM -⇓ is analogous, but combines the
expected shapes with the information contained in the type anno-
tation. For instance, ifs is γ.γ → γ andθ is int , then the combi-
nation yieldss′ = int → int , so that the bindingx : int is added
to the environment and andt is checked with expected shapeint .

Following Peyton Joneset al., both APP-⇑ and APP-⇓ infer the
function’s shape and use this information tocheckthe argument’s
shape. In APP-⇓, the argument’s shapes1 is combined with the
shape⊥ → s, reflecting the fact that the application’s result shape
is known. As noted by Peyton Joneset al. [12, Section 4.6], these
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rules are not very “smart:” the shape inferred forid x, whereid
has shapeγ.γ → γ andx has shapeint , is⊥. Indeed, becausex is
examined in checking mode, the information thatx has shapeint
is discarded. The algorithm in§7 is designed specifically to address
this deficiency.

Rule LET-m is straightforward. The metavariablem stands for
one of ⇑ and ⇓. No generalization in the style of Hindley and
Milner takes place, because there is nothing to generalize:the only
free type variables in a shape are rigid type variables.

Rule FIX -⇑ exploits the type annotation carried by theµ⋆ con-
struct to examinet in checking mode. The subtlety is that the
polymorphic type annotation∃γ̄.∀ᾱ.τ is turned into two different
shapes. The shape inferred for the entire construct is (the normal-
ized form of)γ̄ᾱ.τ , a shape where the type variablesᾱ are bound.
This shape is also ascribed tox in the environment, so thatx can be
used at several different types within its own definition. However,
the shape that is expected oft is more precise: it is (the normal-
ized form of)γ̄.τ , a shape where the type variablesᾱ are exposed.
This makes sense only thanks to our convention thatµ⋆ binds ᾱ
within t—in other words, the type variables̄α are rigid within t.
FIX -⇓ is analogous, but combines the type annotation with the ex-
pected shapes.

Applications of data constructors could be treated like func-
tion applications. Instead, in CSTR-⇑, we adopt a different ap-
proach, which is reminiscent of Peyton Joneset al.’s “smart ap-
plication” rule APPN [12, Section 4.6]. The arguments are exam-
ined in inference mode, rather than in checking mode, yielding
shapess1, . . . , sn. The data constructor’s type scheme, viewed as
a shapes, is then unified with the shapes1 × . . . × sn → ⊥. This
yields an appropriate instance ofs, whose codomain is the desired
inferred shape. For instance, assuming thatSome has type scheme
∀α.α → option α andx has shapeint , this rule allows inferring
thatSome x has shapeoption int . Rule CSTR-⇓ is analogous to
APP-⇓. The shape operatorDi(·) extracts thei-th component of
the domain of its argument: its definition is analogous to that of
D(·).

Rules CASE-⇑ and CASE-⇓ are straightforward. The termt is
always examined in inference mode, yielding a shapes′. This shape
is passed down to CLAUSE-⇑ or CLAUSE-⇓, where it is exploited
to determine which new equations arise.

In FORALL-⇑, the rigid type variables̄α can occur free in the
shapes, so they are abstracted away in the inferred shapeᾱ.s.
In FORALL-⇓, the expected shapes may involve quantified type
variables̄γ, but we cannot guess how to match these up withᾱ, so
all we can do is passs down unchanged.

Rules CLAUSE-⇑ and CLAUSE-⇓ are rather similar to X-
CLAUSE in Figure 3. We do, however, introduce an important re-
striction. The new side condition̄γ # ftv(τ̄2) requires the (inferred)
shape of the scrutinee to befully explicitabout the generalized type
parameters: they cannot be (or contain) flexible type variables. As
explained in§4, this ensures that we have full knowledge ofE.

The first premise in CLAUSE-⇑ and CLAUSE-⇓ confronts the
patternp with the scrutinee’s shape to obtain new rigid type vari-
ablesβ̄, new equationsE′, and a newtypeenvironmentΓ′. The
flexible type variables̄γ can occur free inΓ′, so we abstract them
away, pointwise, to produce ashapeenvironment̄γ.Γ′.

The second premise in CLAUSE-⇑ and CLAUSE-⇓ examines the
sub-termt. The two rules exhibit subtly different formulations.

In CLAUSE-⇓, the expected shapes is normalized with respect
to E ∧E′, so as to maintain the invariant that the expected shape is
normalized with respect to the current equation system. As in rules
VAR-⇑ and VAR-⇓, this normalization step corresponds to a type
conversion: on the outside, the type of this branch appears to be
an instance ofs, but on the inside, it is an instance ofs⇂E∧E′ .
Again, this is reflected in the transformed term by insertingan

explicit type coercion:(t ↑E γ̄.τ) is defined as syntactic sugar
for (t : ∃γ̄.(τ ⇂E ⊲ τ )), providedγ̄ # ftv(E) holds.

In CLAUSE-⇑, no coercion is inserted: because no expected
shape is initially available, no normalization takes place. Instead,
t’s inferred shapes is prunedto produce an inferred shapes↾E,E′

for the clause. The need for pruning was discussed earlier (§5.3).
The main differences between Peyton Joneset al.’s original

type system andW are (i) our use of unification, implicit in the
least upper bound operator over shapes, which makes the algorithm
more accurate (unification was also present in Peyton Joneset al.’s
APPN); and (ii) our insistence on full knowledge of the equations
that arise atcase constructs and our use of pruning.

Every well-typed MLGI program can be turned into a program
that is well-typed with respect to the combination ofW and MLGX
by adding enough type annotations. We omit a formal statement.

Example Consider again theeval example of§1, whereµ is
replaced withµ⋆. Let us attack this term in inference mode. FIX -⇑
switches to checking mode for the sub-termλt. . . ., with expected
shapeterm α → α. LAM -⇓ determines thatt has shapeterm α
and checks thecase construct against shapeα. CASE-⇓ looks up
the environment and infers thatt has shapeterm α, which allows
inserting the annotation(t : term α) in the transformed term.
Every branch is then examined by CLAUSE-⇓, with knowledge that
the scrutinee has shapeterm α and that the branch has expected
shapeα. In the Lit branch, for instance, the equationα = int
becomes available, so the expected shapeα is normalized toint
upon entry, and the coercion(i : (int ⊲ α)) is inserted. The
variablei is then successfully checked against shapeint .

This explains how theeval example of§1 is automatically
transformed into the annotated version of§4. Then, the transformed
program is successfully submitted to MLGX type inference.

Soundness We now give a formal soundness statement forW .
The statement assumes that a derivation ofE, Γ ⊢ t : σ in MLGI is
given. Naturally, in practice, this derivation is not known: it only
exists in the programmer’s mind! Here, it is used as an oracle:
the assertion that a shapes is a sound approximation oft’s “true”
type is encoded by the statementE  s � σ. The assertion that
the annotations and coercions inserted by the algorithm aresound
is encoded by the statement that the transformed termt′ still has
typeσ in MLGI. Thus, Item 1 of Theorem 6.1 can be read:if W
is invoked in inference mode and supplied with sound assumptions,
then it produces a sound shape and inserts sound annotationsand
coercions.Item 2 makes a similar statement about checking mode.

Theorem 6.1 (Soundness)Let E, Γ ⊢ t : σ hold in MLGI. Let
E  Γ′ � Γ hold. Then,

1. If E, Γ′ ⊢ t ⇑ s t′ holds inW , thenE  s � σ holds and
E, Γ ⊢ t′ : σ holds in MLGI.

2. If E, Γ′ ⊢ t ⇓ s t′ holds inW , E  s � σ holds, ands is
normalized w.r.t.E, thenE, Γ ⊢ t′ : σ holds in MLGI. ⋄

Soundness comes at a price. It rests upon pruning, which de-
mands exact knowledge of the current equation system. This led to
requiring, in CLAUSE-⇑ and CLAUSE-⇓, that the (inferred) shape
of thecase scrutinee be fully explicit about the generalized type pa-
rameters. If one gave up soundness, one could design more liberal
versions of these rules where the shape of the scrutinee is allowed to
be incomplete, giving rise to a weaker equation system within the
clause. This route is followed by Peyton Joneset al. [12], whose
“wobbly unification” algorithm “may do less type refinement than
would be justified in an explicitly-typed program.” On the one hand,
because Peyton Joneset al.’s system is able to work with an under-
approximation of the current equation system, it accepts more pro-
grams; on the other hand, because it does not do any pruning, it
sometimes infers unsound shapes.
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Z-FALSE
false, Γ ⊢ t ⇓ s ⇑ s t

Z-VAR

(x : s
′) ∈ Γ

E, Γ ⊢ x ⇓ s ⇑ (s ⊔ s
′
⇂E ) (x ↓E s

′)

Z-LAM

s
′ = s ⊔ (θ ⇂E → ⊥)

E, Γ; x : D(s′) ⊢ t ⇓ C(s′) ⇑ s
′′
 t

′

E, Γ ⊢ λ(x : θ).t ⇓ s ⇑ (s′ ⊔ (⊥ → s
′′)) λ(x : θ⇂E ).t′

Z-APP

s
′ = s1 ⊔ (s2 → s)

E, Γ ⊢ t1 ⇓ s
′ ⇑ s

′

1  t
′

1 E, Γ ⊢ t2 ⇓ D(s′1) ⇑ s
′

2  t
′

2

E, Γ ⊢ (t1 : s1) (t2 : s2) ⇓ s ⇑ C(s′1 ⊔ (s′2 → ⊥)) (t′1 : s
′

1) (t′2 : s
′

2)

Z-LET

E, Γ ⊢ t1 ⇓ s1 ⇑ s
′

1  t
′

1 E, Γ; x : s
′

1 ⊢ t2 ⇓ s ⇑ s2  t
′

2

E, Γ ⊢ let x = (t1 : s1) in t2 ⇓ s ⇑ s2  letx = (t′1 : s
′

1) in t
′

2

Z-FIX
ᾱ # ftv(E, Γ, s)

E, Γ; x : (γ̄ᾱ.τ ⇂E ⊔ s) ⊢ t ⇓ (γ̄.τ ⇂E ⊔ s) ⇑ s
′′
 t

′

E, Γ ⊢ µ
⋆(x : ∃γ̄.∀ᾱ.τ).t ⇓ s ⇑ ᾱ.s

′′
 µ

⋆(x : ∃γ̄.∀ᾱ.τ ⇂E ).t′

Z-CASE

E, Γ ⊢ t ⇓ s
′ ⇑ s

′′
 t

′

∀i E, Γ ⊢ (pi : s
′′).ti ⇓ s ⇑ si pi.t

′

i

E, Γ ⊢ case (t : s
′) of p1.t1 . . . pn.tn ⇓ s

⇑ ⊔isi  case (t′ : s
′′) of p1.t

′

1 . . . pn.t
′

n

Z-FORALL

E, Γ ⊢ t ⇓ s ⇑ s
′
 t

′
ᾱ # ftv(Γ, E, s)

E, Γ ⊢ ∀ᾱ.t ⇓ s ⇑ ᾱ.s
′
 ∀ᾱ.t

′

Z-ANNOT

E, Γ ⊢ t ⇓ (θ ⇂E ⊔ s) ⇑ s
′′
 t

′

E, Γ ⊢ (t : θ) ⇓ s ⇑ s
′′
 (t′ : θ ⇂E )

Z-COERCE

E, Γ ⊢ t ⇓ s ⇑ s
′
 t

′

E, Γ ⊢ (t : κ) ⇓ s ⇑ s
′
 t

′

Z-CLAUSE

p : ε τ̄1 τ̄2 ⊢ (β̄, E
′
, Γ′) E ∧ E

′
, Γ(γ̄.Γ′) ⊢ t ⇓ s⇂E∧E′ ⇑ s

′
 t

′

s
′′ = s

′
↾E,E′ ⊔ s β̄ # ftv(E, Γ, s

′′) γ̄ # ftv(E, Γ, τ̄2, t, s)

E, Γ ⊢ (p : γ̄.ε τ̄1 τ̄2).t ⇓ s ⇑ s
′′
 p.(t′ ↑E∧E′ s

′′)

Figure 7. The shape inference systemZ

7. The shape inference systemZ
AlthoughW successfully turns theeval example of§1 into a well-
typed MLGX term, it suffers from a severe shortcoming in its treat-
ment of application. As noted in§6, it infers the function’s shape
and uses this information to examine the argument inchecking
mode. Our rule CSTR-⇑ and Peyton Joneset al.’s APPN [12] make
an opposite choice and examine the arguments ininferencemode.
In fact, either choice isad hoc. Ideally, shape information should
be allowed to flow from function to argumentand vice versa. We
now describe a shape inference system, calledZ, that subsumesW
and is designed to allow propagation both ways.

Example 7.1The following term illustratesW ’s shortcoming. We
assume that the data constructorI has typety int , so that the
equationα = int is available inside thecase construct.

µ⋆(double : ∀α.ty α → list α → list α).λt.λl.
map (λx.case t of I → x + x) l

Three explicit coercions are necessary to turn this into a well-typed
MLGX term. At both occurrences ofx, α must be converted to
int . Furthermore,x + x must be coerced fromint back toα, so as
to satisfy the programmer-supplied annotation, which requires the
anonymous function’s return type to beα.

However,W is unable to insert any coercion. The term con-
tains a double application ofmap. W attacks the outermost ap-
plication in checking mode with expected typelist α. By APP-⇓,
this requires firstinferring a shape for the innermost application
map (λx. . . .), thencheckingthe argumentl. Thus, APP-⇑ is ap-
plied to the innermost application. The shape inferred formap is
γ1γ2.(γ1 → γ2) → list γ1 → list γ2. This leads to check-
ing that λx. . . . has shapeγ1γ2.γ1 → γ2. This imprecise shape
does not provide any information about the type ofx or about the
anonymous function’s return type. As a consequence,W is unable
to insert any coercion into the function.

In this example, the “right” thing to do at the outermost appli-
cation is to first examinel in inferencemode, yielding the shape
list α, and to exploit this information to examine the innermost ap-
plication incheckingmode with expected shapelist α → list α.
The “right” thing to do at the innermost application is to examine
map in inferencemode, since its type is known, and to exploit this
information to examineλx. . . . in checkingmode, with expected
shapeα → α. This shows that committing to either left-to-right or
right-to-left propagation is a bad idea. ⋄

To avoid such a commitment, we suggest dealing with applica-
tion (and, in general, with binary constructs) in asymmetricway.
This becomes possible if shape inference is broken up into two
passes. The idea is, roughly speaking, as follows. During a first
pass, both function and argument are examined ininferencemode.
During a second pass, both are examined incheckingmode. The
shape inferred for the function during the first pass is used during
the second pass to predict the argument’s expected type, andvice
versa. This allows information to propagate both ways.

Another, independent idea is to abandon the distinction between
inference and checking modes altogether. Indeed, when in infer-
ence mode, why refuse to take advantage of the information of-
fered by an expected shape? Conversely, when in checking mode,
why refuse to produce an inferred shape which potentially could
be more precise than the initially expected shape? Our answer is
to perform both checking and inference at once. Judgements in Z
take the formE, Γ ⊢ t ⇓ s ⇑ s′  t′, where the inferred shapes′,
an output parameter, is always at least as precise as the expected
shapes, an input parameter—that is,s � s′ holds. Thus,Z is bidi-
rectional, likeW , but runsin both modes simultaneously. This is
reminiscent ofcolored local type inference[9].

Our rough initial statement that the first pass runs in inference
mode, while the second pass runs in checking mode, can now be
made more precise. Both passes are in fact identical—that is, they
are defined by the exact same set of rules—and both simultaneously
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perform shape checking and inference. The first pass annotates the
immediate sub-terms of all application nodes with their inferred
shapes. The second pass then exploits these annotations to infer
more accurate shapes.

Thus,Z really consists of a single pass than can beiterated
as many times as desired. In practice, iterating at least twice is
required for information to be propagated from function to argu-
ment, and vice versa, at application nodes. Iterating more than
twice might allow accepting more programs, but might also com-
promise the algorithm’s perceived simplicity and predictability.

Presentation The rules that defineZ are shown in Figure 7. Rule
Z-APPexpects the functiont1 and the argumentt2 to carry explicit
type annotationss1 ands2. If, in fact, there is no such annotation,
then⊥ is used. In practice, there typically is no annotation before
the first pass. The inferred shapess′1 ands′2 are recorded as type
annotations, to be exploited during the next pass, if there is one.

By assumption, there are no coercions in the source term. Rule
Z-COERCEstates that each pass erases the coercions inserted dur-
ing the previous pass. Indeed, since each new pass has bettershape
information than the previous pass, it is able to produce more accu-
rate coercions.

We omit a detailed explanation of the other rules. In most
cases, the inference and checking variants of every rule ofW are
superimposed to produce a rule that does checking and inference
simultaneously.

Example 7.2Consider thedouble example again:

µ⋆(double : ∀α.ty α → list α → list α).λt.λl.
map (λx.case t of I → x + x) l

The first pass of algorithmZ attacks the outermost application with
expected shapelist α. First, it examines the left-hand side, that is,
the innermost application, with expected shape⊥ → list α. This
leads to examiningmap with expected shape⊥ → ⊥ → list α.
Rule Z-VAR combines this withmap’s known shape, yielding the
inferred shapeγ.(γ → α) → list γ → list α. The sub-term
map is annotated with this shape. Then, the anonymous function is
entered, with expected shapeγ.γ → α. Thecase construct is ex-
amined with expected shapeα, which leads Z-CLAUSE to inserting
a coercion ofint back toα around the clause. The outcome of the
first pass is the term

µ⋆(double : ∀α.ty α → list α → list α).λt.λl.
(

(map : γ.(γ → α) → list γ → list α)
((λx.case t of I → (x + x : int ⊲ α)) : γ.γ → α)
: γ.list γ → list α

)

(l : list α)

In the second pass, at the outermost application, the function’s
inferred shapeγ.list γ → list α is combined with the argument’s
inferred shapelist α. This leads to examining the innermost ap-
plication with expected shapelist α → list α. At the innermost
application, this information allows determining thatmap is being
used at type(α → α) → list α → list α, which leads to exam-
ining the anonymous functionλx. . . . with expected shapeα → α.
Z ’s second pass is now able to determine thatx has shapeα, which
allows Z-VAR to insert coercions fromα to int at both uses ofx.
The term produced by the second pass is:

µ⋆(double : ∀α.ty α → list α → list α).λt.λl.
(

(map : (α → α) → list α → list α)
((λx.case t of

I → ((x : α ⊲ int) + (x : α ⊲ int) : int ⊲ α))
: α → α)

: list α → list α
)

(l : list α)

It is well-typed in MLGX, which means that this definition of
double is accepted by the stratified type inference system that
combinesZ and MLGX. ⋄

Statements Just likeW , Z enjoys a soundness theorem, which
we do not state here. Similarly, every well-typed MLGI program
can be turned into a program that is well-typed with respect to the
combination ofZ and MLGX by adding enough type annotations.
The two theorems below state that the first iteration ofZ alone
yields shape information that is more precise than that offered by
W , and that each further iteration ofZ refines this information.

Theorem 7.3 (Z subsumesW ) If E, Γ ⊢ t ⇑ s  t′ holds in
W , then there exist a shapes′ and a termt′′ such thatE, Γ ⊢ t ⇓
⊥ ⇑ s′  t′′ holds inZ ands � s′. ⋄

Theorem 7.4 (Iteration) E, Γ ⊢ t ⇓ ⊥ ⇑ s t′ andE, Γ ⊢ t′ ⇓
⊥ ⇑ s′  t′′ implys � s′. ⋄

8. Conclusion
We have introducedstratified type inference, which separates tradi-
tional type inference in the style of Hindley and Milner fromlocal
propagation of explicit type information, and illustratedthis idea
in the case of type inference for generalized algebraic datatypes.
An analogous idea is developed by Rémy [20] in the case of type
inference for arbitrary-rank predicative polymorphism.

Our bottom stratum, MLGX, extends Milner and Mycroft’s
type system in a minimal way so as to accommodate generalized
algebraic data types. Our top strata,W andZ, are defined using a
common toolbox of operations onshapes, which seem particularly
well-suited for expressingapproximateknowledge about types.

A prototype implementation of our proposal, written by the
second author, is available and can be used online [19].

We improve upon Simonet and Pottier’s work [23] by uniformly
dealing with ordinary and generalized algebraic data types, by
accepting arbitrary “lexically scoped” type annotations,and by
avoiding implication constraints entirely. We improve upon Peyton
Joneset al.’s [12] by offering a more modular presentation and by
performing more accurate shape inference.

One could further enhance our shape inference algorithm,Z.
For instance,Z’s judgements mention both an expected shape and
an inferred shape. For symmetry, one could also use both agiven
environment(an input parameter) and arequested environment(an
output parameter). That would help deal withlet constructs in a
more precise way. Second, it should sometimes be possible toinfer
the shape of acase construct byreconciling the shapes of the
various branches, even when these are incompatible. This involves
examining the equation systems available within each branch and
performing a form of anti-unification.

Our systematic use of normalization, which follows Peyton
Joneset al., is not always satisfactory. Assume that the equation
α = int is available. When one writes(x : α), the shape inference
systemsW andZ behave exactly as if one had written(x : int).
Some valuable information is discarded: perhaps the programmer
really intended to tell the system thatx is being used at typeα,
not int . This behavior makes the meaning of a type annotation
dependent uponE. As a result, moving a type annotation into or out
of a case construct can change its meaning! Yet, it is not entirely
clear how to avoid this shortcoming without sacrificing accuracy.
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