Stratified type inference for generalized algebraic data tpes

Francois Pottier
INRIA

Yann Régis-Gianas

{Francois.Pottier, Yann.Regis-Gianas}@inria.fr

Abstract

We offer a solution to the type inference problem for an esitem

of Hindley and Milner's type system with generalized alggor
data types. Our approach is in tvgtrata The bottom stratum is
a core language that marries tyipéerencein the style of Hindley
and Milner with typecheckingfor generalized algebraic data types.
This results in an extremely simple specification, wherg con-
structs must carry an explicit type annotation and type emigns
must be made explicit. The top stratum consists of (two wasiaf)

an independerghape inferencalgorithm. This algorithm accepts
a source term that contains some explicit type informatiwopa-
gates this information in a local, predictable way, and poas a
new source term that carries more explicit type informatlbnan
be viewed as a preprocessor that helps produce some of the typ
annotations required by the bottom stratum. It is proseandin
the sense that it never inserts annotations that couldadiotrthe
type derivation that the programmer has in mind.

Categories and Subject DescriptorsD.3.3 [Programming Lan-
guage§ Language Constructs and Features—Data types and struc-
tures; Polymorphism; F.3.3.fgics and Meanings of Prograis
Studies of Program Constructs—Type structure

1. Introduction
1.1 Generalized algebraic data types

Generalized algebraic data typese a simple generalization of
the algebraic data types of ML and Haskell. They are strongly
reminiscent of thenductive typeghat have long existed in the
Calculus of Inductive Constructions [10, 27]. In the progming
languages area, Crary, Weirich and Morrisett [3] have atqrdane
particular generalized algebraic data type, knowrRaso encode

a correspondence between compile-time types and run-jipe t
representations. More recently, generalized algebraia tiges

of type a. For instance, Peyton Jones, Washburn, and Weirich [12]
defineterm by associating the following data constructors with it:

Lit :: int — term int
Inc :: term int — term int
1sZ :: term int — term bool
If :: Ya.term bool — term o — term o — term «
Pair :: YaS.term o — term 3 — term (a x (3)
Fst :: Yaf.term (o x 3) — term «
Snd :: Vaf.term (o x 3) — term B

This definition allows writing an evaluator that does notfpen
any tagging or untagging of object-level values:

p(eval : Ya.term o — o). At.
caset of

| Lit i —
| Inct — eval t + 1
| IsZ t — eval t =0
| If bt e — if eval b then eval t else eval e
| Pair a b — (eval a, eval b)
| Fst t — fst (eval t)
| Snd t — snd (eval t)

This program is well-typed in an extension of Milner and Myft's
type system [7] with generalized algebraic data types, agh
the type system MLGI defined if3. A key mechanism is the
introduction, atcase constructs, of type equations into the typing
context. For instance, in the first branch @fal, the variablet,
which has typeerm «, is known to match the patteii¢ 4, which,
according to the declaration éfit, has typelerm int. As a result,
the equationy = int must hold within that branch. This equation
is added to the typing context and exploited by the typeobetk
prove that the outcome of this branch, that is, the integealbke,
has typec, as required byewval’s signature. Nontrivial equations
are also exploited in thénc, IsZ, and Pair cases.

have been put to a large variety of uses, under diverse names,

by many authors, among whom Cheney and Hinze [1, 2]eiXi
al. [28], Hinze [5], Sheard [21], Sheard and Pasalic [22], Potti
and Gauthier [14], and Pottier and Régis-Gianas [16].

A typical use of generalized algebraic data types is writing
safe evaluator for a simply-typed object language that duds
require values to carry run-time tags. The algebraic datetyrm
of abstract syntax trees is given a type parametsns that values of
type term « are abstract syntax trees for object-level expressions

1.2 Type inference

The papers cited above explain at length why generalizezbeddc
data types are useful. Here, we take this fact for grantedams
on thetype inferencgroblem. It is well-known that, provided re-
cursive definitions carry an explicit type annotation, tygference
for Milner and Mycroft's type system reduces to first-ordeifica-
tion under a mixed prefix, that is, to satisfiability of forraslmade
up of equations between finite trees, conjunction, and exiist
and universal quantification. Now, what happens when géneda
algebraic data types are thrown into the mix?

In short, “things become more difficult.” Indeed, when anaqu
tion such asy = int is available, a type inference system is faced

with choices. For instance, the integer variablean be assigned

type int or type«. Outside of thiscase branch,a andnt cannot
be considered equal, so this choice becomes observable ddlow

we resolve it without resorting to combinatorial search?ttier-

[copyright notice will appear here]

more, how do we know that the equation= int is available?

2005/7/18

That is, how do we determine which equations are availablben
first place? Inferring which equations are introduced atsa con-
struct requires inferring the type of the scrutinee. Thofgrence
of types and inference of equation systems are interdepénde

1.3 Related work

Simonet and Pottier [23] show that type inference FivIG (X)),

an extension ofIM(X) [8] with generalized algebraic data types,
can be reduced to satisfiability of formulas in the first-ortheory

of equality of finite trees, that is, of formulas made up of &qu
tions between finite trees, conjunction, existential anivarsal
quantification, andmplication Unfortunately, this problem is in-
tractable [26]. Simonet and Pottier suggest relyinggplicit type
annotationsn order to produce formulas in a less expressive, more
tractable theory, but leave that as future work.

Stuckey and Sulzmann [25, 24] also reduce type inference to

solving constraints that involve implications. They thezvelop
incomplete constraint solvers. Unfortunately, this apploseems
expensive, because solving can involve combinatorialcbeand
makes it hard to understand why a program is accepted otedjec

Peyton Jones, Washburn, and Weirich [12] describe a prgposa
implemented in version 6.4 of the Glasgow Haskell compiler,
which appears to work well in practice. They also suggest ex-
ploiting programmer-supplied type annotations. They arthat,
in the definition of eval, it is “clear” that¢ has typeterm «,
which implies that the equatiom = int becomes available in the
Lit branch. It is similarly “clear” that the outcome of this bcin
should have typer. Instead of reasoning with implications, Peyton
Joneset al.apply the substitutiofx — int] to the expected type,
so that the expressianis checked against the expected tyipe,
with success.

Although Peyton Jonest al’s system aims at simplicity, its
definition is quite involved. To ensure thaype refinement [...] is
insensitive to the order in which the inference algorithaverses
the tre€’; they distinguishwobbly typeswhich are inferred via first-
order unification, andgid types (our terminology), which are also
inferred, but in a simpler and hopefully mgreedictableway: rigid
types are found in explicit type annotations and propagagpeand
down the tree according to a predetermined set of rules.

Wobbly types are identified by a dedicated type constructor,
written[s]. This type constructor has no computational meaning. It
sometimes has to be erased or pushed out of the way: for aestan
is converted tg7] — at application nodes. Its
behavior is sometimes surprising: for instance, the aafitio of a
type substitution to a wobbly typgl is defined to berlitself. These
and other aspects make it difficult to understand the deemimga
of “wobbliness” and to predict when a type has to be wobbly.

1.4 Our approach

In short, we believe that the ideas behind “wobbly types”gred,
but that they could and should be better presented and agplai
In particular, one should clearly separate two subsystems:

e one that performdraditional type inferencen the style of
Hindley and Milner, and enjoys principal typesproperty, so
that it produces types that are indeedsensitive to the order
in which the inference algorithm traverses the ttemd

¢ one that perform#ocal type inferencethat is,ad hocpropaga-
tion of explicit type annotations, either in Peyton Joreal’s
bidirectional style, or in other ways.

This separation makes the presentation of the system matalaro
and more compelling. Furthermore, it allows identifyingoittes

and issues in the design of the local type inference compdhan
were not explicit in Peyton Jonex al.s paper. In particular, we

highlight and discuss soundnesgssue that was not addressed by
Peyton Jonest al.

We first set the stage by introducing a type system that egtend
Milner and Mycroft's type system with generalized algebrdata
types €2 and §3). This type system defines the programs that
we deem sound and would ultimately like to accept. It does not
require any explicit type annotations (except, followirgromon
practice, at recursive definitions), because it is not maaatlow
type inference. We refer to it as MLGI (readvi. with generalized
algebraic data types implicit style”).

Then §4), we introduce a type system that restricts MLGI by
requiring explicit type annotations wherever generaliakgtbraic
data types are involved. More specifically, type equaticans loe
introducedinto the typing context, at aase construct, only if
the scrutinee carries an explicit type annotation. Furtioee, type
equations can bexploitedonly via explicittype coercionsWe re-
fer to this type system as MLGX (readIL with generalized alge-
braic data types inglicit style”). The benefit of these restrictions
is that MLGX enjoys traditional type inference in the styfaHind-
ley and Milner: that is, type inference for MLGX can be reddite
first-order unification under a mixed prefix.

Programming directly in MLGX would be quite painful, be-
cause of the many explicit type annotations that MLGX regglir
To alleviate this burden, we next desitptal type inferenceal-
gorithms that accept a program that contains some expjipé t
annotations, propagates this information in a predictalalg, and
produces a new program that carries more type annotatideser
algorithms can be viewed as preprocessors that help preduce
of the type annotations required by MLGX.

Our local type inference algorithms propagateapes(§5).
Roughly speaking, shapes are types that contain holes.e\aml|
pears where a wobbly type would appear in Peyton Jehes’s
proposal. This formalizes the intuition that the types itiesthe
wobbly boxes” should be invisible to the local type inferemom-
ponent. Our shapes have pleasant algebraic propertieseand s
particularly well-suited for expressirigcompletéknowledge about
types in (variants of) Hindley and Milner’s type system.

We present two local type inference (gnape inferengealgo-
rithms. The former §6) closely follows Peyton Jone al’s bidi-
rectional propagation technique. The latt§T)(enhances the for-
mer by performing checking and inferensienultaneouslyand by
supportingiteratedshape inference. These features lead, in partic-
ular, to a more accurate and les$ hoctreatment of application.

All proofs are omitted. Some can be found in an extended
version of this paper [15].

2. Preliminary definitions

Algebraic data type constructorsWe assume that a number of
algebraic data type constructors, writtenare given. Every alge-
braic data type constructaeris parameterized ovewo groups of
type parameters: that is, applications=ofire of the forme 71 72,
where7; and7, are vectors of types. We refer to parameters in the
first group asordinary and to parameters in the second group as
generalizedWhen the second group is emptyis said to be an or-
dinary algebraic data type; when it is nonemptys a generalized
algebraic data type. For instance, the algebraic data typstaic-

tor term of §1 has one generalized type parameter and no ordinary
type parameters.

Data constructors We assume that every algebraic data type con-
structore comes with a number of data constructors, writfén
Every data constructoK is assigned a closed type scheme by a
declaration of the form

K :Vaprm X...xX1 —€arT,

2005/7/18

Types 7=
Type variable «@
Function type |7 —7
Algebraic data type leTT
Type schemes o ::=Va.r
Simple type annotations 0 ::= 3y.7
Polymorphic type annotations ¢ ::= 35.0
Type coercions k ::= 33.(t > 7)
Terms ¢ =
Variable x
Function Az :0).t
Function application tt
Local definition letx = tint
Fixpoint u(z).t
Data constructor application Kt...t
Case analysis casetof ¢
Type variable introduction Va.t
Type annotation (t:0)
Type coercion (t: k)
Clauses c:=p.t
Patterns p:

Equation systems FE ::
Constraints C' ::
Equations and conjunction
Existential quantification
Universal quantification

true|T=7|CAC
| 37.C
| Va.C

Figure 1. Types, terms, constraints

wherea#3 andftv(7) C . Here and elsewhere, stands for a
vector of distinct type variables. The length of the vegids the
number of type variablemtroduced byK . Whene is an ordinary
algebraic data type constructor, it is zero. We wkte< o wheno
is an instance of the type scheme assignefd to

Types A number of syntactic categories that are used throughout
the paper are defined in Figure 1.t¥per is a type variabley,

a function typer; — 72, or an application of an algebraic data
type constructoe to vectors of type parametefs and7.. A type
schemeva.r binds a vecto of type variables within a type.
Every type of the fornja — 7] is aninstanceof the type scheme
Va.r. We writec < 7 whenr is an instance of. Similarly, a
simple type annotatiofiy.T bindsy within a typer; apolymorphic
type annotationdy.o binds 4 within a type schemer; and a
coercion3y.(t1 > 72) binds#¥ within a pair of types(r1 > 72).
The instance relation8 < 7, ¢ < o, andsk =< (11 > 72) are
defined accordingly.

Terms In every\-abstraction, the bound variablecarries a sim-
ple type annotatiofl. The unannotated abstractiam.t can be de-
fined as syntactic sugar for(z : 3v.v).t, since every type is an
instance of the uninformative annotatigny.~. Similarly, in every
fixpoint, the bound variable carries a polymorphic type annota-
tion ¢, so as to avoid the difficulties associated with polymorphic
recursion in the absence of any annotation [4]. Wh&d.~, the
type ofz is inferred, but must be monomorphic.

Every case construct involves a vector of clausesA clauseis
a pair of apatternof the formK 5 z and of a termt, whereg and
z are bound withirt. For simplicity, we deal with shallow patterns
only. The length ofg must match the number of type variables
introduced byK'.

In the construct/a.t, the type variables: are bound withirt.
They are interpreted as universally bound, which means tthat
should be well-typed under every instantiation of these tyari-
ables. In practice, one should also introduce the dual natst

Ja.t, where the type variables are existentially bound, so that
must be well-typed under some instantiation of them. Irstéa
this paper, we build existential quantifiers into type aatiohsf
and¢ and type coercions. This simplifies our presentation, be-
cause every type variable that appears free inside a typeation

or type coercion can be assumed toriggd, that is, to be univer-
sally quantified somewhere up in the term.

Equation systems and constraintsAn equation systent’ is a
(possibly empty) conjunction of type equations. Equatigsteams
are used in typing judgments to keep track of the type equstio
introduced atase constructsConstraintsencode unification prob-
lems, where “unification” means first-order unification unde
mixed prefix. Constraints are used to express type inferprate
lems. Satisfiability entailment andequivalenceof constraints are
defined via a standard interpretation in the Herbrand usé;ehat
is, in the finite tree model. We writ€; I C3 whenC; entails
C>. We also defineC’ I 33.(m1 > 12) as syntactic sugar for
C I+ V3.(r1 = 72). Intuitively, C' I x means that, according
to the constraint’, all instances of the coercionare valid. This is
further explained ir§3.

3. Anideal type system

MLGI is an extension of Milner and Mycroft's type system with
explicit type annotations and generalized algebraic dgiast It

is the “ideal” type system that we are interested in. MLGIxs e
pressive, but type inference for it is not easy. As a resust]/ater
develop type systems where some type annotations are noay)dat
and prove them sound with respect to MLGI.

Presentation MLGI’s typing judgments are of the forn, T" +

t : o, whereFE is an equation systenh, assigns type schemes to
variables,t is a term, andr is a type scheme. The type system is
defined in Figure 2.

The presence of generalized algebraic data types in thadaeg
requires keeping track of the equations that have been\dised
at case constructs. This is the role dF. This equation system
is augmented by rule IQUSE and is exploited by rules @uv
and @ERCE which perform implicit and explicit type coercions,
respectively.

Conv allows replacing a type; with another typer» at any
time, providedE I 71 72 holds, that is, provided” guaran-
tees that this conversion is valid. This rule is not syntaraied.
COERCESserves the same purpose, but is syntax-directed: the spe-
cial construct(t : x) is interpreted as an explicit request for a co-
ercion. In the simplest case, is of the form (7 > 7). In that
case, the second premise vanishes, and the third premisenbsc
E I+ 7 = 12, S0 COERCEand GNV have identical premises. In
the general case, the structurergfand is only partially speci-
fied by the programmer, that is,is of the form35.(7{ > 73). This
is interpreted as a request to convert betwegandr;, for some
value of the “flexible” type variables. To ensure soundnessl]
such coercions should be valid, which is whyll- « is defined in
that case a&' I+ Vy.1{ = 75.

Explicit type coercions really are of no use in MLGI, since
implicit coercions are also allowed. They become esseittial
MLGX (§4), where ®NvV is suppressed.

Rule Q.AUSE is invoked by rule @sE to typecheck a clause
of the formp.t. The patterrp binds variables and type variables
within the termt, and also introduces new equations. To reflect
this, CLAUSE's first premise confrontg with the typer; of the
scrutinee, giving rise to new type variablgs equationsE’, and
variable bindingsl”, which are used in the second premise to
typecheck the term ~

Rule RAT confronts a patteri 3 x1 . .. 2, with the type of the
scrutinee. Obviously, this type must be of the farm 72, where

2005/7/18

APP

VAR LAM ETEFt 71— T LET
(x:0)el ET;z:n)bt:m 0=<mr ETlkFta:m ETkrti:0 ET;z:0)bFte:T
El'tz:o ETEFXNz:0)t:11 — 72 ETkHtits:m E.I'tletx = t1inte : 7
CSTR CASE
Fix K1 X...XTh > €T1 T2 ETFt: 7

E Tiz:o)Ft:o s=2o
ETFulx:¢)t:0o

Vi E,I'Ft,:n
ETFKti...th :eT1 T2

Vi E,'kFci:m — 1
E,I'Fcasetofci...cn: T

FORALL ANNOT COERCE
ETkHt:7 at#fev(E,T) ETkHt:7 0=<T7 ETkHt:m k= (11> 72) El*k
E,T'FVat:VYar ETkH(t:0):7 ETE(t:K):7
Conv GEN INST
ETkHt:7m ElF7=m ETkRt:T a# fev(E,T,t) ETkrt:o oc=T
ETkHt:m ET'Ft:YVar ETkFt:T
CLAUSE B
p:eflfQI—(ﬁ,E/,F/) E/\E/,Frll—t:’rg PaT

B# ftv(E,T,)
ETlkFpt:ceTiTe— T

B# ftv(71, 72)

KfBxi...xn:emnk (B,2=7(21:71;...;%n :Tn))

K<XVBTL X ...X Ty —en T

Figure 2. ML with generalized algebraic data typedimplicit style (MLGI)

¢ is the algebraic data type constructor tliatis associated with.
The rule is simple but subtle: the main point is that ordinang
generalized type parameters are dealt with in differentswagt
the type scheme associated withbe of the form

K Vaf.*X...xX*x —cart

(Note that we choose the type variabfeéshat appear in this type
scheme to be the same as the type variablethat appear in
the pattern. Furthermore, here and elsewhere in the papay e
occurrence of stands for a distinct anonymous metavariable. We
exploit this convention to avoid assigning explicit naneeitities
that we are not interested in.)APs first premise is somewhat
different:
K=<VBT X ...XTh —enT

That is, we take an instance of the type scheme associatbd wit
K by substituting the actual ordinary type parametardor the
formal ordinary type parameters. (This leaves the generalized
type parameters unaffected, since their free type variables form
a subset of3.) This substitution determines the types..., 7.
We are now ready to reachPs conclusion: the body of the clause
guarded by this pattern should be typechecked in the scotesof
rigid type variablesg, under the assumption that the equations
72 = 7 hold, and under the assumption that everyhas typer;.
The equations, = 7 are obtained by confronting the generalized
type parameters found in the scrutinee’s type, namglwith those
found in the definition ofi, namely7. ~

When ¢ is an ordinary algebraic data typg,is empty, and
there are no generalized type parameters. No new equapipesia
In that case, CAUSE degenerates to the standard rule for pattern
matching in Hindley and Milner’s type system.

Soundness A closed term, oprogram is well-typed if it admits

a type under an empty equation system and in the empty environ
ment. Programs can be given a call-by-name or call-by-vaéie
mantics using operational or denotational techniques;defines
what it means for a program to “go wrong.”

Claim 3.1 (Soundness for MLGI) Well-typed MLGI programs do
not go wrong. o

4. Atype system with explicit annotations

We now define a type system, known as MLGX, where the diffi-
culties associated with generalized algebraic data tyesveided
thanks to mandatory type annotations. The idea is simpist, Fie
forbid implicit type conversions, so the only way of expiog E is
now via explicit coercions. Second, we require evearse scrutinee

to carry a type annotation, so that it becomes easy to deterni

In short, MLGX could be described as a type system that nwarrie
traditionaltype inferencéor Hindley and Milner’s type system and
type checkindor generalized algebraic data types.

Presentation MLGX is defined in Figure 3. Most of the rules are
shared with MLGI and are not repeated.

As announced earlier, implicit type conversions are disedid
in MLGX. That s, rule G®NvV is suppressed, so thabDERCEmMust
be used instead. We maintain the invariant thatequation system
is rigid, that is, all of the type variables that appear wittiincan
be interpreted as universally bound. As a result, in termtyoé
inference, ®ERCES last premiseF I x, now meangheck that
E implies the validity ofk, rather tharsolve for the flexible type
variables withinE' so thatFE implies the validity of. This is the
key idea that drives the design of MLGX.

We do still allow implicit conversions in one specific sitiaat,
namely, when¥ is false. Indeed, rule X-ELSE states that, under
such an inconsistent assumption, every temdmits every type-.
This is convenient, because it allows the local type infeeesgo-
rithms described later in the paper to give up as soon thettiiaid
E'is inconsistent. Although X-4LSE is not a syntax-directed rule,
its presence does not give rise to combinatorial choices.

Rule Cask is suppressed and replaced with Xa€E. In the
new rule, the termt must carry an explicit type annotatiéh The
first premise passe$ on to ANNOT, thus checking that the type
ascribed ta is indeed an instance é6f The second premise passes
6 on to X-CLAUSE, where it is exploited to determine which new
equations arise inside the clause.

We define the unannotatedse constructcasetof ¢ ...c, as
syntactic sugar fokase (¢ : 39192.6 91 J2) of ci...cn, Where
the appropriate type constructois determined by examining the

2005/7/18

X-CLAUSE B
piem b (B,E,T) EANE T Ft:m
B# ftv(E, T, 12) F# ftv(E, T, t, 12)

X-CAsE
X-FALSE ETH(t:0):n
fv(t) C dom(T") Vi E,T'F(pi:0)ti:1 — T2
false,T'Ft:0 E,T'Fcase(t:0)of piti...pntn: T2

ETF(p:3ex M)t efix— T

All of the rules that define MLGI, except@\v, CASE, and Q. AUSE, repeated here.

Figure 3. ML with generalized algebraic data types ipécit style (MLGX)

patterns that guard the clausgs . . ¢,,. Thanks to this convention,
legacy programs that do not exploit generalized algebwtie types
need not be annotated at all: that is, MLGX is a conservative
extension of ML.

Rule Q_.ausE is suppressed and replaced with XATSE. The
key change is in the first premise. InL&JSE, the generalized
type parameters,, found in the type of the scrutineare used to
determine which new equations appear. In terms of typeenfas,
this is problematic, since the typés are initially unknown and
have to be inferred. For this reason, in X-AUSE, these types are
disregarded—which we emphasize by writingnstead of7 in
the rule’s conclusion. Instead, the generalized type petarsr,,
found in the explicit type annotatipare used to determine which
new equations appear. In terms of type inference, this islgam
guessing is involved.

The typesr; contain occurrences of the type variabiesAs a
result, so does the equation systéin These type variables stand
for yet unknown types, so they must be considered abstraehwh
typechecking, thatis, in the second premise. This is guaranteed by
the last side condition. Thus, the invariant that the equagiystem
is rigid is maintained in the second premise.

Determining which new equations arise by relying on a pdgsib
incomplete type annotation, as in MLGX, instead of on theialct
type of the scrutinee, as in MLGI, entails a loss of informatiln-
deed7 is a possibly strict instance afy.7;, so the new equations
obtained by relying om; are implied by, but possibly weaker than,
those that would be obtained by relying®n As a result, the equa-
tions available in an MLGX type derivation are in general iera
than those available in an analogous MLGI type derivatiamtt@
other hand, when the type annotations are sufficiently fipethiat
is, wheny # ftv(73) holds, then the vectors and7; coincide, so
the equations available in MLGX are identical to those aaé in
MLGI.

Soundness and completenesét is straightforward to show that
every well-typed MLGX program is a well-typed MLGI program.
In combination with Claim 3.1, this implies that MLGX is saijn
that is, well-typed MLGX programs do not go wrong.

o holds in
<o

Theorem 4.1 (Soundness for MLGX)If E,T + ¢ :
MLGX, then it holds in MLGI as well.

Itis also clear that every well-typed MLGI program can benad
into a well-typed MLGX program by adding enough type annota-
tions. In short, it is sufficient to replace every implicips conver-
sion with an explicit type coercion, to add an explicit typea-
tation to everycase expression over a generalized algebraic data
type, and to explicitly bind the type variables that appeside
these new annotations.

Theorem 4.2 (Completeness with assistance for MLGX) De-
fine equivalence up to annotatignsritten =, as the reflexive and
congruence closure of the following axioms:
t=t a#ftv(t)
t=va.t

t=t
t=@{:0) t

-
1l
-+

If E,T + t: o holds in MLGI, then there exists a temhsuch that
t =t holds andE,T" - ¢’ : ¢ holds in MLGX. o

Example Here is theeval example o1, augmented with enough
explicit type annotations to make it a well-typed MLGX term:

uleval : Va.term a — o). Yo \t.
case (¢ : term «) of

| Lit i — (i : (int > @))
| Inct — (eval t +1: (int > «))
| IsZ t — (eval t =0 : (bool > «v))
| If bt e — if eval b then eval ¢ else eval e
| Pair B1 B2 a b — ((eval a, eval b) : (81 X B2 >)
| Fst B2 t — fst (eval t)
| Snd B1t — snd (eval t)

The first change is the explicit introduction of the type ate«,
on the first line. This is required in order to allow referent®x in
the type annotations that follow. In a surface language,cand
add sugar and adopt the convention that the first occurreince o
binds « not only in the typeterm a — «, but also in the term
that follows. Glasgow Haskell, for instance, allows this.fact,
this turns out to be helpful for local type inference, so wiedduce
this convention (and writg* instead of:) in §6 and§7.

The case scrutineet now carries the explicit type annotation
term «, SO as to allow X-@se and X-QLAUSE to determine
which type equations arise within each clause.

In the Lit clause, the variablehas typeint, which we want to
convert toa, so an explicit type coercion is required. Analogous
coercions appear in théwe, IsZ, and Pair clauses. In thePair
clauseq is known to be equal to a product type x (3.

Type inference for MLGX Type inference for MLGX is analo-
gous to type inference for an extension of Milner and Mycsoft
type system with explicit type annotations. There existeadard
reduction of the latter to solving constraints, that is, tetforder
unification under a mixed prefix [18, 17]. It can be presented a
a transformation, writter -) and known agonstraint generation
that maps a candidate judgemdntI” + ¢ : 7 to a constraint.
In short,T" and 7 can be thought of as an “expected typing” for
the termt¢, and the constrain £,T" - ¢ : 7| expresses the re-
quirements that the type variablesfin (I, ¢, 7) must meet for this
typing to become valid.

We do not repeat the standard reduction of type inference to
constraint solving. Instead, we show how it is extended tecthe
new constructs in MLGX. This requires four constraint getien
rules (Figure 4). For clarity, the side conditions that liegjall type
variables to be chosen “sufficiently fresh” are omitted.

Rule G-FALSE states that, if the equation systdmcollected
so far is inconsistent, then it is permissible to stop examgithe
term ¢ and simply produce the constraitiue. This rule is not
syntax-directed: it is applied in preference to all othenstoaint
generation rules.

Rule G-GERCcEfirst checks thaf entails the validity of the
coercion3y.(r1 > 72). This check is easy to implement: provided
~# ftv(E) holds, it is equivalent to computing a most general
unifier of £ and checking that it is also a unifier ef = 7.

2005/7/18

G-FALSE
(false,T'F¢:7)
true

G-CoERCE
(E,TF(:35.(m>m)):7T)
H.(E,THt:i)AT2=1T)

if E“—V’Y’HZTQ
G-CAsE
(E,TFcase(t:0)of prt1...pntn:T)
= Iy((ETH@:0):v)A
N(E,TE (pi:0).ti -y — 7))
G-CLAUSE
(B, TH(KBx1...wn:3ye xT)t:7 —7T)
= 3Ja.(F(r'=cay) A
VBY(EANTy =7,T521 i T1;. ;T i Tn HE 2 T))
if K::VdB.Tlx...XTnﬂe@?

Figure 4. Constraint generation for MLGX (excerpt)

If the check fails, constraint generation fails as well.nétcheck
succeeds, then constraint generation proceeds. Thettermow
expected to have type, but the type that is made visible to the
outside ist2. The constraint that is produced is identical to what
would be obtained by applying a function of tyge.m, — 7 tot.

G-CASE is simple. The type annotatiaghis transmitted down
both sides. The flexible type variabjestands for the unknown type
of the scrutinee.

G-CLAUSE paraphrases X-QWSE. The type scheme assigned
to K is looked up. The constraint first binds the ordinary type pa-
rametersy existentially they are inferred. Then comes a conjunc-
tion. The conjuncB¥;.(7" = ¢ a#y) determines appropriate val-
ues fora by equating the scrutinee’s expected typavith € & 5.
The type variableg’ do not occur elsewhere: they serve only to
discard the generalized type parameters. In the secondretinf
is augmented with the equatiof$ = 7, obtained by confronting
the type annotation with the type scheme assigneld tdhe type
variables that occur within these equations are (a subjet+f
These type variables armiversallyquantified up front, maintain-
ing the invariant that the equation system is rigid. Thertgpnvi-
ronmentl is extended with appropriate bindings, and a constraint
that requires the clause bodyo have typer is produced.

It is worth noting that the expected typéof the scrutinee does
not influence the new equations that arise. As in MLGX, theee a
determined solely by exploiting the informatigy found in the
explicit type annotation.

The constraint generation rules can be proven sound and com-
plete with respect to the specification of MLGX. The extragiro
cases that must be added to the standard proof are straigattb

Theorem 4.3 (Type inference for MLGX) Let ¢ be a type substi-
tution whose domain is disjoint wittv(E, ¢). Then,¢ is a unifier
of (E,T' - ¢ : r)ifand only if E,¢(I") F t : ¢(7) holds in
MLGX. o

This means, in particular, that MLGX has principal type sche
mes, like Hindley and Milner’s type system.

Comparison with wobbly types The flexible type variables in our
type annotations (and in our shapes, $&eplay exactly the same
role as wobbly types in Peyton Jonetsal’s proposal [12]. They
write: “when performing match-unificatiojthat is, when deter-

mining which new equations arise, in this paper’s termigg|p
we make no use of information inside wobbly typ&s.our pre-
sentation, this goes without saying: flexible type varialdee type
variables—that is, they stand for unknown types—so of eothrey
carry no information!

Peyton Jonest al. further write: “This simple intuition is sur-
prisingly tricky to formalisé.Indeed, their formalization requires
excising the wobbly types, performing unification, andnseirting
the excised types back into the result. Technically, thi®lives
computing, composing, and restricting type substitutietricky
business. Here, no such tricks are necessary, becausexhated
information simply isn't there in the first place. In other nde,
in MLGX, the building of equation systems, which are used to
validate coercions, igntirely separatéfrom the production (and
later solving) of constraint§’, which are used to perform tradi-
tional type inference in the style of Hindley and Milner. Iay®on
Jonet al’s presentation, the two are mixed, at least in appearance.
(They are also mixed with a form of local type inference, viahie
discuss later on.)

There is in fact a slight difference between the flexible type
variables in our type annotations and Peyton Jated’s wobbly
types: a type variable hadentity, whereas a “wobbly box” doesn't.
For instance, the type annotati@n.term (v x v) has two holes,
but the two have the same identity This annotation is more pre-
cise thardyivyza.term (y1 x 72), which appears to correspond to
term ([T1] X [T2]) in Peyton Jonest al.’s formalization. \We conjec-
ture that, in the Glasgow Haskell implementation, wobblyésaio
have an identity—indeed, Peyton Jom¢sl. write: “wobbly types
[...] simply arethe flexible meta variables that the inference engine
already use$.Our formalization may well be more faithful with
respect to such an implementation.

Towards stratified type inference The strength of MLGX lies
in its simplicity and in the fact that it enjoys type inferenand
principal types in the style of Hindley and Milner. Its dasigvhich
marries type inference for the core language with type dhedor
generalized algebraic data types, appears to be robubg sense
that no variations have come to mind so far.

Unfortunately, from a user’s standpoint, MLGX is not very
expressive. In thewal example, it requires a lot of explicit type
information. One might say that MLGX does not attempt to do
type inferencefor generalized algebraic data types; it only does
type inferencen their presence

In the case ofwal, it should not be very hard to guess which
explicit type annotations must be added to the program. igmas
ture given at the: binder specifies thatval has typeterm o — «,
so it is “clear” that the variabléshould have typeerm « and that
every branch of thease construct should have type. The for-
mer remark allows inserting the type annotat{on term «). The
latter, applied to thd it branch and combined with the fact that
“clearly” has typeint, allows inserting the coerciofint > «). It
is similarly “clear” which coercions should be added to tlkeo
branches. Isn't it a shame for a type inference system to bblan
to take advantage of information that is so “clearly” appaie the
program?

Our answer is to design a separate transformation thatw#isso
the explicit type information in the original program, pemates it,
and exploits it to produce a transformed program that coataore
explicit type annotations and coercions. The transfornrediam
can then be passed on to MLGX’s type inference algorithm. We
refer to this two-stage approachstsatified type inference

Contrary to what one might think, propagating explicit type
information is not easy—if it were, we would have built théafure
into MLGX in the first place. Many design choices soon arisel a
most designs are incomplete, that is, reject programs thatadid
in MLGI. From this remark, we draw two conclusions:

2005/7/18

1 = 7
F1.11) — (F2.12) = Y21 — T2
Y1 # ftv(re), Yo # ftv(T1)
D(Ll) = 1
D(F.11 — *) = .71
C(1) = 1
C('_)/* — 7'2) = A.T2

Figure 5. Basic operations on shapes

e it is worth separatingthe robust, well-understood back-end
(MLGX) from the moread hocfront-end.

e because its design &l hog the front-end should b&impleand
predictable

Ad hocmethods of type inference have been studied, for instance,
by Pierce and Turner [13], who introdulmcal type inference as a
means of achieving simplicity and predictability. Theyt&ri‘miss-
ing annotations [should be] recovered using only inforraatfrom
adjacent nodes in the syntax tree, without long-distaneestraints
such as unification variablesOther, more recent type inference
systems, such as Peyton Jones and Shields’ approach tiuicing
arbitrary-rank predicate polymorphism into Haskell [1dfjPeyton
Joneset al’s “wobbly types” proposal [12], also use forms of local
type inference.

In the following, we design two such local type inference-sys
tems. The first design§6) closely follows Peyton Jonest al’s
“wobbly types” proposal, with a few changes and improversgnt
and explains how “wobbly types” are recast in terms of dteati
type inference. The second desi@i@)addresses improves in accu-
racy over the previous one. Neither is definitive: many mangld
be imagined.

Because the program produced by the front-end is submdted t
MLGX, the local type inference algorithm has no obligatidire>
jecting invalid programs, or of fully determining the typkevery
expression. Instead, it is perfectly fine for it to manipeliaicom-
plete (that is,approximaté type information, and to produce new
type annotations and coercions only where enough infoomasi
available. For this reason, both of our designs are basstiapes
that is, approximate type schemes. Shapes, introduced(§®xt
can shareigid type variables, but cannot shdtexible (“unifica-
tion”) variables. This is why shape-based algorithms can be ddem
“local.”

5. Shapes
Shapesre defined by

S u=7.T
where the type variablesare bound within the type. We refer to
the type variables asflexible A flexible type variable represents
a type that is either unknown (so the shape — ~ would ade-
quately describe a value of type, say; — int) or a polymorphic
type variable (so the shapey — ~ also describes the polymor-
phic identity function, whose type schemevis.y — ~). Shapes
are not necessarily closed. Their free type variables aeepreted
asrigid—that is, they are type variables that have been explicitly
universally quantified by the programmer. For instance sthepe
~.ao X 7y describes a pair whose first component has typehere
the rigid type variablex was introduced by the programmer, and
whose second component has unknown type.

Figure 5 introduces a few basic operations on shapeshdte
tomshapey.~ is written_L. This shape carries no information what-
soever. Out of two arbitrary shapesandss, one can build dunc-
tion shapes; — s,. Conversely, out of an arbitrary shapeone
can attempt to extraclomainandcodomairshaped(s) andC(s).
These operations are definedifs the bottom shape or a function
shape, and undefined otherwise.

5.1 Ordering shapes

Shapes are equipped with a standard instantiation ordetéfimed
by the single axiom

'_)/Q#ftv(’_}/1.7'1)
.11 = A1 — T

Example 5.1 We have(yi.a X 71) < (2. X (@ — 72)). o

This confers a rich structure to the set of shapes [6, ch&fter

Theorem 5.2 (Huet) Shapes form a well-founded lower semi-lat-
tice, whose least element.s o

This result implies that any finite set of shapes that admitspgper
bound must in fact admit a least upper bound. The least upper
bound of two shapes; ands: is writtens; L s2, when it exists,
and can be computed via first-order unification.

Example 5.3Recall thatint — 1 stands fory.int — ~. Then, it
is easy to check thdty.y — v) U (int — L)isint — int. o

Shapes do not share flexible type variables, so that no “long-
distance” unification takes place during shape inferertds:was
announced as the key property that makes inference “loeet,”
the least upper bound operation over shag@ssinvolve unifica-
tion. This is important: a local type inference algorithrattdid not
involve anykind of unification would be quite imprecise.

The definition of the ordering can be generalized so as to make
it relative to an equation systef. The original definition is recov-
ered when¥ is true.

Definition 5.4 We write E I s; < ss if and only if there exists
a shapes such thats; < sand F I s = s hold. We write
FEIF s1 = 5o whenE I+ S1 = So and E I+ So X S1 hold. o

Example 5.5Let s; bevyi.a X y1 andsz bevys.int x (a — 72).
Then,s1 < sz does not hold, because the rigid type variable
cannot be instantiated t@¢, buta = int I+ s1 < so does. S

5.2 Normalization

Shapes that are syntactically incompatible (that is, dohaot a
common upper bound) should sometimes be viewed as congatibl
For instance, lef consist of the equation = 3, — (2. If some
expression is found to have both shapand shape.3; — ~, then

a sensible shape inference algorithm should not fail, noulshit
conclude that this expression has shapénstead, the two shapes
should be successfully combined, yieldidg — 32, as opposed
to «, because the latter imore informative it exposes the fact
that the expression can only evaluate to a function. (If tieain
operatorD(-) is later applied t@, — B2, it will successfully yield
(1, whereas applyin@®(-) to o would fail.)

To extract as much information as possible out of a shape,
we normalizeit with respect toF. When E contains an equation
«a = 1, wherer is not a type variable, then normalization rewrites
aintor.

Shapes bear close resemblance to simple type annotatiens. W The definition of normalization is simple, but introduces @am

often implicitly convert the simple type annotati@®.r into the
shapey.7. We also convert polymorphic type annotatiahgVa. ™
into shapes, but that is done explicitly.

sure of arbitrariness into the system: indeed, whkrelates two
type variablesy and3, a choice has to be made between rewriting
« to B or vice versa. This choice influences how the program is

2005/7/18

transformed by the front-end, which means that it also hasnan
pact on the type error messages produced by the back-endXVILG
when the transformed program doesn’t typecheck.

In the following, we assume thdfl isn’'t equivalent tofalse.
Because we interpret constraints in a finite tree modeljithidies
that E is acyclic. This hypothesis guarantees that normalizatien
defined below, terminates. It is in fact possible to deal witblic
equation systems, and doing so is indeed necessary wheypthe t
system features equirecursive types. We omit this disonssi

Definition 5.6 Let < be a fixed, arbitrarily chosen total ordering
overftv(E). Then, the rewriting relatior~ g on types is generated
by the axioms:

a ~g o f EIFa=do anda’ < «
6] ~E ET1 T2 |fE“‘Oé:87_'17_'2
a ~»p T1—1 fElFa=1—m

This relation is confluent and terminating. We writ¢ z for the
normal form of the type. We writes |z for 5.(7 |z) whens is
~.7 and¥ # ftv(E) holds. The notation® | z ands | z are defined
similarly. o

In Peyton Jone®t al’s proposal [12], normalization is per-
formed by picking an (arbitrary) most general unifieof £ and
applying it to the type that should be normalized. This stltsin
process stops at “wobbly boxes,” that ig(7]) is defined as$zl.
Here, this corresponds to the fact that normalization doeaffect
flexible type variables.

5.3 Pruning

One problem still hasn't been discussed: can we guaranaeéht
front-end issound that is, that the type annotations and coercions
inserted by the front-end arrect with respect to the program-
mer’s intent?

Assume the original program is well-typed in MLGI (although
perhaps not in MLGX, by lack of explicit type information).eN
certainly cannot expect the transformed program to alwaysdi|-
typed in MLGX, because that would amount to requiring thafro
end to performcompletetype inference for MLGI. However, we
should be able to guarantee that the transformed programsds a
well-typed in MLGI. Indeed, if that is not the case, then trans-
formation is counter-productive: it inserts annotatiohattbreak
the program! We claim that, when in doubt, one should insert n
annotations at all, rather than insert incorrect ones.

Achieving soundness requires some care. Imagine that thee eq
tion o = [is made available within ease branch. Imagine further
that this branch has type In MLGI, it is also true that this branch
has type3. As a result, it is fine to reason with shapes that are cor-
rect only “up toE.” A shapes implicitly denotes the set of types
such that® I s < 7 holds. However, outside of the branch, the
equationa. = (3 is no longer available, so doesmake a differ-
ence whether the branch is deemed to have shapes. That is,
interpreting shapes “up td” requires extra care wher' shrinks
An arbitrary choice between and could produce a transformed
program that is ill-typed in MLGI. Instead, one must abantiua
unreliable piece of information and report that the brareh$hape
L, which certainly is a sound approximation. We refer to this-p
cess apruning

Definition 5.7 The denotation of under E is the set of all types
such thatF I+ s < 7 holds. The shape obtained by prunisigvith
respect toE and E’, written s | z_-, is the least upper bound of
the shapes such thats < s’ holds and the denotation afunder
E contains that o’ underE A E’. o

Pruning is performed at the boundary between an equation

systemFE and a richer equation systefh\ E’. A shapes’ is given.

The denotation of’ underE is always a subset of its denotation
underE A E'. If we are unlucky, it is a strict subset, which means
that the denotation of’ silently changes when we move from
E A E’ back toE. Prunings’ consists in discarding information
in order to avoid this phenomenon, that is, in determinirgrtiost
precise shapesuch that < s’ holds and the denotation efunder

E contains that of’ underE A E’.

Example 5.8 Let E betrue andE’ bea = 31 x 2. Then, pruning
the shape’ = v.a — ~ with respect ta andE’ yields the shape
5 = Y172.91 — 72. Indeed, the denotation &f underE A E’
contains all types of the forrf31 x 32) — 7, which its denotation
under E does not contain, so the sub-teecmmust be pruned. The
denotation ofs underE does contain all such types.

Of course, pruning cannot guarantee soundness unless we hav
exact knowledge of the current equation system. Indeedimpyu
with respect to an under-approximation Bfand £’ might lead
to keeping sub-terms that would be discarded when prunitiy wi
respect toE and E’. In other words, pruning with respect to
under-approximations of the equation systems is just ad gemo
pruning at all: it is unsound! As a result, & and§7, we insist
on determining the current equation system with preciskm.
opposite decision is made by Peyton Joetal.[12]. We compare
the two alternatives if6.

6. The shape inference systerit/

The shape toolbox developed §& provides the building blocks
to develop a local type inference (shape inferendealgorithm
that can be placed in front of MLGX in a stratified type infezen
system. In fact, it is easy to think ehanysuch algorithms that
differ in how information is propagated through the abdtsgntax
tree. Here, ir§6, we describe one such algorithm, which we &Hll
It is intended to emulate Peyton Jonesal’s “wobbly types”
proposal [12], with a few differences. Next, §¥, we describe
another, more accurate algorithm.

Following Peyton Jonest al, W is bidirectionat it operates
either ininference moder in checking modeAn inference mode
judgement takes the forft, I’ - ¢t ft s ~» t'. Its inputs are
the equation systery, the environment’, which maps variables
to shapes, and the term Its outputs are the inferred shape
and the transformed terti. A checking mode judgement takes
the formE,I' - ¢ |} s ~ t'. It is analogous to an inference
mode judgement, except the expected shaigenow an input. The
definition of the judgments appears in Figure 6.

An invariant is that, in either mode, the shapes normalized
with respect toE. As explained in§5.2, normalizing shapes is
required in order to avoid “silly” unification errors. Wherewvrite
s1 U so, we ensure that; ands, are both normalized. When we
write D(s) or C(s), we ensure that is normalized. The shapes that
appear il arenot necessarily normalized.

In general, the transformed tertis identical tot, except (i) all
explicit type annotations are normalized, (ii) new type @ations
are inserted arounchse scrutinees, and (iii) type coercions are in-
serted at uses of variables and around soase clauses. Normal-
izing type annotations can be viewed as a heuristic thanatteto
increase the likelihood that the transformed term is wadket in
MLGX.

We suppress the constryetz : 35.Va.7).t and replace it with
the new construgt™(z : 3y.Va.7).t, which is identical, except the
type variablesy are considered bound not only i but also int.

In other words, the new construct can be viewed as syntaajiars
for u(x : 3y.Va.7).Va.t. This is exploited in the formulation of
the rules Fx-1t and Fx-{.

We disallow explicit type coercions igourceterms, because
they are redundant with type annotations. Indeed3fo(1 > 72)

2005/7/18

FALSE-{}
false, 't L~ ¢

FALSE-{}
false, 't s~ t

Lam-{
LAM-{}
ET;z:0|lgFtfs~t

VAR-1}

s=sU(0|g — 1)
E,T;z:D(s)F tC(s) ~t

VAR-|
(x:s)el
ETHxzNsle ~ (zlgs)

(x:s)el
ETFzls ~ (zlgs)

APP-{}
E,TF tifs~t)
E,TF ta | D(s) ~ t5

ETEXNaz:0).t0(0le —s) ~ MNa:0]g)t

ApPpP-J}
E T+ tlﬂslwtll
ETF ty 4 D(s1 U (L —s)) ~ th
E,TF titol s~ th

FIxX -y
atfev(E,T)
ET:z:7a7|lp Ftdy71|le ~t

ETF ANz:0)tds~ANz:0|g)t

E,TF t ta y C(s) ~» t] t5

LET-J

E, '+ tlﬂslwtll
E,F;ZEZSl}_tQ 1}82*’915/2

E,TF letx = tiinty § s2 ~> letz = thin th

Fix-{
a# ftv(E,T, s)
ETiz:(Farle Us)Ftl (F.mle Us)~t

ETF p(z: 3 NVar)ttyar e ~ p'(z: Iy Var|p).t

E,TF p(z:37Var)t s~ p(z: FVar|e)t

CSTR-1p CsTR-|

K:s Vi E,T'F t;{si~t K:s Vi E,-TF 6 UDi(sU (Lx...xL—s))~t
ETEFKti...tp 1C(s U (81 X...X 8, — L))~ ETFKti...th 8 ~ Kt)...t,

Kt).. .t
CASE- CAsEe-|

ETkF tfs ~t Vi E,T'F (p;:s)t;) si ~ pity

ETkF tfs ~t Vi E,TF (pi:s)t; s~ pit;

E,T'F casetof pi.ti...pn.tn f} LUisi ~>
case (t' : s')of py.th...pn.th

E, Tl casetof pi.ti...pn.tn I s~
case (t' : 8") of p1.ty...pn.th

FORALL-1} FORALL-{}
at#tftv(E,T) at#tfev(E,T,s) ANNOT-ft ANNOT-{}
ETFtfs~1t ETFtys~1t ETFHtU0|g ~t ETHty (0l Us)~t
E,TF Ya.tf a.s ~ Ya.t' E, T+ Va.tl s~ Va.t' ETE (t:0)10]lp ~ E,F}—(tzé)usw(t’:GLE)
(t'":0lr)
CLAUSE-{} CLAUSE-|}

prenT b (B,E T EANE TRI)F tfs~t
B#ftv(E,T,slpp) F#tv(E, T, %,t)

p:emT b (B, BT

[EANE T(RI)F t U slpap ~t
B# ftv(E,T,s) F#ftv(E,T, 7, t, s)

ETF (p:7.eriT)tftsler ~ pt

ETF (p:yerim)tds~p(t' Tean s)

Figure 6. The shape inference systdm

to be a valid coercionk I+ V4.7 = 72 must hold, which implies
that normalizingr; andr» produces the same result. Becalige
normalizes all programmer-supplied types, a type coeritiche
source term would degenerate to a simple type annotatiohein t
transformed term.

Presentation Rules RALSE-f} and FALSE-| state that the trans-
formation stops wheiv is found to be (equivalent tdylse. These
rules are not syntax-directed: they are applied in prefarea all
other rules. This allows us to assume, elsewhere, Fhit satisfi-
able.

Rule VAR-1} looks up the shape associated withe in the
environment. It produces the inferred shapg: , thus satisfying
the invariant that the inferred shape is normalized witpeestoFE .
This normalization step corresponds to a type conversiantype
of z, an instance of, is turned into an instance of| i . This must
be reflected in the transformed term by inserting an exptyge
coercion, so that the MLGX back-end knows what is going ore Th
rule produces the terrfw |z s), where(t |g 7.7) is defined

as syntactic sugar foit : 33.(7 > 7|z)), providedy # ftv(E)
holds. That is, for some value of the flexible type variabjeso
be inferred by MLGX, the type is being converted te | 5 . Rule
VAR-|} is analogous. The expected shapés ignored.

Rule Lam-1; extracts the explicit type annotatighthat dec-
oratesz, and replaces it witld | z in the transformed term. Ac-
cordingly, the shape environmehtis extended with the binding
x : 0|g, and the function’s inferred shapefdr — s if t's
inferred shape is. Rule Lam-|} is analogous, but combines the
expected shapewith the information contained in the type anno-
tation. For instance, if is v.v — ~ andd is int, then the combi-
nation yieldss’ = int — int, so that the binding : int is added
to the environment and arids checked with expected shap€.

Following Peyton Jonest al, both ApP-{; and App-|} infer the
function’s shape and use this informationdoeckthe argument’s
shape. In &pr-|}, the argument’s shape is combined with the
shapel — s, reflecting the fact that the application’s result shape
is known. As noted by Peyton Jonesal. [12, Section 4.6], these

2005/7/18

rules are not very “smart:” the shape inferred idr x, whereid
has shape.y — ~ andz has shapeént, is L. Indeed, becauseis
examined in checking mode, the information thatas shapent

is discarded. The algorithm {Y is designed specifically to address
this deficiency.

Rule LET-{ is straightforward. The metavariabfestands for
one of1{ and ||. No generalization in the style of Hindley and
Milner takes place, because there is nothing to generdlizeonly
free type variables in a shape are rigid type variables.

Rule Fx-{ exploits the type annotation carried by thé con-
struct to examing in checking mode. The subtlety is that the
polymorphic type annotatiofy.Va.r is turned into two different
shapes. The shape inferred for the entire construct is (ihmai-
ized form of)ya.r, a shape where the type variabiesire bound.
This shape is also ascribed:tan the environment, so thatcan be
used at several different types within its own definition wéwer,
the shape that is expected iofs more precise: it is (the normal-
ized form of)5.7, a shape where the type variablesre exposed.
This makes sense only thanks to our convention tHabinds &
within ¢—in other words, the type variables are rigid withint.

Fix-|} is analogous, but combines the type annotation with the ex-

pected shape.

Applications of data constructors could be treated likecfun
tion applications. Instead, in SIR-{}, we adopt a different ap-
proach, which is reminiscent of Peyton Joresal’s “smart ap-

plication” rule APPN[12, Section 4.6]. The arguments are exam-

ined in inference mode, rather than in checking mode, yigldi
shapes, ...
a shapes, is then unified with the shapg x ... x s, — L. This
yields an appropriate instance gfwhose codomain is the desired
inferred shape. For instance, assuming thate has type scheme
Ya.a — option «a andx has shapeént, this rule allows inferring
that Some x has shapeption int. Rule GSTR-| is analogous to
APpP-|}. The shape operatdp;(-) extracts the-th component of
the domain of its argument: its definition is analogous td tifa
D().

Rules Q\se-f} and CAse-|} are straightforward. The termis
always examined in inference mode, yielding a shép€&his shape
is passed down to IQUSE-1} or CLAUSE-|}, where it is exploited
to determine which new equations arise.

In FORALL-1}, the rigid type variables: can occur free in the
shapes, so they are abstracted away in the inferred shape
In FORALL-|}, the expected shapemay involve quantified type
variablesy, but we cannot guess how to match these up witho
all we can do is passdown unchanged.

Rules QAuse-ff and Q. AUSE-|} are rather similar to X-

CLAUSE in Figure 3. We do, however, introduce an important re-

striction. The new side conditiop# ftv(72) requires the (inferred)
shape of the scrutinee to bdly explicitabout the generalized type
parameters: they cannot be (or contain) flexible type viagalAs
explained ing4, this ensures that we have full knowledgeraf

The first premise in CAUuSE-{} and Q_AUSE-|} confronts the

patternp with the scrutinee’s shape to obtain new rigid type vari-

ables3, new equations®’, and a newtype environmentl’. The
flexible type variables can occur free if”, so we abstract them
away, pointwise, to produceshapeenvironmenty.I'’.

The second premise inLGUSE-f} and Q. AUSE-{} examines the
sub-term¢. The two rules exhibit subtly different formulations.

In CLAUSE-{}, the expected shapes normalized with respect

to E A E’, so as to maintain the invariant that the expected shape is

normalized with respect to the current equation systemnAsles

VAR-1} and \AR-{}, this hormalization step corresponds to a type

conversion: on the outside, the type of this branch appeabet
an instance ok, but on the inside, it is an instance of g5/ .
Again, this is reflected in the transformed term by insertimg

10

, $n. The data constructor’s type scheme, viewed as

explicit type coercion(t g #7.7) is defined as syntactic sugar
for (¢t : 33.(7 | > 7)), providedy # ftv(F) holds.

In CLAUSE-{}, no coercion is inserted: because no expected
shape is initially available, no normalization takes pldostead,
t's inferred shape is prunedto produce an inferred shapé g g/
for the clause. The need for pruning was discussed eagbeB)(

The main differences between Peyton Joeéesl’s original
type system and? are (i) our use of unification, implicit in the
least upper bound operator over shapes, which makes thétlahgo
more accurate (unification was also present in Peyton Jetrads
APPN); and (ii) our insistence on full knowledge of the equations
that arise atase constructs and our use of pruning.

Every well-typed MLGI program can be turned into a program
that is well-typed with respect to the combinatioriGfand MLGX
by adding enough type annotations. We omit a formal statemen

Example Consider again thewal example of§1, wherep is
replaced withu*. Let us attack this term in inference modexH
switches to checking mode for the sub-tekm. . ., with expected
shapeterm a — «. LAM-|{l determines that has shapeerm o
and checks thease construct against shape CASE-|} looks up
the environment and infers thahas shapeerm «, which allows
inserting the annotatioft : term «) in the transformed term.
Every branch is then examined by 8JsSEe-|}, with knowledge that
the scrutinee has shaperm « and that the branch has expected
shapea. In the Lit branch, for instance, the equation = int
becomes available, so the expected shapse normalized toint
upon entry, and the coerciofi : (int > «)) is inserted. The
variables is then successfully checked against shape

This explains how theeval example of§l is automatically
transformed into the annotated versiory4f Then, the transformed
program is successfully submitted to MLGX type inference.

Soundness We now give a formal soundness statementTior
The statement assumes that a derivatioB df + ¢ : o in MLGl is
given. Naturally, in practice, this derivation is not knawnonly
exists in the programmer’s mind! Here, it is used as an oracle
the assertion that a shapés a sound approximation ofs “true”
type is encoded by the statemdritl- s < o. The assertion that
the annotations and coercions inserted by the algorithns@urad

is encoded by the statement that the transformed téistill has
type o in MLGI. Thus, Item 1 of Theorem 6.1 can be readiV’

is invoked in inference mode and supplied with sound assongpt
then it produces a sound shape and inserts sound annotediuhs
coercionsltem 2 makes a similar statement about checking mode.

Theorem 6.1 (Soundnesshet E,T" + ¢ : ¢ hold in MLGI. Let
E IF TV <T hold. Then,

1. fET'F t{ s~ t holdsinW,thenE I s < ¢ holds and
E,T 1t : o holds in MLGI.

2.fE,T"F t | s~ t' holdsinW, E I s < ¢ holds, ands is
normalized w.r.tE, thenE,I' - t' : o holds in MLGI. S

Soundness comes at a price. It rests upon pruning, which de-
mands exact knowledge of the current equation system. &ditol
requiring, in QAUSE-{ and Q.AUSE-|, that the (inferred) shape
of thecase scrutinee be fully explicit about the generalized type pa-
rameters. If one gave up soundness, one could design merallib
versions of these rules where the shape of the scrutindevgeal to
be incomplete, giving rise to a weaker equation system withe
clause. This route is followed by Peyton Jomd¢sal. [12], whose
“wobbly unification” algorithm ‘may do less type refinement than
would be justified in an explicitly-typed prograr@n the one hand,
because Peyton Jonesal.s system is able to work with an under-
approximation of the current equation system, it acceptemuo-
grams; on the other hand, because it does not do any pruning, i
sometimes infers unsound shapes.

2005/7/18

Z-FALSE
false, 't s{ts~t

Z-LAM Z-APP

s'=su (0
Erxp() t

lg — 1)
(/)ﬂsl/wt/

ETFt s s ~t

Z-VAR
(x:s)eTl
ETkFzlsft(suUs |g)~

(zles)

s’ =s1 U (s2 — s)
BT Eta 4 D(s1) 1 sy ~ th

ETFAz:0)tdst(s

Z-LET

E,T'Ft | s1fsh~th ED;z:s)Ftal st sa~th

LJ (J_HS))W)\(:EIQLE).tl E,F}—(tl :81) (tz

152) U s C(sh U (55— L)) ~ (t] 1 57) (5 1 s5)

Z-FIX
a# ttv(E,T,s)
ET;z:(Farleg Us)Fty (3.7l Us) s ~t

E,TFletr = (t; :s1)inta | s s2 ~ letx = (t] : s])int5

Z-CASE

ETHtys s ~t Z-FORALL

ETFp (x:3yVar)tdspas ~ p(z: IyVar|pg)t

Z-ANNOT

Vi E,TF (pi:s”)ti s si~ pits ETkHtysfs ~t a#ftv(T,E,s) ETHty @l Us)fts’ ~t
E,TFcase(t:s)of piti...pntnls ETFVatl s as ~ Va.t ETH(@{:0)sfs" ~({t:0|g)
1} Uis; ~ case (t' : ") of p1.th ... pn.th,
Z-CLAUSE
Z-COERCE p: ETngl—(ﬁE IS EANE' TAI)Ftldslpre s ~t
ETFtlsts ~t & = lpw Us B#fv(E,T, ”) 54 ttv(E, T, 2, t, 5)

ETF({:r)shs ~t

ETF(p:qerm)tlsts ~p{t Teap s")

Figure 7. The shape inference systéeth

7. The shape inference systemd

Although W successfully turns theval example of1 into a well-
typed MLGX term, it suffers from a severe shortcoming iniieat-
ment of application. As noted i§6, it infers the function’s shape
and uses this information to examine the argumenthecking
mode. Our rule GTR-{} and Peyton Jonext al’'s APPN[12] make
an opposite choice and examine the argumentsferencemode.
In fact, either choice iad hoc Ideally, shape information should
be allowed to flow from function to argumeand vice versaWe
now describe a shape inference system, cdlletthat subsumeld”
and is designed to allow propagation both ways.

Example 7.1 The following term illustrate$?’s shortcoming. We
assume that the data construcfohas typety int, so that the
equationn = int is available inside thease construct.

w*(double : Va.ty o — list o — list) LAl
map (Ax.casetof I — x +x) 1

Three explicit coercions are necessary to turn this intolatyeed
MLGX term. At both occurrences aof, o must be converted to
int. Furthermoreg 4+ x must be coerced frornt back toa, so as
to satisfy the programmer-supplied annotation, which iregt.the
anonymous function’s return type to be

However, W is unable to insert any coercion. The term con-
tains a double application ofiap. W attacks the outermost ap-
plication in checking mode with expected typiet «. By App-J},
this requires firsinferring a shape for the innermost application
map (Az....), thencheckingthe argument. Thus, APP-1} is ap-
plied to the innermost application. The shape inferredriap is
Y1ive.(y1 — 2) — list y1 — list 2. This leads to check-
ing that \z. ... has shapesv2.71 — 2. This imprecise shape
does not provide any information about the typecadr about the
anonymous function’s return type. As a consequeficas unable
to insert any coercion into the function.

11

In this example, the “right” thing to do at the outermost &ppl
cation is to first examiné in inferencemode, yielding the shape
list o, and to exploit this information to examine the innermost ap
plication incheckingmode with expected shapgeat o — list «.
The “right” thing to do at the innermost application is to exae
map in inferencemode, since its type is known, and to exploit this
information to examiné\x. ... in checkingmode, with expected
shapex — «. This shows that committing to either left-to-right or
right-to-left propagation is a bad idea. S

To avoid such a commitment, we suggest dealing with applica-
tion (and, in general, with binary constructs) irsgmmetricvay.
This becomes possible if shape inference is broken up into tw
passes. The idea is, roughly speaking, as follows. Duringsa fi
pass, both function and argument are examingdfarencemode.
During a second pass, both are examinedhackingmode. The
shape inferred for the function during the first pass is usethd
the second pass to predict the argument’s expected typejiead
versa. This allows information to propagate both ways.

Another, independent idea is to abandon the distinctiowden
inference and checking modes altogether. Indeed, whenfén-in
ence mode, why refuse to take advantage of the informatien of
fered by an expected shape? Conversely, when in checking,mod
why refuse to produce an inferred shape which potentiallyicco
be more precise than the initially expected shape? Our ariswe
to perform both checking and inference at once. Judgemers i
take the form&, T -t |} s { s’ ~ t/, where the inferred shapé,
an output parameter, is always at least as precise as thetegpe
shapes, an input parameter—that is,< s’ holds. Thus/Z is bidi-
rectional, likeW, but runsin both modes simultaneousliyhis is
reminiscent otolored local type inferenci®].

Our rough initial statement that the first pass runs in infeee
mode, while the second pass runs in checking mode, can now be
made more precise. Both passes are in fact identical—thtiieyg
are defined by the exact same set of rules—and both simulialyeo

2005/7/18

perform shape checking and inference. The first pass aesdtas
immediate sub-terms of all application nodes with theiernéd
shapes. The second pass then exploits these annotationfeto i
more accurate shapes.

Thus, Z really consists of a single pass than caniteeated
as many times as desired. In practice, iterating at leastetis
required for information to be propagated from function tgua
ment, and vice versa, at application nodes. Iterating mioag t
twice might allow accepting more programs, but might alsm<o
promise the algorithm’s perceived simplicity and predidtty.

Presentation The rules that defin& are shown in Figure 7. Rule
Z-AprpPexpects the functioty and the argumert to carry explicit
type annotations; andss. If, in fact, there is no such annotation,
then L is used. In practice, there typically is no annotation befor
the first pass. The inferred shapgsand s’ are recorded as type
annotations, to be exploited during the next pass, if treome.

By assumption, there are no coercions in the source terne. Rul

It is well-typed in MLGX, which means that this definition of
double is accepted by the stratified type inference system that
combinesZ and MLGX. o

Statements Just likeW, Z enjoys a soundness theorem, which
we do not state here. Similarly, every well-typed MLGI pragr
can be turned into a program that is well-typed with respethé
combination ofZ and MLGX by adding enough type annotations.
The two theorems below state that the first iterationZo&lone
yields shape information that is more precise than thareddy
W, and that each further iteration gfrefines this information.

Theorem 7.3 (Z subsumesW) If E,T F ¢ t s ~ ' holds in
W, then there exist a shapé and a termt’ such thate, " - ¢ ||
L s ~t" holdsinZ ands < s'. o

Theorem 7.4 (Iteration) E,I' =t L s~ t andE, T -t ||
1L s ~t"implys < s’ o

Z-COERCESstates that each pass erases the coercions inserted dur-

ing the previous pass. Indeed, since each new pass hasdhetfer
information than the previous pass, it is able to producesmaccu-
rate coercions.

We omit a detailed explanation of the other rules. In most
cases, the inference and checking variants of every rul& afre
superimposed to produce a rule that does checking and mufere
simultaneously.

Example 7.2 Consider thelouble example again:

w* (double : Va.ty o — list o — list) LAl
map (Ax.casetof I — x +x) 1

The first pass of algorithriy attacks the outermost application with
expected shapkst «. First, it examines the left-hand side, that is,
the innermost application, with expected shdpe— list «. This
leads to examiningnap with expected shapg — 1 — list a.
Rule Z-VAR combines this withnap’s known shape, yielding the
inferred shapey.(y — «) — list v — list «. The sub-term
map is annotated with this shape. Then, the anonymous funaion i
entered, with expected shapey — «. Thecase construct is ex-
amined with expected shapgwhich leads Z-CAUSE to inserting

a coercion ofint back toa around the clause. The outcome of the
first pass is the term

w* (double : Va.ty o — list o — list o). At
((map : v.(y —) — list v — list @)
((A\z.casetof I — (z+x :int > a)) : vy — «)
2y list v — list Oé)
(1: list @)

In the second pass, at the outermost application, the fumisti
inferred shapey.list v — list « is combined with the argument’s
inferred shapdist «. This leads to examining the innermost ap-
plication with expected shapest o« — list «. At the innermost
application, this information allows determining thatp is being
used at typda — «a) — list a — list «, which leads to exam-
ining the anonymous functiokz. . . . with expected shape — «.
Z's second pass is now able to determine thaas shape, which
allows Z-VAR to insert coercions from: to int at both uses of.
The term produced by the second pass is:

w* (double : Va.ty o — list o — list o) LAl
((map : (@ —) — list o — list)
((A\zx.caset of
I— ((x:ab>iint)+ (z:ap>int):
o —)
: list o — list o)
(I: list o)

int > a))

12

Conclusion

We have introducesiratified type inferencevhich separates tradi-
tional type inference in the style of Hindley and Milner frdacal
propagation of explicit type information, and illustratdds idea

in the case of type inference for generalized algebraic ygias.
An analogous idea is developed by Rémy [20] in the case @& typ
inference for arbitrary-rank predicative polymorphism.

Our bottom stratum, MLGX, extends Milner and Mycroft's
type system in a minimal way so as to accommodate generalized
algebraic data types. Our top stratd,and Z, are defined using a
common toolbox of operations @hapeswhich seem particularly
well-suited for expressingpproximateknowledge about types.

A prototype implementation of our proposal, written by the
second author, is available and can be used online [19].

We improve upon Simonet and Pottier’s work [23] by uniformly
dealing with ordinary and generalized algebraic data tyjgs
accepting arbitrary “lexically scoped” type annotatioasid by
avoiding implication constraints entirely. We improve ngd@eyton
Joneset al’s [12] by offering a more modular presentation and by
performing more accurate shape inference.

One could further enhance our shape inference algorithim,
For instanceZ’s judgements mention both an expected shape and
an inferred shape. For symmetry, one could also use bgikiea
environmen{an input parameter) andraquested environme(@an
output parameter). That would help deal with constructs in a
more precise way. Second, it should sometimes be possiliiteto
the shape of aase construct byreconciling the shapes of the
various branches, even when these are incompatible. Nobk/és
examining the equation systems available within each tramcl
performing a form of anti-unification.

Our systematic use of normalization, which follows Peyton
Joneset al, is not always satisfactory. Assume that the equation
a = int is available. When one writds: : «), the shape inference
systemsi¥ and Z behave exactly as if one had writtén : int).
Some valuable information is discarded: perhaps the pnoger
really intended to tell the system thatis being used at type,
not int. This behavior makes the meaning of a type annotation
dependent upof'. As a result, moving a type annotation into or out
of a case construct can change its meaning! Yet, it is not entirely
clear how to avoid this shortcoming without sacrificing aecy.

References

[1] James Cheney and Ralf Hinze. A lightweight implemeptatof
generics and dynamics. hlaskell workshop2002.

[2] James Cheney and Ralf Hinze. First-class phantom typeshnical
Report 1901, Cornell University, 2003.

2005/7/18

[3] Karl Crary, Stephanie Weirich, and Greg Morrisett. Im®nal
polymorphism in type erasure semanticdournal of Functional
Programming 12(6):567—-600, November 2002.

[4] Fritz Henglein. Type inference with polymorphic reciars. ACM
Transactions on Programming Languages and Systé():253—
289, April 1993.

[5] Ralf Hinze. Fun with phantom types. In Jeremy Gibbons @ede
de Moor, editorsThe Fun of Programmingages 245-262. Palgrave
Macmillan, March 2003.

[6] Gérard HuetRésolution d’eéquations dans des langages d’oidre,
...,w. PhD thesis, Université Paris 7, September 1976.

[7] Alan Mycroft. Polymorphic type schemes and recursivérdgons.

In M. Paul and B. Robinet, editorsnternational Symposium on
Programming volume 167 ofLecture Notes in Computer Science
pages 217-228. Springer Verlag, April 1984.

[8] Martin Odersky, Martin Sulzmann, and Martin Wehr. Typéerence
with constrained types.Theory and Practice of Object Systems
5(1):35-55, 1999.

[9] Martin Odersky, Matthias Zenger, and Christoph Zen@=iored lo-
cal type inference. IACM Symposium on Principles of Programming
Languages (POPL pages 41-53, 2001.

[10] Christine Paulin-Mohring. Inductive definitions inetlsystem Coq:
rules and properties. Research Report RR1992-49, ENS 0\g&?.

[11] Simon Peyton Jones and Mark Shields. Practical typerémice for
arbitrary-rank types. Manuscript, April 2004.

[12] Simon Peyton Jones, Geoffrey Washburn, and StepharieciV.
Wobbly types: type inference for generalised algebraia dgpes.
Manuscript, July 2004.

[13] Benjamin C. Pierce and David N. Turner. Local type iefeze. ACM
Transactions on Programming Languages and Systé@(4):1-44,
January 2000.

[14] Francois Pottier and Nadji Gauthier. Polymorphiceagipdefunc-
tionalization. INACM Symposium on Principles of Programming
Languages (POPLpages 89-98, January 2004.

[15] Francois Pottier and Yann Régis-Gianas. Stratifigettinference
for generalized algebraic data types (extended versian)tp:
//cristal.inria.fr/"regisgia/publis/prg-long.pdf, July
2005.

[16] Francois Pottier and YannéRis-Gianas. Towards efficient, typed LR
parsers. Manuscript, April 2005.

[17] Frangois Pottier and Didier&ny. The essence of ML type inference.
Draft of an extended version. Unpublished, September 2003.

[18] Frangois Pottier and Didier&ny. The essence of ML type inference.
In Benjamin C. Pierce, editoAdvanced Topics in Types and
Programming Languageshapter 10, pages 389—-489. MIT Press,
2005.

[19] Yann Régis-Gianas. A prototype typechecker for MLhuiten-
eralized algebraic data typeshttp://cristal.inria.fr/
“regisgia/software/, July 2005.

[20] Didier Rémy. Simple, partial type inference for systé’ based on
type containment. IMCM International Conference on Functional
Programming (ICFP) September 2005.

[21] Tim Sheard. Languages of the future. AGM Conference on Object-
Oriented Programming, Systems, Languages, and Applitstio
(OOPSLA) pages 116-119, October 2004.

[22] Tim Sheard and Emir PaSalic. Meta-programming witiiitbin type
equality. InWorkshop on Logical Frameworks and Meta-Languages
(LFM), July 2004.

[23] Vincent Simonet and Francois Pottier. Constrairgduh type
inference for guarded algebraic data types. Research Ref02,
INRIA, January 2005.

[24] Peter J. Stuckey and Martin Sulzmann. Solutions of iogplon
constraints yield type inference for more general algetdata types.
Manuscript, April 2005.

[25] Peter J. Stuckey and Martin Sulzmann. Type inferencgy@arded
recursive data types. Manuscript, February 2005.

[26] Sergei G. Vorobyov. An improved lower bound for the etartary

13

theories of trees. Irnnternational Conference on Automated
Deduction (CADE)volume 1104 ofLecture Notes in Computer
Sciencepages 275-287. Springer Verlag, 1996.

[27] Benjamin Werner.Une Tteorie des Constructions InductiveBhD
thesis, Université Paris 7, 1994.

[28] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded regairsi
datatype constructors. IACM Symposium on Principles of
Programming Languages (POPRLpages 224-235, January 2003.

2005/7/18

