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Abstract

The LR parser generators that are bundled with many functional programming
language implementations produce code that is untyped, needlessly inefficient, or
both. We show that, using generalized algebraic data types, it is possible to pro-
duce parsers that are well-typed (so they cannot unexpectedly crash or fail) and
nevertheless efficient. This is a pleasing result as well as an illustration of the new
expressiveness offered by generalized algebraic data types.
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1 Introduction

It is well understood how to automatically transform certain classes of context-
free grammars into fast, executable parsers [1]. For instance, every LALR(1)
grammar can be turned into a compact deterministic pushdown automaton
that recognizes the language generated by the grammar. This parser con-
struction technique has been made available to users of many mainstream
programming languages. As an example, yacc [7] turns LALR(1) grammars,
decorated with pieces of C code known as semantic actions, into executable
C parsers. In the functional programming realm, each of Standard ML [10],
Objective Caml [8], and Haskell [12] comes with an adaptation of yacc. These
tools are respectively known as ML-Yacc [23], ocamlyacc [8], and happy [9].
The parsers generated by yacc are fast, but are written in C, an unsafe
language. Likewise, the automata produced by ocamlyacc are encoded as ta-
bles of integers and of Objective Caml function closures. They are interpreted,
at runtime, by a piece of C code. It is not obvious, when examining the code
for such parsers, why the automaton’s stack cannot underflow, or why the
numerous type casts used to store and retrieve semantic values into and out
of the stack are safe. Thus, a bug in yacc or ocamlyacc could, in principle,
cause a generated parser to crash at runtime. In practice, users of these tools
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are not concerned with this issue, because they trust the tool to be correct.
The maintainers of yacc or ocamlyacc, however, must be careful to preserve
this property.

ML-Yacc, on the other hand, generates valid Standard ML code. Since
Standard ML’s type system is sound, a parser produced by ML-Yacc cannot
crash at runtime. Is that more satisfactory? In fact, not much. Although a
Standard ML program cannot crash, it may fail at runtime, due to either a
nonexhaustive case analysis or an uncaught exception. Although such failures
are usually easier to debug than arbitrary memory faults, they do abruptly
terminate the program, so they are still a serious issue. Thus, the maintainers
of ML-Yacc must again be careful to guarantee that a generated parser cannot
fail. This fact is not obvious: indeed, ML-Yacc attaches tags to stack cells,
to semantic values, and to automaton states, and uses nonexhaustive case
analyses to examine these tags. Thus, a Standard ML parser only offers a
limited robustness guarantee, and is less efficient than a C parser, because of
the extra boxing and unboxing operations and extra dynamic checks that are
required in order to please the typechecker.

happy lets users choose between these two evils. When the -c flag is
supplied, unsafe Haskell code is produced, which in principle could crash at
runtime. When it is not, valid Haskell code is produced, which cannot crash,
but could still fail, and is less efficient.

To remedy this situation, we suggest writing parsers in a version of ML 3
equipped with a slightly more complex, but vastly more expressive, type sys-
tem. The key extra feature that we require is known (among other names) as
generalized algebraic data types. This notion, due to Xi, Chen, and Chen [26],
was recently explored by a number of authors [4,14,21]. We show that appro-
priate use of generalized algebraic data types allows making a great amount of
information about the pushdown automaton known to the typechecker. This,
in turn, allows the typechecker to automatically check that the parser cannot
crash or fail, even though we no longer attach tags to stack cells or semantic
values. In short, we recover true type safety, while eliminating much of the
runtime overhead imposed by current versions of ML.

Generalized algebraic data types are available today in version 6.4 of the
Glasgow Haskell compiler [13,24]. We are studying their introduction into the
Objective Caml compiler, and have used a separate prototype implementation
of ML with generalized algebraic data types [15,19] to check that our prototype
parser generator [18] indeed produces well-typed parsers.

Our result is interesting on several grounds. First, it is original and can
be used to modify ML-Yacc, ocamlyacc, or happy so that they produce well-

3 In the following, “ML” collectively refers to Standard ML, Objective Caml, Haskell, or
any other programming language whose type system follows Hindley and Milner’s discipline.
Indeed, because we are interested in type-theoretic issues, the differences between these
programming languages are irrelevant. We provide code fragments in a somewhat Objective
Caml-like syntax.
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typed, efficient parsers, with no need for unsafe type casts or pieces of C code.
This allows moving the parser generator out of the trusted computing base, that
is, of the software that must be trusted to be correct for the final executable
program to be safe. Of course, the compiler that is used to turn the generated
parser into executable code remains part of the trusted computing base, unless
other techniques, such as type-preserving compilation or certification of the
compiler itself, are applied.

Second, and perhaps more importantly, we believe that this is a represen-
tative application of generalized algebraic data types. In short, implementing
a pushdown automaton in terms of ordinary algebraic data types requires the
tags that describe the structure of the automaton’s stack to be physically part
of the stack, which is redundant, because this information is already encoded
in the automaton’s state. Generalized algebraic data types, on the other hand,
allow the typechecker to accept the fact that the tags that describe the shape
of a data structure can be stored outside of this data structure, in a physically
separate place. In other words, our work exploits, and emphasizes, the fact
that generalized algebraic data types provide a simple and elegant solution to
the problem of coordinating data structures, that is, the problem of express-
ing and exploiting the existence of correlations between physically separate
data structures. This fact has been noted by Ringenburg and Grossman [20],
who apparently consider it an accidental feature of generalized algebraic data
types. We believe, on the contrary, that this is intrinsically what generalized
algebraic data types are about.

Although we have tested our ideas by writing a prototype parser genera-
tor [18] and a prototype typechecker [15,19], we do not report any performance
figures. Indeed, our focus is on safety at least as much as on performance.
Furthermore, we cannot meaningfully measure our prototype parser generator
against ocamlyacc until the Objective Caml compiler supports generalized
algebraic data types.

The paper is laid out as follows. We first introduce a sample grammar,
which forms our running example, and a pushdown automaton that recognizes
its language (§2 and §3). We present a straightforward ML implementation
of the automaton (§4) and discuss its flaws. Then, we take a closer look
at the automaton’s invariant (§5), and explain how to take advantage of it
using generalized algebraic data types (§6 and §7). Last, we suggest a few
optimizations (§8) and conclude.

2 A sample grammar

Throughout the paper, we focus on a simple grammar for arithmetic expres-
sions [1] whose definition appears in Figure 1. We construct a parser for
this specific grammar, instead of building a more versatile parser generator,
because this simple example is sufficient to convey our ideas.

The grammar’s terminal symbols, or tokens, are int, +, *, (, and ). We

3
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(1) E{e}+T{y} — E{zr+y}
(2) T{z}y — E{z}
3) T{z}* F{y} — T{zxy}
(4) Py — T{x}
(5) (E{z}) — F{z}
(6) int{r} — F{z}

5
6

Fig. 1. A simple grammar with semantic actions

assume that the underlying lexical analyzer associates semantic values of type
int with the token int, and semantic values of type unit with the tokens +,
*x, (, and ). The grammar’s nonterminal symbols are E, T, and F', which re-
spectively stand for expression, term, and factor. The grammar’s start symbol
is .

There are six productions, numbered (1) to (6). Roughly speaking, each
production is of the form Sy ... S, — S, where Sy, ..., S, are (terminal or non-
terminal) symbols and S is a nonterminal symbol. However, we are interested
not only in determining whether some input string belongs to the language
defined by this grammar, but also in exploiting this fact to convert the input
string into a new form, called a semantic value. Thus, each production is
decorated with a semantic action, that is, an ML expression, which specifies
how to compute a semantic value. More precisely, every S; must be followed
by a distinct variable z;, while S must be followed by an ML expression e.
The variables x; and the expression e are surrounded with braces. We allow
S; alone as syntactic sugar for S;{z;}, where x; does not occur elsewhere in
the production. The variables x4, ..., x, are bound within e.

Often, semantic values are abstract syntax trees. Here, for the sake of
simplicity, we prefer to associate semantic values of type int with the symbols
E, T, and F. As a result, the decorated grammar in Figure 1 specifies a
simple evaluator for arithmetic expressions. For instance, its first production
specifies that an expression E that evaluates to x, followed by the token +,
followed by a term T that evaluates to y, together form an expression F that
evaluates to x + y.

3 An LR parser for the sample grammar

We now describe an LR parser for the sample grammar. This parser, also taken
from Aho et al. [1], is presented as a finite deterministic pushdown automaton.
The automaton consumes an input stream consisting of the tokens int, +, *,
(, and ), and of the pseudo-token $, which signals the end of the stream.
It maintains a current state. States are integers in the range {0,...,11}. Tt
also maintains a current stack. Stacks are of the form o ::= € | osv, where
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STATE action goto
int + x () $ |F T F

0 sb s4 1 2 3

1 s6 acc

2 r2 87 r2 12

3 r4d 14 r4 14

4 sb s4 8 2 3

5 16 16 6 16

6 sb s4 9 3

7 sb s4 10

8 s6 sll

9 rl s7 rl  rl

10 r3 13 3  r3

11 ro 1d S5 15

Fig. 2. Analysis tables for the expression grammar

s ranges over states and v ranges over semantic values. € denotes the empty
stack, while osv denotes the stack obtained by pushing s and v on top of the
stack o.

Initially, the input stream consists of the tokens that must be parsed,

followed by the pseudo-token $; the current state is 0; and the stack is empty.

The automaton’s transitions are defined by two tables, action and goto,

which appear in Figure 2. At every step, the automaton consults the current
state, as well as the current input token, that is, the first token in the cur-
rent input stream. Together, they determine an entry in the two-dimensional
action table, which is interpreted as follows.

(i)

(iii)

If the entry reads “shift s” (written “ss” in Figure 2), where s is a state,
then the current state and the current input token’s semantic value are
pushed onto the stack; one input token is discarded; and s becomes the
current state.

If the entry reads “reduce k” (“rk” in Figure 2), where the grammar’s k-
th production is Si{z1}...S.{z,} — S{e}, then the current stack must
be of the form osyv;...s,v,. The ML expression e[vy/z1,...,v,/x,] is
evaluated, which must succeed and yield a new semantic value v. To-
gether, the state s; and the nonterminal symbol S determine an entry
in the two-dimensional goto table, which must contain a state s. Then,
0s1v becomes the current stack, and s becomes the current state. No
input token is discarded.

If the entry reads “accept” (“acc” in Figure 2), then the current stack
must be of the form osv. The automaton successfully stops and returns
v.
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(iv) If the entry is undefined, then the automaton stops and reports that the
input string does not conform to the grammar.

How the action and goto tables are constructed is irrelevant here. A key point
is that these tables are set up in such a way that the conditions which we expect
must hold in items ii and iii above do indeed always hold, so that no runtime
checks are required. The key difficulty that we are now about to confront is
to implement a typed parser that does not perform these superfluous runtime

checks.

4 A simple ML implementation

We now describe a simple ML implementation of the automaton, which is
typed, but does perform the superfluous runtime checks mentioned above.

To begin, we must specify how the parser interacts with the lexical ana-
lyzer, which encapsulates the input stream. We let tokens consist of a tag and
an optional semantic value:

type token =
KPlus | KStar | KLeft | KRight | KEnd | KInt of int

We assume that the lexical analyzer provides two functions that allow retriev-
ing and discarding the current input token:

val peek : unit — token
val discard : unit — unit

This interface remains unchanged throughout the paper.

We now attack the design of the parser itself. To begin, let us define the
type of states as an enumeration, that is, an algebraic data type whose data
constructors are nullary:

type state = S0 | SI1 | ... | SI1

Next, we must come up with a type definition for stacks. A natural first
approach would be to mirror the formal definition of stacks (o ::= € | osv,
see §3) as an algebraic data type definition:

type stack =
SEmpty | SCons of stack x state x semantic_value
and semantic_value = ...

This declaration states that a stack is a list of pairs of a state and a semantic
value. This sounds good, but how should we define the type of semantic
values? Semantic values associated with distinct symbols may have distinct
types. Here, for instance, the symbols +, *x, (, ), and $ have semantic values of
type unit, while int, F, T, and F' have semantic values of type int. Therefore,
it seems that we should define the type semantic_value as a tagged union, that
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is, as another algebraic data type. But doing so would introduce a redundancy,
as both stack cells and semantic values would carry tags.

To avoid this redundancy, we follow a slightly more elaborate approach.
We merge the proposed definitions for stack and semantic_value into a single
definition, so that only stack cells are tagged:

type stack =
| SEmpty
| SP of stack x state
| SSof stack x state
| SL of stack x state
| SR of stack x state
| SI of stack x state x int
| SE of stack x state x int
| ST of stack x state x int
| SF of stack x state x int

(In the names chosen for the data constructors, P, S, L, R, and I are short
for Plus, Star, Left, Right, and Int.) By examining the tag carried by a value
of type stack, we can now tell not only whether it represents an empty or
nonempty stack, but also, in the latter case, what symbol its top stack cell
is associated with. This, in turn, allows us to tell what type of semantic
value that cell contains. As a slight optimization, we choose not to represent
semantic values of type unit. Thus, the stack cells associated with the symbols
+, %, (, and ) contain only a state, as opposed to a pair of a state and the unit
semantic value. No stack cells are ever associated with the token $, because, by
construction, the automaton never takes a shift transition upon encountering
this token.

To sum up, every value of type stack carries a tag, which must be examined
before the actual contents of the stack can be accessed. If, thanks to external
reasoning, the tag is known beforehand, then this dynamic check is redundant.
This approach, where stacks and/or semantic values are tagged, is adopted by
ML-Yacc and by happy (without the -c flag).

The parser’s central function, run, implements the pushdown automaton.
It is parameterized by the automaton’s current state and stack. It may termi-
nate either by raising the exception SyntaxError, which means that the input
stream does not conform to the grammar, or by returning an integer seman-
tic value for the arithmetic expression E that was parsed. The side-effecting
functions peek and discard are used to manipulate the input stream, but the
code is otherwise purely functional. This turns out to be important in §6 and
§7, where the types of the current state and stack evolve over time.

The definition of run appears in Figure 3. The function examines the cur-
rent state s as well as the current input token peek() (line 5), and determines
which action should be taken. There are many cases, two of which are shown.

When the current state is 9 and the next input token is * (line 7), the
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exception SyntaxError

let rec run : state — stack — int =
fun s stack —
match s, peek() with

| S9, KStar —
(x Shift to state 7. x)
discard ();
run S7 (SS (stack, S9))
| S9, KPlus —

(* Reduce E{z} + T{y} — E{x +y}. %)
(x Pop three stack cells . x)
let ST (SP (SE (stack, s, x), -), -, y) =
stack in
(x Push the current state and the new
semantic value onto the stack. x)
let stack = SE (stack, s, x + y) in
(x+ Choose a successor state based on
the column E in the goto table. )
gotoE s stack

-

raise SyntaxFError

—

and gotok : state — stack — int =
fun s —
match s with
| SO —
run S1
| S4 —
run S8

Fig. 3. A simple ML implementation

action table in Figure 2 specifies that the automaton should shift to state 7.
Thus, the token * is discarded (line 9); state 9 is pushed onto the stack; and
the current state is changed to 7 (line 10). In this particular case, no semantic
value is pushed onto the stack. Indeed, no semantic value is associated with
the token *, and, accordingly, the data constructor SS does not expect a third
argument. The current state and stack are changed, in a purely functional
style, by supplying appropriate parameters to the tail recursive call to run.
When the current state is 9 and the current input token is + (line 11), the
action table specifies that the automaton should reduce production 1, that

8
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is, F{x} + T{y} — E{x + y}. As previously explained, the structure of the
topmost three elements of the stack is known at that point. The first stack cell
must carry the tag ST and contain a semantic value y associated with a term 7.
The second cell must be associated with the token +, that is, it must carry the
tag SP. The third cell must carry the tag SE and contain a semantic value x
associated with an expression F. Via pattern matching, x and y are extracted
out of the stack (lines 14-15). At the same time, the variables stack and s are
bound to new values, masking their previous values; this amounts to popping
three stack cells. The semantic action x+y is evaluated, producing a new
semantic value, and a new stack cell, holding s and the new semantic value,
is allocated (line 18). Last, the auxiliary function gotoFE is invoked (line 21).
(There is one such auxiliary function per nonterminal symbol. The functions
gotoT and gotoF are not shown.)

The job of gotoE (line 26) is to determine the automaton’s new state
after reducing a production whose head is the nonterminal symbol £, such
as production 1. This is done by looking up the goto table at column E and
row s. This column only has two entries (see Figure 2), so s must be one of
S0 and S4. If the former, then the new state is SI (line 30), otherwise it is
S8 (line 32). The current state is again changed by supplying an appropriate
parameter to run.

Note that gotoE does not consult or modify the stack—in fact, it does not
have access to it. One could also write gotoE as a function of type state —
state, which simply returns S1 or S8, and invoke run outside gotoE by replacing
line 21 with run (gotoE s) stack. However, doing so would break the property
that run is always applied to a constant state, which we exploit later on (§8).

This ML implementation appears reasonable, but performs a number of su-
perfluous runtime checks. Indeed, the construct “let ST (...) = stack” (lines
14-15) dynamically checks whether the stack contains at least three cells, and
whether these stack cells are associated with the symbols T, +, and F, as ex-
pected. Furthermore, the construct “match s with” (line 28) checks whether s
is indeed one of SO and S4. Both pattern matching constructs are nonexhaus-
tive, so the compiler must generate code that raises an exception when they
fail. This is a waste of time and code: indeed, assuming that the parser gen-
erator is correct, then, by design of the automaton, these checks cannot fail.
This overhead is present in parsers produced by ML-Yacc and by happy (with-
out the -c flag). Parsers produced by happy -gc or by ocamlyacc avoid some
or all of it, but are untyped—they involve unsafe type casts and, in the case
of ocamlyacc, a piece of C code. The point of this paper is to show how an
advanced type system allows eliminating these overheads while guaranteeing
safety.

Before carrying on, let us end this section with a couple of remarks.

First, in this implementation, the action and goto tables are compiled
into code, as in parsers produced by happy (without the -a flag), as opposed
to encoded as data (say, as arrays of integers) and interpreted by code, as
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Stack shape State
€ 0
e {0} E 1
o {0,4} T 2
o {0,4,6} F 3
o {0,4,6,7} ( 4
o {0,4,6,7} int 5
o {04} E {18 =+ 6
o {0,4,6) T {29} = 7
o {0,46,7% ( {4 E 8
o {0,4} E {18 + {6} T| 9
o {0,4,6) T {29 x {7} F| 10
o {0,467 ( {4 E {8 > | 1

Fig. 4. The automaton’s invariant

in parsers produced by happy -a, ML-Yacc, or ocamlyacc. This approach,
studied in a number of earlier works [11,5,2], has the disadvantage of leading
to greater code size. Its key advantage, as far as we are concerned, is to make
the code more amenable to analysis by a general-purpose type system. A
secondary advantage is to remove the interpretation overhead and to enable
extra optimizations based on code specialization (§8).

Second, we represent the stack as a purely functional data structure, that
is, a linked list of immutable, heap-allocated cells. This is somewhat inef-
ficient, since a pair of mutable, extensible arrays would do—one for states,
one for semantic values. However, an array of semantic values would form
a mutable, heterogeneous data structure, whose entries can change type over
time. ML’s type system does not support such data structures. At the very
least, a notion of linearity would be required in order to guarantee that no
pointers to deallocated stack cells are kept around and dereferenced. Thus,
our choice of an immutable data structure is imposed by our somewhat naive
type discipline. Designing type systems that support mutable stacks is an
active area of research; see, for example, Jia et al.’s recent work [6].

5 Understanding the automaton’s invariant

We asserted earlier that, by design of the action and goto tables, when a
“reduce” action is taken, the contents of the top few stack cells are known and
may be accessed without a dynamic check. Before modifying the code to take
advantage of this fact, we must understand why this is so.

The reason is simple. Although stacks were defined as arbitrary sequences
of pairs of a state and a semantic value, the stacks that do arise at runtime
are not arbitrary: they range over a strict subset of that space, which is

10
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given in Figure 4. The left-hand column specifies the shape of a stack o,
while the right-hand column specifies a state s. In the left-hand column, e
represents the empty stack, while o represents an unknown stack. Integers
denote states, so sets of integers denote sets of possible states. A terminal
or nonterminal symbol denotes a semantic value associated with that symbol.
For instance, the table’s sixth line states that, when the automaton is in state
5, the stack is nonempty, and its top cell holds a state in the subset {0, 4,6, 7}
and a semantic value for the token int. This implies, in particular, that the
top stack cell carries the tag SI, so the information contained in this tag is
redundant.

Definition A stack o and a state s are consistent if and only if (i) o and s
match one of the shapes in Figure 4 and (ii) if ¢ is of the form ¢’s'v’, then o’
and s" are consistent. This is an inductive definition.

Then, the following invariant holds:

Invariant At every time, the automaton’s current stack o and current state
s are consistent.

The proof is by induction over runs of the automaton, as defined in §3.
The automaton’s initial stack and state are ¢ and 0, which are consistent
because they appear in the first line of Figure 4. There remains to prove that
every possible transition preserves this invariant. We omit the proof, which is
straightforward. We will in fact go through a few proof cases when explaining
why the modified parser in §6 is well-typed.

Here, it looks as if we discovered the invariant after building the automa-
ton, through a careful (and perhaps painful) analysis of its transitions. In fact,
when an automaton is produced, out of an arbitrary grammar, by a parser
generator, the automaton’s invariant is very easily constructed at the same
time, so no “invariant discovery” phase is needed.

In §6 and §7, we explain how to make the type system aware of this in-
variant and how this allows getting rid of the superfluous runtime checks. We
proceed in two steps. In §6, we only exploit knowledge about the height of
the stack and the type of the semantic values that it contains. Then, in §7, we
show how to also exploit knowledge about the identity of the states contained
in the stack.

6 Keeping track of the stack’s structure

Thanks to the automaton’s invariant, examining the current state is enough
to acquire some information about the structure of the stack. For instance,
if the current state is 9, then the stack ends with three cells tagged SE, SP,
and ST. This is exactly the information needed to prove that the construct
“let ST (SP (SE (...))) = stack” (Figure 3) cannot fail. But how can we
persuade the compiler of such a fact? We must make it aware of the correlation

11
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between states and stack shapes.

To do so, we parameterize the type of states with a type variable a. The
idea is, if the current state has type « state, then the current stack has type
a. The runtime representation of states does not change, so o does not de-
scribe the structure of states, and could be referred to as a phantom type
parameter [4].

In the following, we first assume that the type state is given a definition
that satisfies this intuition, and explain how this allows altering our view of
the stack (§6.1). Then, we actually define state as a generalized algebraic data
type (§6.2). Last, we discuss how these changes in our type definitions affect
the code for the automaton (§6.3).

6.1 Types for stack cells

In order to convince the typechecker that accesses to the stack cannot fail,
we must no longer define the type stack as a tagged union. Instead, our
vocabulary must be sufficiently precise to express, say, “the type of all stacks
that end with three cells associated with the symbols F, +, and T.” For this
reason, we define not a single type stack, but a family of types (Figure 5, lines
2-10).

The type empty (Figure 5, line 2) is the type of the empty stack. Its only
value is SEmpty, so it is isomorphic to unit.

The type « ¢P (Figure 5, line 3) is the type of a nonempty stack whose top
cell is associated with symbol + and whose remainder has type a. A key point
is that o occurs twice in this definition, once as the type of the remainder of
the stack and once as the parameter to state. This encodes item (ii) in the
definition of consistency (§5) and tells the type system that, in every stack
cell, there is a relationship between the state that is held in the cell and the
structure of the remainder of the stack. The definitions on lines 4-10 are
analogous.

Thus, a stack that consists of a single cell associated with the symbol E, has
type empty cE. A stack that consists of two cells, respectively associated with
the symbols E and +, has type empty cE cP; and so on. It might seem that
we now need types of unbounded size in order to describe all possible stacks.
Fortunately, we are happy with incomplete information about stacks. For
instance, every nonempty stack whose top cell is associated with the symbol
E must have a type of the form 7 cE for some type 7. As a result, every such
stack is a valid argument to a function of type Va.ao ¢E — .. .. In other words,
thanks to type variables and type abstraction, a single type can describe an
infinite collection of stacks.

Although, for syntactic convenience, we have kept the tags SEmpty, SP,
etc., none of the types defined in lines 2-10 of Figure 5 is a tagged union.
In fact, they are tuple types with zero (empty), two (cP, etc.), or three (cI,
etc.) components. In other words, according to these new type definitions,
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(x Types for stack cells. x)

type empty = SEmpty

type a cP = SP of a X « state

type a ¢S = SS of o X « state

type a cL = SL of @ X « state

type a cR = SR of o x « state

type a cl = SI of o X « state x int
type a ckEE = SE of a X « state x int
type a ¢T = ST of a X « state x int
type a cF' = SF of a X « state X int

(x The type of states. x)
type state : x — x where
| SO : empty state
| S1 : empty cE state
2 : Ya.a T state
3 : Ya.« cF state

4 : Va.a cL state

5 : Ya.«a cl state

6 : YVa.a cE cP state
7 :VYa.a ¢T ¢S state

8 : Ya.a cL cE state

: Ya.a cE cP cT state

10 Va.a ¢T ¢S cF state
11 : Ya.« cL ¢E cR state

Fig. 5. Encoding part of the invariant into types

stack cells are no longer tagged. Stacks are still linked sequences of cells, just
like standard linked lists. Each cell can be a tuple of zero, two, or three
components, yet no tag is stored inside the cell to distinguish between these
cases. Instead, the automaton’s current state will be used, when necessary,
to predict the shape of the top stack cells. Thus, the automaton’s state and
stack are now coordinated data structures in the sense of Ringenburg and
Grossman [20].

6.2 Types for states

We now come to the definition of the parameterized type « state (Figure 5,
lines 13-25). The definition is in pseudo-Objective Caml syntax, since Objec-
tive Caml does not yet offer generalized algebraic data types. Line 13 states
that state has kind x — %, that is, state is now a unary algebraic data type
constructor. Lines 14-25 specify its data constructors, all of which remain
nullary, together with their type scheme.

The novelty lies in the way the new type parameter is constrained so as to
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reflect knowledge about the structure of the stack. Consider state 0. According
to Figure 4, when the automaton is in state 0, the stack is empty. Thus,
we want SO to have type empty state (line 14). Here, the type parameter is
constrained to be empty. Similarly, when the automaton is in state 1, the stack
consists of a single cell, containing a semantic value for symbol E. Thus, we
want S1 to have type empty cE state (line 15). In the case of state 2, matters
are slightly more complex: according to Figure 4, when the automaton is in
state 2, the stack ends with a cell associated with symbol 7', but the remainder
of the stack is unknown. Thus, we let S2 have type Va.a c¢T state (line 16).
The type variable o, which represents the remainder of the stack, is universally
quantified, so that every value of « is compatible with state S2. As a result,
determining that the automaton’s current state is S2 only allows concluding
that the current stack has type 7 ¢T for some type 7. The declarations for
S3 to S11 (lines 17-25) are obtained in a similar manner. This algebraic data
type declaration encodes item (i) in the definition of consistency (§5).

The definitions of cP, ¢S, etc. and of state are mutually recursive. state
is a generalized algebraic data type constructor [26]. Indeed, if it were an
ordinary one, then each of S0, S1, etc. would necessarily be assigned type
Va.a state, preventing us from encoding the automaton’s invariant. In other
words, the key opportunity offered by generalized algebraic data types is to
allow intentionally assigning more specific types to states. This pays off when
doing case analysis over a state, as we are now about to explain.

6.3 Implementation

Let us now study the new definition of run, which appears in Figure 6. We
have arranged everything so that only the type annotations carried by run and
gotoE change; the program itself is identical.

The type of run changes from state — stack — int to Va.a state — a —
int (line 1). In other words, the structure of the stack, represented by o, may
be arbitrary, provided it is consistent with the current state. Letting the type
of the state and the type of the stack share a type variable a allows us to
reflect the correlation (some may say the dependency) between the current
state and the current stack.

By hypothesis, s has type « state. Then, thanks to our new definition of
state as a generalized algebraic data type constructor, examining s (line 3)
yields information about a. For instance, let us see what happens when s is
matched against S9. By definition of the type state (Figure 5, line 23), S9
has all types of the form 7/ ¢cE c¢P ¢T state, and only those. As a result,
if s is found to be equal to S9, then the type denoted by o must be of the
form 7’ ¢cE ¢P ¢T, for some type 7/. In other words, it is safe to enrich the
typechecking context with the equation

a=a cEcP cT, (1)
14
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let rec run : Vo.a state — a — int =
fun s stack —

match s, peek() with

| S9, KStar —
discard ();
run S7 (SS (stack, S9))

| S9, KPlus —
let ST (SP (SE (stack, s, x), -), -, y) =

stack in

let stack = SE (stack, s, x + y) in
gotoE s stack

-

raise SyntaxError

—

and gotoF : Va.a state — « cE — int =
fun s —
match s with
| SO —
run S1
| S4 —
run S8

Fig. 6. A refined implementation

where o is a fresh type variable. Typecheckers that support generalized alge-
braic data types are able to make such deductions [26].

Shift transitions  Let us now check why the code for a “shift” transi-
tion (lines 6-7) is well-typed. Because stack and s have types « and « state,
the cell SS (stack, S9) on line 7 has type a ¢S.

Now, let 7 stand for o cE c¢P, where o' is the abstract type variable
introduced in the previous paragraph. Then, equation (1) can be written
a = 71 c¢T, which, by congruence, implies

acS=71cTcS.

This lets the typechecker deduce that the stack cell SS (stack, S9), which is
known to have type a ¢S, also has type 7 c¢T cS.

Finally, instantiating « to 7 in the definition of S7 (Figure 5, line 21) shows
that 7 ¢T ¢S state is a valid type for S7. Then, instantiating o to 7 ¢T' ¢S
in the type of run shows that the call run S7 (SS (stack, S9)) on line 7 is
well-typed.

In short, we have checked that the top two stack cells exist and are asso-
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ciated with the symbols T and *. This is sufficient to guarantee that the new
stack is consistent with state 7. The fact that a was instantiated to 7 in the
definition of S7, where 7 stands for o/ ¢E c¢P, means that, when performing
this “shift” transition, the automaton forgets about the existence of the next
two stack cells, which are associated with the symbols £ and +.

Reduce transitions  Let us now check a “reduce” transition (lines
9-12). The variable stack has type «a, so, by equation (1), also has type
o cE cP c¢T. Therefore, it is legal to match stack against the pattern
ST (SP (SE (stack, s, x), -), -, y), and this binds stack, s, x, and y to val-
ues of types o, o state, int, and int, respectively. Furthermore, this pat-
tern matching construct cannot fail, since only tuple patterns are involved.
Since x and y both have type int, x+y (line 11) is well-typed, and the new
stack (line 11) has type o/ cE. Thus, the call to gotoE (line 12) is valid.

Goto functions The task of gotoE (lines 17-23) is to recover the in-
formation that was lost during “shift” transitions. When gotoF is called, it
is known that the top cell of the stack is associated with symbol E. Indeed,
we are in the process of reducing a production whose head symbol is F, so we
just created that cell, inside run, before invoking gotoE. Yet, nothing more
is known about the stack. To recover information about the remainder of the
stack, we must examine the state that is held inside its top cell. This state is
passed to gotoE under the name s (line 18).

Imagine s is S4 (line 22). According to the type ascribed to gotoFE (line 17),
s has type «a state. Matching this information against the definition of S4
(Figure 5, line 18), we find that it is safe to enrich the typechecking context
with the equation

a=da cL, (2)

where o is a fresh type variable. Thus, we recover the information that the
next cell down in the stack exists and is associated with the symbol (. Here,
the success of a dynamic test, namely the case analysis on s, yields static
information about the shape of the stack. This feature is characteristic of
generalized algebraic data types.

Finally, by instantiating « to  in the types of run and S8, we find that
run S8 has type o' cL cE — int, which, thanks to equation (2), can be written
«a cE — int. Thus, the value returned on line 23 satisfies the type ascribed to
gotoE (line 17).

The case where s is SO (lines 20-21) is similar.

6.4 Summary and remarks

We have encoded part of the invariant in Figure 4 into the type definitions
of Figure 5. This allows us to remove the tags carried by stack cells, yielding
better efficiency and, more importantly, a stronger correctness guarantee. The
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code for “reduce” actions inside run now performs no runtime check. Yet, the
parser is well-typed.

One could be puzzled by our claim that a runtime check has been elimi-
nated, since the source code hasn’t changed, except in type annotations. The
point is that, thanks to the new type information, a formerly nonexhaustive
pattern matching construct has become exhaustive. This allows the compiler
to produce better machine code, without a runtime check, out of the same
source code.

The function gotoFE still performs a nonerhaustive case analysis (line 19),
which translates down to a dynamic check. In other words, the typechecker
has no way of proving that s must be either SO or S4. As a result, the compiler
must emit a compile-time warning and generate code that causes a runtime
failure in the event that s is some other state. So, although the parser cannot
crash, it can in principle still fail unexpectedly. We attack this issue in §7.

The code on line 9 of Figure 6 must be able to access the third stack cell,
which holds stack, s, and x, without examining the states stored in the top two
stack cells, which are here discarded using wildcard patterns _. This require-
ment appears to preclude a representation of stacks as ordinary algebraic data
types where the state held in each cell serves as a tag that must be examined
before the remainder of the stack can be accessed.

7 Keeping track of states inside the stack

In order to eliminate the dynamic check that remains inside gotoE, it is nec-
essary to prove that the parameter s must be either SO or S4. Since s is
originally found on the stack during a “reduce” transition, we must keep track
of the identity of the states found inside the stack.

To do so, we add a new parameter, p, to the type constructor state. In-
formally speaking, the idea is to set things up so that p ranges over sets of
states, and so that a state has type (7, p) state only if it is a member of the
set p. For instance, if some state has type («,{0,4}) state, then it should be
one of SO and S4.

Technically speaking, however, sets of integers are not types (at least, not
in ML), so p cannot range over such sets. Instead, we must encode sets of
states into types. We first discuss two ways of doing so (§7.1). Then, we
explain how to define the new binary state type constructor (§7.2), and how
the code for the automaton is affected (§7.3).

7.1 FEncoding sets into types

Let pre and abs, standing for present and absent, be two distinct abstract
types. (They can be defined as algebraic data types with no data construc-
tors.) Then, sets of states can be encoded as 12-tuple types whose components
are pre, abs, or type variables.
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For instance, the constant set {0,4} can be encoded as the type prex abs x
abs x abs x pre x abs x abs x abs x abs x abs x abs x abs. For the sake of
conciseness, we write {0,4} for this type. More generally, if S is an arbitrary
set of states, we write {S} for the product type whose i-th component is pre
(resp. abs) if and only if i € S (resp. i ¢ S) holds.

An arbitrary subset of {0,4} can be encoded as the type vy X abs X abs x
abs x 4 X abs x abs x abs x abs x abs x abs x abs, where 7, and 7, are fresh type
variables. We write (0,4) for such a type. More generally, if S is an arbitrary
set of states, we write (S) for the product type whose i-th component is a
fresh type variable 7; (resp. abs) if and only if i € S (resp. i € S) holds. This
notation is concise, but informal, since it does not specify how the names ~;
are chosen. We view this as tolerable for the purposes of this exposition.

Two key properties are that, if S and S” are sets of states, then (i) the
type {S} is an instance of the type (S’) if and only if the subset relationship
S C 5" holds and (ii) similarly, the type (S) is an instance of the type (S’)
if and only if the subset relationship S C S’ holds. Thus, we are able to
encode subset relationships in ML’s type system, even though it is based on
unification and lacks a notion of subtyping. This trick was inspired to us by
Rémy’s treatment of records [16]. Tt was independently discovered and studied
by Fluet and Pucella [3].

This encoding works, but is extremely verbose when the automaton has
many states. If the type system has rows [16], another, more economical
encoding is available. Objective Caml, for instance, has rows, which it uses to
form object types [17]. Our prototype implementation of ML with generalized
algebraic data types [19] also has full support for rows.

The idea is to encode sets of states as rows whose labels are states and
whose components are pre, abs, or type variables. We write {0,4} for the row
(0 : pre; 4 : pre;dabs), which maps 0 and 4 to pre and all other states to abs.
We write (0,4) for the row (0 : 79;4 : 7q4;0abs). As usual, row equality is
defined modulo the following commutation and expansion laws:

($1:7T1;82 1 To;T) = (Sg: To; 81 : 713 7T)

(s:7;07) =01

As a result, this alternate encoding also satisfies properties (i) and (ii) above.
Of course, these laws must be taken into account by the typechecker when
deciding whether one set of equations entails another—a check that becomes
necessary in the presence of generalized algebraic data types.

One should acknowledge that neither of these two encodings is extremely
natural. One might even argue that their very existence is somewhat acciden-
tal. Indeed, Hindley and Milner’s type system was certainly not designed to
allow reasoning about subset relationships. Instead, it would be worth design-
ing a new type system that facilitates this kind of reasoning. Nevertheless,
since these encodings do exist, let us exploit them. In the following, we assume
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type empty = SEmpty
type (a, p) cP = SP of a x (av, p) state

type (a, p) ¢S = SS of a x («, p) state

type («, p) cL = SL of a X («, p) state

type (a, p) cR = SR of a x (a, p) state

type («, p) ¢l = SIof o x («v, p) state x int
type (a, p) cE = SE of a x (a, p) state x int
type (a, p) ¢T = ST of a x (v, p) state x int
type (a, p) cF = SF of o x (v, p) state x int

type state : (x,row) — % where

| SO : (empty, {0}) state

| S1 :V7.((empty, (0)) cE, {1}) state
| S2 : Vay.((a, (0,4)) cT,{2}) state

| S3 : Vay.((a, (0,4,6)) cF,{3}) state

| S4 : Vay. ((a, (0,4,6,7)) cL, {4}) state

| S5 : ‘v’o@ ((ev, (0,4,6, 7>) cl, {5}) state

6+ 07 (00, 1) o, {1.8) o 6)) siate

|57+ Yari-(((@,{0,4,6)) T, (2,9)) 5, {7}) state

| S8 : Vay.(((a, {0, 4 , 7)) cL, < )) cE, {8}) state

| S9 : Vai.((((«, (0, )) cE, (1,8)) cP, (6)) cT,{9}) state

| S10 : Yay.((((e, (0,4,6)) cT,(2,9)) S, (7)) cF,{10}) state
| S11 :Va7y.((((«,(0,4,6,7)) cL, (4)) cE, (8)) cR,{11}) state

val run : Yap.(«, p) state — o — int
val gotoE : Va7y.(a, p) state — (a, p) cE — int
where p = (0,4)

Fig. 7. Encoding the entire invariant into types

that the row encoding is used, but our results are equally valid with the more
naive product encoding.

7.2 Types for states

Equipped with notation for encoding sets as types, we can now provide a new
definition of the type state (Figure 7). There are two changes with respect to
the previous definition (Figure 5).

First, in every line, the second parameter to state is constrained in a
way that reflects the state’s identity in an exact manner. For instance, SO is
given a type of the form (...,{0}) state (line 12); SI is given a type of the
form (...,{1}) state (line 13); and so on. As a result, a type of the form
(1,{0}) state can be inhabited only by SO; a type of the form (7,{1}) state
can be inhabited only by SI; and so on. This technique is related to singleton
types.
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Second, in every line, the first parameter to state, which reflects the struc-
ture of the stack, is modified so as to keep track of the identity of the states
contained in the stack. This is done via an additional parameter to the family
of cell type constructors. For every cell, an upper bound on the identity of
the state that is held inside the cell is specified, using a type of the form (S).
For instance, the type ascribed to S2 is

Vay.((a, (0,4)) ¢T,{2}) state

(line 14), which reflects the fact that, whenever the current state is 2, the
topmost stack cell contains a semantic value for symbol T and a state in the
set {0,4}. By convention, on every line, 4 stands for all of the type variables
implicitly introduced in types of the form (S).

7.3 Implementation

The last changes are in the types of run and gotoE (lines 25-27).

The first parameter to run now has type («, p) state, instead of « state.
The variable p is unconstrained, because run accepts an arbitrary current
state.

The first parameter to gotoE now has type (o, p) state, where p is an alias
for (0,4), that is, for (0 : ;4 : v4; Dabs). We purposely use an alias, instead
of simply writing (0, 4) twice, because that would give rise to four fresh type
variables 7o, 74, 7, and 74, which is not what we intend. The type variables
7o and 7y, are universally quantified: indeed, here, &4 stands for ~y;.

Because 7y and 7, are universally quantified, they can be instantiated
at will with pre or abs. As a result, the application gotoE S0 is well-typed:
indeed, by property (i), the type {0} is an instance of the type (0, 4). Similarly,
gotoE S4 is well-typed. However, no other state can be passed to gotoE. For
instance, the application gotoE S1 is ill-typed, because the type {1} is not an
instance of the type (0,4).

A typechecker for generalized algebraic data types can take advantage of
this fact to recognize that the case analysis inside gotoE is exhaustive and
cannot fail. Consider, for instance, the case of S1, which syntactically appears
to be missing. If a branch for SI was present in gotoE, then it would be
typechecked under the equation

{1} =(0,4),

that is,
(1 : pre;0abs) = (0 : 7yo; 4 : v4; Oabs),
where 79 and 7, are fresh. By property (i), this equation is unsatisfiable, which
proves that such a branch would be dead.
The same reasoning can be conducted for every state other than 0 and
4, which allows concluding that the case analysis really is exhaustive, even
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though it explicitly deals with only two cases. No compile-time warning is
emitted, and no runtime check is required. This feature, referred to as dead
code elimination by Xi [25], is also described by Simonet and Pottier [22]. Our
prototype typechecker [19] implements it.

We let the reader check that the code for “shift” and “reduce” transitions
remains well-typed after these changes. Property (ii) is used when typecheck-
ing “shift” transitions. Again, in moving from §6 to §7, we have modified a
few type declarations and type annotations, but the code itself is unchanged.
The only effect of the extra type information is to allow the compiler to better
deal with the case analysis inside gotoE. No compile-time warning is emitted,
which means that the compiler now guarantees that the program won’t crash
or fail.

All of the information in Figure 4 is now encoded in the definition of the
type state. In fact, when the typechecker analyzes the program, it automati-
cally verifies that the automaton’s invariant holds.

8 Optimizations

We conclude with a list of optional optimizations, which our prototype imple-
ments. They are straightforward: the point is that our aggressive use of types
does not get in the way.

Some of the states that are pushed onto the stack are never used. A look
at the goto table shows that the only states that are ever consulted during
a “reduce” operation are 0, 4, 6, and 7. Indeed, all other states have empty
rows in the goto table. In other words, there is no point in pushing the states
1, 2, 8, and 9 on the stack. (The states 3, 5, 10, and 11 are never pushed
on the stack anyway, because they have no outgoing “shift” transition.) So,
when we perform a “shift” transition out of state 1, 2, 8, or 9, we can allocate
a stack cell that does not contain a state. Horspool and Whitney [5] refer to
this idea as the “minimal push” optimization.

This optimization, together with our earlier decision of not storing seman-
tic values of type unit into the stack, means that some “shift” transitions
require no allocation at all. Here, the “shift” transitions that leave states 1,
2, 8, and 9 are associated with tokens whose semantic values have type unit.
When one of these transitions is taken, there is no need to modify the stack:
only the current state changes.

Another optimization consists in defining one specialized version of run for
every state: run0, runl, and so on. These specialized functions are assigned
types that reflect knowledge of the shape of the stack: for instance, run9 is
assigned type Va.a cE ¢P ¢T — int. The parameter s disappears: calls to
run S9 are replaced with calls to run9. This optimization is made possible by
the fact that run is always applied to a constant state.

After these optimizations are performed, the runtime representations of all
states other than 0, 4, 6, and 7 are no longer used, so the corresponding data
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type empty = SEmpty

type («, p) cL = SL of a X («, p) state

type («, p) cE = SE of a X (a, p) state x int
type (a, p) ¢T = ST of a X («, p) state X int

type state : (x,row) — % where

| SO : (empty, {0}) state

| 54 : Vay.((a,(0,4,6,7)) cL,{4}) state
| S6 : Vay.((a, (0,4)) cE, {6}) state

| S7: Vay.((e, (0,4,6)) ¢T,{7}) state

let rec gotoT : Vay.(«,p) state — («, p) ¢T — int
where p = (0,4,6) =
fun s —
match s with
| SO — ...
| S4— ...
| S6 —
(x Inlined version of run9. x)
fun stack —
match peek() with
| KStar —
discard ();
run7 stack
| KPlus —
let ST (SE (stack, s, x), -, y) =
stack in
let stack = SE (stack, s, x + y) in
gotoE s stack
L

raise SyntaxError

and gotoE : Yay.(«, p) state — («a, p) cE — int where p = (0,4) =
fun s —
match s with
| SO —
runl
| S4 —
(x Inlined version of runS. x)

Fig. 8. An optimized implementation
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constructors need no longer be defined; only the corresponding run functions
remain. In fact, some of these functions only have one call site, and can be
eliminated altogether via inlining. This is the case of run8, run9, runi0, and
runll.

Our final type definitions appear in Figure 8 (lines 1-10). All data con-
structors but S0, S4, S6, and S7 have disappeared. Furthermore, the stack
shapes associated with these four states have been simplified. The cells that
did not contain a semantic value and held a state in the set {1,2,8,9} have
disappeared altogether.

A fragment of the final code is also shown in Figure 8 (lines 13-41). The
definition of run9 (lines 19-32) is inlined at its unique call site inside gotoT.
The “shift” transition to state 7 (line 24) is performed by invoking run?.
No new stack cell is allocated, because neither the state 9 nor the seman-
tic value () are useful. In the “reduce” transition, only two stack cells are
popped (lines 26-27), because the intermediate cell, which was associated with
the symbol + and did not contain any useful information, has been eliminated.
The auxiliary function gotoE is unchanged, except the call run S1 is replaced
with runl (line 38) and the call run S8 is replaced with an inlined version of
run8 (line 40), again because run8 has no other call sites.

Horspool and Whitney’s “direct goto” optimization [5] comes for free:
when a goto function contains a match statement with only one branch, the
compiler naturally produces code that involves no runtime check.

9 Conclusion

We have explained how ML, extended with generalized algebraic data types, is
able to express efficient and safe LR parsers. Here, we understand “efficiency”
as the absence of redundant dynamic checks, and “safety” as the existence of
a compiler-verifiable proof that the program cannot crash or fail at runtime.
This is a pleasing result as well as an illustration of the new expressiveness
offered by generalized algebraic data types.
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