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Abstract

Cαml is a tool that turns a so-called “binding specification” into an Objective Caml
compilation unit. A binding specification resembles an algebraic data type decla-
ration, but also includes information about names and binding. Cαml is meant to
help writers of interpreters, compilers, or other programs-that-manipulate-programs
deal with α-conversion in a safe and concise style. This paper presents an overview
of Cαml’s binding specification language and of the code that Cαml produces.
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1 Introduction

Functional programming languages such as ML and Haskell are intended for
building, examining, and transforming complex symbolic objects, such as pro-

grams and proofs. They are well suited for this task because these objects are
usually represented as abstract syntax trees, whose structure is easily expressed
in ML or Haskell via algebraic data type declarations—or is it?

The whole truth is, abstract syntax trees involve names that can be bound.
Manipulating such trees involves a number of operations that respect the
meaning of names, such as computing the set of free names of a term, or
substituting, without capture, a name (or term) for a name throughout a term.
ML or Haskell provide no support for these operations. As a result, they have
to be hand-coded using one of a variety of approaches, discussed below. This
hand-coding process is tedious and error-prone. There clearly is a need for a
more declarative, robust, automated approach to dealing with abstract syntax
involving names and binding.

Three facets of the problem should perhaps be distinguished. First, one
needs a specification language that provides a declarative way of describing
the structure of abstract syntax trees, including binding information. Second,

1 Email: Francois.Pottier@inria.fr



Pottier

one needs an implementation technique, that is, an efficient runtime represen-
tation for names and binders. Last, there should be an automated route from
specification to implementation. We now discuss these three points in turn.

⋄ Specification languages. A number of specification languages have ap-
peared in the literature. Plotkin [25] defines a notion of “binding signature”
that allows for “function terms” of the form (x1, . . . , xn) t, where the names
x1, . . . , xn are considered bound within the term t. Talcott [33] introduces
“binding structures”, which are somewhat more expressive: each operator
carries a fixed number of variables as well as a fixed number of sub-terms, and
a fixed “binding relation” tells which variables are considered bound within
which sub-terms. Honsell et al.’s “nominal algebras” [11] and Urban et al.’s
“nominal signatures” [34] are essentially identical to Plotkin’s binding sig-
natures, except terms are typed, which in practice is important. Shinwell’s
Fresh Objective Caml [29,30,31] implements a generalized form of nominal
signatures, where binding occurrences of names can inhabit a term of arbi-
trary structure, instead of only a tuple (x1, . . . , xn) of fixed size n. This, in
particular, allows for constructs that bind a variable number of names.

Still, we view none of these proposals as fully satisfactory: there remain
real-world constructs that cannot be faithfully modeled in any of these spec-
ification languages. In particular, constructs that bind a variable number of
names, such as ML’s let and let rec, are either not expressible at all or ex-
pressible only in a somewhat contorted way—for instance, by encoding a list
of pairs as a pair of lists. Examples 2.3 and 2.4 provide details.

The first contribution of this paper is to propose a new binding specification

language, which is sufficiently expressive to deal with these constructs and
many others. An important aspect of this proposal is an expressive language
of patterns. Patterns are used to form abstractions. Patterns are terms, so
they can have arbitrary size. In particular, a pattern can bind a list of names
of arbitrary length. Patterns can contain an arbitrary mixture of (binding
occurrences of) names, sub-terms that lie within the scope of the abstraction,
and sub-terms that lie outside the scope of the abstraction. A key point is
that the lexical structure of a term (that is, the position of the binders and
the extent of their scope) does not have to coincide with its physical structure.

⋄ Implementation techniques. De Bruijn’s encoding of abstract syntax
trees with binding into standard first-order terms [7] is a well-known, and
quite popular, implementation technique. It consists in encoding names (free
or bound) as integer indices that can be interpreted as (relative) pointers to
their binding site. Its strengths are that α-equivalence coincides with first-
order equality and that a “fresh” name generator is not necessary. Its main
disadvantage is that it makes the meaning of open terms context-dependent,
requiring “shift” operations to compensate for changes in the context.

Another technique, used in the Fresh Objective Caml [29,30,31] and Fresh-
Lib [5] implementations, consists in encoding names as atoms—values that can
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be tested for equality, but otherwise have no meaning. In this approach, when
an abstraction is opened, the atoms that it binds have to be “freshened”—
replaced with fresh atoms—in order to avoid name clashes. This technique is
adopted here.

⋄ Automating implementation. In practice, it is desirable to deal with
binding issues by writing specifications, not code. In other words, there is a
need for tools that can deal directly with binding specifications.

One way to satisfy this need is to incorporate this feature into a pro-
gramming language design. For instance, Pitts and Gabbay’s FreshML [24] is
equipped with an abstraction type constructor. As a result, in FreshML, alge-
braic data type definitions are sufficiently expressive to encode nominal signa-
tures in the style of Urban et al. [34]. Pattern matching against an abstraction
automatically “freshens” all bound atoms. Fresh Objective Caml [29,30,31] is
the successor to FreshML. Urban and Cheney’s αProlog [6] is a variant of Pro-
log that is also able to encode nominal signatures. αProlog terms are unified
up to α-equivalence.

Instead of designing a new programming language, however, it is also pos-
sible to write a separate tool that accepts a binding specification and produces
code for an existing programming language. This is the approach followed in
the present paper. It is less ambitious but simpler than that of Fresh Objective
Caml, our most direct competitor. A practical benefit of simplicity is to make
some useful optimizations, such as “lazy renaming”, easier to implement. The
actual design of such a tool is our second contribution.

Cheney’s FreshLib [5] appears to be in the same spirit, but presents itself
purely as a Haskell library. The need for a separate code generation tool is
avoided by relying on Haskell’s support for generic programming.

In this paper, we describe Cαml (pronounced: “alphaCaml”) [26], a tool
that accepts a flexible language of binding specifications and produces Objec-
tive Caml [12] code. (The tool could be easily adapted to other programming
languages, such as Haskell.) We begin with a formal account of the syntax
of (a simplified version of) the binding specification language (§2). We give
meaning to this language by providing a formal definition of the α-equivalence
relation that a binding specification gives rise to (§3). Then comes an informal
description of the concrete binding specifications accepted by Cαml (§4) and
of the code that is produced (§5). After a more complete comparison with
related work (§6), we summarize our contribution and discuss directions for
future work (§7).

2 Binding specifications

In this section and in the following one, we adopt a structural view of types and
terms: that is, we build them out of a fixed, “universal” set of constructors.
This is in contrast with the rather more common approach that consists in
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s ::= inner | outer Scope specifiers

t ::= unit | t × t | t + t | atom | 〈u〉 Expression types

u ::= unit | u × u | u + u | atom | s t Pattern types

e ::= () | (e, e) | inji e | a | 〈p〉 Expressions

p ::= () | (p, p) | inji p | a | s e Patterns

Fig. 1. Types and terms

requiring a signature (or specification) to be first given. A signature typically
specifies a set of (named) type constructors, each of which is equipped with a
sort, giving rise to an algebra of types; and a set of (named) term constructors,
each of which is equipped with an arity, giving rise to an algebra of terms. In
practice, assigning names to type and term constructors is useful and desirable,
and indeed our tool is driven by a programmer-supplied specification (§4). In
this theoretical exposition, however, this level of detail is rather distracting,
so we omit it altogether. Thus, the syntax of our types and terms is fixed,
and appears in Figure 1.

Types are partitioned into expression types, written t, and pattern types,
written u. Similarly, terms are partitioned into expressions, written e, and
patterns, written p. We let a range over a countably infinite set A of atoms.
We write atoms(p) for the (finite) set of all atoms that appear (at any depth)
within a pattern p, regardless of the intended meaning of their occurrences
(free, bound, or binding).

Expressions and patterns can exhibit arbitrary structure. Indeed, both
expression and pattern types include a unit type as well as binary products
and sums. Accordingly, both expressions and patterns include a unit term,
written (), pairs, and injections, written inji ·, where i ranges over {1, 2}.

Both expression and pattern types include an atom type. Accordingly, both
expressions and patterns include atoms a. The difference between expressions
and patterns lies in the way these atoms are interpreted. In an expression, an
occurrence of an atom is understood as a reference to some earlier occurrence
of that atom in a binding position. In a pattern, an occurrence of an atom is
understood as a binding site for that atom. For instance, when we encode the
terms of the λ-calculus in our framework (Example 2.1), we will see that the
leftmost occurrence of a inside (the encoding of) the term (λa.a) a lies inside
a pattern, whereas the other two lie inside expressions.

Expressions include abstractions 〈p〉, where p is a pattern. Conversely,
abstractions include an end-of-abstraction construct s e, where e is an expres-
sion and where the scope specifier s is one of inner and outer. Quite naturally,
expression types and pattern types contain analogous constructs 〈u〉 and s t.

A pattern p can be thought of as a tree where every leaf carries either
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ba(()) = ba(s e) = ∅ ba((p1, p2)) = ba(p1) ∪ ba(p2)

ba(inji p) = ba(p) ba(a) = {a}

Fig. 2. The atoms bound by a pattern

an atom or a sub-expression decorated with a scope specifier. The set of all
atoms that appear at some leaf of the former kind, written ba(p), is referred
to as the set of atoms bound by p. Leaves of the latter kind do not contribute
to it. It is formally defined in Figure 2.

The meaning of abstractions can now be informally explained as follows.
When an abstraction 〈p〉 is formed, the atoms bound by p become bound inside
the sub-expressions of p that are decorated with inner. They do not become
bound, however, inside sub-expressions that are decorated with outer. Thus,
the inner and outer specifiers serve to distinguish between sub-expressions that
lie inside the scope of the abstraction, on the one hand, and sub-expressions
that happen to be physically attached to a leaf of the tree p, but do not lie
inside the scope of the abstraction, on the other hand.

The correspondence between expressions and expression types, and be-
tween patterns and pattern types, is extremely straightforward. We omit its
definition.

It is worth pointing out that the definition of types in Figure 1 can and
should be viewed as co-inductive, giving rise to recursive types. This is nec-
essary because families of data structures of unbounded size, such as lists and
abstract syntax trees, only have recursive types. The definition of expres-
sions and patterns, on the other hand, should be viewed as inductive: that
is, expressions and patterns are finite terms. We do not wish to reason about
α-equivalence of infinite terms, because this subtle notion has found little
practical application so far.

The following two examples illustrate the intended meaning of our abstrac-
tion and end-of-abstraction constructs as well as the distinction between the
scope specifiers inner and outer.

Example 2.1 The terms of the pure λ-calculus are given by the grammar

M := a | M M | λa.M

with the proviso that, in a λ-abstraction λa.M , the atom a is bound inside
the λ-term M . In our framework, these terms are encoded as expressions of
type t, where t is the unique solution to the following equation:

t = atom + (t × t) + 〈atom × inner t〉

(For the sake of readability, our examples use n-ary products and sums when
necessary.) The encoding of the λ-term λa.a is the expression of type t

inj3 〈(a, inner inj1 a)〉
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According to the informal explanation above, the atom a is to be considered
bound within this abstraction. Indeed, its leftmost occurrence causes it to be
part of the atoms bound by the pattern (a, inner . . .). Its scope is the sub-
expression inj

1
a, which is decorated with inner. Thus, the whole expression

should be considered α-equivalent to

inj
3
〈(a′, inner inj

1
a′)〉

which encodes the λ-term λa′.a′. Our definition of α-equivalence (§3) indeed
relates these expressions.

Example 2.2 The pure λ-calculus is often extended with a let construct for
local definitions:

M := . . . | let a = M in M

In a local definition let a = M1 in M2, the atom a is bound inside M2. In
our framework, λ-terms can then be encoded as expressions of type t, where
t satisfies

t = . . . + 〈atom × outer t × inner t〉

The encoding of the λ-term let a = a in a is the expression

inj4 〈(a, outer inj1 a, inner inj1 a)〉

Again, the atom a is bound in this abstraction, and its scope consists of the
inner sub-expression alone—the outer sub-expression does not lie in its scope.
Thus, this expression should be considered α-equivalent to

inj4 〈(a
′, outer inj1 a, inner inj1 a′)〉

which encodes the λ-term let a′ = a in a′.

The previous two examples illustrate the use of inner and outer. Still, it is
perhaps not clear yet why outer is useful at all, and why patterns are allowed
to contain multiple sub-expressions. Let us, a contrario, temporarily consider
a restricted language where outer is suppressed and where every abstraction
contains a single, distinguished sub-expression, implicitly decorated with inner.
The production p ::= s e is suppressed, so that patterns no longer contain
expressions, and the unary abstraction construct 〈p〉 is replaced with a binary
one, of the form 〈p〉e, where the atoms in ba(p) are considered bound inside e.
Analogous changes are made at the level of types.

It is clear that this restricted language can be embedded within the full
language. Indeed, 〈p〉e can be encoded as 〈(p, inner e)〉, and 〈u〉t as 〈u×inner t〉.
So, the latter is at least as expressive as the former.

The converse, however, is true only to a certain extent. Certainly, the re-
stricted language is quite expressive. It subsumes nominal algebras [11] as well
as nominal signatures [34], and corresponds to a fragment of Fresh Objective
Caml [29,31,30]. In particular, it is expressive enough to adequately deal with
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Examples 2.1 and 2.2. Indeed, the type 〈atom× inner t〉 of Example 2.1 can be
written 〈atom〉 t in the restricted language. The type 〈atom×outer t× inner t〉
of Example 2.2 can be written t× 〈atom〉 t, if one is willing to alter the order
in which the three components are listed and to hoist outer t outside of the
abstraction, where it simply becomes t. Yet, there are situations where no
such trick can be pulled. These typically involve patterns that bind a variable
number of atoms. We claim that, in these cases, our more general language
offers superior flexibility. The next two examples substantiate this claim.

Example 2.3 Realistic extensions of the λ-calculus allow local definitions to
bind several atoms at once:

M ::= . . . | let a = M and . . . and a = M in M

In a definition let a1 = M1 and . . . and an = Mn in M , the atoms {a1, . . . , an}
are bound in M . They are not bound in M1, . . . , Mn. In our framework, such
λ-terms are encoded as expressions of type t, where t and the auxiliary pattern
type u satisfy the equations

t = . . . + 〈u × inner t〉

u = unit + atom × (outer t) × u

The second equation defines u as the type of lists of pairs of an atom and
an outer expression. Thus, a list of bindings a1 = M1, . . . , an = Mn can be
encoded as a pattern of type u. The first equation states that a let definition
is encoded as an abstraction that consists of such a list of bindings and of an
inner expression, which encodes the final λ-term M . By definition (Figure 2),
the atoms bound by this abstraction are the atoms {a1, . . . , an} that appear
in the list of bindings, and their scope is the inner expression that encodes
M . Their scope does not encompass the expressions that encode M1, . . . , Mn,
even though these expressions physically lie inside the abstraction, because
they are marked outer.

How does one deal with this situation in the restricted formalism that was
discussed above? The (encodings of the) terms M1, . . . ,Mn must lie out of the
scope of the abstraction, so, in the restricted language, they must physically
lie out of the abstraction. The bound atoms a1, . . . , an, on the other hand,
must lie inside the left-hand side of the abstraction. As a result, one must
maintain two separate lists: a list of expressions and a list of atoms.

t = . . . + t′ × 〈u〉t

t′ = unit + t × t′

u = unit + atom × u

This encoding is awkward and fragile. Indeed, it introduces junk : one can
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accidentally break the property that the two lists have the same length and
construct a term that does not encode a valid λ-term. By contrast, in our
new formalism, the fact that our patterns can have an unbounded number of
sub-expressions, instead of just one, and the fact that these sub-expressions
can be marked inner or outer, provide enough flexibility to resolve this issue,
which Shinwell [29, pages 19–20] identifies but leaves open.

Example 2.4 Let us now extend the λ-calculus with mutually recursive local
definitions:

M ::= . . . | letrec a = M and . . . and a = M in M

In a definition letrec a1 = M1 and . . . and an = Mn in M , the atoms
{a1, . . . , an} are bound in M1, . . . , Mn and in M . In our framework, such
λ-terms are encoded as expressions of type t, where t and the auxiliary pat-
tern type u satisfy the equations

t = . . . + 〈u × inner t〉

u = unit + atom × (inner t) × u

This definition is almost identical to that of Example 2.3. The only difference
is that the equation that defines the pattern type u now mentions inner t in-
stead of outer t. Thus, the scope of the atoms bound by the pattern contains
not only (the encoding of) the λ-term M , but also (the encodings of) the λ-
terms M1, . . . , Mn that appear in the list of bindings. Again, we achieve this
effect without splitting the list of bindings into two separate lists, whereas pre-
vious approaches appear unable to do so. In particular, the restricted formal-
ism that was discussed above requires separating the list of atoms a1, . . . , an,
which must lie in the left-hand side of the abstraction, and the list of expres-
sions that encode M1, . . . ,Mn, which must lie in the right-hand side of the
abstraction [29, page 20].

Abstractions in Cαml intentionally cannot be directly nested: when an
abstraction is opened, it must be closed (via inner or outer) before another
abstraction is introduced. This design choice makes it easier to define and
understand the meaning of inner and outer. Fresh Objective Caml [29,30,31]
is more liberal and allows left-nesting of (binary) abstractions, which currently
has no analogue in Cαml.

3 A definition of α-equivalence

We now give precise meaning to the language introduced in the previous sec-
tion by formally defining when two terms are α-equivalent. Our definition
of α-equivalence is in the style of Pitts [23], but requires a few preliminary
definitions in order to deal with our rich language of patterns.

8



Pottier

[a1/a2] = {(a2, a1)} [inji p1/ inji p2] = [p1/p2]

[()/()] = ∅ [(p1, p
′
1
)/(p2, p

′
2
)] = [p1/p2] ∪ [p′

1
/p′

2
]

[s e1/s e2] = ∅ if this relation is a renaming

Fig. 3. Relating two patterns via a renaming

3.1 Renamings

Definition 3.1 A renaming is a finite, bijective mapping of atoms to atoms,
that is, a bijection between two finite subsets of A. A renaming is implicitly
viewed as a total (but not necessarily bijective) mapping of atoms to atoms,
of patterns to patterns, and of expressions to expressions.

A renaming is viewed as a mapping of patterns to patterns and of expres-
sions to expressions in the most straightforward way. That is, every occurrence
of an atom within a term is renamed. Whether this occurrence is meant to
bind a new name or to refer to an existing name is disregarded. No precautions
against capture are taken.

Standard treatments of α-equivalence, such as Pitts’ [23], rely on singleton
renamings of the form {(a2, a1)}, where a1 and a2 are atoms. Such a renaming,
usually written [a1/a2], maps a2 to a1. Applying it to an expression e blindly
replaces every occurrence of a2 within e with a1. Capture is usually avoided
by requiring the atom a1 to be fresh for e.

In this paper, we need to construct more complex renamings, which we
write [p1/p2], where p1 and p2 are patterns of a common type. Such a renaming
is defined only when p1 and p2 have identical “pattern structure”, that is, when
they differ only in (i) the identity of their bound atoms and (ii) their (inner or
outer) sub-expressions.

Definition 3.2 The partial function [·/·], defined in Figure 3, maps pairs of
patterns of a common type to renamings. That is, if p1 and p2 are two patterns
of a common type u, then [p1/p2] is either undefined or a renaming. When it
is defined, its domain is ba(p2) and its range is ba(p1).

The upper left equation in Figure 3 states that [a1/a2] is the singleton
renaming that maps a2 to a1.

The next equation down states that the empty renaming relates the unit
pattern () with itself.

The bottom left equation states that sub-expressions are ignored in the
construction of a renaming between patterns. It does not matter if they differ.

The top right equation states that [inji p1/ injj p2] is undefined when i and j
are distinct (and, of course, when [p1/p2] is undefined). That is, only patterns
that have identical structure can be related. In the case of constructs that bind
a variable number of atoms, such as those presented in Examples 2.3 and 2.4,
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()s = () (p1, p2)
s = (ps

1
, ps

2
) (s e)s = e

as = () (inji p)s = inji p
s (s′ e)s = () if s 6= s′

Fig. 4. Collecting the inner or outer sub-expressions of a pattern

() =α ()
e1 =α e2 e′

1
=α e′

2

(e1, e
′
1
) =α (e2, e

′
2
)

e1 =α e2

inji e1 =α inji e2

a =α a

pouter

1
=α pouter

2
[p/p1] p

inner

1
=α [p/p2] p

inner

2

atoms(p) ∩ atoms(p1, p2) = ∅

〈p1〉 =α 〈p2〉

Fig. 5. α-equivalence of expressions

this means, in particular, that only patterns that bind the same number of
atoms can be related.

The last equation states that, in order to relate two pair patterns (p1, p
′
1
)

and (p2, p
′
2
), one decomposes the problem component-wise. That is, one builds

the renamings [p1/p2] and [p′
1
/p′

2
], forms their set-theoretic union, which yields

a relation on atoms, and checks that this relation is a renaming. This check
fails if the new relation is not applicative or if it is not injective. This occurs,
for instance, when attempting to evaluate [(x, y)/(z, z)] or [(z, z)/(x, y)] for
distinct atoms x, y, z. The checks succeed, on the other hand, when evaluat-
ing [((x, y), x)/((z, x), z)]. This yields the renaming that maps z to x and x
to y. Note that patterns need not be linear: a single atom can have multiple
occurrences in a pattern. Our definition only requires that all occurrences be
consistently renamed.

3.2 α-equivalence

Definition 3.3 If p is a pattern and s is a scope specifier, then ps denotes an
expression, defined in Figure 4.

This transformation erases all atoms within p, as well as all sub-expressions
not marked s, by replacing them with (). In short, ps can be viewed as a
collection of the sub-expressions marked s in p. The structure of the pattern
(pairs, injections) is preserved, but will be irrelevant.

Definition 3.4 α-equivalence over expressions of a common type is defined
by the rules of Figure 5.

The definition is by induction on the size of expressions, as opposed to
structural induction, because of the pruning and renaming performed in the
last rule.
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The first four rules in Figure 5 are standard congruence rules. We focus
on the last rule, which specifies when two abstractions 〈p1〉 and 〈p2〉 are α-
equivalent.

The first premise checks that any sub-expressions that lie in outer scope
are α-equivalent. The auxiliary function (·)outer erases all atoms in binding
position as well as all inner sub-expressions, so that they do not participate in
this check.

The second premise requires [p/p1] and [p/p2] to be defined for a certain
pattern p. This means that p1 and p2 have the same structure (ignoring their
sub-expressions) and differ only up to a consistent renaming of the atoms
that they bind. In order to overcome this difference, one maps them both
to a common pattern p: that is, one checks that, under the renamings [p/p1]
and [p/p2], the inner sub-expressions of p1 and p2 are α-equivalent. These
sub-expressions are collected using the auxiliary function (·)inner.

The last premise requires p to be chosen fresh for pi, where i ranges over
{1, 2}. This allows viewing [p/pi], a bijection of domain ba(pi), as a bijection
of domain atoms(pi). This prevents capture, that is, confusion between bound
and free atoms, inside pi.

When p1 and p2 have type atom × inner t, the rule simplifies down to

[a/a1] e1 =α [a/a2] e2

a 6∈ atoms(a1, e1, a2, e2)

〈(a1, inner e1)〉 =α 〈(a2, inner e2)〉

Up to the differences in notation, this is exactly the definition of α-equivalence
found, for instance, in Pitts’ work [23].

Pitts’ proof that α-equivalence is indeed an equivalence relation [22] is
easily extended to our setting:

Theorem 3.5 =α is an equivalence relation.

4 Concrete specifications

The previous sections have given a simplified account of our type and term
languages. The binding specifications accepted by Cαml are more complex in
several ways.

Figure 6 shows a binding specification, in concrete syntax, for an untyped
λ-calculus. The most obvious difference with respect to the theoretical presen-
tation is that entities are named. Indeed, the specification defines a collection
of named types (expression, lambda, etc.). In the tradition of algebraic data
type definitions, each type is defined either as a sum type or as a product
type. Each sum type comes with a set of named data constructors (EVar,
ELambda, etc.). In Figure 6, all product types are tuple types, whose fields
are anonymous. Cαml also offers record types, whose fields are named. All
definitions are mutually recursive: their scope is the entire specification. In
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sort var

type expression =
| EVar of atom var
| ELambda of < lambda >

| EApp of expression ∗ expression
| EPair of expression ∗ expression
| EInj of [ int ] ∗ expression
| ECase of expression ∗ branch list
| ELetRec of < letrec >

type lambda binds var =
atom var ∗ inner expression

type branch =
< clause >

type clause binds var =
pattern ∗ inner expression

type letrec binds var =
binding list ∗ inner expression

type binding binds var =
pattern ∗ inner expression

type pattern binds var =
| PWildcard
| PVar of atom var
| PPair of pattern ∗ pattern
| PInj of [ int ] ∗ pattern
| PAnd of pattern ∗ pattern
| POr of pattern ∗ pattern

Fig. 6. Concrete binding specification for an untyped λ-calculus

short, Cαml offers iso-recursive types, whereas, for simplicity, the theoretical
account in §2–3 is based on equi-recursive types.

Cαml is able to deal with multiple sorts of atoms. In Figure 6, only one
such sort (var) is declared. Every occurrence of the atom keyword is followed
with a sort. A specification that involves multiple sorts is shown further on.

In concrete syntax, expression types and pattern types are distinguished by
the fact that the latter (and only the latter) carry a binds clause. Such a clause
consists of the binds keyword, followed by one or several sorts. In Figure 6, the
clause “binds var” distinguishes the pattern types. An occurrence of “atom

var” inside the definition of such a type is understood as a binding occurrence.

The definitions of the data constructor ELambda and of the type lambda

follow Example 2.1. The definitions of the data constructor ELetRec and of
the types letrec and binding follow Example 2.4. Furthermore, the sample
specification includes binary products and sums (EPair, EInj ), a case con-
struct (ECase), and a rich language of patterns (pattern). Patterns are used
both in case constructs and in let rec definitions. (The definitions of the types
binding and clause happen to be identical. We keep them separate for clarity.)
A branch is defined as an abstraction over a pair of a pattern and an inner

expression. There, every atom that appears in the left-hand pattern is consid-
ered bound in the right-hand expression. A let rec definition is defined as an
abstraction over a pair of a list of bindings and an inner expression. There, ev-
ery atom that appears in the left-hand pattern of some binding is considered
bound in the right-hand expression of every binding and in the right-hand
expression of the let rec construct. This provides a good illustration of the
flexibility of the specification language.

A few more features are worth discussing:

12
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sort typevar

type typ =
| TVar of atom typevar
| TArrow of typ ∗ typ
| . . .

type expression =
| . . .

| ETypeAnnotation of expression ∗ typ

type pattern binds var =
| . . .

| PTypeAnnotation of pattern ∗ neutral typ

Fig. 7. Concrete binding specification for a typed λ-calculus (excerpts)

⋄ Containers. The type constructor list, used in the definition of letrec,
comes from Objective Caml’s standard library. It is known to Cαml by default.
The type constructor option is also built-in. Other “container” types can be
used via a dedicated uses container declaration, which mentions not only the
name of the type constructor, but also those of its map and fold functions.
For instance, if list was not known to Cαml, it could be declared as follows:

uses container list with List.map and List.fold left

⋄ Linearity. Here, the object language includes conjunction and disjunc-
tion patterns (PAnd, POr). One might want to check that the two sides of
a conjunction pattern have disjoint sets of bound atoms, and that the two
sides of a disjunction pattern have identical sets of bound atoms. Cαml does
not need to know (and, in fact, cannot be told) about this well-formedness
condition. It is up to the user to enforce it. This is acceptable, since this
condition does not interact with α-conversion issues in any way.

⋄ Objective Caml escape hatch. The data constructors for injections (EInj,
PInj ) carry an integer parameter, whose type is the Objective Caml type int.
Arbitrary Objective Caml type expressions are allowed in specifications when
surrounded with square brackets. Inside square brackets, α-equivalence is the
identity. In other words, Cαml pretends that the values inside square brackets
never contain atoms: it never attempts to scan them for bound atoms or to
rename their free atoms. This is useful, in particular, when one wishes to
attach mutable information to terms. Mutable record fields or ref cells are not
directly permitted in specifications, but are allowed inside square brackets.

⋄ Multiple sorts of atoms. Figure 7 sketches how to enrich the untyped λ-
calculus of Figure 6 with type annotations that can appear inside object-level
expressions and patterns. Type variables are represented by a new sort of
atoms (typevar), so they are considered distinct from term variables. Types
contain atoms of sort typevar. Expressions can now contain type annota-
tions, via a new data constructor ETypeAnnotation, so expressions now con-
tain atoms of sorts var and typevar. Similarly, patterns can now contain type
annotations, via a new data constructor PTypeAnnotation, so patterns now
contain atoms of sorts var and typevar, but bind only the former.

In the definition of PTypeAnnotation, the second parameter, whose type
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type expression =
| EVar of var
| ELambda of lambda
| EApp of expression ∗ expression
| EPair of expression ∗ expression
| EInj of ( int ) ∗ expression
| ECase of expression ∗ clause list
| ELetRec of letrec

and var =
Identifier . t

and lambda =
var ∗ expression

Fig. 8. Raw version of the specification of Figure 6 (excerpt)

is typ, is preceded with the keyword neutral, whereas, according to what we
have said so far, one would expect inner or outer. Indeed, in this particular
situation, the distinction between inner and outer becomes pointless: pattern

binds atoms of sort var, which typ never refers to, so whether typ lies inside or
outside the scope of the abstraction makes no difference. In order to spare the
user an arbitrary decision between inner and outer, we provide the keyword
neutral. The use of this keyword is permitted and required where inner and
outer would be equivalent. This provides a useful sanity check.

5 From specification to code

Out of a binding specification, Cαml produces Objective Caml type definitions
and code. Within type definitions, all Cαml-specific markup is eliminated.
Some of it, such as inner, outer, and neutral keywords, binds clauses, and
square brackets, is simply erased. Some other aspects, including occurrences
of the atom keyword and abstractions, is dealt with in two distinct ways. That
is, Cαml produces two versions of each type definition, a raw version and an
internal one.

5.1 “Raw” type definitions

Figure 8 shows a fragment of the raw version of the specification of Figure 6. In
this version, all occurrences of atom are translated down to the Objective Caml
type Identifier.t, which by default is synonymous with string. An alternative
definition of Identifier can be supplied if desired; for instance, identifiers could
be pairs of a string and of an offset into some source file. Abstractions are
erased.

The raw version is intended only for conversion to and from textual form,
that is, for production by a parser and for consumption by a pretty-printer.
Functions that convert back and forth between raw and internal forms are
automatically produced by Cαml. On the way in (from raw to internal form),
they check that every identifier is correctly bound, and turn identifiers into an
internal representation of atoms. On the way out, they turn atoms back into
human-readable identifiers. The fact that parsers and pretty-printers need
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type expression =
| EVar of var
| ELambda of opaque lambda
| EApp of expression ∗ expression
| EPair of expression ∗ expression
| EInj of ( int ) ∗ expression
| ECase of expression ∗ clause list
| ELetRec of opaque letrec

and var =
Var.Atom.t

and lambda =
var ∗ expression

and opaque lambda

val create lambda : lambda → opaque lambda
val open lambda : opaque lambda → lambda

Fig. 9. Internal version of the specification of Figure 6 (excerpt)

only deal with raw forms means that they can be written in a standard style,
without worrying about names and binding.

5.2 “Internal” type definitions

Figure 9 presents a fragment of the internal version of the specification of
Figure 6.

In this version, each sort of atom is translated down to a distinct abstract
type. More precisely, “atom var” is translated down to Var.Atom.t, where
the module Var defines an abstract type of atoms, equipped with a number
of operations. Similarly, “atom typevar” is translated to Typevar.Atom.t. The
modules Var and Typevar have identical signatures, but define distinct ab-
stract types, so the user cannot mistakenly confuse object-level type and term
variables.

Each abstraction gives rise to two types, one of which is abstract, one of
which is transparent. For instance, the type lambda of Figure 6 gives rise, in
Figure 9, to the abstract type opaque lambda, whose actual definition is not
made public, and to the transparent type lambda, which is synonymous for a
pair of an atom and an expression. Abstractions are translated down to their
abstract versions: for instance, in Figure 9, the data constructor ELambda

carries a parameter of type opaque lambda.

Because opaque lambda is an abstract type, a value of this type is not di-
rectly usable. The only way of exploiting it is for the programmer to explicitly
invoke the function open lambda, also produced by Cαml, which turns it into
a transparent form. Whenever it is invoked, open lambda produces a fresh

atom a and returns a transparent copy of the abstraction where the bound
atom has been consistently replaced with a. This semantics is identical to that
of Fresh Objective Caml [32]. It automatically enforces Barendregt’s conven-
tion that “the bound variables occurring in a certain expression are different
from the free ones” [2]. Conversely, in order to turn a pair of an atom and
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an expression into a value of type opaque lambda, one must go through the
function create lambda.

5.3 More code

Experience suggests that automatically “freshening” the bound atoms upon
opening abstractions obviates the need for many explicit renaming operations.
Nevertheless, there remain situations where it is necessary to explicitly deal
with names and renamings. Cαml automatically produces code for computing
the sets of free or bound atoms of a term and for applying a substitution (of
atoms for atoms) to a term.

Cαml also produces object-oriented code that follows the classic visitor

design pattern [4] and helps succinctly define transformations and traversals

over terms. A generated class called map provides a collection of methods
(one per type, data constructor, or record field that appears in the binding
specification). Each of these methods returns a deep copy of its argument,
and is implemented via self-calls to other methods of the class. This makes it
particularly easy to define transformations that behave “almost like” the iden-
tity. For instance, in the case of the language specified in Figure 6, capture-
avoiding substitution of expressions for variables is implemented by overriding
a single method, namely the one that deals with the data constructor EVar.
This requires less than ten lines of user-written code, regardless of the size of
the specification. A generated class called fold provides a similar facility for
defining traversals.

5.4 Comments

Atoms are internally represented as pairs of an integer and an identifier. The
integer alone represents the atom’s identity; the identifier is used only as a hint
in the conversion from internal forms back to raw forms, where atoms must
be converted back to identifiers. The integer identity of an atom is accessible
when required. Sets of atoms and maps over atoms are represented as Patricia
trees [18] for performance.

Substitutions of atoms for atoms are applied eagerly at all nodes, except at
abstraction nodes, where they are suspended until the abstraction is opened.
This lazy approach allows saving work if the abstraction is never opened. More
importantly, it allows multiple substitutions, including the “freshening” sub-
stitution that is required upon opening an abstraction, to be composed. This
helps avoid successive applications of multiple substitutions to a single term.
In particular, traversing a term, opening abstractions as they are encountered,
only requires linear time under this lazy approach. In comparison, an eager
approach, as currently implemented in Fresh Objective Caml [29,30,31], leads
to quadratic time complexity. Of course, the idea of suspending substitutions
is not new: consult, for instance, Nadathur and Qi [16] or Shinwell [29, page
162].
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A global integer counter is used to produce fresh atoms when required.
This is the only piece of global state maintained by the generated code. It is
expected that, at any time, the value of the counter is greater than that of
any free atom in existence. It is perfectly fine, however, if the value of the
counter happens to be less than that of an atom that occurs bound inside a
term. Indeed, the only way of getting hold of such an atom would be to open
the abstraction that encloses it, but doing so causes it to be replaced with
a fresh atom, so there is really no way of observing it. This remark has an
important practical consequence: it implies that it is fine to apply output value

and input value, Objective Caml’s primitive operations for marshaling and
unmarshaling, to a closed term—one that has no free atoms.

Cαml provides no support for dealing with names that are not explicitly
bound, such as record labels and module names in Objective Caml, or package
and class names in Java. These names are not subject to α-conversion, so the
only problem to be solved is one of efficiency: for instance, one might wish to
represent them as integers internally. This is easily hand-coded using either
global state (which breaks compatibility with output value and input value)
or a fixed hashing scheme in the style of Garrigue [8].

6 Related work

6.1 Specification languages

Many of the specification languages found in the literature [25,11,34,29] are
less expressive than the one presented in this paper. In particular, they either
cannot deal at all or cannot elegantly deal with object-level constructs, such
as let and letrec, that bind a variable number of names.

The same limitation exists in Talcott’s “binding structures” [33], where
each construct must bind a fixed number of names. Yet, Talcott’s language
is in some aspects more expressive than the one presented here. Indeed, its
“binding relations” allow specifying exactly which subset of the bound atoms
is in scope within each sub-expression of an abstraction. This offers some
extra flexibility that we have not deemed necessary. Here, inner encodes the
full set of bound atoms, outer encodes the empty set, and no other set can be
expressed.

The latest version of Fresh Objective Caml [30] offers restricted abstraction

types, of the form 〈t1 | s〉 t2, where t1 and t2 are types and s is a sort. The
idea is that all atoms of sort s that occur inside the left-hand member are
considered bound within the right-hand member. Thus, which sorts of atoms
are considered bound is specified a posteriori, after t1 is defined. In contrast,
Cαml’s specification language requires this decision to be made a priori and
reflected in the binds clause for t1. Either approach has its merits. Ours is less
flexible and perhaps more verbose. It was deemed that requiring every pattern
type to carry an explicit binds clause would, in the end, make specifications
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more readable.

Cheney [5] describes the design of FreshLib, a Haskell library whose aim
and motivations are analogous to those of Cαml. Like Fresh Objective Caml,
FreshLib offers binary abstractions. Furthermore, it allows specifying, via
hand-coded instance declarations, which atoms inside the pattern should be
considered bound. This apparently offers good expressiveness, but in a style
that is not fully declarative.

Higher-order abstract syntax [20] consists in encoding object-level abstrac-
tions as meta-level abstractions. In so doing, one shifts the burden of dealing
with α-conversion onto the meta-language implementor. This approach has
received extensive use in systems such as λ-Prolog or Twelf. Nevertheless,
its use in the setting of functional programming languages appears awkward
and has remained marginal. Indeed, as argued by Sheard [28, Section 13],
encoding an object-level abstraction as some kind of meta-level abstraction
is fine, but encoding it as a meta-level lambda-abstraction is not, because the
semantics of λ-abstraction gets in the way: λ-abstractions do not support
pattern matching, delay computational effects, introduce “junk” terms, etc.
To avoid these problems, several authors [15,19,27] have studied extensions of
a functional programming language with a new meta-level abstraction, whose
only role is to permit higher-order abstract syntax encodings.

6.2 Implementation techniques

De Bruijn’s encoding of (free and bound) names as integer indices [7] remains
popular, because it is, in principle, easy to understand and to implement.
However, this encoding is unsafe. Indeed, because names are integers, they can
be forged: arbitrary integer values can be silently coerced into (meaningless)
names. Also, the meaning of a de Bruijn index is relative to a context: when
the context grows, because a new abstraction is entered, all existing names
must be shifted up. Forgetting to do so, or failing to do so in a correct manner,
has the effect of silently changing a name into another name. Typechecking
techniques based on nested data types [3] or on generalized algebraic data
types [36] can be used to ensure that all indices are within bounds, but it is
not yet clear whether these techniques are practical. Designing a version of
Cαml based on de Bruijn indices, without giving up any of its current safety
guarantees, would require more research.

By contrast, in FreshML [24,32], names are unforgeable atoms, whose
meaning is context-independent. Fresh names are automatically produced
when an abstraction is opened, so “forgetting to shift” is impossible. Our
approach is in the spirit of FreshML and shares these advantages.

The most recent and practical implementation of FreshML is Fresh Objec-
tive Caml [29,30,31], an extension of the Objective Caml compiler and runtime
system. This very interesting piece of work was our most direct source of in-
spiration. Each of the Fresh Objective Caml and Cαml approaches has its
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own set of advantages and disadvantages.

In the Fresh Objective Caml approach, it is difficult to efficiently imple-
ment the primitive operation that swaps two atoms (or renames an atom)
throughout a term. This operation does not have access to types, because
they are erased before execution. Instead, runtime checks must be used to
tell which blocks represent atoms, abstractions, or ordinary terms. A runtime
check is also necessary, in principle, to tell which blocks represent reference
cells—within which no swapping should take place, according to Fresh Ob-
jective Caml’s dynamic semantics. Unfortunately, Objective Caml’s runtime
system does not maintain this information, so this check currently cannot be
implemented. Last, runtime checks are required when collecting the bound
atoms of a restricted abstraction—whenever an atom is found, its sort must
be compared with the sort that restricts the abstraction.

In contrast, the renaming code produced by Cαml contains no such runtime
checks. Indeed, code generation in Cαml is type-directed, so it is statically
known where to look for free atoms of a certain sort, where to look for bound
atoms of a certain sort, and where to stop looking—for instance, under square
brackets, or in sub-terms that are known not to contain any atoms of the
desired sort. The ref type can be used only under square brackets, so reference
cells are never traversed at runtime.

Because Fresh Objective Caml is a modification of the Objective Caml
compiler and runtime system, as opposed to a separate tool or library, keeping
it up-to-date requires more work.

Fresh Objective Caml is more ambitious than Cαml in its treatment of
sharing and of cyclic terms. In Fresh Objective Caml, cyclic terms are sup-
ported and, when possible, sharing is preserved by renamings. The necessary
algorithms are quite subtle and require care. In Cαml, on the other hand,
sharing is ignored, so it is lost when applying renamings. Furthermore, terms
are assumed not to be cyclic 2 . This is consistent with our formalization in
§2, where expressions and patterns are inductively defined terms.

Cαml supports parameterized data type definitions, with a strong restric-
tion: type variables cannot stand for Cαml expression types or pattern types.
Instead, they must stand for plain Objective Caml types. Indeed, it was
deemed difficult to design (and to efficiently compile) a specification language
where expression and pattern types can be variables. Fresh Objective Caml
has no such restriction.

McBride and McKinna [14] describe an implementation technique where
free variables are represented by names and bound variables by de Bruijn in-
dices. This offers the advantage, compared with de Bruijn’s original approach,
that the meaning of terms is again context-independent. In other words, en-

2 Since ref types are disallowed in binding specifications, references cannot be exploited
to create cyclic data structures. The only remaining way of creating such structures is
via Objective Caml’s liberal let rec construct. The Cαml user is warned against using this
feature. Unfortunately, there is no way of actually prohibiting its use.
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tering a new abstraction does not require existing terms to be shifted. Instead,
a de Bruijn index is turned into a name, which must be chosen fresh.

This mixed approach apparently does not differ very much from a fully
nominal, FreshML-style approach. The main advantage of representing bound
variables as de Bruijn indices, as opposed to names, is that α-equivalence then
coincides with standard, first-order equality. This makes it possible to use the
equality and hashing operations provided by the host programming language,
instead of generating code for these operations. One disadvantage is that
creating an abstraction becomes just as costly as opening one, whereas it is a
constant-time operation in the purely name-based approach. If desired, Cαml
could probably be modified to follow this approach without any user-visible
changes.

In fact, McBride and McKinna’s approach is original in that names are not
atoms. Instead, names have hierarchical structure. This allows picking fresh
names in a local, deterministic manner, instead of relying on a global name
generator. It is not clear how much of an advantage this is. A disadvantage,
on the other hand, is that name comparison becomes significantly more costly.

FreshLib [5] is purely a library: no separate code generator is required.
This surprising feat is achieved thanks to the Glasgow Haskell compiler’s sup-
port for generic programming, that is, type-directed code generation [9]. Re-
lying on a separate code generator, as we do, is in comparison low technology,
but offers more freedom—such as the freedom to design our own specification
language. Cheney exploits Haskell-specific techniques [13] in order to imple-
ment modular generic traversals, which in turn allow easily defining trans-
formations such as capture-avoiding substitution. Cαml, instead, relies on
Objective Caml’s object-oriented features and on the classic visitor design
pattern to define such traversals in a straightforward way.

Distinguishing raw and internal forms, and automatically producing code
that converts back and forth between the two, appears to be a unique feature
of Cαml. This certainly saves a lot of boilerplate code. Yet, some experience
is needed to tell whether this feature is useful in real-world situations.

7 Conclusion

7.1 Contributions

We have proposed an expressive binding specification language. In spite of
its simplicity, it allows modeling many complex constructs. In particular, it
supports constructs that bind a variable number of names, such as let and
let rec. It also supports nonlinear patterns, that is, patterns where a single
name can have multiple binding occurrences.

We have published [26] a tool and a library, collectively known as Cαml,
which together allow turning binding specifications into executable Objective
Caml code. Bundled with Cαml are a couple of toy demonstrations. One
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implements a typechecker and evaluator for System F≤. It is inspired by the
one written, using de Bruijn indices, by Pierce [21]. The other implements
Hirschowitz et al.’s call-by-value reduction semantics for a calculus of mixin
modules [10]. We deem both of these preliminary experiments to be successful:
essentially no boilerplate code had to be manually written in order to deal with
names.

No large scale application of Cαml exists yet, so it is too early to tell
whether this approach is flexible and efficient enough to support realistic uses.
We encourage potential users to have a try!

7.2 Limitations

There are specific activities that do not require “freshening” bound atoms
upon opening abstractions. Weak reduction of closed λ-terms and typecheck-
ing are two examples. Then, automatic “freshening” is a waste of time. There
are even cases where it gets in the way. For instance, many program analyses
rely on the informal convention that “all bound names are fixed and pairwise
distinct,” which cannot be enforced in the presence of automatic “freshening.”
Yet, we insist that automatic “freshening” is a feature, not a limitation. Be-
cause it provides a vital safety guarantee, it intentionally cannot be disabled.
If one wishes to avoid it, then one should work with slightly different terms,
which one declares contain atoms, but no abstractions, so that all atoms are
considered free and no “freshening” takes place. This should be no surprise:
a “bound” name that is “fixed” is really a free name!

Because abstractions are translated to opaque structures, they cannot be
taken apart via pattern matching. Instead, the programmer must explicitly
call an open function. This is somewhat verbose and requires match constructs
that involve deep patterns to be manually split into a cascade of shallow match

constructs. This is an instance of a well-known tension between abstract
types and pattern matching. Views [17] offer a potential solution to this issue.
However, in the setting of an impure programming language, their semantics
is difficult to design and to explain. They are currently not implemented
in Objective Caml. In this respect, the Fresh Objective Caml approach is
superior to that of Cαml: the compiler is modified to allow pattern matching
against abstractions.

The functions that are used to open abstractions have impure semantics:
they generate fresh atoms. Nothing guarantees that these atoms are used in
a sensible way: one could, for instance, write a (meaningless) function that
pretends to return the bound atoms of an expression, and get away with it.
There clearly is a need for a type system that could prevent such misuse.
Yet, the FreshML experience [24,32] suggests that this is a difficult problem.
Perhaps it would be more easily addressed in the setting of a theorem prover,
where it is fine to expect the user to explicitly state and prove properties, as
opposed to that of a programming language in the ML tradition, where types
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are supposed to be inferred. A typed calculus that attacks this problem was
recently designed by Schürmann et al. [27].

7.3 From programming to proving

The program that we have carried out—designing a binding specification lan-
guage and a tool that turns specifications into code—could be transposed
into the world of theorem provers. What is needed is a binding specification
language and a tool that turns specifications into theorems and proofs.

In fact, researchers in the theorem proving community have already identi-
fied this as a promising route. For instance, Pitts [23] wishes for “an augmen-

tation of the HOL or Isabelle datatype packages, allowing the user to declare a

nominal signature and then have the principles of α-structural recursion and

induction for that signature proved and ready to be applied.” Similarly, Urban
and Tasson [35] write: “Ideally, a user just defines an inductive datatype and

indicates where binders are—the rest of the infrastructure should be provided

by the theorem prover.” The authors of the PoplMark challenge [1] explain
the need for automation.

In principle, it should be possible to write a tool that translates a version
of our specification language (extended with features of the target language,
such as dependent types) down to theorems and proofs. This appears to be
an interesting direction for future research.
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