Subtyping Recursive Types modulo Associative
Commutative Products

Roberto Di Cosmd, Francois Pottief,and Didier Remy

L Universitée Paris 7 roberto@dicosmo.org
2 INRIA Rocquencourt {Francois.Pottier, Didier.Remy@inria.fr

Abstract. This work sets the formal bases for building tools that helpieve
classes in object-oriented libraries. In such systemsusiee provides a query,
formulated as a set of class interfaces. The tool returrssetain the library that
can be used to implement the user’s request and automgticsilils the required
glue code. We propose subtyping of recursive types in thegpiee of associative
and commutative products—that is, subtyping modulo aiotstt form of type
isomorphisms—as a model of the relation that exists betvileeruser's query
and the tool’s answers. We show that this relation is a coitipp®f the standard
subtyping relation with equality up to associativity andeoutativity of products
and we present an efficient decision algorithm for it. We plewide an automatic
way of constructing coercions between related types.

1 Introduction

The study of type isomorphisms is concerned with identdyitata types by abstract-
ing away from irrelevant details in the syntax of types, on-ether words—irrelevant
choices in the representation of data. The basic idea is gimtple: one wishes to iden-
tify two data types if data of one type can be transformed data of the other type
without loss of information. Formally speaking, and, are said to be isomorphic if
and only if there exist functiong : 71 — 7 andg : 72 — 71 that are mutual inverses,
in the sense that they make the following diagram commute:

f

. ~—)
idy, T) D idr,
_/

g

This study has wide ramifications in different research §igldnging from number
theory to category theory, and fromcalculus to proof theory [14]. In particular, it
helps attack some of the problems raised by the growing aaxitplof today’s multi-
language code bases. Indeed, the vast majority of curravéljable search tools suffer
from the fact that they only allovtextual searches of libraries for method or func-
tion nameswhile such names are largely arbitrary. An interestingainse of this phe-
nomenon is the ubiquity of théold identifier in ML-like languages, pointed out by
Rittri [20].

The key idea behind the use of type isomorphisms in inforonatetrieval is to
forget about names altogether and to relytgpesinstead. Indeed, a type provides a

(possibly partial) specification of a component. Of coutgees must be equated up to
type isomorphisms, so as to make queries robust againstzaytihoices on the library
implementor’s partWhichtype isomorphisms to use depends on the type system, the
programming language, and the observational equivaleniaral. A large variety of
complete equational theories are known that axiomatize isqpmorphisms in various
core calculi. Probably best known is the theory of isomaspts for Cartesian Closed
Categories—the models of the simply-typed lambda calcwitls products and a unit
type [23, 10]:

1. 7x7=7"x71 5. 7x1l=r7
2. Tx (' x7)y=(rx7)x71" 6. T—1=1
3. (rx1)—=1"=71—=(1"=>1") 7. 1l—=71=1
4. 7= (' x)=@F—-7)x(1r—=1")

The type isomorphisms-based approach can help in retgeomplex software com-
ponents from large libraries of functions [13, 21, 22] or mied [25, 3] and in automat-
ically producing bridge code between different repredéoria of a (possibly recursive)
data type in systems like Mockingbird [5, 6]. These activeaarare currently attracting
the attention of many researchers. Unfortunately, the igépeoblem of characterizing
isomorphic types for a full-fledged type system, includings, products, polymorphic
and recursive types—such as that underlying MockingbirdBJ4-is extremely com-
plex and remains open; there are, in particular, difficsltiéth recursive types [1] and
with sum types [7]. In view of this difficulty, Jha, Palsbeamnd Zhao [19, 18] proposed
to study a weak approximation of isomorphisms of recursppes, obtained by view-
ing products as associative and commutative, which we tefas AC-equality. This
relation may be decided in tim@ (N log N), whereN is the sum of the sizes of the
input types. (The same time bound was obtained by Downeljj 8etl Tarjan [15] for
the closely related problem sfymmetric congruence closuréC-equality captures a
lot of the inessential syntactic details one wants to gebfidthen querying a library.
Jhaet al. propose to view a collection of Java interface declaratama collection of
types, using arrow types to encode method signatureshaany products to encode
collections of methods or method parameters. Of coursetyftes thus obtained are
recursive, because Java interface declarations may rhute&r to one another. For
instance, the Java interfaces:

interface I; { interface Iy {
float m; ([; a); I m3 (float a);
int moy (I3 a); I, my (float a);
} }

may be encoded (forgetting method names) as the mutuallysige typed; = (I; —
float) x (I — int) andly = (float — I;) x (float — I5). Thus, the notion of AC-
equality of recursive types gives rise to a notion of eq@imak between (collections of)
Java interfaces.

However, AC-equality is not the right relation on types feasching libraries. As
noted by That [24], when querying a complex object-oriented librarg #ttual type
of the desired class or interface may be extremely complesaise it listall of (the

types of) its methods. As a result, it is not reasonable taireghe query (that is, the
type provided by the user) to be A€ualto the actual type. Indeed, the user would
have to guess the list of (the types af) methods in the class. It is more realistic to
allow the user to formulate a query that is onlg@pertypeof the actual type, so for
instance, a user looking for a collection implementatioty fieamulate the query:

public interface SomeCollection {
public void add (Object o);

public void remove (Object o);
public boolean contains (Object o);
public int size ();

}

In the Java standard library, tl®1llection interface has 15 methods. As a result,
every class that implements it has at least 15 methods aswidtth means thamo
match will be found for this query if types are compared up @équality. The purpose
of this paper is to introduce a notion of A€libtypingdefined so that theéollection
interface is an AGsubtypeof this query. Furthermore, even such a simple notion of
isomorphism of recursive types can give rise to very comptawersion functions. As

a result, it is quite unrealistic to expect that a user co@d&tisfied with a mergue

or falseanswer. A practical search system must be able to generdg¢sfaoconverting
between the search result and the search query, as alreaahased by Thatté [24].

In this paper, we pursue Thats seminal work and give an efficient subtyping al-
gorithm modulo AC for a core language with products, arroars] recursive types.
The algorithm also produces coercion code when it succ&eéelbelieve that when the
language is extended to cover a class-based object-atiEmtguage such as Java, our
algorithm could be combined with ideas from Thatté to sgethe adapters for existing
classes.

The paper is laid out as follow§2 gives a comparison with related work and an
overview of our results. 183, we recall a few basic notions about recursive types, as
well as Palsberg and Zhao'’s notion of equality up to asseitiatnd commutativity
of products [19]. Ins4, we introduce the notion of AC-subtyping and prove thas i
composition of the usual subtyping relation with AC-eqtyallThen, in§5, we describe
an algorithm that decides whether two types are in the sifgyelation modulo asso-
ciativity and commutativity of products. We establish itgrectness and assess its time
complexity. In§6, we discuss how to generate code for coercion functionguhout
the paper, we consider recursive types built out of arronedycts, and the constants
L andT.In§7, we argue that this simple setting is general enough.

2 Related Work and Overview of our Results

Two main lines of work are closely related to ours. To our kieage, Thatté is the
first to have put forth a relaxed form of subtyping betweernrsiwe types as a model
of object-oriented retrieval tools [24]. Without relatit Thatté’s work, Palsbergt al.
have studied efficient algorithms to solve AC-equality afuesive types [19, 18].

By comparison with Tha#fs work, we have taken a more foundational approach
by working directly with recursive types. We also use coticiil/e techniqgues—which

were not yet popular at the time of Thatté’s work—to prowaaheefficient, deterministic
decision algorithm that improves over his exponential atgm (essentially a variant
of Amadio and Cardelli’'s original subtyping algorithm). Wever, some work remains
to be done to specialize our results to classed-based lgagwend build “adapters”, in
Thaté'’s terminology, out of our coercions.

Technically, our co-inductive algorithms share a commoougd with the work
of Palsberget al. on AC-equality [19]. Indeed, co-induction is a most natucall for
reasoning about recursive types. Unfortunately, many efvikll-known algorithmic
optimizations (inspired by classic foundational work ortérautomata) that are appli-
cable when dealing with equivalence relations [19, 18] kbid@vn when dealing with
an ordering. This is very well explained by Jeaal. [18, Section 6], who describe
AC-subtyping, but quickly dismiss it as not amenable to thenoizations used for AC-
equality. The authors state that this relation is deciddhle make no effort to give a
tight complexity bound or describe an actual decision atlyor. Yet, a naive general-
ization of Palsberg and Zhao's ideas [19] to the setting ofsdBtyping—as opposed to
AC-equality—already leads to a decision procedure whogstwaase time complexity
is O(n?n"2d/?) (1), wheren andn’ count the sub-terms of the types that are being
compared and is a bound on the arity of the products involved.

The naive procedure starts from the full relation—a grapthwd(nn’') edges—
and repeatedly removes edges that are found not to be in theuBping relation.
Because it might be necessary to inspect all edges in ordentove only one of them,
and because, in the worst case, all edges have to be rembeedrdcedure might
requireO(n’n’?) edge inspections, each of which happens to require @f&/?) in
the worst case.

In this paper, we improve on this naive procedure by a cactfaice of theorder
in which edges must be inspected. The worst-case time caityptd our improved al-
gorithm may be bounded Kyt), which shows that it performs no worse than the naive
procedure. It may also be bounded®yN N’d*/?) (2), whereN and N’ are the sizes
of the types that are being compared. In practiéeand N’ might be significantly less
thann? andn’?, respectively. Furthermore, we show that, if the types atlrae not re-
cursive (that is, do not involve cycles), then our algorithums in timeO (nn/d/?) (3).
One may expect the algorithm’s performance to degrade fydacevhen the types at
hand involve few cycles. Last, i§b, we give worst-case complexity bounds analogous
to (2) and(3), but where the quantitie8(N N’) andO(nn’) are replaced with the size
of a certain graph. Intuition suggests that, in practice,dize of this graph might be
significantly less than quadratic. For all these reasongxpect our algorithm to per-
form well in practice, whereas an implementation of the eailgorithm would not be
realistic—even though, in rare cases, both algorithms ragyire the same amount of
computation.

A mild difference with Palsberg and Zhao [19] is that we allpr@ducts to be im-
mediately nested. Indeed, our definition of AC-equality &@isubtyping is such that
flattening nested productsi®t part of equality. That is, if we writér; x ... x 7,,) for
I 7, then the type$r; x 7 x 73) and(m x (12 x 73)) arenot AC-related. If one

wishes that these types be identified, one can preprocesspilietypes by flattening
nested products before running our algorithm. (Of coulge j$ possible only in the ab-

sence of infinite products, but this restriction makes jcatsense, since “flat” infinite
products cannot existin memory.) However, there are sitnatwhere we want to keep
these types distinct. For example, products representngjgtent database informa-
tion may be kept nested, as stored on disk, while products fasgassing arguments
to functions may be flattened.

To sum up, we feel our work is more in line with Thatté’s, imthve want to pro-
vide a formal basis foactual search tools, that need AC-subtyping and the automatic
synthesis of the coercions, even if this means giving up kjeridhmic optimizations
that make deciding an equivalence relation more efficietil, Blentifying types up
to AC-equality may remain useful as a preprocessing phaserder to decrease the
number of nodes in the problem that is submitted to the AGysiihg algorithm.

3 Recursive Types

Recursive types are usually given in concrete syntax as gigtems of contractive type
equations, which, according to Courcelle [12], uniquelfirderegular trees; or as finite
terms involvingu binders [16]. The process of unfolding these finite repregems
gives rise to regular infinite trees.

Definition 1 (Signature). A signatureis a mapping fronsymbolswritten s, to integer
arities. In this paper, we consider a fixed signature, which consisésbinary symbol
—, an-ary symbolll™ for every nonnegative integer, and the constant symbols
andT. o

Definition 2 (Path, tree, type).A path p is a finite sequence of integers. The empty
path is writtere and the concatenation of the paghandyp’ is writtenp - p’. A treeis a
partial functionr from paths to symbols whose domain is nonempty and prefisecdo
and such that, for every pathin the domain ofr, p - i € dom(7) holds if and only ifi

is comprised between 1 and the arity of the symtpl), inclusive. Ifp is in the domain
of 7, then thesubtreeof rooted aip, writtenr/p, is the partial function’ — 7(p-p’).

A tree isregular if and only if it has a finite number of distinct subtrees. (Bvénite
tree is thus regular.) Aecursive typdor typefor short) is a regular tree. We writgé
for the set of all types. We writé (resp.T) for the tree that mapsto L (resp.T). We
write 71 — 7 for the tree that mapsto — and whose subtrees rooted at 1 and 2rare
andr,, respectively. We writél , 7, for the tree that mapsto /1™ and whose subtree

K2

rooted at i isr; for everyi € {1,...,n}. o

There are many ways to present equality of recursive tyfegying from tradi-
tional definitions based on finite approximations [2] to moredern co-inductive ap-
proaches [9, 11]. Following Brandt and Henglein, we reasdeiims of simulations.

Definition 3 (Equality). A binary relationR C 772 is a=-simulationif and only if it
satisfies the following implications:

EQ-Tor EQ-ARROW EQ-Pi
TRT T =T RT — T Iy r R I, 7!
T(G) = 7"(6) 1R 7‘{ 9 R Té (Ti R Tl()ie{l,...,n}

Equality= is the largest=-simulation. o

Palsberg and Zhao [19] define equality up to associativity @ammutativity of
products as follows; see also Downetyal. [15, section 4.1]. We write”]"* for the set
of all injective mappings from1,...,m} into {1,...,n}. In particular,X" is the set
of all permutations of 1, ..., n}.

Definition 4 (AC-Equality). A binary relationR C 7?2 is a =4¢-simulationif and
only if it satisfies the following implications:

EQAc-ToP EQAC-ARROW EQAC-PI
TRT T =T RT — T I R I 7!
7(€) = 7'(€) TR T To R 74 Joe X} (o) R 7])i€{dsem}
AC-Equality=4¢ is the largest, «-simulation. o

Note that a product one of whose components is itself a ptadunot considered AC-
equal to the corresponding “flattened” product. We come badtkis point in§7.

4 Subtyping and AC-Subtyping

In this section, we define subtyping of recursive types upstmaiativity and commu-
tativity of products, and show that it is precisely a composiof the usual subtyping
relation with equality up to associativity and commutdsivaf products.

Let us first define subtyping between recursive types. Tljgires extending the
standard definition of subtyping from the case of binary patsl [9] to that ofn-ary
products.

Definition 5 (Subtyping). Let <, be the ordering on symbols generated by the rules:

n>m

1 <y s s<g T — <y — [—
<o <o <o T <y 1™

A binary relationR C 7?2 is a <-simulationif and only if it satisfies the following
implications:

Sus-Top SuB-ARROW SuB-PI
71 R ™ =T R — Il r R I 7!
71(€) <o T2(€) TR T o R Th (1: R 7)i€{lm}
Subtyping< is the largesk-simulation. o

This definition allowsdepthandwidth subtyping. Depth subtyping refers to the covari-
ance of products. Width subtyping refers to the fact thataapet with more compo-
nents may be a subtype of a product with fewer componentdligavidth subtyping
better suits our intended applications. Furthermore pibssible, if desired, to introduce
a distinct family of product constructors, which forbid widsubtyping; se§7.

We now define subtyping of recursive types up to associgtauiid commutativity
of products. Its definition relaxes Definition 5 by allowidgetcomponents of a product
to be arbitrarily permuted. It is given in a slightly genézall style, introducing the
notion of simulatiorup toa relation; this helps state the algorithm’s invarian§sm2.

Definition 6 (AC-Subtyping). Let R C 72 andR’ C 7?2 be binary relationsR is a
<ac-simulation up toR’ if and only if the following implications are satisfied:

SuBAC-TOP SUBAC-ARROW
1R T T — TR —
71(€) <o T2(€) 7 (RUR') 7 7 (RUR') 75
SUBAC-PI

7y R 7
Jo € I (7o) (RUR) 7))i€llmml

R is a<,c-simulationif and only if it is a<¢-simulation up to the empty relation.
AC-Subtyping< 4 ¢ is the largeskK 4o-simulation. o

It is known that=4¢ is a congruence and is an ordering. We show that ,¢ is a
preorder, that is, it is reflexive and transitive.

Proposition 7. < 4¢ is a preorder. o

We argue that our definition of subtyping modulo associgtigshd commutativity
of products is natural by establishing that it is a compositif the pre-existing relations
=4¢ and<. One may hope to prove that,c coincides with=4- o <. However, this
does not hold, because the contravariance of the arrow dyforises=,4 to be used
on both sides of. This is illustrated by the paii/7'(T) — I1%(L, T), II*(L,T) —
IT'(T)), which is a member of 4, but not a member of4c o < or of < o =4¢.
As a result=4c must in fact be used on both sides<0fas stated below.

Theorem 8. The relations< 4¢ and(=4¢) o (<) o (=a¢) coincide. o

5 Deciding AC-Subtyping

Let us say that a pair of types= (r, 7’) isvalid if 7 <, 7" holds andnvalid other-
wise. We now define an algorithm that, given a pair of types= (79, 7(,), determines
whetherp, is valid.

The algorithm’s complexity is assessed as a function of ¢tleviing parameters.
Let " and 7" be the sets of all subtrees af and 7{), respectively. Let» andn’ be
the cardinalities of these sets; they are finite. Let us viemnd7” as directed graphs,
where every tree is a node and there is an edge fréonr’ labeled: if and only if 7 /i
is 7. In other words, there is an edge from every tree to each ohitsediate subtrees.
Please note that there may be multiple edges, with distibetl$, between andr’. If 7
is anode inl" or 7", letd(r) denote its outgoing degree, that is, the arity of the symbol
7(€). Letu(r) denote its incoming degree, that is, the number of its prestars in the
graphT orT”. We writed for the maximum ofi(7) whent ranges over all nodes if
andT”. Last, letN (resp.N’) be thesizeof the graphl” (resp.T”), where every node
and every edge contributes one unit. Please note that we Nave X, < (1 + u(7))
as well as a similar identity concernifg.

The algorithm maintains sets of pairs of nodes. We assunelg@mentary set op-
erations can be performed in constant time. This is indesdiple by using an array of
sizeO(nn’), or, more realistically, a hash table.

5.1 First Phase: Exploration

Specification The first phase of the algorithm consists in constructingrétéfj setl/
of pairs of types whose validity one must determine in orddre able to tell whether
po is valid. The universé/ may be defined as the smallest set that contajrasnd is
closed under the following two rules:

EXPLORE-ARROW EXPLORE-PI
(1 = 72,7y = 14) €U (ILLy 7, Iy 7)) € U
(r{,) €U (m2,7h) €U (13, 7)) € Uy ettmnd d&{lm}

The set(T' x T") U (T" x T') containsp, and is closed under these rules. This ensures
thatU exists and has cardinality(nn’).

We have explained above how to viefvand 7" as graphs. It is useful to view
(T x T'YU (T" x T) as a graph as well. Let there be an (unlabeled) edge from a
pair of typesp to a pair of typeg’ if p matches the premise @&xPLORE-ARROW Or
ExPLORE-PI while p’ matches one of its conclusions. In that case, we also say that
p is aparentof p’. Then, the exploration phase can be viewed simply as ano#xpli
traversal (and construction) pfart of the graph(7T" x 7") U (7" x T), starting from
the nodepy. In other words[J is the connected componentaf in the directed graph
(TxTHUu(T' xT).

The number of nodes in the graphis clearly bounded by (nn’). Becausd/ is
an unlabeled graph, the number of its edges must be bound@d¥y.’?). This yields
size(U) < O(n?n'?). Furthermore, because the predecessors of g paif) are pairs
of a predecessor afand a predecessor of, we haveu(r,) < u(r)u(r’). This yields
another bound on the size of the grdph

size(U) = Ziroyev (L +u(r, 7)) < Zrer, mer (1 + u(r)u(r))
< (Zrer(L+u(n)(Zrer (1 +u(r'))) = NN

In practice, we expect both of these bounds to be pessimistithe particular case
where the types at hand are not recursive (that is, do noteveycles) and do not
involve any products, the size 6f may be bounded byin(N, N’). There is a lot of
slack between this optimistic bound and the worst-case d®given above. It should
be interesting to measure the sizedbfn real-world situations.

Implementation The graphl can be computed using a simple iterative procedure, as
follows.

1. LetU = 0 andW = {po}.
2. While W is nonempty, do:
(a) Take a paip out of W;
(b) If p € U, continue at 2;
(c) Insertpinto U,
(d) If pis of the form(r; — 7, 7] — 73), theninser{r{, 7,) and (72, 75) into W;
(e) If pis of the form(I17 7, I1]"7}),
then insert everyr;,), fori € {1,...,n} andj € {1,...,m}, intoW.

It is clear that this procedure implements the constructib/ as specified above.
In step 2e, one should remove any duplicate elements fronfathéies (), and
(77)}L, prior to iterating over them. Then, this procedure runsnmetO (size(U)d). It
is dominated by the running time of the second phase.

5.2 Second Phase: Fixpoint Computation

The idea behind the second phase of the algorithm is to deteitime greatest subset of
U thatis a< 4¢-simulation, then to check whethgy is a member of it. In order to build
this subset, we start from the full relatidn, and successively remove pairs that vio-
late Susac-Top, SuBAC-ARROW OF SuBAc-PI, until we reach a fixpoint. Whether a pair
violatesSuBac-ToPp or SuBac-ArRROwW may be determined in constant time. However,
in the case oSusac-PI, the check requires solving a matching problem in a bigartit
graph, whose time complexity may be boundedXyl®/?), as we shall see.

A naive procedure begins by iterating once over all painsiaéng those that vi-
olate one of the rules; this takes tini®nn’d®/?). But one such iteration may not
be enough to reach the fixpoint, so the naive procedure refkist step as many
times as required. In the worst case, each step invalidatgsome pair, in which
case up ta@(nn’) successive steps are required. Thus, the overall time exitypls
O(n?n/?d>/?). Below, we propose an enhanced approach, whose convergdaseer.
Instead of blindly checking every pair at each iteration,alieck only theparentsof
pairs that have just been invalidated. Downey, Sethi, amg@xploit the same idea
to accelerate the convergence of their congruence clotyogtam [15].

Description The universd/ is now fixed. We maintain three sdfg, S, and ", which
form a partition ofU. The setiV is aworklist and consists of pairs whose validity re-
mains to be determined. The setonsists osuspendegairs, which are conditionally
valid: the algorithm maintains the invariant thgtis a < 4c-simulation up tol¥/. In
other words, a paif is known to be validorovidedits (indirect) descendants Iy are
found to be valid as well. The sét consists of known invalidfélse pairs.

When a pairp is found to be invalid, it is moved to the sétand all (if any) of
its parents withinS are transferred t& for examination. We refer to this auxiliary
procedure asnvalidating p. The time complexity of this procedure 3(1 + u(p)),
whereu(p) is the incoming degree of the paiiin the graphl/ (seeg5.1).

The second phase of the algorithm is as follows.

1. LetW =U andS = F = 0.
2. While W is nonempty, do:
(a) Take a paip out of W;
(b) If pis of the form(_L, ") or (7, T), then inserp into S;
(c) If pis of the form(r — 7,7 — 74), then
if (r1,71) ¢ Fand(m2,) ¢ F theninserp into S else invalidate;
(d) If pis of the form(I177;, IT72, 7}), then
if there existsr € X" such that, for allj € {1,...,m}, (75(;),7;) €
F holds, then insent into S else invalidatey;
(e) If p satisfied none of the three previous tests, then invalidate
3. If py € F, returntrue, otherwise returifialse

Correctness Each iteration of the main loop (step 2) takes a paiut of W and either
inserts it intoS or invalidates it. In either case, it is clear thav, S, F') remains a
partition of U.

Let us now check that remains a< 4o-simulation up td/¥. If the pairp is inserted
into S, thenp satisfiesSusac-Tor, and there exist pairs i/ U S (that is, outsider)
whose validity is sufficient fop to satisfySuBac-ArRRow or SuBAc-PI. So, the invariant
is preserved. If, on the other hand, the paiis invalidated, then all of its parents within
S are transferred back %@, which clearly preserves the invariant as well.

Last, let us check thdf remains a set of invalid pairs only. If the paiis invalidated
at step 2c, them is invalid, for otherwise, bysusac-ArRrow, the pairs(7{,) and
(72, %) would be valid—but these pairs are memberg ot contradiction. Becauge
isinvalid, inserting it intal” preserves the invariant. If the paiis invalidated at steps 2d
or 2e, therp may be shown invalid analogously, usi8gsac-Pi or SUBAC-TOP.

When the algorithm terminateB; is empty, saS is a < 4¢-simulation, which im-
plies that every member &f is valid. On the other hand, every memberofs invalid.
We have established that the result returned in step 3 isdpas stated below:

Theorem 9. If the algorithm returns true, themy <sc 7} holds. If the algorithm
returns false, themy <4¢ 7, does not hold. o

Termination and Complexity Invalidating a pair transfers it froril” to /. Because
pairs are never taken out &f, and becaus&’ and F' remain disjoint, no pair is ever
invalidated twice.

The initial size of W is the number of nodes V. Furthermore, when a paijr
is invalidated, the size ofV increases by.(p). Thus, considering that every pair is
invalidated at most once, the total number of pairs that eee taken out of¥/—that
is, the total number of iterations of step 2—is at most

(Zpev 1) + (Zpev u(p)) = Zpev (1 +u(p)) = size(U)

Let us now estimate the cost of a single iteration of step 3tép 2d, determining
whether an appropriate exists is a matching problem in a bipartite graph with at most
2d nodes andi® edges. Such a problem can be solved in ti{@®/?) using Hopcroft
and Karp’s algorithm [17]. The cost of invalidating a pairyriz viewed a® (1) if we
consider that the price for transferring a parent frno 1V is paid when that parent is
later examined. Thus, the (amortized) cost of a singletitaraf step 2 isO(d*/?).

Combining these results, we find that the second phase ofgbgtam runs in time
O(size(U)d"/?). This is more expensive that the first phase, so we may state

Theorem 10. The algorithm runs in time(size(U)d®/?), which is bounded both by
O(NN'd>/?) andO(n?n'2d/?). 3

As explained in§5.1, the size of the grapti might be significantly smaller, in
practice, than either oV N’ andO(n?n'?), which is why we give the first complexity
bound. The second bound shows that, in the worst case, thdthig remains linear
in each of the sizes of the input types, namaélyand N’, with additional overhead
O(d®/?), whered is a bound on the arity of the products involved. The thirdrimbu

shows that our improved algorithm performs no worse thandiee procedure outlined
in §1 and§5.2.

For comparison, Downegt al’'s symmetric congruence closure algorithm [15],
as well as Jha&t al’s decision procedure for AC-equality [18], run in tind& (N +
N")log(N + N')). These algorithms compute aquivalenceelation. This opens the
way to a more efficient data representation, where a reldiowt stored as a set of
pairs but as a partition, and simplifies the matching problem

5.3 Further Refinements

A cheap refinement consists in modifying the first phase sbitHails as soon as it
reaches a pajy that does not satisfgusac-Tor, providedthe path fronp, to p never
leaves a pair of products—that is, provided the validitypgfimplies that ofp. This
helps immediately detect some failures. For this refinertemte most effective, the
paths inU where immediate failure may occur should be explored firsie @ay of
achieving this effect is simply to give higher priority toges that leave a pair of arrows
than to edges that leave a pair of products.

A more interesting refinement consists in specifying in wiraler pairs should be
taken out of the worklist¥ during the second phase. It is more efficient to deal with
descendants first and with ancestors last, because dedlim@rvancestor too early
might be wasted work—we might decide to suspend it and ladblred to transfer
it back to the worklist because new information about itscdadants has been made
available. Of course, because types are recursive, thigoreléo be a parent of” is in
general only a preorder, not an ordering—that is, the gtaphay exhibit cycles.

Let us remark, though, that whéhis acyclic, it is indeed possible to process pairs
in order. This ensures that, when a pair is processed, noite parents have been
processed yet, so all of them must still be in the worklistu§hwhen invalidating a
pair, it is no longer necessary to iterate over its paremtshat case, the algorithm’s
time complexity become® (nodes(U)d®/?), wherenodes(U) counts the nodes of the
graphU, butnotits edges, and is bounded By nn').

Itis possible to take advantage of this remark even in thegoree of cycles. The first
phase, upon completion, can be made to produce an expficésentation of the graph
U. Determine its strongly connected components and topeddigisort them. Then,
remove all edges whose endpoints do not belong to the sanmegocemt The cost of
this additional preprocessing is linear in the sizé/oNow, run the second phase, one
component at a time, in topological order, that is, descetsdirst and ancestors last.
Because of the removed edges, when invalidating aypainly the parents op that
belong to thesamestrongly connected component are checked. This is coresetuse
components are being processed in topological order, warishres that the parents of
p that belong to alistinctcomponent must still be in the worklist.

The modified algorithm runs in timé@(size(U’)d>/?), whereU’ is the result of
pruning the graplt/, that is, of keeping only the edges that participate in aecythus,
its complexity may still be bounded by (N N’d>/?) in the worst case, but this bound
gradually decreases downd(nn’d®/?) in the case of nonrecursive types. We conjec-
ture that, in practice, cycles often involve only a fractimfithe type structure, so this
improvement may be significant.

Searching a Whole Library For our purposes, a software library is a collection of
possibly mutually recursive types, which we may view as glsimecursive type,
some distinguished subterms of which form a gt The programmer’s query is a
possibly recursive typeg. The problem is to find all components in the library that
provide (at least) the requested functionality, that isfind everyr € T such that

T <AC TQ holds.

One possibility is to run the algorithm wihy = (7, 7¢) successively for every €
Tr.. However, this is inefficient. Lel/, denote the universe explored by the algorithm
when run with initial pair(7, 7). Then, the universed/;)., might overlap, causing
repeated work. It is more efficient to run the algorithm onémultipleinitial pairs,
that is, with the family of initial pair§r, 7o) -1, . Extending the algorithm to deal with
a set of initial pairs{py, . . .,pr—1} is immediate; it suffices to define the univeilde
as the smallest superset @iy, . . ., pr—1} that is closed undeExpPLoRE-ARROW and
ExPLORE-PI. By running the algorithm only once, we ensure that the woase time
complexity is bounded by (N N'd%/?), whereN is the size of the library; and N’
is the size of the queryy.

In fact, running the algorithm once with a set of initial gipo, . . . , prx—1 } iS equiv-
alent to running itk times in succession, supplying the single initial paito the ;™
run, providedeach run starts where the previous left off, that is, re-tisesetd/, S,

F computed by the previous run. With this proviso, one mayhauit loss of efficiency,
provide initial pairs to the algorithm one after the other.

This remark leads to an optimization. Imagine tihgtis organized as a graph, with
an edge fromr to 7’ if and only if 7 <4¢ 7/ holds. (This graph might be built during
a preprocessing phase. We may assume that it is acyclidsif'it cycles may be col-
lapsed.) Then, pick a maximal nodethat is, a node with no successors in the graph.
Run the algorithm with initial paifr, 7). If 7 is found to be comparable witty, then,
by transitivity of < 4¢, so isevery predecessaf 7 in the graph. In that case, remove
7 and all of its predecessoifsom the graph; otherwise, removealone. Then, pick
a maximal node in what remains of the graph, and proceed isdhree manner. This
approach offers the double advantage of being potentiadiyerefficient and of provid-
ing successful answers in groups, where each group corgtalistinguished maximal
(w.r.t. <4¢) answer to the query and distinct groups contain incomparahswers.
We believe that the user should find this behavior naturag d¢tual efficiency gain
remains to be assessed.

One should point out that this optimization is but a simple wbexploiting the fact
that < 4 is transitive. One might wonder whether it is possible toleitpransitivity
at the core of the algorithm: for instance, by directly iniggy a pair into.S, without
examining its descendants, if it is a transitive conseqge@hthe pairs that are members
of S already. This issue is left for future research.

6 Building Coercions

We now discuss the coercions that witness the relatigs, and how to compute them
from the simulation discovered by the algorithm, when itcaedls. We follow Brandt

and Henglein’s presentation [9], but work directly with uéay trees, instead of using
the p notation, which allows us to make “fold” and “unfold” coencis implicit.

Definition 11 (Coercions for<). Coercions are defined by the grammar
cu=1, | flfixfic|ec— | IIf¢; | abort. | discard: o

Most coercion forms are taken from Brandt and Henglein'spapith the same typing
rules [9, figure 6]. Let us recall that a typing judgment isted formE + ¢ : 7 — 7/,
where the environmenk’ maps coercion variableg to coercion types of the form
T — 7’. The one new coercion form i8¢ ¢;, whose typing rule is

oe X" (Bt To(i) = Tl_l)ie{l,.,,,m}
EF chi S T — HinilTi/

3

and whose operational meaningXg.I1;” | c;(7;y(p)). If 7 <ac 7' holds, then the
algorithm, applied to the pair, '), produces a finite< 4-simulationS that contains
(r,7'). Itis straightforward to turrt into a system of recursive equations that defines
one coercion for each pair withi$i, including, in particular, a coercion of type— 7’.

Theorem 12. If 7 <4¢ 7' holds, there exists a (closed) coercion. t.;c: 7 — 7. ¢

The size of the equation associated with') is O(1 + d(7')), whered(7’) is the
outgoing degree of the nodé in the graphl” or T’. As a result, the total size of the
system of equations is bounded by

O(Srerver (L d(r") + Sperr,er(l +d(r)))
= 0(n(Xrer (1 +d(1'))) + 1/ (Xrer(1 +d(7))))
=O(nN"+n'N)

The system can be produced in linear time with respect tdzes so the time com-
plexity of producing code for the coercions@§nN’ 4+ n’N). (If one applies Bekic's
theorem, as suggested above, then the time and space caynplereases quadrati-
cally, but there is no reason to do so in practice.)

It is worth pointing out that not all well-typed coercionsveahe same operational
meaning, and some user interaction is, in practice, negesgsansure that the coercion
code suits the user’s needs.

7 Practical Considerations

In practical applications, the language of types is usuaiilych richer than the one
considered in this paper. The grammar of types may includet afsatoms (such as
int, float, etc.), equipped with a subtyping relation, and a set of ipatarized type
constructors. Each of these type constructors may have sonteavariant and some
covariant parameters, may support or forbid permutatidrits gparameters, and may
support or forbid width subtyping.

Fortunately, it is straightforward to adapt the resultsto$ ppaper to such an ex-
tended language of types. As far as atoms and atomic sulgtyp concerned, it

suffices to add appropriate clauses to the definition ef s -simulation and to the
algorithms for deciding AC-subtyping and building coer@gpthese new clauses are
variations of the existing clauses farand T. As far as parameterized type construc-
tors are concerned, it is enough to extend our definitionsigtynduishing four kinds
of products that respectively support or forbid parame&zmutations and width sub-
typing. The rules that describe the three new (restrictettjskof products are special
cases of our current rules, since our current product asctstr allows both parameter
permutations and width subtyping. Then, every parametéitiype constructor may be
desugared into a combination of atoms, the arrow constriataich allows encoding
contravariance) and the four product constructors.

Our core language is purely functional. However, real-ditahguages, and object-
oriented languages in particular, often have mutable datetsres and a notion of
object identity. Then, it is important that coercions presenbject identity. One might
wish the following property to hold: the program that is itk using adapters, to a
certain library, should have the same semantics as thainebtdy linking, without
adapters, to a library whose method and class names havesbigégloly renamed. We
believe that, combining our algorithms with the adapter eisletched by Thatté [24],
it is possible to achieve such a property. We leave this asdwtork.

8 Conclusion

We have introduced a notion of subtyping of recursive typesauassociativity and
commutativity of products. We have justified our definition dhowing that this rela-
tion is a composition of the usual subtyping relation wittisBarg and Zhao's notion
of equality up to associativity and commutativity of prothidNVe have provided an al-
gorithm for deciding whether two types are in the relatione Blgorithm’s worst-case
time complexity may be bounded Wy(N N’d°/?) and O(n?n/?d®/?); we believe it
will prove fairly efficient in practice. It is straightforwd and cheap to produce coer-
cion code when the algorithm succeeds.

We believe this paper may constitute the groundworkractical search tools
within libraries of object-oriented code. Indeed, as adgire§1, AC-equality alone
is not flexible enough, since it does not allow looking foryoalsubsef the features
provided by a library.

References

[1] Martin Abadi and Marcelo P. Fiore. Syntactic considienas on recursive types. IEEE
Symposium on Logic in Computer Science (LIG&pes 242—-252, July 1996.

[2] Roberto M. Amadio and Luca Cardelli. Subtyping recuesiypes.ACM Transactions on
Programming Languages and Systef(4):575-631, September 1993.

[3] Maria-Virginia Aponte and Roberto Di Cosmo. Type isomlisms for module signa-
tures. InSymposium on Programming Language Implementation andtlRgigramming
(PLILP), volume 1140 ofLecture Notes in Computer Sciengages 334-346. Springer
Verlag, 1996.

[4] Joshua Auerbach, Charles Barton, and Mukund Raghaviachigpe isomorphisms with
recursive types. Technical Report RC 21247, IBM YorktowrigHes, 1998.

[5] Joshua Auerbach and Mark C. Chu-Carrol. The Mockingkiydtem: a compiler-based
approach to maximally interoperable distributed systerfischnical Report RC 20718,
IBM Yorktown Heights, 1997.

[6] Joshua Auerbach, Mark C. Chu-Carrol, Charles Bartod,Mokund Raghavachari. Mock-
ingbird: Flexible stub generation from pairs of declamatio Technical Report RC 21309,
IBM Yorktown Heights, 1998.

[7] Vincent Balat, Roberto Di Cosmo, and Marcelo Fiore. Reman isomorphisms in typed
lambda calculi with empty and sum type. IBEE Symposium on Logic in Computer
Science (LICS)July 2002.

[8] Charles M. Barton. M-types and their coercions. TechAhiReport RC-21615, IBM York-
town Heights, December 1999.

[9] Michael Brandt and Fritz Henglein. Coinductive axioimation of recursive type equality
and subtypingFundamenta Informatica83:309—-338, 1998.

[10] Kim Bruce, Roberto Di Cosmo, and Giuseppe Longo. Priavéomorphisms of types.
Mathematical Structures in Computer Scien2€):231-247, 1992.

[11] Felice Cardone. A coinductive completeness prooflierequivalence of recursive types.
Theoretical Computer Scienc275(1-2):575-587, 2002.

[12] Bruno Courcelle. Fundamental properties of infiniees. Theoretical Computer Science
25(2):95-169, March 1983.

[13] Roberto Di Cosmo. Deciding type isomorphisms in a typggnment frameworklournal
of Functional Programming3(3):485-525, 1993.

[14] Roberto Di Cosmo.somorphisms of types: frotk-calculus to information retrieval and
language designProgress in Theoretical Computer Science. Birkhaus®5.19

[15] Peter J. Downey, Ravi Sethi, and Robert Endre Tarjamiatfans on the common subex-
pression problemJournal of the ACM27(4):758-771, October 1980.

[16] Vladimir Gapeyev, Michael Levin, and Benjamin PiercRecursive subtyping revealed.
Journal of Functional Programmind.2(6):511-548, 2003.

[17] John E. Hopcroft and Richard M. Karp. Aw/? algorithm for maximum matchings in
bipartite graphsSIAM Journal on Computing(4):225-231, December 1973.

[18] Somesh Jha, Jens Palsberg, and Tian Zhao. Efficientrhgiehing. Ininternational
Conference on Foundations of Software Science and Coniputatructures (FOSSACS)
volume 2303 of_ecture Notes in Computer Scienpages 187—204. Springer Verlag, April
2002.

[19] Jens Palsberg and Tian Zhao. Efficient and flexible niagcbf recursive typesinforma-
tion and Computation171:364—-387, 2001.

[20] Mikael Rittri. Using types as search keys in functiobréries. Journal of Functional
Programming 1(1):71-89, 1991.

[21] Mikael Rittri. Retrieving library functions by unifyig types modulo linear isomorphism.
RAIRO Theoretical Informatics and Applicatioray (6):523-540, 1993.

[22] Colin Runciman and lan Toyn. Retrieving re-usablewafe components by polymorphic
type. Journal of Functional Programmind.(2):191-211, 1991.

[23] Sergei V. Soloviev. The category of finite sets and cate closed categoriesournal of
Soviet Mathemati¢c22(3):1387-1400, 1983.

[24] Satish R. Thatté. Automated synthesis of interfacapéels for reusable classes. AGM
Symposium on Principles of Programming Languages (POp&ges 174-187, January
1994.

[25] Jeannette M. Wing, Eugene Rollins, and Amy Moormannefeki. Thoughts on a
Larch/ML and a new application for LP. First International Workshop on Larclpages
297-312, July 1992.

