
Subtyping Recursive Types modulo Associative
Commutative Products

Roberto Di Cosmo,1 François Pottier,2 and Didier Rémy2

1 Université Paris 7 roberto@dicosmo.org
2 INRIA Rocquencourt {Francois.Pottier, Didier.Remy}@inria.fr

Abstract. This work sets the formal bases for building tools that help retrieve
classes in object-oriented libraries. In such systems, theuser provides a query,
formulated as a set of class interfaces. The tool returns classes in the library that
can be used to implement the user’s request and automatically builds the required
glue code. We propose subtyping of recursive types in the presence of associative
and commutative products—that is, subtyping modulo a restricted form of type
isomorphisms—as a model of the relation that exists betweenthe user’s query
and the tool’s answers. We show that this relation is a composition of the standard
subtyping relation with equality up to associativity and commutativity of products
and we present an efficient decision algorithm for it. We alsoprovide an automatic
way of constructing coercions between related types.

1 Introduction

The study of type isomorphisms is concerned with identifying data types by abstract-
ing away from irrelevant details in the syntax of types, or—in other words—irrelevant
choices in the representation of data. The basic idea is quite simple: one wishes to iden-
tify two data types if data of one type can be transformed intodata of the other type
without loss of information. Formally speaking,τ1 andτ2 are said to be isomorphic if
and only if there exist functionsf : τ1 → τ2 andg : τ2 → τ1 that are mutual inverses,
in the sense that they make the following diagram commute:

τ1 τ2

f

g

idτ1
idτ2

This study has wide ramifications in different research fields, ranging from number
theory to category theory, and fromλ-calculus to proof theory [14]. In particular, it
helps attack some of the problems raised by the growing complexity of today’s multi-
language code bases. Indeed, the vast majority of currentlyavailable search tools suffer
from the fact that they only allowtextual searches of libraries for method or func-
tion names, while such names are largely arbitrary. An interesting instance of this phe-
nomenon is the ubiquity of thefold identifier in ML-like languages, pointed out by
Rittri [20].

The key idea behind the use of type isomorphisms in information retrieval is to
forget about names altogether and to rely ontypesinstead. Indeed, a type provides a

(possibly partial) specification of a component. Of course,types must be equated up to
type isomorphisms, so as to make queries robust against arbitrary choices on the library
implementor’s part.Which type isomorphisms to use depends on the type system, the
programming language, and the observational equivalence at hand. A large variety of
complete equational theories are known that axiomatize type isomorphisms in various
core calculi. Probably best known is the theory of isomorphisms for Cartesian Closed
Categories—the models of the simply-typed lambda calculuswith products and a unit
type [23, 10]:

1. τ × τ ′ = τ ′ × τ 5. τ × 1 = τ
2. τ × (τ ′ × τ ′′) = (τ × τ ′) × τ ′′ 6. τ → 1 = 1
3. (τ × τ ′) → τ ′′ = τ → (τ ′ → τ ′′) 7. 1 → τ = τ
4. τ → (τ ′ × τ ′′) = (τ → τ ′) × (τ → τ ′′)

The type isomorphisms-based approach can help in retrieving complex software com-
ponents from large libraries of functions [13, 21, 22] or modules [25, 3] and in automat-
ically producing bridge code between different representations of a (possibly recursive)
data type in systems like Mockingbird [5, 6]. These active areas are currently attracting
the attention of many researchers. Unfortunately, the general problem of characterizing
isomorphic types for a full-fledged type system, including sums, products, polymorphic
and recursive types—such as that underlying Mockingbird [4, 8]—is extremely com-
plex and remains open; there are, in particular, difficulties with recursive types [1] and
with sum types [7]. In view of this difficulty, Jha, Palsberg,and Zhao [19, 18] proposed
to study a weak approximation of isomorphisms of recursive types, obtained by view-
ing products as associative and commutative, which we referto as AC-equality. This
relation may be decided in timeO(N log N), whereN is the sum of the sizes of the
input types. (The same time bound was obtained by Downey, Sethi and Tarjan [15] for
the closely related problem ofsymmetric congruence closure.) AC-equality captures a
lot of the inessential syntactic details one wants to get ridof when querying a library.
Jhaet al. propose to view a collection of Java interface declarationsas a collection of
types, using arrow types to encode method signatures andn-ary products to encode
collections of methods or method parameters. Of course, thetypes thus obtained are
recursive, because Java interface declarations may mutually refer to one another. For
instance, the Java interfaces:

interface I1 { interface I2 {

float m1 (I1 a); I1 m3 (float a);

int m2 (I2 a); I2 m4 (float a);

} }

may be encoded (forgetting method names) as the mutually recursive typesI1 = (I1 →
float) × (I2 → int) andI2 = (float → I1) × (float → I2). Thus, the notion of AC-
equality of recursive types gives rise to a notion of equivalence between (collections of)
Java interfaces.

However, AC-equality is not the right relation on types for searching libraries. As
noted by Thatt́e [24], when querying a complex object-oriented library, the actual type
of the desired class or interface may be extremely complex, because it listsall of (the

types of) its methods. As a result, it is not reasonable to require the query (that is, the
type provided by the user) to be AC-equal to the actual type. Indeed, the user would
have to guess the list of (the types of)all methods in the class. It is more realistic to
allow the user to formulate a query that is only asupertypeof the actual type, so for
instance, a user looking for a collection implementation may formulate the query:

public interface SomeCollection {

public void add (Object o);

public void remove (Object o);

public boolean contains (Object o);

public int size ();

}

In the Java standard library, theCollection interface has 15 methods. As a result,
every class that implements it has at least 15 methods as well, which means thatno
match will be found for this query if types are compared up to AC-equality. The purpose
of this paper is to introduce a notion of AC-subtypingdefined so that theCollection
interface is an AC-subtypeof this query. Furthermore, even such a simple notion of
isomorphism of recursive types can give rise to very complexconversion functions. As
a result, it is quite unrealistic to expect that a user could be satisfied with a meretrue
or falseanswer. A practical search system must be able to generate code for converting
between the search result and the search query, as already advocated by Thatté [24].

In this paper, we pursue Thatté’s seminal work and give an efficient subtyping al-
gorithm modulo AC for a core language with products, arrows,and recursive types.
The algorithm also produces coercion code when it succeeds.We believe that when the
language is extended to cover a class-based object-oriented language such as Java, our
algorithm could be combined with ideas from Thatté to synthesize adapters for existing
classes.

The paper is laid out as follows.§2 gives a comparison with related work and an
overview of our results. In§3, we recall a few basic notions about recursive types, as
well as Palsberg and Zhao’s notion of equality up to associativity and commutativity
of products [19]. In§4, we introduce the notion of AC-subtyping and prove that it is a
composition of the usual subtyping relation with AC-equality. Then, in§5, we describe
an algorithm that decides whether two types are in the subtyping relation modulo asso-
ciativity and commutativity of products. We establish its correctness and assess its time
complexity. In§6, we discuss how to generate code for coercion functions. Throughout
the paper, we consider recursive types built out of arrows, products, and the constants
⊥ and⊤. In §7, we argue that this simple setting is general enough.

2 Related Work and Overview of our Results

Two main lines of work are closely related to ours. To our knowledge, Thatté is the
first to have put forth a relaxed form of subtyping between recursive types as a model
of object-oriented retrieval tools [24]. Without relatingto Thatté’s work, Palsberget al.
have studied efficient algorithms to solve AC-equality of recursive types [19, 18].

By comparison with Thatté’s work, we have taken a more foundational approach
by working directly with recursive types. We also use co-inductive techniques—which

were not yet popular at the time of Thatté’s work—to providean efficient, deterministic
decision algorithm that improves over his exponential algorithm (essentially a variant
of Amadio and Cardelli’s original subtyping algorithm). However, some work remains
to be done to specialize our results to classed-based languages and build “adapters”, in
Thatt́e’s terminology, out of our coercions.

Technically, our co-inductive algorithms share a common ground with the work
of Palsberget al. on AC-equality [19]. Indeed, co-induction is a most naturaltool for
reasoning about recursive types. Unfortunately, many of the well-known algorithmic
optimizations (inspired by classic foundational work on finite automata) that are appli-
cable when dealing with equivalence relations [19, 18] break down when dealing with
an ordering. This is very well explained by Jhaet al. [18, Section 6], who describe
AC-subtyping, but quickly dismiss it as not amenable to the optimizations used for AC-
equality. The authors state that this relation is decidable, but make no effort to give a
tight complexity bound or describe an actual decision algorithm. Yet, a naive general-
ization of Palsberg and Zhao’s ideas [19] to the setting of AC-subtyping—as opposed to
AC-equality—already leads to a decision procedure whose worst-case time complexity
is O(n2n′2d5/2) (1), wheren andn′ count the sub-terms of the types that are being
compared andd is a bound on the arity of the products involved.

The naive procedure starts from the full relation—a graph with O(nn′) edges—
and repeatedly removes edges that are found not to be in the AC-subtyping relation.
Because it might be necessary to inspect all edges in order toremove only one of them,
and because, in the worst case, all edges have to be removed, the procedure might
requireO(n2n′2) edge inspections, each of which happens to require timeO(d5/2) in
the worst case.

In this paper, we improve on this naive procedure by a carefulchoice of theorder
in which edges must be inspected. The worst-case time complexity of our improved al-
gorithm may be bounded by(1), which shows that it performs no worse than the naive
procedure. It may also be bounded byO(NN ′d5/2) (2), whereN andN ′ are the sizes
of the types that are being compared. In practice,N andN ′ might be significantly less
thann2 andn′2, respectively. Furthermore, we show that, if the types at hand are not re-
cursive (that is, do not involve cycles), then our algorithmruns in timeO(nn′d5/2) (3).
One may expect the algorithm’s performance to degrade gracefully when the types at
hand involve few cycles. Last, in§5, we give worst-case complexity bounds analogous
to (2) and(3), but where the quantitiesO(NN ′) andO(nn′) are replaced with the size
of a certain graph. Intuition suggests that, in practice, the size of this graph might be
significantly less than quadratic. For all these reasons, weexpect our algorithm to per-
form well in practice, whereas an implementation of the naive algorithm would not be
realistic—even though, in rare cases, both algorithms may require the same amount of
computation.

A mild difference with Palsberg and Zhao [19] is that we allowproducts to be im-
mediately nested. Indeed, our definition of AC-equality andAC-subtyping is such that
flattening nested products isnot part of equality. That is, if we write(τ1 × . . .× τn) for
Πn

i=1τi, then the types(τ1 × τ2 × τ3) and(τ1 × (τ2 × τ3)) arenot AC-related. If one
wishes that these types be identified, one can preprocess theinput types by flattening
nested products before running our algorithm. (Of course, this is possible only in the ab-

sence of infinite products, but this restriction makes practical sense, since “flat” infinite
products cannot exist in memory.) However, there are situations where we want to keep
these types distinct. For example, products representing persistent database informa-
tion may be kept nested, as stored on disk, while products used for passing arguments
to functions may be flattened.

To sum up, we feel our work is more in line with Thatté’s, in that we want to pro-
vide a formal basis foractualsearch tools, that need AC-subtyping and the automatic
synthesis of the coercions, even if this means giving up the algorithmic optimizations
that make deciding an equivalence relation more efficient. Still, identifying types up
to AC-equality may remain useful as a preprocessing phase, in order to decrease the
number of nodes in the problem that is submitted to the AC-subtyping algorithm.

3 Recursive Types

Recursive types are usually given in concrete syntax as finite systems of contractive type
equations, which, according to Courcelle [12], uniquely define regular trees; or as finite
terms involvingµ binders [16]. The process of unfolding these finite representations
gives rise to regular infinite trees.

Definition 1 (Signature).A signatureis a mapping fromsymbols, writtens, to integer
arities. In this paper, we consider a fixed signature, which consistsof a binary symbol
→, a n-ary symbolΠn for every nonnegative integern, and the constant symbols⊥
and⊤. ⋄

Definition 2 (Path, tree, type).A path p is a finite sequence of integers. The empty
path is writtenǫ and the concatenation of the pathsp andp′ is writtenp · p′. A tree is a
partial functionτ from paths to symbols whose domain is nonempty and prefix-closed
and such that, for every pathp in the domain ofτ , p · i ∈ dom(τ) holds if and only ifi
is comprised between 1 and the arity of the symbolτ (p), inclusive. Ifp is in the domain
of τ , then thesubtreeof τ rooted atp, writtenτ/p, is the partial functionp′ 7→ τ (p ·p′).
A tree isregular if and only if it has a finite number of distinct subtrees. (Every finite
tree is thus regular.) Arecursive type(or typefor short) is a regular tree. We writeT
for the set of all types. We write⊥ (resp.⊤) for the tree that mapsǫ to⊥ (resp.⊤). We
write τ1 → τ2 for the tree that mapsǫ to→ and whose subtrees rooted at 1 and 2 areτ1

andτ2, respectively. We writeΠn
i=1τi for the tree that mapsǫ to Πn and whose subtree

rooted at i isτi for everyi ∈ {1, . . . , n}. ⋄

There are many ways to present equality of recursive types, ranging from tradi-
tional definitions based on finite approximations [2] to moremodern co-inductive ap-
proaches [9, 11]. Following Brandt and Henglein, we reason in terms of simulations.

Definition 3 (Equality). A binary relationR ⊆ T 2 is a=-simulationif and only if it
satisfies the following implications:

EQ-TOP

τ R τ ′

τ (ǫ) = τ ′(ǫ)

EQ-ARROW

τ1 → τ2 R τ ′
1 → τ ′

2

τ1 R τ ′
1 τ2 R τ ′

2

EQ-PI

Πn
i=1τi R Πn

i=1τ
′
i

(τi R τ ′
i)

i∈{1,...,n}

Equality= is the largest=-simulation. ⋄

Palsberg and Zhao [19] define equality up to associativity and commutativity of
products as follows; see also Downeyet al. [15, section 4.1]. We writeΣm

n for the set
of all injective mappings from{1, . . . , m} into {1, . . . , n}. In particular,Σn

n is the set
of all permutations of{1, . . . , n}.

Definition 4 (AC-Equality). A binary relationR ⊆ T 2 is a =AC -simulation if and
only if it satisfies the following implications:

EQAC-TOP

τ R τ ′

τ(ǫ) = τ ′(ǫ)

EQAC-ARROW

τ1 → τ2 R τ ′
1 → τ ′

2

τ1 R τ ′
1 τ2 R τ ′

2

EQAC-PI

Πn
i=1τi R Πn

i=1τ
′
i

∃σ ∈ Σn
n (τσ(i) R τ ′

i)
i∈{1,...,n}

AC-Equality=AC is the largest=AC -simulation. ⋄

Note that a product one of whose components is itself a product is not considered AC-
equal to the corresponding “flattened” product. We come backto this point in§7.

4 Subtyping and AC-Subtyping

In this section, we define subtyping of recursive types up to associativity and commu-
tativity of products, and show that it is precisely a composition of the usual subtyping
relation with equality up to associativity and commutativity of products.

Let us first define subtyping between recursive types. This requires extending the
standard definition of subtyping from the case of binary products [9] to that ofn-ary
products.

Definition 5 (Subtyping). Let ≤0 be the ordering on symbols generated by the rules:

⊥ ≤0 s s ≤0 ⊤ → ≤0 →
n ≥ m

Πn ≤0 Πm

A binary relationR ⊆ T 2 is a≤-simulation if and only if it satisfies the following
implications:

SUB-TOP

τ1 R τ2

τ1(ǫ) ≤0 τ2(ǫ)

SUB-ARROW

τ1 → τ2 R τ ′
1 → τ ′

2

τ ′
1 R τ1 τ2 R τ ′

2

SUB-PI

Πn
i=1τi R Πm

i=1τ
′
i

(τi R τ ′
i)

i∈{1,...,m}

Subtyping≤ is the largest≤-simulation. ⋄

This definition allowsdepthandwidthsubtyping. Depth subtyping refers to the covari-
ance of products. Width subtyping refers to the fact that a product with more compo-
nents may be a subtype of a product with fewer components. Enabling width subtyping
better suits our intended applications. Furthermore, it ispossible, if desired, to introduce
a distinct family of product constructors, which forbid width subtyping; see§7.

We now define subtyping of recursive types up to associativity and commutativity
of products. Its definition relaxes Definition 5 by allowing the components of a product
to be arbitrarily permuted. It is given in a slightly generalized style, introducing the
notion of simulationup toa relation; this helps state the algorithm’s invariant in§5.2.

Definition 6 (AC-Subtyping). Let R ⊆ T 2 andR′ ⊆ T 2 be binary relations.R is a
≤AC-simulation up toR′ if and only if the following implications are satisfied:

SUBAC-TOP

τ1 R τ2

τ1(ǫ) ≤0 τ2(ǫ)

SUBAC-ARROW

τ1 → τ2 R τ ′
1 → τ ′

2

τ ′
1 (R∪R′) τ1 τ2 (R∪R′) τ ′

2

SUBAC-PI

Πn
i=1τi R Πm

i=1τ
′
i

∃σ ∈ Σm
n (τσ(i) (R∪R′) τ ′

i)
i∈{1,...,m}

R is a≤AC -simulationif and only if it is a≤AC -simulation up to the empty relation.
AC-Subtyping≤AC is the largest≤AC -simulation. ⋄

It is known that=AC is a congruence and≤ is an ordering. We show that≤AC is a
preorder, that is, it is reflexive and transitive.

Proposition 7. ≤AC is a preorder. ⋄

We argue that our definition of subtyping modulo associativity and commutativity
of products is natural by establishing that it is a composition of the pre-existing relations
=AC and≤. One may hope to prove that≤AC coincides with=AC ◦ ≤. However, this
does not hold, because the contravariance of the arrow symbol forces=AC to be used
on both sides of≤. This is illustrated by the pair(Π1(⊤) → Π2(⊥,⊤), Π2(⊥,⊤) →
Π1(⊤)), which is a member of≤AC , but not a member of=AC ◦ ≤ or of ≤ ◦ =AC .
As a result,=AC must in fact be used on both sides of≤, as stated below.

Theorem 8. The relations≤AC and(=AC) ◦ (≤) ◦ (=AC) coincide. ⋄

5 Deciding AC-Subtyping

Let us say that a pair of typesp = (τ, τ ′) is valid if τ ≤AC τ ′ holds andinvalid other-
wise. We now define an algorithm that, given a pair of typesp0 = (τ0, τ

′
0), determines

whetherp0 is valid.
The algorithm’s complexity is assessed as a function of the following parameters.

Let T andT ′ be the sets of all subtrees ofτ0 and τ ′
0, respectively. Letn andn′ be

the cardinalities of these sets; they are finite. Let us viewT andT ′ as directed graphs,
where every tree is a node and there is an edge fromτ to τ ′ labeledi if and only if τ/i
is τ ′. In other words, there is an edge from every tree to each of itsimmediate subtrees.
Please note that there may be multiple edges, with distinct labels, betweenτ andτ ′. If τ
is a node inT or T ′, let d(τ) denote its outgoing degree, that is, the arity of the symbol
τ (ǫ). Let u(τ) denote its incoming degree, that is, the number of its predecessors in the
graphT or T ′. We writed for the maximum ofd(τ) whenτ ranges over all nodes inT
andT ′. Last, letN (resp.N ′) be thesizeof the graphT (resp.T ′), where every node
and every edge contributes one unit. Please note that we have: N = Στ∈T (1 + u(τ))
as well as a similar identity concerningT ′.

The algorithm maintains sets of pairs of nodes. We assume that elementary set op-
erations can be performed in constant time. This is indeed possible by using an array of
sizeO(nn′), or, more realistically, a hash table.

5.1 First Phase: Exploration

Specification The first phase of the algorithm consists in constructing a (finite) setU
of pairs of types whose validity one must determine in order to be able to tell whether
p0 is valid. The universeU may be defined as the smallest set that containsp0 and is
closed under the following two rules:

EXPLORE-ARROW

(τ1 → τ2, τ
′
1 → τ ′

2) ∈ U

(τ ′
1, τ1) ∈ U (τ2, τ

′
2) ∈ U

EXPLORE-PI

(Πn
i=1τi,Π

m
j=1τ

′
j) ∈ U

((τi, τ
′
j) ∈ U)i∈{1,...,n}, j∈{1,...,m}

The set(T × T ′) ∪ (T ′ × T) containsp0 and is closed under these rules. This ensures
thatU exists and has cardinalityO(nn′).

We have explained above how to viewT and T ′ as graphs. It is useful to view
(T × T ′) ∪ (T ′ × T) as a graph as well. Let there be an (unlabeled) edge from a
pair of typesp to a pair of typesp′ if p matches the premise ofEXPLORE-ARROW or
EXPLORE-PI while p′ matches one of its conclusions. In that case, we also say that
p is a parent of p′. Then, the exploration phase can be viewed simply as an explicit
traversal (and construction) ofpart of the graph(T × T ′) ∪ (T ′ × T), starting from
the nodep0. In other words,U is the connected component ofp0 in the directed graph
(T × T ′) ∪ (T ′ × T).

The number of nodes in the graphU is clearly bounded byO(nn′). BecauseU is
an unlabeled graph, the number of its edges must be bounded byO(n2n′2). This yields
size(U) ≤ O(n2n′2). Furthermore, because the predecessors of a pair(τ, τ ′) are pairs
of a predecessor ofτ and a predecessor ofτ ′, we haveu(τ, τ ′) ≤ u(τ)u(τ ′). This yields
another bound on the size of the graphU :

size(U) = Σ(τ,τ ′)∈U (1 + u(τ, τ ′)) ≤ Στ∈T, τ ′∈T ′(1 + u(τ)u(τ ′))

≤ (Στ∈T (1 + u(τ)))(Στ ′∈T ′(1 + u(τ ′))) = NN ′

In practice, we expect both of these bounds to be pessimistic. In the particular case
where the types at hand are not recursive (that is, do not involve cycles) and do not
involve any products, the size ofU may be bounded bymin(N, N ′). There is a lot of
slack between this optimistic bound and the worst-case bounds given above. It should
be interesting to measure the size ofU in real-world situations.

Implementation The graphU can be computed using a simple iterative procedure, as
follows.

1. LetU = ∅ andW = {p0}.
2. WhileW is nonempty, do:

(a) Take a pairp out ofW ;
(b) If p ∈ U , continue at 2;
(c) Insertp into U ;
(d) If p is of the form(τ1 → τ2, τ

′
1 → τ ′

2), then insert(τ ′
1, τ1) and(τ2, τ

′
2) into W ;

(e) If p is of the form(Πn
i=1τi, Π

m
j=1τ

′
j),

then insert every(τi, τ
′
j), for i ∈ {1, . . . , n} andj ∈ {1, . . . , m}, into W .

It is clear that this procedure implements the constructionof U as specified above.
In step 2e, one should remove any duplicate elements from thefamilies (τi)

n
i=1 and

(τ ′
j)

m
j=1 prior to iterating over them. Then, this procedure runs in timeO(size(U)d). It

is dominated by the running time of the second phase.

5.2 Second Phase: Fixpoint Computation

The idea behind the second phase of the algorithm is to determine the greatest subset of
U that is a≤AC-simulation, then to check whetherp0 is a member of it. In order to build
this subset, we start from the full relationU , and successively remove pairs that vio-
lateSUBAC-TOP, SUBAC-ARROW or SUBAC-PI, until we reach a fixpoint. Whether a pair
violatesSUBAC-TOP or SUBAC-ARROW may be determined in constant time. However,
in the case ofSUBAC-PI, the check requires solving a matching problem in a bipartite
graph, whose time complexity may be bounded byO(d5/2), as we shall see.

A naive procedure begins by iterating once over all pairs, removing those that vi-
olate one of the rules; this takes timeO(nn′d5/2). But one such iteration may not
be enough to reach the fixpoint, so the naive procedure repeats this step as many
times as required. In the worst case, each step invalidates only one pair, in which
case up toO(nn′) successive steps are required. Thus, the overall time complexity is
O(n2n′2d5/2). Below, we propose an enhanced approach, whose convergenceis faster.
Instead of blindly checking every pair at each iteration, wecheck only theparentsof
pairs that have just been invalidated. Downey, Sethi, and Tarjan exploit the same idea
to accelerate the convergence of their congruence closure algorithm [15].

Description The universeU is now fixed. We maintain three setsW , S, andF , which
form a partition ofU . The setW is aworklist and consists of pairs whose validity re-
mains to be determined. The setS consists ofsuspendedpairs, which are conditionally
valid: the algorithm maintains the invariant thatS is a≤AC -simulation up toW . In
other words, a pairS is known to be validprovidedits (indirect) descendants inW are
found to be valid as well. The setF consists of known invalid (false) pairs.

When a pairp is found to be invalid, it is moved to the setF and all (if any) of
its parents withinS are transferred toW for examination. We refer to this auxiliary
procedure asinvalidating p. The time complexity of this procedure isO(1 + u(p)),
whereu(p) is the incoming degree of the pairp in the graphU (see§5.1).

The second phase of the algorithm is as follows.

1. LetW = U andS = F = ∅.
2. WhileW is nonempty, do:

(a) Take a pairp out ofW ;
(b) If p is of the form(⊥, τ ′) or (τ,⊤), then insertp into S;
(c) If p is of the form(τ1 → τ2, τ

′
1 → τ ′

2), then
if (τ ′

1, τ1) 6∈ F and(τ2, τ
′
2) 6∈ F then insertp into S else invalidatep;

(d) If p is of the form(Πn
i=1τi, Π

m
j=1τ

′
j), then

if there existsσ ∈ Σm
n such that, for allj ∈ {1, . . . , m}, (τσ(j), τ

′
j) 6∈

F holds, then insertp into S else invalidatep;
(e) If p satisfied none of the three previous tests, then invalidatep.

3. If p0 6∈ F , returntrue, otherwise returnfalse.

Correctness Each iteration of the main loop (step 2) takes a pairp out ofW and either
inserts it intoS or invalidates it. In either case, it is clear that(W, S, F) remains a
partition ofU .

Let us now check thatS remains a≤AC -simulation up toW . If the pairp is inserted
into S, thenp satisfiesSUBAC-TOP, and there exist pairs inW ∪ S (that is, outsideF)
whose validity is sufficient forp to satisfySUBAC-ARROWor SUBAC-PI. So, the invariant
is preserved. If, on the other hand, the pairp is invalidated, then all of its parents within
S are transferred back toW , which clearly preserves the invariant as well.

Last, let us check thatF remains a set of invalid pairs only. If the pairp is invalidated
at step 2c, thenp is invalid, for otherwise, bySUBAC-ARROW, the pairs(τ ′

1, τ1) and
(τ2, τ

′
2) would be valid—but these pairs are members ofF , a contradiction. Becausep

is invalid, inserting it intoF preserves the invariant. If the pairp is invalidated at steps 2d
or 2e, thenp may be shown invalid analogously, usingSUBAC-PI or SUBAC-TOP.

When the algorithm terminates,W is empty, soS is a≤AC -simulation, which im-
plies that every member ofS is valid. On the other hand, every member ofF is invalid.
We have established that the result returned in step 3 is correct, as stated below:

Theorem 9. If the algorithm returns true, thenτ0 ≤AC τ ′
0 holds. If the algorithm

returns false, thenτ0 ≤AC τ ′
0 does not hold. ⋄

Termination and Complexity Invalidating a pair transfers it fromW to F . Because
pairs are never taken out ofF , and becauseW andF remain disjoint, no pair is ever
invalidated twice.

The initial size ofW is the number of nodes inU . Furthermore, when a pairp
is invalidated, the size ofW increases byu(p). Thus, considering that every pair is
invalidated at most once, the total number of pairs that are ever taken out ofW—that
is, the total number of iterations of step 2—is at most

(Σp∈U 1) + (Σp∈U u(p)) = Σp∈U (1 + u(p)) = size(U)

Let us now estimate the cost of a single iteration of step 2. Instep 2d, determining
whether an appropriateσ exists is a matching problem in a bipartite graph with at most
2d nodes andd2 edges. Such a problem can be solved in timeO(d5/2) using Hopcroft
and Karp’s algorithm [17]. The cost of invalidating a pair may be viewed asO(1) if we
consider that the price for transferring a parent fromS to W is paid when that parent is
later examined. Thus, the (amortized) cost of a single iteration of step 2 isO(d5/2).

Combining these results, we find that the second phase of the algorithm runs in time
O(size(U)d5/2). This is more expensive that the first phase, so we may state

Theorem 10. The algorithm runs in timeO(size(U)d5/2), which is bounded both by
O(NN ′d5/2) andO(n2n′2d5/2). ⋄

As explained in§5.1, the size of the graphU might be significantly smaller, in
practice, than either ofNN ′ andO(n2n′2), which is why we give the first complexity
bound. The second bound shows that, in the worst case, the algorithm remains linear
in each of the sizes of the input types, namelyN andN ′, with additional overhead
O(d5/2), whered is a bound on the arity of the products involved. The third bound

shows that our improved algorithm performs no worse than thenaive procedure outlined
in §1 and§5.2.

For comparison, Downeyet al.’s symmetric congruence closure algorithm [15],
as well as Jhaet al.’s decision procedure for AC-equality [18], run in timeO((N +
N ′) log(N + N ′)). These algorithms compute anequivalencerelation. This opens the
way to a more efficient data representation, where a relationis not stored as a set of
pairs but as a partition, and simplifies the matching problem.

5.3 Further Refinements

A cheap refinement consists in modifying the first phase so that it fails as soon as it
reaches a pairp that does not satisfySUBAC-TOP, providedthe path fromp0 to p never
leaves a pair of products—that is, provided the validity ofp0 implies that ofp. This
helps immediately detect some failures. For this refinementto be most effective, the
paths inU where immediate failure may occur should be explored first. One way of
achieving this effect is simply to give higher priority to edges that leave a pair of arrows
than to edges that leave a pair of products.

A more interesting refinement consists in specifying in whatorder pairs should be
taken out of the worklistW during the second phase. It is more efficient to deal with
descendants first and with ancestors last, because dealing with an ancestor too early
might be wasted work—we might decide to suspend it and later be forced to transfer
it back to the worklist because new information about its descendants has been made
available. Of course, because types are recursive, the relation “to be a parent of” is in
general only a preorder, not an ordering—that is, the graphU may exhibit cycles.

Let us remark, though, that whenU is acyclic, it is indeed possible to process pairs
in order. This ensures that, when a pair is processed, none ofits parents have been
processed yet, so all of them must still be in the worklist. Thus, when invalidating a
pair, it is no longer necessary to iterate over its parents. In that case, the algorithm’s
time complexity becomesO(nodes(U)d5/2), wherenodes(U) counts the nodes of the
graphU , butnot its edges, and is bounded byO(nn′).

It is possible to take advantage of this remark even in the presence of cycles. The first
phase, upon completion, can be made to produce an explicit representation of the graph
U . Determine its strongly connected components and topologically sort them. Then,
remove all edges whose endpoints do not belong to the same component. The cost of
this additional preprocessing is linear in the size ofU . Now, run the second phase, one
component at a time, in topological order, that is, descendants first and ancestors last.
Because of the removed edges, when invalidating a pairp, only the parents ofp that
belong to thesamestrongly connected component are checked. This is correct because
components are being processed in topological order, whichensures that the parents of
p that belong to adistinctcomponent must still be in the worklist.

The modified algorithm runs in timeO(size(U ′)d5/2), whereU ′ is the result of
pruning the graphU , that is, of keeping only the edges that participate in a cycle. Thus,
its complexity may still be bounded byO(NN ′d5/2) in the worst case, but this bound
gradually decreases down toO(nn′d5/2) in the case of nonrecursive types. We conjec-
ture that, in practice, cycles often involve only a fractionof the type structure, so this
improvement may be significant.

Searching a Whole Library For our purposes, a software library is a collection of
possibly mutually recursive types, which we may view as a single recursive typeτL,
some distinguished subterms of which form a setTL. The programmer’s query is a
possibly recursive typeτQ. The problem is to find all components in the library that
provide (at least) the requested functionality, that is, tofind everyτ ∈ TL such that
τ ≤AC τQ holds.

One possibility is to run the algorithm withp0 = (τ, τQ) successively for everyτ ∈
TL. However, this is inefficient. LetUτ denote the universe explored by the algorithm
when run with initial pair(τ, τQ). Then, the universes(Uτ)τ∈TL

might overlap, causing
repeated work. It is more efficient to run the algorithm once with multiple initial pairs,
that is, with the family of initial pairs(τ, τQ)τ∈TL

. Extending the algorithm to deal with
a set of initial pairs{p0, . . . , pk−1} is immediate; it suffices to define the universeU
as the smallest superset of{p0, . . . , pk−1} that is closed underEXPLORE-ARROW and
EXPLORE-PI. By running the algorithm only once, we ensure that the worst-case time
complexity is bounded byO(NN ′d5/2), whereN is the size of the libraryτL andN ′

is the size of the queryτQ.
In fact, running the algorithm once with a set of initial pairs{p0, . . . , pk−1} is equiv-

alent to running itk times in succession, supplying the single initial pairpi to theith

run, providedeach run starts where the previous left off, that is, re-usesthe setsU , S,
F computed by the previous run. With this proviso, one may, without loss of efficiency,
provide initial pairs to the algorithm one after the other.

This remark leads to an optimization. Imagine thatTL is organized as a graph, with
an edge fromτ to τ ′ if and only if τ ≤AC τ ′ holds. (This graph might be built during
a preprocessing phase. We may assume that it is acyclic: if itisn’t, cycles may be col-
lapsed.) Then, pick a maximal nodeτ , that is, a node with no successors in the graph.
Run the algorithm with initial pair(τ, τQ). If τ is found to be comparable withτQ, then,
by transitivity of≤AC , so isevery predecessorof τ in the graph. In that case, remove
τ and all of its predecessorsfrom the graph; otherwise, removeτ alone. Then, pick
a maximal node in what remains of the graph, and proceed in thesame manner. This
approach offers the double advantage of being potentially more efficient and of provid-
ing successful answers in groups, where each group containsa distinguished maximal
(w.r.t. ≤AC) answer to the query and distinct groups contain incomparable answers.
We believe that the user should find this behavior natural. The actual efficiency gain
remains to be assessed.

One should point out that this optimization is but a simple way of exploiting the fact
that≤AC is transitive. One might wonder whether it is possible to exploit transitivity
at the core of the algorithm: for instance, by directly inserting a pair intoS, without
examining its descendants, if it is a transitive consequence of the pairs that are members
of S already. This issue is left for future research.

6 Building Coercions

We now discuss the coercions that witness the relation≤AC , and how to compute them
from the simulation discovered by the algorithm, when it succeeds. We follow Brandt

and Henglein’s presentation [9], but work directly with regular trees, instead of using
theµ notation, which allows us to make “fold” and “unfold” coercions implicit.

Definition 11 (Coercions for≤AC). Coercions are defined by the grammar
c ::= ιτ | f | fix f.c | c → c′ | Πσ

i ci | abortτ | discardτ ⋄

Most coercion forms are taken from Brandt and Henglein’s paper, with the same typing
rules [9, figure 6]. Let us recall that a typing judgment is of the formE ⊢ c : τ → τ ′,
where the environmentE maps coercion variablesf to coercion types of the form
τ → τ ′. The one new coercion form isΠσ

i ci, whose typing rule is

σ ∈ Σm
n (E ⊢ ci : τσ(i) → τ ′

i)
i∈{1,...,m}

E ⊢ Πσ
i ci : Πn

i=1τi → Πm
i=1τ

′
i

and whose operational meaning isλp.Πm
i=1ci(πσ(i)(p)). If τ ≤AC τ ′ holds, then the

algorithm, applied to the pair(τ, τ ′), produces a finite≤AC-simulationS that contains
(τ, τ ′). It is straightforward to turnS into a system of recursive equations that defines
one coercion for each pair withinS, including, in particular, a coercion of typeτ → τ ′.

Theorem 12. If τ ≤AC τ ′ holds, there exists a (closed) coercionc s. t.⊢ c : τ → τ ′. ⋄

The size of the equation associated with(τ, τ ′) is O(1 + d(τ ′)), whered(τ ′) is the
outgoing degree of the nodeτ ′ in the graphT or T ′. As a result, the total size of the
system of equations is bounded by

O(Στ∈T, τ ′∈T ′(1 + d(τ ′)) + Στ ′∈T ′, τ∈T (1 + d(τ)))
= O(n(Στ ′∈T ′(1 + d(τ ′))) + n′(Στ∈T (1 + d(τ))))
= O(nN ′ + n′N)

The system can be produced in linear time with respect to its size, so the time com-
plexity of producing code for the coercions isO(nN ′ + n′N). (If one applies Bekič’s
theorem, as suggested above, then the time and space complexity increases quadrati-
cally, but there is no reason to do so in practice.)

It is worth pointing out that not all well-typed coercions have the same operational
meaning, and some user interaction is, in practice, necessary to ensure that the coercion
code suits the user’s needs.

7 Practical Considerations

In practical applications, the language of types is usuallymuch richer than the one
considered in this paper. The grammar of types may include a set of atoms (such as
int, float, etc.), equipped with a subtyping relation, and a set of parameterized type
constructors. Each of these type constructors may have somecontravariant and some
covariant parameters, may support or forbid permutations of its parameters, and may
support or forbid width subtyping.

Fortunately, it is straightforward to adapt the results of this paper to such an ex-
tended language of types. As far as atoms and atomic subtyping are concerned, it

suffices to add appropriate clauses to the definition of a≤AC -simulation and to the
algorithms for deciding AC-subtyping and building coercions; these new clauses are
variations of the existing clauses for⊥ and⊤. As far as parameterized type construc-
tors are concerned, it is enough to extend our definitions by distinguishing four kinds
of products that respectively support or forbid parameter permutations and width sub-
typing. The rules that describe the three new (restricted) kinds of products are special
cases of our current rules, since our current product constructor allows both parameter
permutations and width subtyping. Then, every parameterized type constructor may be
desugared into a combination of atoms, the arrow constructor (which allows encoding
contravariance) and the four product constructors.

Our core language is purely functional. However, real-world languages, and object-
oriented languages in particular, often have mutable data structures and a notion of
object identity. Then, it is important that coercions preserve object identity. One might
wish the following property to hold: the program that is linked, using adapters, to a
certain library, should have the same semantics as that obtained by linking, without
adapters, to a library whose method and class names have beensuitably renamed. We
believe that, combining our algorithms with the adapter model sketched by Thatté [24],
it is possible to achieve such a property. We leave this as future work.

8 Conclusion

We have introduced a notion of subtyping of recursive types up to associativity and
commutativity of products. We have justified our definition by showing that this rela-
tion is a composition of the usual subtyping relation with Palsberg and Zhao’s notion
of equality up to associativity and commutativity of products. We have provided an al-
gorithm for deciding whether two types are in the relation. The algorithm’s worst-case
time complexity may be bounded byO(NN ′d5/2) andO(n2n′2d5/2); we believe it
will prove fairly efficient in practice. It is straightforward and cheap to produce coer-
cion code when the algorithm succeeds.

We believe this paper may constitute the groundwork forpractical search tools
within libraries of object-oriented code. Indeed, as argued in §1, AC-equality alone
is not flexible enough, since it does not allow looking for only a subsetof the features
provided by a library.

References

[1] Martı́n Abadi and Marcelo P. Fiore. Syntactic considerations on recursive types. InIEEE
Symposium on Logic in Computer Science (LICS), pages 242–252, July 1996.

[2] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types.ACM Transactions on
Programming Languages and Systems, 15(4):575–631, September 1993.

[3] Maria-Virginia Aponte and Roberto Di Cosmo. Type isomorphisms for module signa-
tures. InSymposium on Programming Language Implementation and Logic Programming
(PLILP), volume 1140 ofLecture Notes in Computer Science, pages 334–346. Springer
Verlag, 1996.

[4] Joshua Auerbach, Charles Barton, and Mukund Raghavachari. Type isomorphisms with
recursive types. Technical Report RC 21247, IBM Yorktown Heights, 1998.

[5] Joshua Auerbach and Mark C. Chu-Carrol. The Mockingbirdsystem: a compiler-based
approach to maximally interoperable distributed systems.Technical Report RC 20718,
IBM Yorktown Heights, 1997.

[6] Joshua Auerbach, Mark C. Chu-Carrol, Charles Barton, and Mukund Raghavachari. Mock-
ingbird: Flexible stub generation from pairs of declarations. Technical Report RC 21309,
IBM Yorktown Heights, 1998.

[7] Vincent Balat, Roberto Di Cosmo, and Marcelo Fiore. Remarks on isomorphisms in typed
lambda calculi with empty and sum type. InIEEE Symposium on Logic in Computer
Science (LICS), July 2002.

[8] Charles M. Barton. M-types and their coercions. Technical Report RC-21615, IBM York-
town Heights, December 1999.

[9] Michael Brandt and Fritz Henglein. Coinductive axiomatization of recursive type equality
and subtyping.Fundamenta Informaticæ, 33:309–338, 1998.

[10] Kim Bruce, Roberto Di Cosmo, and Giuseppe Longo. Provable isomorphisms of types.
Mathematical Structures in Computer Science, 2(2):231–247, 1992.

[11] Felice Cardone. A coinductive completeness proof for the equivalence of recursive types.
Theoretical Computer Science, 275(1–2):575–587, 2002.

[12] Bruno Courcelle. Fundamental properties of infinite trees.Theoretical Computer Science,
25(2):95–169, March 1983.

[13] Roberto Di Cosmo. Deciding type isomorphisms in a type assignment framework.Journal
of Functional Programming, 3(3):485–525, 1993.

[14] Roberto Di Cosmo.Isomorphisms of types: fromλ-calculus to information retrieval and
language design. Progress in Theoretical Computer Science. Birkhauser, 1995.

[15] Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. Variations on the common subex-
pression problem.Journal of the ACM, 27(4):758–771, October 1980.

[16] Vladimir Gapeyev, Michael Levin, and Benjamin Pierce.Recursive subtyping revealed.
Journal of Functional Programming, 12(6):511–548, 2003.

[17] John E. Hopcroft and Richard M. Karp. Ann5/2 algorithm for maximum matchings in
bipartite graphs.SIAM Journal on Computing, 2(4):225–231, December 1973.

[18] Somesh Jha, Jens Palsberg, and Tian Zhao. Efficient typematching. InInternational
Conference on Foundations of Software Science and Computation Structures (FOSSACS),
volume 2303 ofLecture Notes in Computer Science, pages 187–204. Springer Verlag, April
2002.

[19] Jens Palsberg and Tian Zhao. Efficient and flexible matching of recursive types.Informa-
tion and Computation, 171:364–387, 2001.

[20] Mikael Rittri. Using types as search keys in function libraries. Journal of Functional
Programming, 1(1):71–89, 1991.

[21] Mikael Rittri. Retrieving library functions by unifying types modulo linear isomorphism.
RAIRO Theoretical Informatics and Applications, 27(6):523–540, 1993.

[22] Colin Runciman and Ian Toyn. Retrieving re-usable software components by polymorphic
type. Journal of Functional Programming, 1(2):191–211, 1991.

[23] Sergei V. Soloviev. The category of finite sets and cartesian closed categories.Journal of
Soviet Mathematics, 22(3):1387–1400, 1983.

[24] Satish R. Thatté. Automated synthesis of interface adapters for reusable classes. InACM
Symposium on Principles of Programming Languages (POPL), pages 174–187, January
1994.

[25] Jeannette M. Wing, Eugene Rollins, and Amy Moormann Zaremski. Thoughts on a
Larch/ML and a new application for LP. InFirst International Workshop on Larch, pages
297–312, July 1992.

