
Functional Translation of a Calculus of Capabilities

Arthur Charguéraud
INRIA

arthur.chargueraud@inria.fr

François Pottier
INRIA

francois.pottier@inria.fr

Abstract
Reasoning about imperative programs requires the ability to track
aliasing and ownership properties. We present a type systemthat
provides this ability, by using regions, capabilities, andsingleton
types. It is designed for a high-level calculus with higher-order
functions, algebraic data structures, and references (mutable mem-
ory cells). The type system has polymorphism, yet does not require
a value restriction, because capabilities act as explicit store typings.

We exhibit a type-directed, type-preserving, and meaning-
preserving translation of this imperative calculus into a pure calcu-
lus. Like the monadic translation, this is a store-passing translation.
Here, however, the store is partitioned into multiple fragments,
which are threaded through a computation only if they are relevant
to it. Furthermore, the decomposition of the store into fragments
can evolve dynamically to reflect ownership transfers.

The translation offers deep insight about the inner workings and
soundness of the type system. If coupled with a semantic model
of its target calculus, it leads to a semantic model of its imperative
source calculus. Furthermore, it provides a foundation forour long-
term objective of designing a system for specifying and certifying
imperative programs with dynamic memory allocation.

1. Introduction
Reasoning about imperative programs in the presence of dynamic
memory allocation is a challenging task. The existence of aliasing
means that an update to a memory block by one principal can affect
other principals with which the address of the block is shared,
possibly violating their invariants, if aliasing was unintended. Thus,
a correctness argument for an imperative program must deal,in one
way or another, with aliasing (which object, or group of objects,
might a certain pointer denote?) and with ownership (who holds
the right to access a certain object, or group of objects?).

There are many ways of attacking this problem (see our dis-
cussion of related work in§8). We are interested in a line of work
that uses type-theoretic machinery, including regions, capabilities,
and singleton types, in order to control aliasing and ownership. A
few landmark papers in this area include Crary, Walker, and Mor-
risett’s Calculus of Capabilities [7], Smith, Walker, and Morrisett’s
Alias Types [19, 22], and Fähndrich and DeLine’s Adoption and
Focus [12].

Our long-term research project is to design a system (say, a
Hoare logic) for proving properties of pointer programs on top of

[copyright notice will appear here]

such a capability-based type system. The idea is to express and
check assertions about aliasing and ownership at the level of the
type system, so that, at the level of the Hoare logic, a view of
the store as a collection of separate regions becomes available at
no cost. Our approach is closely related to Separation Logic[18].
However, instead of expressing assertions about aliasing and own-
ership within the logic, we are interested in using more basic
machinery—a type system—for this purpose.

In this paper, we present a type system that is designed for a
standard, high-level programming language and that combines the
key features of the systems cited above. It extendsFµ (that is,
SystemF with recursive types), and permits the co-existence of
non-linear values and linear capabilities. Note that, for the moment,
we are not interested in type inference or in surface syntax.

On top of this type system, we define a type-directed translation
that transforms an imperative program into a purely functional one.
In the translation, a capability becomes either a finite map (which
encodes a region of the store) or an individual value (which encodes
a single, unaliased object). Thus, capabilities, which in the source
program are purely type-theoretic entities, are translated to runtime
values. The translation is semantics-preserving, and produces well-
typed programs inFµ.

Just like the standard monadic translation [13, 21], this transla-
tion is store-passing. It is, however, much more fine-grained than
the monadic translation: instead of a single, monolithic store, it
exploits multiple store fragments. This has a double benefit: first,
separation between regions is made syntactically explicit; second,
homogeneous store fragments can be type-checked inFµ, whereas
a monolithic, heterogeneous store would require a more complex
type system, equipped perhaps with dependent types.

The value of such a translation is two-fold.
First, we claim that it provides a deep justification and intuition

for the soundness of the type system. The design of the systemis
subtle: it can be hard, even for an expert, to grasp why it all makes
sense. We find that, by explaining the type system in terms of a
pureλ-calculus, the translation helps expose the intuition behind
it. In fact, the soundness of the type system and the soundness of
the translation are proved together, in a single statement (§7). When
coupled with a semantic model of its target calculus, the translation
leads to a semantic model of its imperative source calculus.Thus,
the translation is, in a sense, a semantic interpretation. In this
sense, our translation serves the same purpose as O’Hearn and
Reynolds’s translation of Idealized Algol into the polymorphic
linearλ-calculus [15].

Second, such a translation provides a foundation for our long-
term objective of designing a system for specifying and certifying
imperative programs with dynamic memory allocation. The tech-
niques available today for reasoning about purely functional pro-
grams can, in principle, be applied to the translated programs. The
details of this process are left to future work.

The paper begins with an informal overview of the type system
and of the translation (§2), followed with a couple of examples (§3).

1 2008/7/2

Definitions of the untyped source and target calculi follow (§4). The
type system and type-directed translation are defined (§5, §6) and
proven sound (§7). (A complete proof of soundness appears in the
online addendum [1].) The paper ends with discussions of related
work (§8) and future work (§9).

2. Overview
2.1 Regions and capabilities

A regiondenotes a set of values. Unlike in previous work, these val-
ues are not necessarily memory locations. We distinguish between
singleton regionsσ, which have exactly one inhabitant, andgroup
regionsρ, which have an arbitrary number of inhabitants. A value
that inhabits regionα has type[α] (pronounced: “atα”). A type
of the form[σ] has exactly one inhabitant: it is a singleton type. A
type of the form[ρ] can have zero, one, or more inhabitants.

A capabilityover a regionα is a static token of the form{α : θ}.
Such a capability serves two roles. First, it witnesses the ownership
of regionα, that is, it represents an exclusive right to access and
update the inhabitants of this region. Second, it carries amemory
type θ, which describes the actual structure of the inhabitants.
Indeed, the type[α], alone, does not contain this information. For
instance, the capability{ρ : ref int} describes and controls a group
region whose inhabitants are pointers to integer cells.

Because capabilities represent exclusive ownership, theyare
linear: they are never duplicated. (By “linear”, we mean “non-
duplicable”, that is, “affine”. Discarding a capability is permitted.)
Memory typesθ, which occur within capabilities and also represent
ownership, are linear as well.Value typesτ , on the other hand,
are non-linear. Because the system imposes no restriction on the
number of uses of a value, values can be duplicated byβ-reduction,
and must receive non-linear types. In our system, the value types
form a subset of the memory types.

A type of the form[α] is a value type. As a result, the values
that inhabit regionα can be duplicated at will, while the linear
capability{α : θ}, which controls access to this region, remains
unique. Thanks to this distinction between non-linear values and
linear capabilities, the system provides the same degree ofcontrol
as offered by traditional linear type systems, yet providesgreater
flexibility, by allowing sharing and multiple uses of values. This
distinction appears in earlier work [7, 19, 2].

Compound capabilities are built out of atomic capabilitiesvia
conjunction: the composite capabilityC1 ∗ C2 controls two store
fragments, respectively described by the capabilitiesC1 andC2.
Because capabilities are linear, this is naturally a separating con-
junction, in the terminology of Separation Logic [18].

Regions and capabilities encode definite non-aliasing informa-
tion. For instance, if the capability{ρ1 : ref int} ∗ {ρ2 : ref int} is
available, then the regionsρ1 andρ2 must be distinct. This implies
that the sets of their inhabitants are disjoint: no memory location
can simultaneously have type[ρ1] and type[ρ2]. As another ex-
ample, consider the capability{σ : ref int × ref int}. Because the
memory type “ref int×ref int” is interpreted linearly, this capability
asserts that the unique inhabitant of regionσ is a pair of pointers
to two distinct integer cells. In contrast, a pair of possibly aliased
integer references would be described by a value type[ρ] × [ρ],
together with the group capability{ρ : ref int}.

2.2 Functions and references

A function may accept not only an argument (a value), but alsoa
(possibly compound) capability. Similarly, a function returns not
only a value, but also a capability. For this reason, function types
take the formχ1 → χ2, wherecomputation typesχ include the
productions:χ ::= τ | χ ∗ C. (The∗ connective is overloaded.)
Furthermore, if a function creates fresh regions, then the names

of these regions must be quantified in the return type of the func-
tion: for this reason, computation types also include the production
χ ::= ∃α.χ.

An example of a function whose return type is a non-trivial
computation type is the primitive operation “ref”. The semantics of
“(refv)” is to allocate a memory cell at a fresh locationl, initialize
it with v, and returnl. The axiom schema for “ref” is:

ref : τ → ∃σ.[σ] ∗ {σ : refτ}

This means that “ref” accepts a value of typeτ and returns: (1)
a singleton regionσ, (2) the inhabitantl of regionσ, and (3) the
capability {σ : refτ}, which controls this region, and indicates
that its inhabitantl is the location of a cell that currently holds a
value of typeτ .

The primitive operations “get” and “set”, which read and write
a reference cell, have the following axiom schemata:

get : [σ] ∗ {σ : refτ} → τ ∗ {σ : refτ}
set : ([σ] × τ2) ∗ {σ : refτ1} → unit ∗ {σ : refτ2}

The “get” operation accepts a memory locationl, of type [σ], and
a capability{σ : refτ}. This indicates that, in order to derefer-
ence a pointer to a cell, one must provide a capability over that
cell. The “get” operation returns the contents of the cell, which has
type τ , together with an unchanged capability. The “set” opera-
tion supportsstrong update:the type of the contents of the cell is
allowed to change fromτ1 to τ2. In an ordinary typed program-
ming language, such as ML, the need for strong update is seldom
perceived. Here, strong update is not just useful (e.g., to enable de-
layed initialization): it is made necessary by the fact thattypes are
so fine-grained. For instance, without strong update, a reference of
type ref[σ] would effectively be immutable. Indeed,[σ] is a single-
ton type, so a type-preserving update cannot change the content of
such a reference.

In type and effect systems, function types are annotated with
aneffect:a set of regions that the function potentially accesses, for
reading or writing. One can view an effect as a particular pattern
of use of a capability: an effect is a capability that is required
and returned. To reflect this, we defineχ1 →C χ2 as sugar for
χ1 ∗ C → χ2 ∗ C. In general, capabilities are more general
than effects, as they also allow describing functions that allocate,
destroy, or re-organize memory. However, the effect notation, when
applicable, is quite convenient. For instance, the types of“get” and
“set” (in the restricted case of a weak update, for the latter) can be
written as follows:

get : [σ] →{σ:refτ} τ
set : [σ] × τ →{σ:refτ} unit

2.3 Ownership transfers

Reading a memory cell duplicates a value, while writing a memory
cell discards a value. For this reason, the operations “ref”, “get”
and “set” are restricted to references whose contents are non-linear.
This restriction, which also appears in earlier work [12], is enforced
through the use of capabilities of the form{σ : refτ}, whereτ is
a value type, as opposed to{σ : refθ}, whereθ is a memory type.
The latter form is more general. In fact, even though this form is
not a suitable argument to “get” or “set”, it is legal: for instance,
the capability{σ : ref(ref int)} describes and controls a reference
to a (unique) reference to an integer. So, how does one construct or
exploit a capability of the form{σ : refθ}?

Our answer is to offer a mechanism for splitting the capability
{σ : refθ}, which controls both the reference cell denoted byσ
and the contents of that cell, into two separate capabilities. In order
to do so, we introduce a fresh singleton regionσ1, which serves as
a name for the contents of the cell. The capability{σ : refθ} is
then converted into the conjunction{σ : ref [σ1]} ∗ {σ1 : θ}. The

2 2008/7/2

first conjunct controls just the cell denoted byσ, and tells that its
contents is the unique inhabitant of regionσ1. The second conjunct
controlsσ1, and tells that its inhabitant has typeθ. This splitting
process is reversible. It is described by a symmetric subtyping
axiom (FOCUS-REF, Figure 13):

{σ : refθ} ≡ ∃σ1.{σ : ref [σ1]} ∗ {σ1 : θ}

An illustration is found in Figure 14. After splitting, because the
type [σ1] is non-linear, the capability{σ : ref [σ1]} can be used to
read and write the reference as many times as desired. In particular,
reading the reference duplicates its contents, at type[σ1], but does
not duplicate the capability{σ1 : θ}, which remains unique.

There is another way in which the operations “ref”, “get”, and
“set” are restricted: they act only on singleton regionsσ, as opposed
to group regionsρ. So, how does one allocate or access a cell within
a group region? To address this question, we rely on theadoption
andfocusmechanisms proposed by Fähndrich and DeLine [12].

Empty group regions can be created at any time.Adoption is
used to populate a group region: adoption dissolves a singleton
regionσ into an existing group regionρ (ADOPT-GRP, Figure 13).

Once adopted, a valuev can never be extracted back out of a
group regionρ. Indeed, the information thatv has type[ρ], which
means thatv inhabitsρ, can be duplicated: thus, it must remain
true forever. Nevertheless, in order to gain access tov, it may
be necessary to temporarily isolate it out of the group region ρ.
The focusoperation permits this by placingv in a fresh singleton
regionσ (FOCUS-GRP, Figures 13 and 14).

Focus accepts a capability{ρ : θ}, together with an element
of ρ, that is, a value of type[ρ]. It creates a fresh singleton regionσ,
which holds just that element, now viewed at type[σ]. Because the
capability{σ : θ} is now available, and has overlap with{ρ : θ},
letting these two capabilities co-exist would be unsound. Instead,
the latter is revoked, and replaced with the weaker form{ρ : θ\σ}.
Such a capability can be thought of as “regionρ, in which a hole
has been carved out atσ”, in Boyland and Retert’s terminology [4].
This disabledcapability does not allow access toρ, but can be
transformed back into{ρ : θ} when{σ : θ} is released (UNFOCUS-
GRP, Figure 13).

In the particular case of references with non-linear contents, a
version of “ref” that allows allocation within a group region can
be derived using adoption. Similarly, surrounding “get” and “set”
with instances of focus and unfocus allows deriving versions of
these operations that are applicable directly to group regions.

2.4 Translation

In a well-typed program, capabilities over regions are threaded
through computations. Whereas, in the source program, capabilities
are type-theoretic entities, they are turned by the translation into
runtime representations of the contents of regions. Thus, in the
translated program, representations of fragments of memory are
threaded through computations.

A group capability{ρ : θ} is translated as a finite map that
associates keys with values. The inhabitants of regionρ, which have
type[ρ], are translated as keys. (We assume that the target language
has primitive notions of keys and of finite association maps.) The
logical operations that involve group regions, such as adoption and
focus, are translated as operations over keys and finite maps, such
as fresh key generation, and map lookup, update, and extension.

A singleton capability{σ : θ} is translated as a map of unit to
a value, which, in practice, is represented simply as a value. The
“ref” type constructor vanishes: that is, the translation of “ref θ”
is just the translation ofθ. This may seem surprising, but is ex-
plained by the fact that “ref” is a type ofuniquereferences. The
translation introduces keys and maps only where there is aliasing,
that is, where group regions are used. For instance, the capability

{σ : ref int× ref int}, which describes a pair of distinct integer ref-
erences, is translated simply as a pair of integers. The inhabitant of
regionσ, which has type[σ], is translated as the unit value.

2.5 Contribution

Type system Regions [20], group capabilities [7], singleton ca-
pabilities and strong update [19, 22], adoption and focus [12] are
borrowed from earlier work. Our type system combines these ideas,
adapts them to a high-level programming language in the style of
ML, streamlines their presentation, and introduces a few new fea-
tures, which we now summarize.

− Decoupling logical and physical indirection. Our type con-
structors for memory indirection (ref·) and for membership in
a region ([·]) are orthogonal. Our regions denote sets of values
that are not necessarily memory locations. In the systems cited
above, a single type constructor conflates the properties ofbeing
a memory location and of belonging to a certain region.

− Nested memory types. Our “ref” types can be nested and com-
bined with other memory type constructors, such as products,
sums, and recursive types. For instance,µβ.ref(unit + α × β)
(§3.1) is a valid memory type, which represents the ownership
of an entire list, including all of the list items. By contrast, in
earlier systems [22, 12], memory types are shallow: a capability
for a list structure is encoded as a capability for the root cell, un-
der the convention that each cell of the list stores a capability for
its successors. Although the two approaches have equivalent ex-
pressive power, viewing nested memory types as primitive seems
more suited to a high-level programming language.

− Sum types. Our type system offers a direct treatment of the
sum type constructor (·+ ·). Earlier type systems have dealt only
with lower-level, untagged unions (· ∪ ·) [19, 22].

− Unrestricted polymorphism. The type system offers universal
and existential quantification, in the style of SystemF , over
value and memory types, capabilities, and regions. This is done
in the presence of references, yet without a value restriction [16,
p. 336], thanks to capabilities, which act as explicit storetypings.
Although this idea seems natural, we believe that it has not
appeared in the literature.

Translation Our translation of well-typed imperative programs
into semantically equivalent, purely functional programsis per-
haps the most visible contribution of this paper. This translation
subsumes the standard monadic translation. By using fine-grained
store fragments, it produces programs in which a great amount of
separation information is syntactically apparent. By using homo-
geneous store fragments, it produces programs that are well-typed
in Fµ. This is not true of the monadic translation, due to its use of
a monolithic, heterogeneous store.

3. Examples
In order to better explain the type system and the translation, we
present two examples of imperative data structures: mutable linked
lists and union-find. We show the types of each operation in the
source and target calculi, separated with a⊲ symbol. Source code
and translated code is shown only for list reversal. For moredetails
and additional examples, see the online addendum [1].

The translation produces redundant occurrences of the unittype,
which correspond, in the source program, to occurrences of single-
ton types of the form[σ]. In principle, these redundant units could
be eliminated in a separate pass. For clarity, we have kept them.

3.1 Mutable Lists

Consider a linked list where every cell is mutable, owns an item
of type α, and owns the next cell (so that, indirectly, it owns the

3 2008/7/2

tail of the list). Such a data structure is described by a recursive
memory type: a list is a reference to either unit (if the list is empty)
or a pair of an item (the head) and a list (the tail). We introduce an
abbreviation for this recursive type:

mlistα := µβ.ref(unit + α × β)

In the target calculus, ordinary, immutable lists are described by the
following recursive type:

list α := µβ.(unit + α × β)

Because the “ref” type constructor vanishes through the translation,
the image of “mlistα” through the translation is “listα”. That
is, a mutable list is translated simply to an immutable list.(Of
course, the type of the list items is translated too. Here, this is not
visible, because the type variableα is translated to itself.) This is
possible only because, in this simple example, there is no aliasing:
the definition of “mlist” forbids two mutable lists from sharing a
common tail. When there is aliasing in the source program, that
is, when group regions are used, then the translation involves finite
maps and keys.

Nil and cons Two functions help construct mutable lists. The
function “nil” creates a fresh empty list in a fresh singleton region.
The function “cons” accepts an item, a mutable list, as well as
capabilities for each of these values, and returns a mutablelist,
together with a capability for this list. Through the translation, these
become the standard “nil” and “cons” constructors for immutable
lists (up to redundant units).

nil : ∀α. unit → ∃σ.[σ] ∗ {σ : mlistα}
⊲ ∀α. unit → unit× list α

cons : ∀α σ1 σ2. ([σ1] × [σ2]) ∗ {σ1 : α} ∗ {σ2 : mlistα}
→ ∃σ.[σ] ∗ {σ : mlistα}

⊲ ∀α. unit× unit× α × list α → unit× list α

The idiom of packaging together a value and a capability for this
value is common enough that it could warrant an abbreviation. Let
θ• stand for∃σ.[σ] ∗ {σ : θ}. (A similar notation appears in earlier
work [12, 2].) This corresponds to a traditional linear type, in the
sense that a value and a permission are packaged together. With this
notation, the types of “nil” and “cons” in the source calculus could
be written:

nil : ∀α. unit → (mlistα)•

cons : ∀α. α• × (mlistα)• → (mlistα)•

These are the types ascribed to “nil” and “cons” in a traditional lin-
ear type system. Although this abbreviated notation is convenient,
it is not always applicable: there are many situations whereseparat-
ing values and capabilities offers extra expressive power (see, e.g.,
the type of “iter” below).

Reverse Let us now consider a function that performs in-place
reversal of a mutable list. The function “reverse” accepts amu-
table list, together with a capability, and produces a mutable list,
together with a capability. The capability for the argumentlist is
not returned, which indicates that this list is no longer valid—its
cells have been re-used to construct the new list. The translation of
“reverse” simply maps an immutable list to an immutable list(up
to redundant units).

reverse : ∀α. (mlistα)• → (mlistα)•

⊲ ∀α. unit× list α → unit× list α

In the source program, “reverse” traverses the list, flipping pointers
as it goes. The auxiliary function “aux”, which implements aloop,
expects a pointerl to the current list cell, a pointerp to the previ-
ous list cell, as well as capabilities over the two lists thatthese cells
represent. In the translated version of “aux”, the pointersl andp

become unit, while the capabilities overl andp become immutable
lists, which respectively represent a list to be reversed and a list that
is already reversed. In summary, up to redundant units, the trans-
lation of “reverse” is a standard version of reversal for immutable
lists: a tail-recursive function that uses an accumulator.The source
and translated code for “reverse” is shown below:

reverse= let aux= µaux.λ(l, p).match(getl) with
| inj1 () ⇒ p
| inj2 (h, t) ⇒ set(l, inj2 (h, p)) ; aux(t, l)

in λl. (aux(l, nil ()))

⊲ let aux= µaux.λ((), (), l, p).matchl with
| inj1 () ⇒ ((), p)
| inj2 (h, t) ⇒

let l′ = inj2 (h, p) in aux((), (), t, l′)
in λ((), l). (aux((), (), l, nil ()))

Iter Last, let us consider a higher-order iterator over mutable lists.
The client functionf , which is applied to each item of the list
in succession, has effect{σ : α} ∗ β, whereβ is a capability
variable. The first conjunct allowsf to access and modify the
current list item. The second conjunct allowsf to perform side-
effects on some piece of the outside world, described byβ. The
application of “iter” tof has effect{σ : mlistα} ∗ β, which means
that it affects both the list and the store fragment controlled byβ.
Note that, because of the separating conjunction, the capabilities
{σ : mlistα} andβ represent disjoint store fragments. This implies
that the client functionf is not allowed to modify the structure of
the list while it is being traversed.

iter : ∀αβ. (∀σ. [σ] →{σ:α}∗β unit)
→ (∀σ. [σ] →{σ:mlist α}∗β unit)

⊲ ∀αβ. (unit× α × β → unit× α × β)
→ (unit× list α × β → unit× list α × β)

In the target calculus, “iter” is translated to a combination of the
standard “map” and “fold” combinators over immutable lists.

3.2 Union-find

Our next example illustrates how group regions are used to describe
data structures with sharing. It is a version of Tarjan’s union-
find data structure. This data structure consists of a set of nodes,
organized as a forest: each node either is a root or points to aparent
node. Nodes are mutable: the forest evolves over time. The nodes of
a single instance of the union-find algorithm are placed in a group
regionρ. Their structure is given by the following memory type:

nodeρ := ref(unit + [ρ]) ⊲ unit + key

A node is a reference to either unit (if this a root node) or a node (if
this is an internal node).

The group capability{ρ : nodeρ} describes the entire data
structure: it represents the ownership of all nodes. Its translation,
a finite map, maps a key (which represents a node) to either unit (if
this is a root node) or a key (if this is an internal node):

forest := map(unit + key)

The following functions, which manipulate the union-find data
structure, require and return the capability{ρ : nodeρ}. Through
the translation, they become functions that require and return an
explicit representation of the forest.

new : ∀ρ. unit →{ρ:nodeρ} [ρ]
⊲ unit× forest→ key× forest

find : ∀ρ. [ρ] →{ρ:nodeρ} [ρ]
⊲ key× forest→ key× forest

union : ∀ρ. [ρ] × [ρ] →{ρ:nodeρ} unit
⊲ key× key× forest→ unit× forest

4 2008/7/2

Values v := x | () | injiv | (v1, v2) | µf.λx.t | p | l
Prim. ops. p := case| proji | ref | get | set
Terms t := v | (v t)

Figure 1. Source language syntax

((µf.λx.t) v) / s −→ ([f → µf.λx.t] [x → v] t) / s
(case((inji v), v1, v2)) / s −→ (vi v) / s
(proji (v1, v2)) / s −→ vi / s
(refv) / s −→ l / s ⊎ [l 7→ v]
(getl) / s −→ s[l] / s
(set(l, v)) / s −→ () / s[l 7→ v]
(v t) / s −→ (v t′) / s′ if (t / s −→ t / s′)

Figure 2. Source language semantics

Values w := x | () | inji w | (w1, w2) | µf.λx.u | q | k | m
Prim. ops. q := case| proji |

mapfresh| mapadd| mapget | map set
Terms u := w | (w u)

Figure 3. Target language syntax

The function “new” creates a new node; its translation extends the
map that represents the regionρ at a fresh key and returns that
key. “find” follows parent pointers out of a given node until it
reaches a root node, and performs path compression; its translation
involves map lookup and update operations. “union” merges two
components, via a side effect; its translation involves calls to “find”,
as well as direct map lookup and update operations.

The capability{ρ : nodeρ} does not encode the fact that the
nodes form a forest, that is, the fact that there are no cycles. The
type system is not capable of expressing this property. In a program
logic defined on top of the type system, this property would be
expressed as an invariant (a pre- and post-condition) of theabove
functions.

4. Source and target languages
The source language of our translation is aλ-calculus equipped
with imperative features. The target language is a pureλ-calculus
equipped with a primitive form of finite association maps. Figures 1
through 4 give the syntax and small-step operational semantics of
the two languages.

A source language configuration is a pair of a termt and of
a stores. A store is a finite map of locationsl to valuesv. Val-
ues are built out of variables, unit, injections, pairs, recursiveλ-
abstractions, unary primitive operationsp, and locationsl. (The
variablesx and f range over a single class. The binderµf is
omitted when unnecessary.) The primitive operations include elim-
inators for sums and products as well as the standard operations
for allocating, reading, and writing a reference cell. Terms in-
clude valuesv and function applications(v t). The asymmetric
character of applications prevents any ambiguity about evaluation
order and simplifies the reduction and typing rules. Sequencing
(letx = t1 in t2) is encoded as((λx. t2) t1), and(t1 ; t2) is en-
coded as(let() = t1 in t2).

(µf.λx.u) w −→ [f → µf.λx.u][x → w] u
proji (w1, w2) −→ wi

case(inji w, w1, w2) −→ (wi w)
mapfreshm −→ min {k | k 6∈ dom(m)}
mapadd(m, k, w) −→ m ⊎ [k 7→ w]
mapget(m, k) −→ m[k]
mapset(m, k, w) −→ m[k 7→ w]
(w u) −→ (w u′) if (u −→ u′)

Figure 4. Target language semantics

o := α | ⊥ | ⊤ | unit | [o] | o + o | o × o | o → o | refo |
o ∗ o | ∀α.o | ∃α.o | µα.o | ∅ | {o : o} | {o : o \ o} |
∅ | o, α | o, x : o

κ := VAL | MEM | CMP | CAP | SNG | GRP | DNV | LNV

Figure 5. Syntax of types, capabilities, environments and kinds

(τ : VAL) (θ : MEM) (χ : CMP) (C : CAP)

(σ : SNG) (ρ : GRP) (∆ : DNV) (Γ : LNV)

Figure 7. Conventional metavariables

The target language is purely functional. Its values are writtenw
and its terms are writtenu. In lieu of memory locationsl and
memory storess, it has keysk (isomorphic to the natural numbers)
and finite association mapsm from keys to values. The primitive
operationsq include operations on finite maps instead of operations
on references. In short, “mapfresh” deterministically returns a key
that does not appear in the domain of its argument; “mapget” looks
up a key in a map; “mapset” updates a map at an existing key,
producing a new map; and “mapadd” extends a map at a previously
undefined key, also producing a new map. We let “mapempty”
stand for the empty map; it is a value.

5. Capabilities and types
The definition of the type system involves various kinds of enti-
ties, and several connectives are shared between multiple kinds. In
order to avoid a combinatorial explosion in the syntax, we find it
necessary to define a single syntactic category ofobjectso, and to
then classify objects usingkindsκ (Figure 5). The well-kindedness
rules (Figure 6) are unfortunately quite technical; we suggest skip-
ping them upon first reading. Throughout the paper, kinds remain
implicit, thanks to the use of conventional metavariables (Figure 7).
Type variables of all kinds are writtenα. We assume that every type
variableα intrinsically belongs to some fixed kindκ, in which case
we writeα : κ. We now briefly and informally review each of the
kinds.

Value typesτ Value types include the standard constructors bot-
tom, top, unit, sum, product, and arrow. The type[α] (“at α”) rep-
resents membership in the regionα. The bottom type⊥ is useful
in combination with the type constructor for sums: for instance, a
value of type(τ + ⊥) must be a left injection.

Memory typesθ Memory types describe the structure of the el-
ements of a region. They appear in capabilities, such as{σ : θ},
and describe the extent of the piece of memory that is controlled
by this capability. The grammar of memory types extends thatof
value types with references (θ ::= refθ) and with a separating con-

5 2008/7/2

o : VAL

o : CMP

o : VAL

o : MEM ⊥ : VAL ⊤ : VAL unit : VAL

o : κ

[o] : VAL
κ∈{SNG,GRP}

o1 : κ o2 : κ

(o1 + o2) : κ
κ∈{VAL ,MEM}

o1 : κ o2 : κ

(o1 × o2) : κ
κ∈{VAL ,MEM}

o1 : CMP o2 : CMP

(o1 → o2) : VAL

o : MEM

(refo) : MEM

o1 : κ o2 : CAP

(o1 ∗ o2) : κ
κ∈{MEM,CAP,CMP}

α : κ1 o : κ2

(∀α.o) : κ2

κ1∈{VAL ,MEM,CAP,SNG,GRP}

κ2∈{VAL}

α : κ1 o : κ2

(∃α.o) : κ2

κ1∈{VAL ,MEM,CAP,SNG,GRP}

κ2∈{VAL ,MEM,CAP,CMP}

α : κ o : κ

(µα.o) : κ
κ∈{VAL ,MEM,CAP}

o not a variable or aµ form

∅ : CAP

o1 : κ o2 : MEM

{o1 : o2} : CAP
κ∈{SNG,GRP}

o1 : GRP o2 : MEM o3 : SNG

{o1 : o2 \ o3} : CAP

∅ : κ
κ∈{DNV,LNV}

o : κ1 α : κ2

(o, α) : κ1

κ1∈{DNV,LNV}

κ2∈{VAL ,MEM,CAP,SNG,GRP}

α#o

o1 : κ1 o2 : κ2

(o1, x : o2) : κ1

(κ1∈{DNV} ∧ κ2∈{VAL})

or (κ1∈{LNV} ∧ κ2∈{VAL ,CMP,CAP})

x#o1 ∧ fv(o2)⊆dom(o1)

Figure 6. Well-kindedness

J⊥K = ⊥
J⊤K = ⊤
JunitK = unit
J [σ] K = unit
J [ρ] K = key

Jo1 + o2K = Jo1K + Jo2K
Jo1 × o2K = Jo1K × Jo2K
Jo1 → o2K = Jo1K → Jo2K
JrefoK = JoK
Jo1 ∗ o2K = Jo1K × Jo2K

J∅K = unit
J{σ : o}K = JoK
J{ρ : o}K = mapJoK
J{ρ : o \ σ}K = mapJoK × key
J∅K = ∅

Jo1, x : o2K = Jo1K, x : Jo2K

If (α : SNG)
or (α : GRP):
J∀α.oK = JoK
J∃α.oK = JoK
Jµα.oK = JoK
Jo, αK = JoK

Otherwise:
JαK = α
J∀α.oK = ∀α.JoK
J∃α.oK = ∃α.JoK
Jµα.oK = µα.JoK
Jo, αK = JoK, α

Figure 8. Translation of types, capabilities and environments

junction (θ ::= θ ∗ C), which allows capabilities to be embedded
within memory types. Notice that a value type for a memory lo-
cation l must be of the form[α]. The type of the contents of the
location appears in the capability{α : refθ} that controlsl.

Computation typesχ As explained earlier (§2.2), computation
types admit the productionsχ ::= τ | χ ∗ C | ∃α.χ. They are
used in function types, which take the formχ1 → χ2.

CapabilitiesC Atomic capabilities include the null capability∅,
singleton capabilities{σ : θ}, group capabilities{ρ : θ}, and
disabled capabilities{ρ : θ \ σ}. The latter represents ownership
of all elements of a group regionρ, except the unique element
of a singleton regionσ. Compound capabilities are built via the
separating conjunctionC1 ∗ C2.

Regionsσ, ρ The kinds of singleton regionsσ and of group re-
gionsρ contain only variables. We take the liberty of usingσ andρ
to denote region variables, so we write∀σ, ∃ρ, etc.

Environments∆, Γ A duplicable, or non-linear,environment∆
binds type variablesα, and binds variables to value types(x : τ).
A linear environmentΓ can additionally bind variables to compu-
tation types(x : χ) or to capabilities(x : C). Bindings commute,
provided dependencies are respected. When a variablex is bound
to a capabilityC, it cannot occur in the program: in the source cal-
culus, capabilities are not values, and do not exist at runtime. We
assign names to capabilities not only for sake of uniformity, but
also because these names are naturally used in the translation.

Quantification Universal quantification (∀) is present in the syn-
tax of value types (τ ::= ∀α.τ). It is not present in the syntax of

memory types or capabilities, as it would not make sense to quan-
tify over a type variable that occurs in a store typing. Existential
quantification (∃) and recursive definition (µ) are available not only
within value types, but also within memory types and capabilities.

Translation of types The target language is typed inFµ with
type constructors “key” (of arity 0) and “map” (of arity 1). Our
translation of programs preserves types. Figure 8 shows howa
source objecto is translated to anFµ object JoK. The translation
concerns objects of all kinds exceptSNGandGRP, as regions vanish
in the translation. The translation of region membership types[α],
of references, and of atomic capabilities has been described earlier
(§2.4). The translation of disabled capabilities is explained later on
(§6.2). A separating conjunction is translated as a product. The rest
of the translation is structural.

6. Type system and translation
6.1 Structural rules

Judgements Values admit a non-linear value type in a non-linear
environment, while terms admit a linear computation type ina
linear environment. The corresponding judgements are

∆ ⊢ v : τ and Γ t : χ

In other words, the construction of a valuev does not consume or
produce any capability. The evaluation of a termt, on the other
hand, consumes the capabilities contained in the linear context Γ
and produces the capabilities contained in the computationtypeχ.

The type-directed translation of values and terms into the tar-
get language is defined via translation judgements that extend the

6 2008/7/2

UNIT

∆ ⊢ () : unit ⊲ ()

INJ

∆ ⊢ v : τi ⊲ w

∆ ⊢ (inji v) : (τ1 + τ2) ⊲ (inji w)

PAIR

∆ ⊢ v1 : τ1 ⊲ w1 ∆ ⊢ v2 : τ2 ⊲ w2

∆ ⊢ (v1, v2) : (τ1 × τ2) ⊲ (w1, w2)

VAR

(x : τ) ∈ ∆

∆ ⊢ x : τ ⊲ x

FIX

∆, f : (χ1 → χ2), x : χ1 t : χ2 ⊲ u

∆ ⊢ (µf.λx.t) : (χ1 → χ2) ⊲ (µf.λx.u)

Figure 9. Type-checking and type-directed translation: values

VAL

∆ ⊢ v : τ ⊲ w

∆ v : τ ⊲ w

APP

∆ v : (χ1 → χ2) ⊲ u1 ∆, Γ t : χ1 ⊲ u2

∆, Γ (v t) : χ2 ⊲ (u1 u2)

SUB

Γ t : χ1 ⊲ u χ1 ≤ χ2 ⊲ w

Γ t : χ2 ⊲ (w u)

∗-INTRO (FRAME)

Γ t : χ ⊲ u

Γ, (x : C) t : (χ ∗ C) ⊲ (u, x)

∗-ELIM

Γ, (x1 : o), (x2 : C) t : χ ⊲ u

Γ, x1 : (o ∗ C) t : χ ⊲ let (x1, x2) = x1 in u

Figure 10. Type-checking and type-directed translation: terms

∀-INTRO-VAL

∆, α ⊢ v : τ ⊲ w

∆ ⊢ v : (∀α.τ) ⊲ w

∀-ELIM -VAL

∆ ⊢ v : (∀α.τ) ⊲ w

∆ ⊢ v : ([α → o] τ) ⊲ w

∃-INTRO-VAL

∆ ⊢ v : ([α → o] τ) ⊲ w

∆ ⊢ v : (∃α.τ) ⊲ w

∃-ELIM -VAL

∆1, α, (x : τ1), ∆2 ⊢ v : τ ⊲ w

∆1, x : (∃α.τ1), ∆2 ⊢ v : τ ⊲ w

∀-INTRO-TRM

Γ, α t : τ ⊲ u

Γ t : (∀α.τ) ⊲ u

∀-ELIM -TRM

Γ t : (∀α.τ) ⊲ u

Γ t : ([α → o] τ) ⊲ u

∃-INTRO-TRM

Γ t : ([α → o] χ) ⊲ u

Γ t : (∃α.χ) ⊲ u

∃-ELIM -TRM

Γ1, α, (x : χ1), Γ2 t : χ ⊲ u

Γ1, x : (∃α.χ1), Γ2 t : χ ⊲ u

Figure 11. Additional rules for values and terms: quantifier introduction and elimination

typing judgements:

∆ ⊢ v : τ ⊲ w and Γ t : χ ⊲ u

(The symbol⊲ should be read: “is translated to”.) The left-hand
judgement states that the source valuev is translated to the target
valuew. The right-hand judgement states that the source termt is
translated to the target termu.

The translation preserves well-typedness, compositionally. This
fact admits the following succinct statement (in which the symbol
⊢Fµ

indicates well-typedness inFµ):

Lemma (Type preservation)

∆⊢ v : τ ⊲ w implies J∆K⊢Fµ
w : JτK

Γ t : χ ⊲ u implies JΓK ⊢Fµ
u : JχK ⋄

The translation judgements extend the typing judgements inthe
following sense. First, every valid translation judgementcontains a
valid typing judgement, which can be recovered simply by erasing
the translation-specific annotations. Conversely, every valid typing
judgement is the erasure of some valid translation judgement.

In order to save space and avoid redundancy, only the transla-
tion rules are presented in this paper (Figures 9, 10 and 11).The
translation-specific parts are printed on a gray background, so that,
by ignoring them, one recovers the typing rules.

Values (Figure 9) Values are type-checked in a standard way.
Their translation is structural.

The rule that type-checks recursive functions does hide a couple
of subtleties. First, it uses computation typesχ, which describe the
transfer not only of a value, but also of capabilities. Second, it uses
a duplicable environment∆, which means that a closure cannot
capture a capability that happens to be available at its allocation
site. This is required for type soundness [12].

Terms (Figure 10) VAL states that a value of typeτ can be viewed
as a term of typeτ . This statement is well-formed, because every
duplicable environment is also a linear environment, and every
value type is also a computation type.

APPstates that the application(v t) has typeχ2 if the functionv
has typeχ1 → χ2 and the argumentt has typeχ1. Because the
left-hand side is a value, which consumes no capability, allof the
available capabilities, represented byΓ, are transmitted to the right-
hand sidet. The environment fragment∆, which is duplicated,
does not contain any capability. An application is translated to an
application.

The subtyping rule,SUB, weakens the type of a term. The
subtyping relation is defined later on (§6.2). For the moment, note
that a subtyping judgement translates to a coercion, that is, a closed
λ-term, and that an instance ofSUB gives rise, in the translated
term, to an application of a coercion.

7 2008/7/2

∗-INTRO, also known asFRAME, states that if a term is fed with
a capabilityC that it does not need, then its evaluation preserves
that capability. This is the first-order frame rule of Separation
Logic [18]. An instance ofFRAME is translated to a pair, whose
first component is the translation of the termt, and whose second
component is the translation of the capabilityC. (In order to satisfy
our syntactic restrictions, the notation(u, x) is defined as syntactic
sugar for theβ-expanded form “letx′ = u in (x′, x)”.)

∗-ELIM is a left elimination form for separating conjunctions,
which may be of the formχ ∗ C or C1 ∗ C2. Because conjunc-
tions are translated as pairs, the deconstruction of a conjunction is
translated as pair decomposition.

Quantifiers (Figure 11) All quantifier introduction and elimina-
tion rules are standard, except∀-INTRO-TRM, which states that it
is permitted to generalize the type of a term. The very existence of
this rule means that there is no value restriction [16, p. 336]. Yet,
the system is sound. This is guaranteed by a restriction on the syn-
tax of types: while(∀α.τ) is a valid type,(∀α.χ) is not. Indeed,
a computation typeχ may contain capabilities, which describe the
structure of a piece of store; the type variables that occur within
these capabilities must not be generalized.

Deriving LET Because the “let” construct is sugar for aβ-redex,
its typing rule follows fromAPP, FIX, VAL , andFRAME:
LET

∆, Γ1 t1 : χ1 ⊲ u1 ∆, (x : χ1), Γ2 t2 : χ2 ⊲ u2

∆, Γ1, Γ2 (letx = t1 in t2) : χ2 ⊲ (letx = u1 in u2)

6.2 Primitive operations and subtyping

The subtyping judgement takes the form:

o1 ≤ o2 ⊲ w

where o1 and o2 have kindκ ∈ {VAL , MEM, CMP, CAP}. The
coercionw is a closed value of the target calculus (a coercion),
whose type isJo1K → Jo2K. It is used to translate the subtyping
operation.

In the following, the types of the primitive operations (Fig-
ure 12) and the subtyping rules (Figure 13) are explained together.

Notation In Figure 13, we useλ-abstractions of the form(λπ. u),
where π is a pattern, that is, a value composed of unit, pairs,
injections, and distinct variables. We write(π u) for (λπ. u),
and let the symmetric subtyping axiom:o1 ≡ o2 ⊲ (π1 ! π2)
stand for the conjunction of axioms:o1 ≤ o2 ⊲ (π1 π2) and
o2 ≤ o1 ⊲ (π2 π1).

Illustration Among the subtyping rules, fourFOCUSrules, which
reorganize regions, are informally illustrated in Figure 14. There, a
solid arrow points to an object that is owned by the origin region of
the arrow, so it never crosses a region boundary. On the contrary, a
dashed arrow points into some distinct region, so it always crosses
a region boundary. The object at the end of such an arrow has a
type of the form[α], for some regionα, and it is controlled by the
capability associated with regionα.

General SNG-CREATE states that every value can be viewed as a
member of a singleton type. This helps derive variants of several
other rules. Conversely,SNG-EXTRACT turns a singleton type[σ]
back into a value typeτ , provided the capability{σ : τ} is present.
(SNG-EXTRACT can be used to show thatSNG-CREATE is in fact an
equivalence.) These rules reflect the fact that ownership ofa non-
linear value is never exclusive. This is acceptable, because values
are immutable.

FREE discards a capabilityC. Technically, its presence means
that capabilities are affine, rather than linear. Its translation,(λx. ()),
discardsx, which represents the memory controlled byC.

References The types of the primitive operations “ref”, “get”, and
“set”, as well as the subtyping ruleFOCUS-REF (illustrated in Fig-
ure 14), have been explained earlier (§2.2). The translation of “ref”,
“get” and “set” is exactly the standard monadic translation[13, 21],
in the particular case where the state consists of a single mem-
ory cell. In the translatedλ-terms,x stands for the translation of
{σ : refτ}, that is, the contents of the cell. The locationl at type
[σ] is translated to unit.

Pairs Just like the primitive operations on references, the pair
projections extract a non-linear component out of a linear container.
That is, “proj1” requires a capability of the form{σ : τ1×θ2}, and
returns a value of typeτ1.

In order to extract a linear component out of a pair, one relies
on the subtyping ruleFOCUS-PAIR1 (from left to right) to isolate
the first component of a pair in a fresh region (See Figure 14).
This mechanism is identical to that provided byFOCUS-REF for
accessing references with linear contents.

Conversely, applying ruleFOCUS-PAIR1 twice, from right to
left, allows constructing a linear pair{σ : θ1 × θ2} out of a value
of type([σ1] × [σ2]) and out of the two capabilities{σ1 : θ1} and
{σ2 : θ2}.

The traditional type (τ1 × τ2 → τi) for projection out of a non-
linear pair can be derived, viaSNG-CREATE andFREE. Moreover,
up toβη−equivalence, its translation is just projection.

Sums The type of “case” is somewhat complex. The reason is that
“case” performs two tasks: on the one hand, it branches on a tag;
on the other hand, it deconstructs a sum by stripping off its tag and
returning the underlying value. In the following, we explain how
these tasks could be assigned separate types. The type of “case” is
then derived as a combination of these types and of a focusingstep.

First, a hypothetical primitive operation, whose dynamic se-
mantics is to examine the tag of a sum and transfer control, ac-
cordingly, to one of two branches, could be assigned the type:

(

(unit ∗ {σ : θ1 + ⊥} ∗ C → χ)
× (unit ∗ {σ : ⊥ + θ2} ∗ C → χ)
× [σ]

)

∗ {σ : θ1 + θ2} ∗ C → χ

Here, each branch consumes a capabilityC and produces a result
of type χ; the same is true of the entire “case” construct. The
capability{σ : θ1 + θ2} is transformed to{σ : θ1 +⊥} in the first
branch and to{σ : ⊥ + θ2} in the second branch, reflecting the
knowledge acquired by examining the tag. This knowledge canbe
discarded, so as to recover the original capability, via thesubtyping
axiom⊥ ≤ θ.

Second, a hypothetical primitive operation, whose dynamicse-
mantics is to deconstruct a left injection could be assignedthe type:

(τ + ⊥) → τ

The application of this function is well-typed only if its argument
is statically known to be a left injection.

Third and last, it is natural to introduce the subtyping rule
FOCUS-SUMi. This rule is analogous toFOCUS-PAIRi. It allows
isolating the contents of an injection in a fresh region, when the tag
is statically known (see Figure 14).

Combining the types of the above two hypothetical primitive
operations with instances ofFOCUS-SUMi yields the type of “case”,
shown in Figure 12.

Regions There are four subtyping rules for producing or consum-
ing group regions [12]. These rules are purely logical: theychange
one’s view of memory, but have no runtime effect in the sourcelan-
guage. In the translation, these subtyping rules become instructions
for rearranging the finite maps that represent regions.

NEW-GRP allows the creation ofn fresh, empty group regions.
Every θi can contain free occurrences of everyρj , which is why

8 2008/7/2

ref : τ → ∃σ.[σ] ∗ {σ : refτ} ⊲ λx. ((), x)

get : [σ] ∗ {σ : refτ} → τ ∗ {σ : refτ} ⊲ λ((), x). (x, x)

set : ([σ] × τ2) ∗ {σ : refτ1} → unit ∗ {σ : refτ2} ⊲ λ((), x2, x1). ((), x2)

proj1 : [σ] ∗ {σ : τ1 × θ2} → τ1 ∗ {σ : τ1 × θ2} ⊲ λ((), (x1, x2)). (x1, (x1, x2))

case :
(

((∃σ1.([σ1] ∗ {σ : [σ1] + ⊥} ∗ {σ1 : θ1} ∗ C)) → χ) ⊲ λ(f1, f2, (), x, c). case(
× ((∃σ2.([σ2] ∗ {σ : ⊥ + [σ2]} ∗ {σ2 : θ2} ∗ C)) → χ) (λx1. (f1 ((), inj1(), x1, c))),
× [σ]

)

∗ {σ : θ1 + θ2} ∗ C → χ (λx2. (f2 ((), inj2(), x2, c))), x)

Figure 12. Typing and translation of primitives

General
SNG-CREATE : τ ≤ ∃σ.[σ] ∗ {σ : τ} ⊲ x ((), x)
SNG-EXTRACT : [σ] ∗ {σ : τ} ≤ τ ∗ {σ : τ} ⊲ ((), x) (x, x)
FREE : C ≤ ∅ ⊲ x ()

Focus-value
FOCUS-REF : {σ : refθ1} ≡ ∃σ1.{σ : ref [σ1]} ∗ {σ1 : θ1} ⊲ x! ((), x)
FOCUS-PAIR1 : {σ : θ1 × θ2}≡ ∃σ1.{σ : [σ1] × θ2} ∗ {σ1 : θ1} ⊲ (x1, x2)! (((), x2), x1)
FOCUS-SUM1 : {σ : θ1 + ⊥} ≡ ∃σ1.{σ : [σ1] + ⊥} ∗ {σ1 : θ1} ⊲ (inj1 x)! (inj1 (), x)

Regions
NEW-GRP : ∅ ≤ ∃ρ1 · · · ρn.{ρ1 : θ1} ∗ . . . ∗ {ρn : θn} ⊲ () (mapempty, . . . , mapempty)
ADOPT-GRP : [σ] ∗ {σ : θ} ∗ {ρ : θ} ≤ [ρ] ∗ {ρ : θ} ⊲ ((), x, m) letk = mapfreshm in

(k, mapadd(m, k, x))
FOCUS-GRP : [ρ] ∗ {ρ : θ} ≤ ∃σ.[σ] ∗ {σ : θ} ∗ {ρ : θ \ σ} ⊲ (k, m) ((), mapget(m, k), (m, k)))
UNFOCUS-GRP : {σ : θ} ∗ {ρ : θ \ σ} ≤ {ρ : θ} ⊲ (x, (m, k)) mapset(m, k, x)

Embedding
∃.EMBED : {σ : (∃α.θ)} ≡ ∃α.{σ : θ} ⊲ x! x
∗.EMBED : {σ : (θ ∗ C)} ≡ {σ : θ} ∗ C ⊲ x! x

Administrative
∗.COMM-CAP : C1 ∗ C2 ≡ C2 ∗ C1 ⊲ (x1, x2)! (x2, x1)
∗.ASSOC : (o ∗ C1) ∗ C2 ≡ o ∗ (C1 ∗ C2) ⊲ ((x1, x2), x3)! (x1, (x2, x3))
∗.NEUTRAL : o ∗ ∅ ≡ o ⊲ (x, ())! x
∃.COMM : ∃α1.∃α2.o ≡ ∃α2.∃α1.o ⊲ x! x
∃.EXTRUDE-L : o1 ∗ (∃α.o2) ≡ ∃α.(o1 ∗ o2) ⊲ x! x
∃.EXTRUDE-R : (∃α.o1) ∗ o2 ≡ ∃α.(o1 ∗ o2) ⊲ x! x

Figure 13. Subtyping rules and their translation

permitting n > 1 is useful. The capabilities over these empty
regions are translated as empty maps.

ADOPT-GRP dissolves a singleton regionσ into an existing
group regionρ. The capability overσ is lost. The unique inhabitant
of σ henceforth becomes an inhabitant ofρ. Its type is coerced
from [σ] to [ρ], so as to reflect this change. In the target calculus,
the capability{ρ : θ} is translated to an association mapm, which
represents the initial state of regionρ. The capability{σ : θ} is
translated to a valuex, which represents the state of the objectσ.
Becauseσ is a singleton region, the object itself is translated to
unit. An application of “mapfresh” produces a keyk that does
not already appear in the domain ofm. Then, an application of
“map add” extends the association mapm with x atk, yielding an
updated representation of regionρ. Finally, becauseρ is a group
region, the adopted object, at type[ρ], is translated to the keyk.

FOCUS-GRP isolates a particular object out of a group region:
this creates a fresh singleton region, and disables the group region.
UNFOCUS-GRP undoes this effect. This mechanism was explained
earlier (§2.3; Figure 14). In the target language, a disabled capabi-

lity {ρ : θ \ σ} is translated to a pair(m, k), where the association
mapm represents the full capability{ρ : θ}, and the keyk repre-
sents the index of objectσ within regionρ. Intuitively, the meaning
of the pair(m, k) is that the state of regionρ is m, except at keyk,
where the value is stale and must not be accessed.FOCUS-GRPcre-
ates such a pair(m, k), which forms the translation of{ρ : θ \ σ},
and looks up the mapm at indexk, so as to form the translation of
{σ : θ}. UNFOCUS-GRP requires a pair(m, k), which represents
{ρ : θ \ σ}, and updatesm at k with a new valuex, which repre-
sents{σ : θ}. The value previously found inm at k, which at this
point is stale, is overwritten.

A typical imperative coding pattern consists in focusing onan
object σ, updating it via a side effect, then de-focusing. In the
translation, this corresponds to looking up a value at some key k
in an association map, computing an updated value, then updating
the map at keyk with that new value. Such a sequence is a typical
functional programming idiom.

9 2008/7/2

focus-ref

ref

σ

θ θ

ref

σ

σ1

focus-pair
1

θ1 θ2 θ1
θ2

pair pair

σ σ

σ1

focus-sum
1

θ1

⊥

inj1

σ

θ1

⊥

inj1

σ

σ1

focus-grp

θ

θ

ρ

θ

[ρ] [σ]

θ

θ

ρ

σ

θ

Figure 14. Illustration of the focus operations

Embedding ∗.EMBED and∃.EMBED help attach regions and ca-
pabilities to the components of a data structure, and, conversely,
extract them back out. For instance, they can convert the conjunc-
tion ∃ρ.({σ : θ} ∗ {ρ : θ′}) to the atom{σ : ∃ρ.(θ ∗ {ρ : θ′})},
where regionρ is owned by regionσ. This mechanism allows re-
gions to form an ownership hierarchy. Because both inner andouter
conjunctions are translated as pairs, the coercions that witness these
rules are the identity.

Administrative The ∗ connective is commutative, when applied
to two capabilities, associative, and admits the null capability ∅ as
a neutral element. Moreover, existential binders can commute and
be extruded out of conjunctions.

6.3 Subtyping under a context

Subtyping is applicable under a context. Most of the corresponding
rules are standard, thus not shown (see the online addendum [1]).

Subtyping references The “ref” type constructor is covariant.
This might come as a shock, as it is well-known that soundness
requires references to be invariant in extensions of simply-typedλ-
calculus with references and subtyping [16, p. 198]. Here, however,
“ref” is not a value type constructor. Instead, it is a memorytype
constructor: it is linear. It is safe to weaken the type of thecontents
of a reference, for the same reason that it is safe to perform astrong
update: there exists only one copy of this type.

Subtyping recursive typesFor comparing recursive types, we use
rules that closely resemble those of Brandt and Henglein [5]. The
rules involve subtyping contextsΣ, which are sets of subtyping
assumptions. Two symmetric rules allow unfolding a recursive
type, so as to compare it with some other type. The left rule is:
SUB-REC-LEFT

o1 = µα.o Σ, (o1 ≤ o2 ⊲ x) ⊢ ([α → o1] o) ≤ o2 ⊲ w

Σ ⊢ o1 ≤ o2 ⊲ µx.w

The conclusion of the rule appears as part of the subtyping context
in the premise. This is sound, because all recursive types are con-
tractive. The corresponding coercion is a recursive function. (Be-
causew is necessarily an abstraction,(µx.w) is a well-formed re-
cursiveλ-abstraction.) A standard “fold/unfold” axiom is provable:

µα.o ≡ ([α → µα.o] o) ⊲ λx. x

7. Soundness of the type system and translation
We use a syntactic approach to soundness, via subject reduction
and progress theorems. We prove roughly the following simulation
statement, which subsumes subject reduction: if a well-typed termt

is translated asu, and ift reduces tot′, thent′ is well-typed, and its
translationu′ is a reduct ofu. Formalizing this statement requires
the introduction of several new definitions.

Region maps We must explain how to type-check and translate
source configurations, rather than just source terms. To that end,
we introduce an oracle, known as aregion map, which records the
contents of regions. (This is analogous to a standard type soundness
proof for ML [16,§13.4], where an oracle, known as a store typing,
records the types of the memory locations.) A region mapµ maps a
singleton regionσ to a closed source valueµ[σ], and maps a group
regionρ to a mapµ[ρ] from keys to closed source values.

The typing and translation judgements are extended so as to
carryµ as a parameter. This new parameter is ignored by the typing
and translation rules shown earlier. It is, however, exploited in the
following two new rules, which assign type[α] to an inhabitant of
regionα, and translate it appropriately:

SNG

µ; ∆ ⊢ µ[σ] : [σ] ⊲ ()

GRP

µ; ∆ ⊢ µ[ρ][k] : [ρ] ⊲ k

Executable terms Moreover, we introduce a new judgement for
typing and translating closed source terms. The judgement:

s; µ; ᾱ; P ||= t : χ ⊲ u

states that the termt has typeχ and is translated as the term
u. This judgement is relative to a stores, a region mapµ, a
set of type variables̄α (in the absence of a value restriction, a
universal quantifier introduction rule is an evaluation context, hence
execution takes place in the context of a set of type variables), and
a setP of locations and regions that the termt consumes (that
is, must initially own). The derivation rules for this judgement are
quite similar to those that define the original typing judgement for
(potentially opened) terms. An exception is the frame rule,which,
for this judgement, takes the form:

EXE-FRAME

s; µ; ᾱ; P1 ||= t : χ ⊲ u s; µ ⊢ C ∠ P2 ⊲ w

s; µ; ᾱ; (P1 ⊎ P2) ||= t : (χ ∗ C) ⊲ (u, w)

This rule states that, if the termt consumesP1 to produce a result
of typeχ, and if the capabilityC controls exactly the locations and
regions in the setP2, then, when provided with the disjoint union
of P1 andP2, the termt produces a result of type(χ ∗ C). The
right-hand premise involves another judgement form, whichtype-
checks and translates a capability. By lack of space, this judgement
is not described here; see the online addendum [1] for details.

Monotonicity A last ingredient is needed to state soundness. We
introduce the notation(s, µ)\P ⊑ (s′, µ′)\P ′ to indicate that, as

10 2008/7/2

a term is executed, regions can only grow, and that a term cannot
affect or acquire a piece of state that it initially does not own. This
notation is an abbreviation for a conjunction of three statements:

(1) µ ⊑ µ′ (2) s\P ⊆ s′\P ′ (3) µ\P ⊆ µ′
\P ′

Proposition (1) states that the region map grows: singletonregions
remain fixed, and group regions grow. It is defined as follows:

µ ⊑ µ′ :=

{

∀ σ ∈ dom(µ), µ[σ] = µ′[σ]
∀ ρ ∈ dom(µ), µ[ρ] ⊆ µ′[ρ]

Propositions (2) and (3) are set-theoretic inclusions between re-
strictions of finite maps. Proposition (2) means that for every mem-
ory locationl in (dom(s) \P), the values′[l] equals the values[l]
(locations not owned cannot be affected) andl is not inP ′ (loca-
tions not owned cannot be acquired). Proposition (3) is an analo-
gous statement about regions.

Stating soundness We can now formally state that a reduction
step in a well-typed source term is matched by one or more re-
duction steps in the translation of this term. The facts thatregions
grow with time, and that inaccessible locations and regionsare un-
affected and remain inaccessible, are required for the proof by in-
duction to go through.

Theorem (Simulation) If the following hypotheses hold:
{

t / s −→ t′ / s′

s; µ; ᾱ; P ||= t : χ ⊲ u

then there existsµ′, P ′ andu′ such that

u −→+ u′

s′; µ′; ᾱ; P ′ ||= t′ : χ ⊲ u′

(s, µ)\P ⊑ (s′, µ′)\P ′ ⋄

Conclusion Independently, we prove a progress theorem: a well-
typed and irreducible source term is necessarily a value. Further-
more, we prove that the translation of a value, considered asa term,
must converge to a value. By combining these facts with the simula-
tion theorem, we conclude that the type system is sound (well-typed
programs do not go wrong), and that the type-directed translation
is meaning-preserving (a program and its translation either both
diverge, or converge to related values).

8. Related work
Capabilities The Calculus of Capabilities [7] introduces a type
system with non-linear values and linear capabilities. Regions are
sets of memory locations (of possibly heterogeneous type).As in
this paper, a capability represents an exclusive right to access and
free the contents of a region. The use of capabilities allowsar-
bitrary separation of allocation and deallocation points,a signifi-
cant gain in expressiveness compared to earlier work by Tofte and
Talpin [20], where regions have lexical scope. The Calculusof Ca-
pabilities enjoys a complete collection property. Thus, itdoes not
require garbage collection: instead, it has runtime support for re-
gions. Specifically, the calculus has a primitive type of region han-
dles, as well as primitive operations for creating, extending, and
freeing regions. In contrast, because we are interested in ahigh-
level language, where ownership and deallocation of immutable
data structures are implicit, we omit this machinery and rely on
garbage collection.

The calculus of Alias Types [19] uses singleton capabilities to
describe the structure of the store at the level of individual objects
and support strong update. A later paper [22] adds the ability to
embed capabilities within data structures, which effectively gives
rise to an ownership hierarchy.

Building upon these works, Fähndrich and DeLine’s Vault [12]
allows reasoning about both aliased and unique objects. Further-
more, Vault introduces adoption and focus. Together with these
mechanisms comes the ability for an aliased object to own a unique
object. The soundness of the type system is not argued, but Boyland
and Retert later prove the soundness of a similar system, where
focus works at the level of object fields [4]. Our presentation of
adoption and focus is closely inspired by Fähndrich and DeLine’s
work, with two simplifications in the presentation, which wefeel
are important. First, F̈ahndrich and DeLine conflate regions and
objects: every variableρ serves both as the name of a unique ob-
ject and as the name of a group region, which holds the object’s
adoptees. We avoid this unfortunate identification betweena static
entity (a region) and a dynamic one (an object). Second, Fähndrich
and DeLine require every object to keep a list of its adopteesat
runtime. This list is part of the runtime machinery that is used to
avoid garbage collection. In our case, no such list is needed. Our
presentation of adoption as a subtyping rule emphasizes thefact
that adoption has no computational content.

L3, a Linear Language with Locations [2], is a linearλ-calculus
extended with support for references and strong updates. Following
Alias Types [7], pointers and capabilities are distinguished. Point-
ers are typically unrestricted, while capabilities are linear. In con-
trast with the capabilities found in Alias Types and in this paper,
which are static entities, capabilities inL3 are values: they exist at
runtime. This makes quite a difference. In our system, the only run-
time operations are “ref”, “get”, and “set”; everything else, includ-
ing the operations that move capabilities around and re-organize the
ownership hierarchy (adoption, the various forms of focus,embed-
ding, etc.), takes the form of subtyping axioms, which in thesource
calculus have no computational content.

Not every well-typed ML program is well-typed in our system.
One tentative way of translating an ML program into our system
would be to place all references in a single, global region, and
to thread a capability over that region throughout the program.
However, that would require a heterogeneous region, while our
regions are homogeneous.

Adopting the second author’shigher-order anti-framerule [17]
does allow encoding every ML program. However, it is not yet clear
how to extend our functional translation in order to supportthis
extra rule.

Monads Monads [13, 21] and effects [20] offer a way of statically
controlling which regions of memory are read or written by a
program term. Monads and effects are closely related. We have
explained earlier (§2.2) how an effect is just a capability that is
required and returned. A monad is just a universe of computations
with a fixed effect: that is,M α can be viewed as an abbreviation
for (unit →C α), for a fixed capabilityC. With this in mind, the
connection between linear types and monads imagined by Chen
and Hudak [6] can be made precise in our system. A monad that
encapsulates a mutable data structure, such as a linked listor a
binary search tree, can be defined by the programmer (in terms
of a concrete capabilityC for the data structure) and, thanks to
existential quantification, given an abstract interface (so, in the end,
only an abstract type constructorM is published).

Such a precise connection between effects, monads, and a lin-
ear type system is already fleshed out, in two stages, by Ahmed,
Fluet, and Morrisett [10, 11]. First, Fluet and Morrisett [10] en-
code Tofte and Talpin’s type and effect system intoF RGN, an ex-
tension ofF with a region-indexed monad. Second, Ahmed, Fluet,
and Morrisett [11] encodeF RGN into λrgnUL, a linearλ-calculus
equipped with regions and capabilities; their encoding of the monad
is the one suggested above. Much of the complexity of the first
encoding stage lies in the fact that Tofte and Talpin’s effects are
sets of regions, while the monad inF RGN is indexed with a sin-

11 2008/7/2

gle region. This difficulty is resolved by exploiting the fact that re-
gions have nested lifetimes, and by introducing region subtyping in
F RGN. It seems that it could be avoided entirely by encoding Tofte
and Talpin’s system directly intoλrgnUL.

Is it possible, analogously, to encode Tofte and Talpin’s type
and effect system into our type system? Maybe, but there is a
snag. Whereas Tofte and Talpin’s system, as well asλrgnUL, have
heterogeneous regions, our system has homogeneous regions: a
group region stores objects of a single, fixed type. It is an open
question whether the former can be encoded into the latter.

Translations into pure calculi The monadic translation [13, 21]
is perhaps the most famous translation of imperative programs into
purely functional ones. Filliâtre [8] presents a refined version of
this translation, where monads are indexed with effects, sothat the
store consists of multiple, independent fragments. This technique,
implemented in the Why tool [9], does not support aliasing. The
translations of Java and C into Why implemented in the Krakatoa
and Caduceus tools [9] deal with aliasing by introducing arrays that
play the same role as our maps. These arrays are global, however:
there is one such array per record field in the source program.

O’Hearn and Reynolds translate two variants of Algol into a
polymorphic linearλ-calculus [15]. Linearity is used to establish
the fact that store fragments are never duplicated, and are cre-
ated and destroyed in well-identified places. On the one hand, our
translation is more ambitious, since our source calculus supports
dynamic memory allocation. On the other hand, we have not at-
tempted to exploit linearity in the target calculus. It mustbe true
that our store fragments are linear, but we have not yet proved this
fact. A technical difference between the two translations is in the
treatment of theFRAME rule. O’Hearn and Reynolds encode it in
terms of polymorphism (a full store is passed down intoFRAME, at
a partially abstract type), whereas our translation is direct (only a
fragment of the store is passed down).

Program logics Separation Logic [18] and Stateful Views [23]
are related to one another, and to our work. In fact, the syntaxes
of separation logic formulae, of stateful views, and of our ca-
pabilities, share a basic fragment: all three have constructs for
empty heap, singleton heap, separating conjunction, and quantifi-
cation over (static names for) memory locations. Neither ofthe two
systems cited above has primitive group capabilities or primitive
mechanisms for adoption and focus.

The Spec# static program verifier [3] extracts proof obligations
out of programs expressed in a variant of the C# programming
language. Like our type system, it relies on an ownership hierarchy,
which can evolve dynamically. Its “pack” and “unpack” constructs,
which attach and detach an owned object and an owner object, serve
the same purpose as the subtyping axiomFOCUS-REF in this paper.

We share with the authors of Hoare Type Theory (HTT) [14]
a motivation: reasoning about imperative programs with dynamic
memory allocation. HTT incorporates Hoare-style specifications
into types. In keeping with a tradition of type theory, HTT blurs
the distinction between code, types, and specifications, whereas we
intend to preserve this distinction: we are not convinced that it is
useful to let effectful code appear within specifications.

9. Future work
In this paper, we have focused on just code and types. In the future,
we plan to add support for Hoare-style specifications on top of our
type system. Our specification language will be a pure type the-
ory, such as the Calculus of Inductive Constructions. This would
allow decorating imperative programs with logical assertions and
extracting proof obligations, while taking advantage of the separa-
tion information provided by the type system.

We also wish to further augment the expressiveness of our sys-
tem. There are several interesting candidates for new type-theoretic
mechanisms.Multi-focuspermits simultaneously focusing on mul-
tiple elements of a group region, as long as they are provablydis-
tinct. Fusion, a generalization of adoption, dissolves an entire re-
gion into another region. These mechanisms are more complexthan
those presented in this paper. They involve new forms of capabili-
ties, and entail proof obligations: that is, the translatedprogram is
equivalent to the source program only up to validation of certain
assertions embedded in the translated code.

References
[1] Arthur Chargúeraud and François Pottier. Technical appendix.

http://arthur.chargueraud.org/research/2008/icfp/.

[2] Amal Ahmed, Matthew Fluet, and Greg Morrisett.L3: A linear
language with locations.Fundamenta Informaticæ, 77(4), 2007.

[3] Mike Barnett, Rob DeLine, Manuel Fähndrich, K. Rustan M. Leino,
and Wolfram Schulte. Verification of object-oriented programs with
invariants.Journal of Object Technology, 3(6), 2004.

[4] John Tang Boyland and William Retert. Connecting effects and
uniqueness with adoption. InPOPL, pages 283–295, January 2005.

[5] Michael Brandt and Fritz Henglein. Coinductive axiomatization of
recursive type equality and subtyping.Fundamenta Informaticæ,
33:309–338, 1998.

[6] Chih-Ping Chen and Paul Hudak. Rolling your own mutable ADT—a
connection between linear types and monads. InPOPL, 1997.

[7] Karl Crary, David Walker, and Greg Morrisett. Typed memory
management in a calculus of capabilities. InPOPL, 1999.

[8] Jean-Christophe Filliâtre. Verification of non-functional programs
using interpretations in type theory.JFP, 13(4), 2003.

[9] Jean-Christophe Filliâtre and Claude Marché. The Why/Krakatoa/Ca-
duceus platform for deductive program verification. InCAV, volume
4590 ofLNCS, 2007.

[10] Matthew Fluet and Greg Morrisett. Monadic regions.JFP, 16(4–
5):485–545, 2006.

[11] Matthew Fluet, Greg Morrisett, and Amal Ahmed. Linear regions are
all you need. InESOP, volume 3924 ofLNCS, March 2006.

[12] Manuel Fähndrich and Robert DeLine. Adoption and focus: practical
linear types for imperative programming. InPLDI, 2002.

[13] Eugenio Moggi. An abstract view of programming languages.
Technical Report ECS-LFCS-90-113, University of Edinburgh, 1989.

[14] Aleksandar Nanevski, Amal Ahmed, Greg Morrisett, and Lars
Birkedal. Abstract predicates and mutable ADTs in Hoare type
theory. InESOP, LNCS, March 2007.

[15] Peter W. O’Hearn and John C. Reynolds. From Algol to polymorphic
linear lambda-calculus.Journal of the ACM, 47(1):167–223, 2000.

[16] Benjamin C. Pierce.Types and Programming Languages. MIT Press,
2002.

[17] François Pottier. Hiding local state in direct style:a higher-order
anti-frame rule. InLICS, 2008.

[18] John C. Reynolds. Separation logic: A logic for shared mutable data
structures. InLICS, 2002.

[19] Frederick Smith, David Walker, and Greg Morrisett. Alias types. In
ESOP, volume 1782 ofLNCS, 2000.

[20] Mads Tofte and Jean-Pierre Talpin. Region-based memory manage-
ment. Information and Computation, 132(2):109–176, 1997.

[21] Philip Wadler. The essence of functional programming.In POPL,
1992.

[22] David Walker and Greg Morrisett. Alias types for recursive data
structures. InTIC, volume 2071 ofLNCS, 2000.

[23] Dengping Zhu and Hongwei Xi. Safe programming with pointers
through stateful views. InPADL, volume 3350 ofLNCS, 2005.

12 2008/7/2

