Functional Translation of a Calculus of Capabilities

Arthur Charguéraud

INRIA
arthur.chargueraud@inria.fr

Abstract

Reasoning about imperative programs requires the abdlityaick
aliasing and ownership properties. We present a type systatm
provides this ability, by using regions, capabilities, aagleton
types. It is designed for a high-level calculus with higbeder
functions, algebraic data structures, and referencesafifeumem-
ory cells). The type system has polymorphism, yet does njptire
a value restriction, because capabilities act as exptmiegypings.

We exhibit a type-directed, type-preserving, and meaning-
preserving translation of this imperative calculus intaiagpcalcu-
lus. Like the monadic translation, this is a store-pasgiagdiation.
Here, however, the store is partitioned into multiple fragts,
which are threaded through a computation only if they arevesit
to it. Furthermore, the decomposition of the store into rinagts
can evolve dynamically to reflect ownership transfers.

The translation offers deep insight about the inner workizgd
soundness of the type system. If coupled with a semantic imode
of its target calculus, it leads to a semantic model of itsérative
source calculus. Furthermore, it provides a foundatiowimiong-
term objective of designing a system for specifying andifyéng
imperative programs with dynamic memory allocation.

1. Introduction

Reasoning about imperative programs in the presence ofigna
memory allocation is a challenging task. The existenceiasilg
means that an update to a memory block by one principal cantaff
other principals with which the address of the block is stiare
possibly violating their invariants, if aliasing was uréntled. Thus,
a correctness argument for an imperative program mustideaie
way or another, with aliasing (which object, or group of @i§e
might a certain pointer denote?) and with ownership (whal$ol
the right to access a certain object, or group of objects?).

There are many ways of attacking this problem (see our dis-
cussion of related work i§8). We are interested in a line of work
that uses type-theoretic machinery, including regionpabdities,
and singleton types, in order to control aliasing and owmiprsA
few landmark papers in this area include Crary, Walker, armd-M
risett’'s Calculus of Capabilities [7], Smith, Walker, andivisett’s
Alias Types [19, 22], and Fahndrich and DeLine’s Adoptiom a
Focus [12].

Francois Pottier

INRIA
francois.pottier@inria.fr

such a capability-based type system. The idea is to exprass a
check assertions about aliasing and ownership at the Iéuleo
type system, so that, at the level of the Hoare logic, a view of
the store as a collection of separate regions becomes lateaia
no cost. Our approach is closely related to Separation Ld&F
However, instead of expressing assertions about aliasidgan-
ership within the logic, we are interested in using more dasi
machinery—a type system—for this purpose.

In this paper, we present a type system that is designed for a
standard, high-level programming language and that cosstiime
key features of the systems cited above. It exteAgs(that is,
SystemF with recursive types), and permits the co-existence of
non-linear values and linear capabilities. Note that, lierrhoment,
we are not interested in type inference or in surface syntax.

On top of this type system, we define a type-directed traioslat
that transforms an imperative program into a purely fumetione.

In the translation, a capability becomes either a finite nvafich

encodes a region of the store) or an individual value (whictodes
a single, unaliased object). Thus, capabilities, whichhagource
program are purely type-theoretic entities, are trandlateuntime
values. The translation is semantics-preserving, andyoexiwell-
typed programs irf,.

Just like the standard monadic translation [13, 21], tliegta-
tion is store-passing. It is, however, much more fine-gidithen
the monadic translation: instead of a single, monolith@rest it
exploits multiple store fragments. This has a double berfeft,
separation between regions is made syntactically expsieitond,
homogeneous store fragments can be type-checkeg,iwhereas
a monolithic, heterogeneous store would require a more Bmp
type system, equipped perhaps with dependent types.

The value of such a translation is two-fold.

First, we claim that it provides a deep justification andiiida
for the soundness of the type system. The design of the system
subtle: it can be hard, even for an expert, to grasp why it akes
sense. We find that, by explaining the type system in terms of a
pure A-calculus, the translation helps expose the intuition tehi
it. In fact, the soundness of the type system and the sousdies
the translation are proved together, in a single statenj@ht\When
coupled with a semantic model of its target calculus, thestetion
leads to a semantic model of its imperative source calcilss,
the translation is, in a sense, a semantic interpretatiorthis

Our long-term research project is to design a system (say, asense, our translation serves the same purpose as O’Hedrn an

Hoare logic) for proving properties of pointer programs op of

[copyright notice will appear here]

Reynolds’s translation of Idealized Algol into the polymhbic
linear A\-calculus [15].

Second, such a translation provides a foundation for oug-lon
term objective of designing a system for specifying andifyéng
imperative programs with dynamic memory allocation. Thehte
niques available today for reasoning about purely funetiqamo-
grams can, in principle, be applied to the translated progra he
details of this process are left to future work.

The paper begins with an informal overview of the type system
and of the translatior§®), followed with a couple of example§J).

2008/7/2

Definitions of the untyped source and target calculi foll§4)(The
type system and type-directed translation are defifBds6) and
proven sound§7). (A complete proof of soundness appears in the
online addendum [1].) The paper ends with discussions afedl
work (§8) and future work§9).

2. Overview
2.1 Regions and capabilities

A regiondenotes a set of values. Unlike in previous work, these val-
ues are not necessarily memory locations. We distinguishidsan
singleton regiongr, which have exactly one inhabitant, agwup
regionsp, which have an arbitrary number of inhabitants. A value
that inhabits regionx has type[a] (pronounced: “aw”). A type

of the form[o] has exactly one inhabitant: it is a singleton type. A
type of the form[p] can have zero, one, or more inhabitants.

A capabilityover a region is a static token of the forrfe : 0}.
Such a capability serves two roles. First, it withesses weeoship
of region, that is, it represents an exclusive right to access and
update the inhabitants of this region. Second, it carrieseanory
type 0, which describes the actual structure of the inhabitants.
Indeed, the typéa], alone, does not contain this information. For
instance, the capabilityp : refint} describes and controls a group
region whose inhabitants are pointers to integer cells.

Because capabilities represent exclusive ownership, dney
linear: they are never duplicated. (By “linear”, we mean rfno
duplicable”, that is, “affine”. Discarding a capability isqmitted.)
Memory typed), which occur within capabilities and also represent
ownership, are linear as welNalue typesr, on the other hand,
are non-linear. Because the system imposes no restricticheo
number of uses of a value, values can be duplicate@tsduction,
and must receive non-linear types. In our system, the vaijoest
form a subset of the memory types.

A type of the form[c] is a value type. As a result, the values
that inhabit region can be duplicated at will, while the linear
capability {« : 6}, which controls access to this region, remains
unique. Thanks to this distinction between non-linear &aland
linear capabilities, the system provides the same degreertfol
as offered by traditional linear type systems, yet provigesater
flexibility, by allowing sharing and multiple uses of valudshis
distinction appears in earlier work [7, 19, 2].

Compound capabilities are built out of atomic capabilitiés
conjunction: the composite capability; *« C> controls two store
fragments, respectively described by the capabilifigsand Cs.
Because capabilities are linear, this is naturally a s¢ipgraon-
junction, in the terminology of Separation Logic [18].

Regions and capabilities encode definite non-aliasingrinée
tion. For instance, if the capabilitfp, : refint} « {p2 : refint} is
available, then the regions andp. must be distinct. This implies
that the sets of their inhabitants are disjoint: no memocation
can simultaneously have tyge:] and type[p2]. As another ex-
ample, consider the capabilifyr : refint x refint}. Because the
memory type “refint refint” is interpreted linearly, this capability
asserts that the unique inhabitant of regiois a pair of pointers
to two distinct integer cells. In contrast, a pair of posgialiased
integer references would be described by a value fypex [p],
together with the group capabilifyp : refint}.

2.2 Functions and references

A function may accept not only an argument (a value), but also
(possibly compound) capability. Similarly, a function uets not
only a value, but also a capability. For this reason, fumctigpes
take the formy; — x2, wherecomputation typesg include the
productions:x ::= 7 | x * C. (Thex connective is overloaded.)
Furthermore, if a function creates fresh regions, then trmeas

of these regions must be quantified in the return type of the-fu
tion: for this reason, computation types also include tloelpction
X = Ja.x.

An example of a function whose return type is a non-trivial
computation type is the primitive operation “ref”. The senties of
“(refv)” is to allocate a memory cell at a fresh locatiinitialize
it with v, and returri. The axiom schema for “ref” is:

ref 7 — Jo.[o] * {o : refr}

This means that “ref” accepts a value of typeand returns: (1)
a singleton regiorr, (2) the inhabitant of regiono, and (3) the
capability {o : refr}, which controls this region, and indicates
that its inhabitant is the location of a cell that currently holds a
value of typer.

The primitive operations “get” and “set”, which read andteri
a reference cell, have the following axiom schemata:

get
set

[o] «{o:refr} — 7« {o :refr}
([o] x 72) * {o : refri} — unit« {o : refrz}

The “get” operation accepts a memory locatipof type[s], and

a capability{c : refr}. This indicates that, in order to derefer-
ence a pointer to a cell, one must provide a capability ovat th
cell. The “get” operation returns the contents of the cellichi has
type 7, together with an unchanged capability. The “set” opera-
tion supportsstrong updatethe type of the contents of the cell is
allowed to change from; to 72. In an ordinary typed program-
ming language, such as ML, the need for strong update ismseldo
perceived. Here, strong update is not just useful (e.gnable de-
layed initialization): it is made necessary by the fact tigpes are
so fine-grained. For instance, without strong update, agete of
type ref{o] would effectively be immutable. Indeed;] is a single-
ton type, so a type-preserving update cannot change thertaft
such a reference.

In type and effect systems, function types are annotatel wit
aneffect:a set of regions that the function potentially accesses, for
reading or writing. One can view an effect as a particulatepat
of use of a capability: an effect is a capability that is regdi
and returned. To reflect this, we defige —c x2 as sugar for
x1 * C — x2 x C. In general, capabilities are more general
than effects, as they also allow describing functions thatate,
destroy, or re-organize memory. However, the effect nmtativhen
applicable, is quite convenient. For instance, the typégetf’ and
“set” (in the restricted case of a weak update, for the [pttan be
written as follows:

get
set

[U] _>{0:ref7-} T .
[O’] X T —{orefr} unit

2.3 Ownership transfers

Reading a memory cell duplicates a value, while writing a rmgm
cell discards a value. For this reason, the operations,“fg#t”
and “set” are restricted to references whose contents ardimear.
This restriction, which also appears in earlier work [12nforced
through the use of capabilities of the fodw : refr}, wherer is
a value type, as opposed{e : refd}, wheref is a memory type.
The latter form is more general. In fact, even though thisnfis
not a suitable argument to “get” or “set”, it is legal: for iaace,
the capability{o : ref(refint)} describes and controls a reference
to a (unique) reference to an integer. So, how does one cohsir
exploit a capability of the forr{o : ref6}?

Our answer is to offer a mechanism for splitting the capghili
{o : ref@}, which controls both the reference cell denotedsby
and the contents of that cell, into two separate capalsilitireorder
to do so, we introduce a fresh singleton regian which serves as
a name for the contents of the cell. The capabi{ity : ref6} is
then converted into the conjunctida : ref[o1]} * {01 : 0}. The

2008/7/2

first conjunct controls just the cell denoted dyand tells that its
contents is the unique inhabitant of regien The second conjunct
controlso, and tells that its inhabitant has type This splitting
process is reversible. It is described by a symmetric sutdyp
axiom (FOCUSREF, Figure 13):

{o:ref0} = Jo1.{o : ref[o1]} * {01 : 6}

An illustration is found in Figure 14. After splitting, bease the
type [o1] is non-linear, the capabilityo : ref[o1]} can be used to
read and write the reference as many times as desired. Inyart
reading the reference duplicates its contents, at fypl but does
not duplicate the capabilitjo; : 6}, which remains unique.
There is another way in which the operations “ref”, “get”dan
“set” are restricted: they act only on singleton regienas opposed

to group regiong. So, how does one allocate or access a cell within

a group region? To address this question, we rely orattaption
andfocusmechanisms proposed by Fahndrich and DeLine [12].
Empty group regions can be created at any tik@optionis
used to populate a group region: adoption dissolves a sorgle

regiono into an existing group region (ADOPT-GRP, Figure 13).

Once adopted, a value can never be extracted back out of a
group regiorp. Indeed, the information that has typelp|, which
means that inhabitsp, can be duplicated: thus, it must remain
true forever. Nevertheless, in order to gain access,td may
be necessary to temporarily isolate it out of the group regio
The focusoperation permits this by placingin a fresh singleton
regiono (FOCUSGRP, Figures 13 and 14).

Focus accepts a capabilifyp : 6}, together with an element
of p, thatis, a value of typg]. It creates a fresh singleton regien
which holds just that element, now viewed at typé Because the
capability{c : 0} is now available, and has overlap wifp : 6},
letting these two capabilities co-exist would be unsoundtdad,
the latter is revoked, and replaced with the weaker fopm 6\ o }.
Such a capability can be thought of as “regjgnn which a hole
has been carved outat, in Boyland and Retert’s terminology [4].
This disabled capability does not allow access o but can be
transformed back int¢p : 6} when{c : 6} is releasedgNFoOCUS
GRP, Figure 13).

In the particular case of references with non-linear castem
version of “ref” that allows allocation within a group regi@an
be derived using adoption. Similarly, surrounding “gettidset”
with instances of focus and unfocus allows deriving versioh
these operations that are applicable directly to groupregi

2.4 Translation

In a well-typed program, capabilities over regions are abesl
through computations. Whereas, in the source programbdéiess
are type-theoretic entities, they are turned by the tréinslanto
runtime representations of the contents of regions. Thushe
translated program, representations of fragments of meragr
threaded through computations.
A group capability{p : 6} is translated as a finite map that

associates keys with values. The inhabitants of regjovhich have

has primitive notions of keys and of finite association maphe
logical operations that involve group regions, such as toie@and
focus, are translated as operations over keys and finite,mapk
as fresh key generation, and map lookup, update, and eatensi
A singleton capabilit{c : 0} is translated as a map of unit to
a value, which, in practice, is represented simply as a vdlbe
“ref” type constructor vanishes: that is, the translatidriref ”
is just the translation of. This may seem surprising, but is ex-
plained by the fact that “ref” is a type afiquereferences. The
translation introduces keys and maps only where thereasiag,
that is, where group regions are used. For instance, theévitiapa

{o : refint x refint}, which describes a pair of distinct integer ref-
erences, is translated simply as a pair of integers. Thevitara of
regiono, which has typdo], is translated as the unit value.

2.5 Contribution

Type system Regions [20], group capabilities [7], singleton ca-
pabilities and strong update [19, 22], adoption and foc@$ §te
borrowed from earlier work. Our type system combines thesas,
adapts them to a high-level programming language in the syl
ML, streamlines their presentation, and introduces a few fea-
tures, which we now summarize.

Decoupling logical and physical indirection Our type con-
structors for memory indirection (réf and for membership in

a region (-]) are orthogonal. Our regions denote sets of values
that are not necessarily memory locations. In the systeted ci
above, a single type constructor conflates the propertibsiof)

a memory location and of belonging to a certain region.

Nested memory types Our “ref” types can be nested and com-
bined with other memory type constructors, such as products
sums, and recursive types. For instaneg,ref (unit + a x 3)
(§3.1) is a valid memory type, which represents the ownership
of an entire list, including all of the list items. By conttam
earlier systems [22, 12], memory types are shallow: a céipabi
for a list structure is encoded as a capability for the robf ue-

der the convention that each cell of the list stores a caipafot

its successors. Although the two approaches have equivaten
pressive power, viewing nested memory types as primitieense
more suited to a high-level programming language.

Sum types Our type system offers a direct treatment of the
sum type constructor { -). Earlier type systems have dealt only
with lower-level, untagged unions|(-) [19, 22].

Unrestricted polymorphism The type system offers universal
and existential quantification, in the style of Systd over
value and memory types, capabilities, and regions. Thisied

in the presence of references, yet without a value regin¢fi6,

p. 336], thanks to capabilities, which act as explicit stgpengs.
Although this idea seems natural, we believe that it has not
appeared in the literature.

Translation Our translation of well-typed imperative programs
into semantically equivalent, purely functional programser-
haps the most visible contribution of this paper. This tlatien
subsumes the standard monadic translation. By using faiee
store fragments, it produces programs in which a great atmfun
separation information is syntactically apparent. By ggiomo-
geneous store fragments, it produces programs that areypefi

in F,. This is not true of the monadic translation, due to its use of
a monolithic, heterogeneous store.

3.

Examples

In order to better explain the type system and the translati@
present two examples of imperative data structures: matatked
type[p], are translated as keys. (We assume that the target languagéists and union-find. We show the types of each operation én th
source and target calculi, separated witb-asymbol. Source code
and translated code is shown only for list reversal. For rdetails
and additional examples, see the online addendum [1].

The translation produces redundant occurrences of théyyeit

which correspond, in the source program, to occurrenceisgles
ton types of the fornjc]. In principle, these redundant units could
be eliminated in a separate pass. For clarity, we have kept.th

3.1 Mutable Lists

Consider a linked list where every cell is mutable, owns amit
of type «, and owns the next cell (so that, indirectly, it owns the

2008/7/2

tail of the list). Such a data structure is described by arseee
memory type: a list is a reference to either unit (if the listmpty)
or a pair of an item (the head) and a list (the tail). We inticelan
abbreviation for this recursive type:

pp.ref(unit+ a x)

In the target calculus, ordinary, immutable lists are descrby the
following recursive type:

mlistae =

listae = pB.(unit+ o x B)

Because the “ref” type constructor vanishes through thestaéion,
the image of “mlisty” through the translation is “list”. That
is, a mutable list is translated simply to an immutable &f
course, the type of the list items is translated too. Heiis,ishnot
visible, because the type variahleis translated to itself.) This is
possible only because, in this simple example, there isinsiag:
the definition of “mlist” forbids two mutable lists from shag a
common tail. When there is aliasing in the source prograst, th
is, when group regions are used, then the translation iegdinite
maps and keys.

Nil and cons Two functions help construct mutable lists. The
function “nil” creates a fresh empty list in a fresh singletegion.
The function “cons” accepts an item, a mutable list, as well a
capabilities for each of these values, and returns a muta)e
together with a capability for this list. Through the traatin, these
become the standard “nil” and “cons” constructors for imafle
lists (up to redundant units).

nil : Va.unit— Jo.[o] x {o : mlista}
> Va. unit— unit x lista
Vaor o2. ([o1] X [02]) * {o1 : a} * {02 : mlista}
— do.[o] * {o : mlista}
D> Vo unit x unit x o x listow — unit x list o

cons

The idiom of packaging together a value and a capability icg t
value is common enough that it could warrant an abbreviatien
6° stand fordo.[o] x {0 : 6}. (A similar notation appears in earlier
work [12, 2].) This corresponds to a traditional linear typethe
sense that a value and a permission are packaged togethethi&/i
notation, the types of “nil” and “cons” in the source calaitould
be written:

nil : Vea.unit— (mlista)®
cons Vo a® x (mlista))® — (mlista)®

These are the types ascribed to “nil” and “cons” in a tradgidin-

ear type system. Although this abbreviated notation is eoi@nt,
itis not always applicable: there are many situations weeparat-
ing values and capabilities offers extra expressive poses,(e.g.,
the type of “iter” below).

Reverse Let us now consider a function that performs in-place
reversal of a mutable list. The function “reverse” acceptsa
table list, together with a capability, and produces a mietéist,
together with a capability. The capability for the argumksit is
not returned, which indicates that this list is no longeiidratits
cells have been re-used to construct the new list. The aoslof
“reverse” simply maps an immutable list to an immutable (igt

to redundant units).

reverse Va. (mlista)® — (mlista)®

> V. unit x lista — unit x lista

In the source program, “reverse” traverses the list, fliggininters
as it goes. The auxiliary function “aux”, which implementoap,
expects a pointefto the current list cell, a pointer to the previ-
ous list cell, as well as capabilities over the two lists thase cells
represent. In the translated version of “aux”, the pointesad p

become unit, while the capabilities ovesindp become immutable
lists, which respectively represent a list to be reverselkdist that

is already reversed. In summary, up to redundant units,rémes+t

lation of “reverse” is a standard version of reversal for intable

lists: a tail-recursive function that uses an accumuldtbe source
and translated code for “reverse” is shown below:

reverse= letaux= paux\(l, p).match(getl) with
linj' () = p
[inj? (h,t) = set(l,inj> (h,p)); aux(t,l)
in L. (aux(i, nil ()))
> letaux= pauxX((), (), !, p).matchl with
[inj () = (0.)
[inj? (h,t) =
let! = inj? (h, p)inaux((), (), t,1")
in A0,). (aux(), (),4,nit ()))

Iter Last, letus consider a higher-order iterator over mutasis. |
The client functionf, which is applied to each item of the list
in succession, has effe§o : a} = 8, where is a capability
variable. The first conjunct allowg to access and modify the
current list item. The second conjunct alloyiso perform side-
effects on some piece of the outside world, described?byhe
application of “iter” tof has effecf{ o : mlista} * 3, which means
that it affects both the list and the store fragment corewby 5.
Note that, because of the separating conjunction, the dajgeb
{o : mlista’} andg represent disjoint store fragments. This implies
that the client functiory is not allowed to modify the structure of
the list while it is being traversed.

iter VafB. (Vo. [0] = {sia}«p UNIL)

- (VO— [U] —{o:mlista} 3 Unit)
> VaB. (unit X a x 8 — unit x a x 3)
(

— (unit x lista x B — unit x lista x 3)

In the target calculus, “iter” is translated to a combinataf the
standard “map” and “fold” combinators over immutable lists

3.2 Union-find

Our next example illustrates how group regions are usedderite
data structures with sharing. It is a version of Tarjan’soani
find data structure. This data structure consists of a sebdés)
organized as a forest: each node either is a root or pointpaoeant
node. Nodes are mutable: the forest evolves over time. Thesof
a single instance of the union-find algorithm are placed incag
regionp. Their structure is given by the following memory type:

ref(unit+ [p]) >

A node is a reference to either unit (if this a root node) or den(@f
this is an internal node).

The group capabilit{p : nodep} describes the entire data
structure: it represents the ownership of all nodes. Itsstedion,
a finite map, maps a key (which represents a node) to eithe(itini
this is a root node) or a key (if this is an internal node):

nodep := unit 4 key

forest := map(unit+ key)

The following functions, which manipulate the union-findtala
structure, require and return the capabilfy : nodep}. Through
the translation, they become functions that require anarmesn
explicit representation of the forest.

new: VYp. Unit —,.nodep} [£]
> unit x forest— key x forest

find 1 Vp. [p] —(pnodep} [F]
> key x forest— key x forest

union: Vp. [p] X [p] —{pinodep} UNIt
> key x key x forest— unit x forest

2008/7/2

Values vi=x| ()] inji_v | (vi,v2) | pf Azt |p|l
Prim. ops. p := case| proj' | ref | get| set
Terms t = v (vt)

Figure 1. Source language syntax

— (If = pfAzt][z —v)t) /s
— (viv) /s

(nfArxt)v) /s

case((inj* v),v1,v2)) / s

(
(case
(proj* (v1,v2)) / s — v /s
(refv) /s — 1/ sW[l— v
(gett) / s — sll] /s
(set(l,v)) /s — () / sll—]
(vt) /s — (wt') /s if(t)s—t/5)
Figure 2. Source language semantics
Values w := x|()|inji.w|(w1,w2)|,uf.)\:c.u|q|k:|m
Prim. ops. ¢ := case| proj’ |
mapfresh| mapadd| mapget| mapset
Terms u = wl| (wu)

Figure 3. Target language syntax

The function “new” creates a new node; its translation ed$ethe
map that represents the regipnat a fresh key and returns that
key. “find” follows parent pointers out of a given node until i
reaches a root node, and performs path compression; itdatim
involves map lookup and update operations. “union” merges t
components, via a side effect; its translation involveksdal“find”,

as well as direct map lookup and update operations.

The capability{p : nodep} does not encode the fact that the
nodes form a forest, that is, the fact that there are no cyGles
type system is not capable of expressing this property. hogrpm
logic defined on top of the type system, this property would be
expressed as an invariant (a pre- and post-condition) chlbioge
functions.

4. Source and target languages

The source language of our translation is\-@alculus equipped
with imperative features. The target language is a puoalculus
equipped with a primitive form of finite association mapgufes 1
through 4 give the syntax and small-step operational seosaot
the two languages.

A source language configuration is a pair of a termnd of
a stores. A store is a finite map of locationsto valuesv. Val-
ues are built out of variables, unit, injections, pairs,ursive \-
abstractions, unary primitive operatiops and locationd. (The
variablesz and f range over a single class. The bindef is
omitted when unnecessary.) The primitive operations belkelim-
inators for sums and products as well as the standard opesati
for allocating, reading, and writing a reference cell. Terin-
clude valuesv and function applicationgv¢). The asymmetric
character of applications prevents any ambiguity abouuetian
order and simplifies the reduction and typing rules. Sequagnc
(letx = t1intz2) is encoded ag(Az.t2)t1), and(t1; t2) is en-
coded aglet() = t1 int2).

(uf Aw.u) w — [f — pfAza]lz — w]u
proj* (w1, ws) — w;

cas€(inj’ w, wi,w2) — (w; w)

mapfreshm — min{k | k & dom(m)}

mapadd(m, k,w) — mudk— w]
mapget(m, k) — mlk]

mapset(m, k,w) — m[k — w]

(wu) — (wu) if(u—)

Figure 4. Target language semantics

o = al|L|Tunit|[o]]o+o]oxol|lo— o]refo]|
oxo|Va.o|3a.o|pa.o || {o:0}]|{o:0\0}]
Flo,alo,x:o

K = VAL | MEM | CMP | CAP| SNG| GRP| DNV | LNV

Figure 5. Syntax of types, capabilities, environments and kinds

(r:

(o

VAL) (6 : MEM) (x : cMP) (C :
SNG) (p : GRP) (A : DNV) (T" :

CAP)
LNV)

Figure 7. Conventional metavariables

The target language is purely functional. Its values aréevriv
and its terms are writtem. In lieu of memory locationg and
memory stores, it has keyst (isomorphic to the natural numbers)
and finite association mapa from keys to values. The primitive
operationg; include operations on finite maps instead of operations
on references. In short, “mdpesh” deterministically returns a key
that does not appear in the domain of its argument; “mef looks
up a key in a map; “mapet” updates a map at an existing key,
producing a new map; and “magald” extends a map at a previously
undefined key, also producing a new map. We let “reampty”
stand for the empty map; it is a value.

5. Capabilities and types

The definition of the type system involves various kinds dfi-en
ties, and several connectives are shared between multiple.Kn
order to avoid a combinatorial explosion in the syntax, we fin
necessary to define a single syntactic categomybpéctso, and to
then classify objects usirgndsx (Figure 5). The well-kindedness
rules (Figure 6) are unfortunately quite technical; we ssggkip-
ping them upon first reading. Throughout the paper, kindsaiem
implicit, thanks to the use of conventional metavariabkég(re 7).
Type variables of all kinds are written We assume that every type
variablec« intrinsically belongs to some fixed king in which case
we writea: : <. We now briefly and informally review each of the
kinds.

Value typesr Value types include the standard constructors bot-
tom, top, unit, sum, product, and arrow. The tyjp¢ (“at «”) rep-
resents membership in the regian The bottom typel is useful

in combination with the type constructor for sums: for imst@, a
value of type(r + L) must be a left injection.

Memory type®) Memory types describe the structure of the el-
ements of a region. They appear in capabilities, sucfwas 6},
and describe the extent of the piece of memory that is cdetrol
by this capability. The grammar of memory types extends dlfiat
value types with reference8 (:= ref#) and with a separating con-

2008/7/2

o : VAL o : VAL 0: K
0 : CMP 0 : MEM L : vAL T : VAL unit : VAL [o] : vAL retsnecrr)
01 : K 09 K 01 : K 02 K 01 : CMP 09 : CMP 0 : MEM
————————— ke{VAL,MEM ——————————— ke{VAL,MEM D S ——
(014 02) : K <t ' (01 X 02) : K < ' (01 — 02) : VAL (refo) : MEM
01 : K 02 : CAP (wercapcue) a Rl O @ K2) c{VAL,MEM,CAP,SNG,GRP}
(01%02) : K o (Va.o) @ ko ro€{VAL}
@ Rl O ' K2) €{VAL,MEM,CAP,SNG,GRP} a R 0 © K ke{vaL,MEM,CAP}
(3a.0) : ke ko €{VAL ,MEM,CAP,CMP} (pao) = K o not a variable or g form
01 I K 02 : MEM 01 : GRP 02 : MEM 03 : SNG
0 : cap {01 : 02} : CAP rE{sNe,aRR} {01 : 02\ 03} : CAP
0 K1 a: oKa K1 E€{DNV,LNV } 01 @ K1 02 1 Ko (k1€{DNV} A koe{VAL})
> - KE{DNV,LNV } T~ . . k2€E{VAL,MEM,CAP,SNG,GRP} - - or (k1 €E{LNV} A ko €{VAL,CMP,CAP})
PR (07 Oé) F R a#o (017 T 02) C R x#o01 A fv(oz)Cdom(oy)
Figure 6. Well-kindedness
] =T [or x 02] = [o1] x [o2] [{o : 0}] = [o] or (o : GRP): [«] = «
[uni] = unit [or — 03] = [o1] — [o2] [{p: o}l = map[o] [Va.o] = [o] [Va.o] = Va.[o]
[[o]] = unit [refo] — o [{p:0\c}] = map[o] x key [Ba.o] = [o] [Ba.o] = Fa.[o]
[lpl] = key [o1 x02] = [o1] x [o2] [2] = [pe.o] = [o] [peo] = per.o]
for, z:02] = [oi], @ : [o2] fo,a] = [o] fo,a] = [o],

Figure 8. Translation of types,

junction @ ::= 6 = C), which allows capabilities to be embedded
within memory types. Notice that a value type for a memory lo-
cation! must be of the fornja]. The type of the contents of the
location appears in the capabilifyx : refé} that controld.

Computation typesy As explained earlier§@.2), computation
types admit the productiong ::= 7 | x * C | Ja.x. They are
used in function types, which take the form — 2.

CapabilitiesC Atomic capabilities include the null capability
singleton capabilitiec : 6}, group capabilities{p : 6}, and
disabled capabilitiegp : 6 \ o}. The latter represents ownership
of all elements of a group regiop, except the unique element
of a singleton regiorr. Compound capabilities are built via the
separating conjunctio@; x C'.

Regionso, p The kinds of singleton regions and of group re-
gionsp contain only variables. We take the liberty of usingndp
to denote region variables, so we write, Jp, etc.

EnvironmentsA,T" A duplicable or non-linearenvironmentA
binds type variables, and binds variables to value typés: 7).

A linear environment can additionally bind variables to compu-
tation types(z : x) or to capabilitiex : C'). Bindings commute,
provided dependencies are respected. When a variaisi®ound

to a capabilityC, it cannot occur in the program: in the source cal-
culus, capabilities are not values, and do not exist at matiWe
assign names to capabilities not only for sake of uniforjrtyt
also because these names are naturally used in the translati

Quantification Universal quantificationy) is present in the syn-
tax of value types# ::= Va.7). It is not present in the syntax of

capabilities and environments

memory types or capabilities, as it would not make sense am-qu
tify over a type variable that occurs in a store typing. Exisial
quantification §l) and recursive definitiorn) are available not only
within value types, but also within memory types and cajitisl

Translation of types The target language is typed ifj, with
type constructors “key” (of arity 0) and “map” (of arity 1).ud
translation of programs preserves types. Figure 8 shows dow
source objecb is translated to ar¥), object[o]. The translation
concerns objects of all kinds excepiGandGRp, as regions vanish
in the translation. The translation of region membershpegj«],

of references, and of atomic capabilities has been desceasdier
(§2.4). The translation of disabled capabilities is explditzter on
(§6.2). A separating conjunction is translated as a produw.rést

of the translation is structural.

6. Type system and translation
6.1 Structural rules

Judgements Values admit a non-linear value type in a non-linear
environment, while terms admit a linear computation typeain
linear environment. The corresponding judgements are

AFov:T and TIEt:yx

In other words, the construction of a valueloes not consume or
produce any capability. The evaluation of a tetpon the other
hand, consumes the capabilities contained in the linealegbh
and produces the capabilities contained in the computétjmeny .
The type-directed translation of values and terms into &ne t
get language is defined via translation judgements thahextee

2008/7/2

UNIT INJ PAIR
AFv:r D w Ao 71 B> wr Al vy :m > ws
AF () :unit > () A F (inj'v) : (11 +72) B (inj’w) A F (v1,v2) ¢ (11 X 12) B (wi,ws)
VAR FIX
(z:7) € A A fi(yi—xe),z:ixilFt:x2 B> u
ArFz:7 D> AF (pfdxd) @ (x1 — x2) B> (ufAz.w)
Figure 9. Type-checking and type-directed translation: values
VAL APP suB
AFv:7 D> w AlFv:(x1—x2) B w AT IFHE: x1 B> us TIFt:x1 > u x1 < x2 B> w
AlFv:7 >w AT I (vt) © x2 B (w1 u2) DIFt:x B> (wu)
*-INTRO (FRAME) *-ELIM
PiFt:x > u I, (z1:0), (2:C) IFt: x > w
D,(@:C)IFt: (xxC) > (u,x) Fyai:(0xC) IFt: x B let(zi,z2) =z1inu
Figure 10. Type-checking and type-directed translation: terms
V-INTRO-VAL V-ELIM-VAL J-INTRO-VAL 3-ELIM-VAL
AabFv:T > w AFov: Var) > w AFov:(a—o71) > w Ao, (z:7m), Mo Fov:T B> w
AFwv: Var) > w AFv:(a—oT) > w AFwv: (Far) > w Ay z:(Famn), Ao Fo:T D w
V-INTRO-TRM V-ELIM-TRM J-INTRO-TRM J-ELIM-TRM
Nalkt:7 > u Likt: (Var) B> u Pit: (Ja—ox) > u M,oa, (x:x1), T2 lFt:x >
DIkt: (Vor) B> u PikEt: (a—ol7) B> u DIFt: (Fax) > u Iy, z: (Faxi), T2 lFt:x B> u

Figure 11. Additional rules for values and terms: quantifier introdoictand elimination

typing judgements:

ArFv:7D>w and T IFt: x> u

(The symbol> should be read: “is translated to”.) The left-hand
judgement states that the source vailuis translated to the target
valuew. The right-hand judgement states that the source taésm
translated to the target term

The translation preserves well-typedness, compositipridiis
fact admits the following succinct statement (in which tigenbol
Fr, indicates well-typedness ifi,):

Lemma (Type preservation)

AFv:7D>w
F'iFt:xD>u

implies
implies

[AlFF, w: [7]
[I] Fr, w: [X]

The translation judgements extend the typing judgementféen
following sense. First, every valid translation judgemeanttains a
valid typing judgement, which can be recovered simply byieg

the translation-specific annotations. Conversely, evaligyping
judgement is the erasure of some valid translation judgémen

In order to save space and avoid redundancy, only the transla

tion rules are presented in this paper (Figures 9, 10 andTtB).
translation-specific parts are printed on a gray backgrpsmthat,

by ignoring them, one recovers the typing rules.

<

Values (Figure 9) Values are type-checked in a standard way.
Their translation is structural.

The rule that type-checks recursive functions does hideipleo
of subtleties. First, it uses computation typgshich describe the
transfer not only of a value, but also of capabilities. Secdaruses
a duplicable environmenf\, which means that a closure cannot
capture a capability that happens to be available at itsatilon
site. This is required for type soundness [12].

Terms (Figure 10) VAL states that a value of typecan be viewed
as a term of type. This statement is well-formed, because every
duplicable environment is also a linear environment, anerev
value type is also a computation type.

APpPstates that the applicatidm ¢) has typey- if the functionv
has typexy: — x=2 and the argument has typey;. Because the
left-hand side is a value, which consumes no capabilityofalthe
available capabilities, representedliyare transmitted to the right-
hand sidet. The environment fragmemh\, which is duplicated,
does not contain any capability. An application is trareslab an
application.

The subtyping rulesus, weakens the type of a term. The
subtyping relation is defined later o§6(2). For the moment, note
that a subtyping judgement translates to a coercion, thati®sed
A-term, and that an instance sfJB gives rise, in the translated
term, to an application of a coercion.

2008/7/2

*-INTRO, also known asFRAME, states that if a term is fed with

References The types of the primitive operations “ref”, “get”, and

a capabilityC' that it does not need, then its evaluation preserves “set”, as well as the subtyping ruleocusREF (illustrated in Fig-

that capability. This is the first-order frame rule of Sepiara
Logic [18]. An instance offRAME is translated to a pair, whose
first component is the translation of the tetrrand whose second
component is the translation of the capability(In order to satisfy
our syntactic restrictions, the notati¢n, =) is defined as syntactic
sugar for thes-expanded form “let’ = win (2, z)".)

x-ELIM is a left elimination form for separating conjunctions,
which may be of the formy « C or C = C>. Because conjunc-
tions are translated as pairs, the deconstruction of a notiqun is
translated as pair decomposition.

Quantifiers (Figure 11) All quantifier introduction and elimina-
tion rules are standard, excepiNTRO-TRM, wWhich states that it
is permitted to generalize the type of a term. The very entdef
this rule means that there is no value restriction [16, p].38ét,
the system is sound. This is guaranteed by a restriction@syth-
tax of types: while(Va.7) is a valid type,(Va.x) is not. Indeed,

a computation typg may contain capabilities, which describe the
structure of a piece of store; the type variables that ocdthinv
these capabilities must not be generalized.

Deriving LET Because the “let” construct is sugar fobaedex,
its typing rule follows fromAPP, FIX, VAL, andFRAME:
LET

ATy It x1 B ur A (x:x1), T2 Ik ta: x2 B> u2

ATy, Ty - (Iet:c =1t iI"ItQ) tx2 B (Ietm = u1 inug)

6.2 Primitive operations and subtyping
The subtyping judgement takes the form:
o1 o2 D> w

whereo; and o2 have kindk € {VAL,MEM, CMP,CAP}. The
coercionw is a closed value of the target calculus (a coercion),
whose type ijoi] — [oz]. It is used to translate the subtyping
operation.

In the following, the types of the primitive operations (Fig
ure 12) and the subtyping rules (Figure 13) are explaineelhay.

Notation In Figure 13, we usg-abstractions of the for\r. u),
where 7 is a pattern, that is, a value composed of unit, pairs,
injections, and distinct variables. We write ~~ w) for (Ar. u),
and let the symmetric subtyping axiom: = o2 > (w1 <~ m2)
stand for the conjunction of axiomsi < o2 > (w1 ~» m2) and

02 < 01 D> (w2 ~> m1).

lllustration Among the subtyping rules, fomocusrules, which
reorganize regions, are informally illustrated in Figude There, a
solid arrow points to an object that is owned by the originaegf

the arrow, so it never crosses a region boundary. On theargné&r
dashed arrow points into some distinct region, so it alwagsses

ure 14), have been explained earli¢2.@). The translation of “ref”,
“get” and “set” is exactly the standard monadic translafi) 21],

in the particular case where the state consists of a singla-me
ory cell. In the translated-terms,z stands for the translation of
{o : refr}, that is, the contents of the cell. The locatibat type
[o] is translated to unit.

Pairs Just like the primitive operations on references, the pair
projections extract a non-linear component out of a lineatainer.
That is, “proj-” requires a capability of the forffio : 71 x 62}, and
returns a value of type; .

In order to extract a linear component out of a pair, one selie
on the subtyping ruleocus-PAIR! (from left to right) to isolate
the first component of a pair in a fresh region (See Figure 14).
This mechanism is identical to that provided bgcusREF for
accessing references with linear contents.

Conversely, applying ruleocusPAIR® twice, from right to
left, allows constructing a linear paje : 61 x 62} out of a value
of type ([o1] x [o2]) and out of the two capabilitiesry : 61} and
{0’2 . 02}

The traditional type# x 72 — ;) for projection out of a non-
linear pair can be derived, vieNG-CREATE and FREE. Moreover,
up to 8n—equivalence, its translation is just projection.

Sums The type of “case” is somewhat complex. The reason is that
“case” performs two tasks: on the one hand, it branches og;a ta
on the other hand, it deconstructs a sum by stripping ofaigsand
returning the underlying value. In the following, we expldiow
these tasks could be assigned separate types. The typesef isa
then derived as a combination of these types and of a focssapg
First, a hypothetical primitive operation, whose dynamge s
mantics is to examine the tag of a sum and transfer contrel, ac
cordingly, to one of two branches, could be assigned the type

((units{o:01+ 1} +C —x)
x (unitx {o: L +0:}«C — x)
x [o]) x{o: 01+ 62} xC — x

Here, each branch consumes a capabilitand produces a result
of type x; the same is true of the entire “case” construct. The
capability{o : 61 + 62} is transformed td o : 6; + L} in the first
branch and tdo : L + 6.} in the second branch, reflecting the
knowledge acquired by examining the tag. This knowledgebsan
discarded, so as to recover the original capability, visstitetyping
axioml < 6.

Second, a hypothetical primitive operation, whose dynasaic
mantics is to deconstruct a left injection could be assighedype:

(r+L1)—r7

The application of this function is well-typed only if itsgarment
is statically known to be a left injection.

a region boundary. The object at the end of such an arrow has a Third and last, it is natural to introduce the subtyping rule

type of the form[a], for some regiony, and it is controlled by the
capability associated with regien

General SNG-CREATE states that every value can be viewed as a
member of a singleton type. This helps derive variants oérsgv
other rules. ConverselsNG-EXTRACT turns a singleton typér|
back into a value type, provided the capabilityo : 7} is present.
(SNG-EXTRACT can be used to show thetG-CREATEIs in fact an
equivalence.) These rules reflect the fact that ownershigprain-
linear value is never exclusive. This is acceptable, bexaakies
are immutable.

FREE discards a capability’. Technically, its presence means
that capabilities are affine, rather than linear. Its tratish, (Az. ()),
discardse, which represents the memory controlled®@y

FOCUSSUM’. This rule is analogous te0CUS-PAIR". It allows
isolating the contents of an injection in a fresh region, wite tag
is statically known (see Figure 14).

Combining the types of the above two hypothetical primitive
operations with instances ebcus-suM’ yields the type of “case”,
shown in Figure 12.

Regions There are four subtyping rules for producing or consum-
ing group regions [12]. These rules are purely logical: ttlegnge
one’s view of memory, but have no runtime effect in the solaine
guage. In the translation, these subtyping rules beconigti®ns
for rearranging the finite maps that represent regions.

NEW-GRP allows the creation of, fresh, empty group regions.
Every 6; can contain free occurrences of every which is why

2008/7/2

ref ¢ 17— Jo.o] x{o:refr} > Az ((),z)
get : [o]*x{o:refr} — rx{o:refr} > (), z). (z,z)
set : ([o] x 2) *x {o :refr } — unitx {o : refr} > A0, z2,21). ((), z2)
proj' : [o]x{o:m1 x 02} = i x{o: T x 0} > M), (z1,22)). (z1, (x1,22))
case : ((Bor.([or] x{o:[or] + L} *{o1:0:}%C)) —x) > A(f1, f2, (), ,¢). ca_se(
X (Bo2.([o2] # {o : L+ [o2]} * {02 : 02} % C)) = X) Az (f1 EE) Jinj (), 21, 0))),

X[o])* {o:014 62} xC — x

(Az2. (f2 ((),in*(), 22, ¢))), z)

Figure 12. Typing and translation of primitives

General

SNG-CREATE : 7 < Jo.[o]*{o:7} > x~ (0),z)

SNG-EXTRACT : [o]*{o:7} < 7x{o:7} > ((),z) ~ (z,x)

FREE O < > oz~ ()

Focus-value

FOCUSREF : {o:ref6} = o1 {o:reflo1]} x{o1:61} > z e~ ((),x)

FOCUSPAIR! i {o:01 x02}=For{o: o] x O} x{o1: 01} D> (z1,22) e~ (((),22), 1)

Focussum' i {o:01+ L} = 3o {o:[o1]+ L} x{o1:0:} > (inj'z) « (inj' (), 2)

Regions

NEW-GRP s 0 < 3dpr-pndpri Otk x{pn:0,} > () ~ (mapempty, ..., mapempty

ADOPT-GRP i o) x{o:0}x{p:6} < [p]*x{p:06} > ((),z,m) ~~ letk = mapfreshmin
(k, mapadd(m, k, x))

FOcUSGRP : [p]x{p:0} < Jo[o]+{o:0}x{p:0\c} > (k,m) ~ ((),mapget(m, k), (m, k)))

UNFOCUSGRP : {o:0}x{p:0\o} < {p:0} > (z,(m,k)) ~ mapset(m, k, z)

Embedding

3.EMBED : {o:(3a.b)} = Jafo: 6} > zewx

*.EMBED o o (0xC)}={o:0}xC > zewa

Administrative

*.COMM-CAP : Ci1xCy = CaxCh > (z1,x2) e~ (z2,71)

*.ASSOC i (0% Ch)xCa = 0% (C1 xC2) > ((z1,x2),x3) « (21, (22, 23))

*.NEUTRAL : oxb=o > (z,() ez

3.COMM : doi.das.o = Jas.dor.o > X~

J.EXTRUDE-L : 01 * (Ja.02) = Ja.(01 * 02) > xe~sT

J.EXTRUDE-R : (Ja.01) x 02 = Ja.(01 * 02) > xewa

Figure 13. Subtyping rules and their translation

permittingn > 1 is useful. The capabilities over these empty

regions are translated as empty maps.

ADOPT-GRP dissolves a singleton regiom into an existing
group regiorp. The capability oves is lost. The unique inhabitant
of o henceforth becomes an inhabitant @©flts type is coerced
from [o] to [p], so as to reflect this change. In the target calculus,
the capability{p : 0} is translated to an association map which
represents the initial state of regien The capability{c :
translated to a valug, which represents the state of the object
Becauses is a singleton region, the object itself is translated to
unit. An application of “mapfresh” produces a key that does
not already appear in the domain wf. Then, an application of
“map.add” extends the association mapwith x atk, yielding an
updated representation of regipnFinally, because is a group

region, the adopted object, at type, is translated to the kely.

0} is

FOCUSGRPisolates a particular object out of a group region:
this creates a fresh singleton region, and disables thepgemgion.
UNFOCUSGRPundoes this effect. This mechanism was explained
earlier §2.3; Figure 14). In the target language, a disabled capabi-

lity {p: 6\ o} is translated to a paim, k), where the association
mapm represents the full capabilityp : 6}, and the key repre-
sents the index of objeetwithin regionp. Intuitively, the meaning
of the pair(m, k) is that the state of regiomis m, except at key,
where the value is stale and must not be access®stius GRPcre-
ates such a paimmn, k), which forms the translation dfp : 6 \ o},
and looks up the mam at indexk, so as to form the translation of
{0 : 8}. UNFOCUSGRPrequires a paifm, k), which represents
{p: 0\ o}, and updates: at k with a new valuer, which repre-
sents{c : 6}. The value previously found im at k, which at this
point is stale, is overwritten.

A typical imperative coding pattern consists in focusingaon
object o, updating it via a side effect, then de-focusing. In the
translation, this corresponds to looking up a value at soeyekk
in an association map, computing an updated value, thertingda
the map at key with that new value. Such a sequence is a typical
functional programming idiom.

2008/7/2

e, O R Lo
l A 31
FOCUS-REF FOCUS-PAIR! FOCUS-SUM!

FOCUS-GRP

Figure 14. lllustration of the focus operations

Embedding *.EMBED and3.EMBED help attach regions and ca-
pabilities to the components of a data structure, and, ceale
extract them back out. For instance, they can convert thigon
tion 3p.({o : 0} = {p : 0'}) to the atom{o : Fp.(0 = {p : 6'})},
where regiorp is owned by regiorr. This mechanism allows re-
gions to form an ownership hierarchy. Because both innepatet
conjunctions are translated as pairs, the coercions thia¢ss these
rules are the identity.

Administrative The x connective is commutative, when applied
to two capabilities, associative, and admits the null céipaly) as

a neutral element. Moreover, existential binders can comarand
be extruded out of conjunctions.

6.3 Subtyping under a context

Subtyping is applicable under a context. Most of the cowadmg
rules are standard, thus not shown (see the online adderigum [

Subtyping references The “ref” type constructor is covariant.

This might come as a shock, as it is well-known that soundness A opfo]

requires references to be invariant in extensions of siryped\-

calculus with references and subtyping [16, p. 198]. Heveidver,
“ref” is not a value type constructor. Instead, it is a memiype
constructor: itis linear. It is safe to weaken the type oftbetents
of a reference, for the same reason that it is safe to perfatioag
update: there exists only one copy of this type.

Subtyping recursive types For comparing recursive types, we use
rules that closely resemble those of Brandt and HengleinT[5¢
rules involve subtyping contexts, which are sets of subtyping
assumptions. Two symmetric rules allow unfolding a remarsi
type, so as to compare it with some other type. The left rule is
SUB-REC-LEFT

o1 =pao X, (01 <o B> a)b (a—o01]o) <o B> w

YFo Lo B puraw

The conclusion of the rule appears as part of the subtypintggb
in the premise. This is sound, because all recursive typesar-
tractive. The corresponding coercion is a recursive fomnct{Be-
causew is necessarily an abstractiaiz.w) is a well-formed re-
cursivei-abstraction.) A standard “fold/unfold” axiom is provable

pe.o = ([— paolo) > Az.w

7. Soundness of the type system and translation

We use a syntactic approach to soundness, via subject i@duct
and progress theorems. We prove roughly the following sitiorh
statement, which subsumes subject reduction: if a wekdytprmt

10

is translated as, and ift reduces ta’, thent’ is well-typed, and its
translationu” is a reduct ofu. Formalizing this statement requires
the introduction of several new definitions.

Region maps We must explain how to type-check and translate
source configurations, rather than just source terms. Toeti,
we introduce an oracle, known asemion map which records the
contents of regions. (This is analogous to a standard tyjedseess
proof for ML [16, §13.4], where an oracle, known as a store typing,
records the types of the memory locations.) A region mapaps a
singleton regiom to a closed source valygo], and maps a group
regionp to a mapu[p] from keys to closed source values.

The typing and translation judgements are extended so as to
carryp as a parameter. This new parameter is ignored by the typing
and translation rules shown earlier. It is, however, exptbin the
following two new rules, which assign tyge] to an inhabitant of
regiona, and translate it appropriately:

SNG GRP

o] > () wy A F plp]k] : [p] Bk

Executable terms Moreover, we introduce a new judgement for
typing and translating closed source terms. The judgement:

ssuya; PlEt: x B ou

states that the term has typex and is translated as the term
u. This judgement is relative to a store a region mapu, a
set of type variablegv (in the absence of a value restriction, a
universal quantifier introduction rule is an evaluationtesty hence
execution takes place in the context of a set of type vargpénd

a setP of locations and regions that the terrconsumes (that
is, must initially own). The derivation rules for this judgent are
quite similar to those that define the original typing judgernfor
(potentially opened) terms. An exception is the frame ruleich,
for this judgement, takes the form:

EXE-FRAME
sswa L=t x B ou

s o (PLY P [=t e (xxC) (B (u,w)

This rule states that, if the termconsumesP; to produce a result
of typey, and if the capabilityC' controls exactly the locations and
regions in the seP, then, when provided with the disjoint union
of P, and P, the termt¢ produces a result of typex = C'). The
right-hand premise involves another judgement form, wiygte-
checks and translates a capability. By lack of space, thiggment
is not described here; see the online addendum [1] for detail

ssp b CZLP B> w

Monotonicity A last ingredient is needed to state soundness. We
introduce the notatiois, u)\p T (s', ')\ p to indicate that, as

2008/7/2

a term is executed, regions can only grow, and that a termotann
affect or acquire a piece of state that it initially does nohoThis
notation is an abbreviation for a conjunction of three stegts:

1) wCW (2 ssp CSsh\p (3 mp CH\p

Proposition (1) states that the region map grows: singleggions
remain fixed, and group regions grow. It is defined as follows:
Vo € dom(p), plo] = p[o]

wEW = { Vp € dom(p), plp] C 1/p]

Propositions (2) and (3) are set-theoretic inclusions betwre-
strictions of finite maps. Proposition (2) means that forgveem-
ory locationl in (dom(s) \ P), the values’[l] equals the value]!]
(locations not owned cannot be affecteohd! is not in P’ (loca-
tions not owned cannot be acquidedProposition (3) is an analo-
gous statement about regions.

Stating soundness We can now formally state that a reduction
step in a well-typed source term is matched by one or more re-
duction steps in the translation of this term. The facts thgions
grow with time, and that inaccessible locations and regaaun-
affected and remain inaccessible, are required for thef fmpin-
duction to go through.

Theorem (Simulation) If the following hypotheses hold:

{t/s—>t’/s’

ssuya; Pl=Et: x> ou
then there existg’, P’ andu’ such that

u—"T
sipsa PPEY x>
S,H)\p E (Slmul)\P’ <&

Conclusion Independently, we prove a progress theorem: a well-
typed and irreducible source term is necessarily a valugh€iu
more, we prove that the translation of a value, consideredeasn,
must converge to a value. By combining these facts with tielsi-

tion theorem, we conclude that the type system is sowed-fyped
programs do not go wrongand that the type-directed translation
is meaning-preservinga(program and its translation either both
diverge, or converge to related valjes

8. Related work

Capabilities The Calculus of Capabilities [7] introduces a type
system with non-linear values and linear capabilities.i®egare
sets of memory locations (of possibly heterogeneous tyge)n
this paper, a capability represents an exclusive right tess and
free the contents of a region. The use of capabilities allaws
bitrary separation of allocation and deallocation poiatsignifi-
cant gain in expressiveness compared to earlier work by Eoftl
Talpin [20], where regions have lexical scope. The CalcafuSa-
pabilities enjoys a complete collection property. Thusldées not
require garbage collection: instead, it has runtime supioorre-
gions. Specifically, the calculus has a primitive type of@adan-
dles, as well as primitive operations for creating, extegdiand
freeing regions. In contrast, because we are interestecdhigta
level language, where ownership and deallocation of imbiata
data structures are implicit, we omit this machinery ang i
garbage collection.

The calculus of Alias Types [19] uses singleton capabditie
describe the structure of the store at the level of individigects
and support strong update. A later paper [22] adds the ylbdit
embed capabilities within data structures, which effetyivgives
rise to an ownership hierarchy.

11

Building upon these works, Fahndrich and DeLine’s Vaut][1
allows reasoning about both aliased and unique objectshétur
more, Vault introduces adoption and focus. Together witse¢h
mechanisms comes the ability for an aliased object to owricuen
object. The soundness of the type system is not argued, lylaBb
and Retert later prove the soundness of a similar systemrewhe
focus works at the level of object fields [4]. Our presentatid
adoption and focus is closely inspired bghdrich and DeLine’s
work, with two simplifications in the presentation, which Vel
are important. First, & ndrich and DelLine conflate regions and
objects: every variablp serves both as the name of a unique ob-
ject and as the name of a group region, which holds the object’
adoptees. We avoid this unfortunate identification betwsestatic
entity (a region) and a dynamic one (an object). SecoatinBrich
and DeLine require every object to keep a list of its adoptges
runtime. This list is part of the runtime machinery that idigo
avoid garbage collection. In our case, no such list is neeOed
presentation of adoption as a subtyping rule emphasizefatte
that adoption has no computational content.

L3, a Linear Language with Locations [2], is a lineacalculus
extended with support for references and strong updatéewfiog
Alias Types [7], pointers and capabilities are distingashPoint-
ers are typically unrestricted, while capabilities aredén In con-
trast with the capabilities found in Alias Types and in thaper,
which are static entities, capabilities I¥ are values: they exist at
runtime. This makes quite a difference. In our system, thy rm-
time operations are “ref”, “get”, and “set”; everything eJsnclud-
ing the operations that move capabilities around and rarorg the
ownership hierarchy (adoption, the various forms of foemsbed-
ding, etc.), takes the form of subtyping axioms, which ingbarce
calculus have no computational content.

Not every well-typed ML program is well-typed in our system.
One tentative way of translating an ML program into our syste
would be to place all references in a single, global regiond a
to thread a capability over that region throughout the paogr
However, that would require a heterogeneous region, while o
regions are homogeneous.

Adopting the second authorsgher-order anti-frameule [17]
does allow encoding every ML program. However, it is not yeac
how to extend our functional translation in order to suppbis
extra rule.

Monads Monads [13, 21] and effects [20] offer a way of statically
controlling which regions of memory are read or written by a
program term. Monads and effects are closely related. We hav
explained earlier§2.2) how an effect is just a capability that is
required and returned. A monad is just a universe of comioutsat
with a fixed effect: that is)M « can be viewed as an abbreviation
for (unit —¢ «), for a fixed capabilityC'. With this in mind, the
connection between linear types and monads imagined by Chen
and Hudak [6] can be made precise in our system. A monad that
encapsulates a mutable data structure, such as a linkear lest
binary search tree, can be defined by the programmer (in terms
of a concrete capability’ for the data structure) and, thanks to
existential quantification, given an abstract interface ifsthe end,
only an abstract type constructdf is published).

Such a precise connection between effects, monads, and a lin
ear type system is already fleshed out, in two stages, by Ahmed
Fluet, and Morrisett [10, 11]. First, Fluet and MorrisetD]len-
code Tofte and Talpin’s type and effect system iftd°N, an ex-
tension ofF" with a region-indexed monad. Second, Ahmed, Fluet,
and Morrisett [11] encodé™®®N into A" a linear A-calculus
equipped with regions and capabilities; their encodindpefhonad
is the one suggested above. Much of the complexity of the first
encoding stage lies in the fact that Tofte and Talpin's effexe
sets of regions, while the monad m?®N is indexed with a sin-

2008/7/2

gle region. This difficulty is resolved by exploiting the fdbat re- We also wish to further augment the expressiveness of our sys
gions have nested lifetimes, and by introducing regionygibg in tem. There are several interesting candidates for newttyperetic
FREN |t seems that it could be avoided entirely by encoding Tofte mechanismsMulti-focuspermits simultaneously focusing on mul-
and Talpin’s system directly inta’9"V". tiple elements of a group region, as long as they are prowdibly

Is it possible, analogously, to encode Tofte and Talpinjsety tinct. Fusion a generalization of adoption, dissolves an entire re-
and effect system into our type system? Maybe, but there is a gion into another region. These mechanisms are more cortigzax
snag. Whereas Tofte and Talpin’s system, as wel\'8%", have those presented in this paper. They involve new forms oflwéipa
heterogeneous regions, our system has homogeneous regions ties, and entail proof obligations: that is, the translgissbram is
group region stores objects of a single, fixed type. It is aenop equivalent to the source program only up to validation ofaiar
guestion whether the former can be encoded into the latter. assertions embedded in the translated code.

References

Translations into pure calculi The monadic translation [13, 21]
is perhaps the most famous translation of imperative progiiato
purely functional ones. Filliatre [8] presents a refinedsian of
this translation, where monads are indexed with effectthathe
store consists of multiple, independent fragments. Thiknue,
implemented in the Why tool [9], does not support aliasinge T
translations of Java and C into Why implemented in the Kia&kat
and Caduceus tools [9] deal with aliasing by introducingystthat
play the same role as our maps. These arrays are global, Bowev
there is one such array per record field in the source program.
O’Hearn and Reynolds translate two variants of Algol into a
polymorphic linear\-calculus [15]. Linearity is used to establish
the fact that store fragments are never duplicated, and rare c
ated and destroyed in well-identified places. On the one ,haund
translation is more ambitious, since our source calculypaers
dynamic memory allocation. On the other hand, we have not at-
tempted to exploit linearity in the target calculus. It mbsttrue
that our store fragments are linear, but we have not yet prtvie
fact. A technical difference between the two translatiangithe
treatment of theeRAME rule. O’Hearn and Reynolds encode it in
terms of polymorphism (a full store is passed down FaME, at
a partially abstract type), whereas our translation isali(enly a
fragment of the store is passed down).

Program logics Separation Logic [18] and Stateful Views [23]
are related to one another, and to our work. In fact, the ggsta
of separation logic formulae, of stateful views, and of oar c
pabilities, share a basic fragment: all three have constrigr
empty heap, singleton heap, separating conjunction, aadtijju
cation over (static names for) memory locations. Neitheheftwo
systems cited above has primitive group capabilities anipisie
mechanisms for adoption and focus.

The Spec# static program verifier [3] extracts proof oblmat
out of programs expressed in a variant of the C# programming
language. Like our type system, it relies on an ownershipahigy,
which can evolve dynamically. Its “pack” and “unpack” cansts,
which attach and detach an owned object and an owner obgeet s
the same purpose as the subtyping aximcUS REFin this paper.

We share with the authors of Hoare Type Theory (HTT) [14]
a motivation: reasoning about imperative programs withagtyic
memory allocation. HTT incorporates Hoare-style spedifice
into types. In keeping with a tradition of type theory, HTTutd
the distinction between code, types, and specificationsreds we
intend to preserve this distinction: we are not convince this
useful to let effectful code appear within specifications.

9. Future work

In this paper, we have focused on just code and types. In thesfu
we plan to add support for Hoare-style specifications on faqo
type system. Our specification language will be a pure type th
ory, such as the Calculus of Inductive Constructions. Thosilo/
allow decorating imperative programs with logical asserti and
extracting proof obligations, while taking advantage @& stepara-
tion information provided by the type system.

12

[1] Arthur Charg@raud and Francois Pottier. Technical appendix.
http://arthur.chargueraud.org/research/2008/icfp/.

[2] Amal Ahmed, Matthew Fluet, and Greg Morrisetf.3: A linear
language with locationdzundamenta Informatica¥7(4), 2007.

[3] Mike Barnett, Rob DeLine, Manuel Fahndrich, K. Rustan I\ino,
and Wolfram Schulte. Verification of object-oriented prags with
invariants.Journal of Object Technolog®(6), 2004.

[4] John Tang Boyland and William Retert. Connecting effeahd
uniqueness with adoption. POPL, pages 283—295, January 2005.

[5] Michael Brandt and Fritz Henglein. Coinductive axiomation of
recursive type equality and subtypindrundamenta Informaticge
33:309-338, 1998.

[6] Chih-Ping Chen and Paul Hudak. Rolling your own mutab2TA—a
connection between linear types and monad$®@PL, 1997.

[7] Karl Crary, David Walker, and Greg Morrisett. Typed memo
management in a calculus of capabilitiesP@PL, 1999.

[8] Jean-Christophe Fiblitre. Verification of non-functional programs
using interpretations in type theord#P, 13(4), 2003.

[9] Jean-Christophe Filliatre and Claude Marché. The ¥hgkatoa/Ca-
duceus platform for deductive program verification.dAV, volume
4590 ofLNCS 2007.

[10] Matthew Fluet and Greg Morrisett. Monadic regioni:P, 16(4—
5):485-545, 2006.

[11] Matthew Fluet, Greg Morrisett, and Amal Ahmed. Lineegions are
all you need. IrESOR volume 3924 o£ NCS March 2006.

[12] Manuel Fahndrich and Robert DeLine. Adoption and foqractical
linear types for imperative programming. RLDI, 2002.

[13] Eugenio Moggi. An abstract view of programming langesg
Technical Report ECS-LFCS-90-113, University of Edintiyrg989.

[14] Aleksandar Nanevski, Amal Ahmed, Greg Morrisett, anatd
Birkedal. Abstract predicates and mutable ADTs in Hoareetyp
theory. INESOR LNCS, March 2007.

[15] Peter W. O’'Hearn and John C. Reynolds. From Algol to padyphic
linear lambda-calculuslournal of the ACM47(1):167—-223, 2000.

[16] Benjamin C. PierceTypes and Programming Languagd8lT Press,
2002.

[17] Francois Pottier. Hiding local state in direct styéehigher-order
anti-frame rule. IrLICS 2008.

[18] John C. Reynolds. Separation logic: A logic for sharadable data
structures. IrLICS, 2002.

[19] Frederick Smith, David Walker, and Greg Morrisett. aditypes. In
ESOR volume 1782 of.NCS 2000.

[20] Mads Tofte and Jean-Pierre Talpin. Region-based mgmanage-
ment. Information and Computatiqri32(2):109-176, 1997.

[21] Philip Wadler. The essence of functional programmihgPOPL,
1992.

[22] David Walker and Greg Morrisett. Alias types for reduesdata
structures. IMTIC, volume 2071 o£.NCS 2000.

[23] Dengping Zhu and Hongwei Xi. Safe programming with pieis
through stateful views. IRADL, volume 3350 o NCS 2005.

2008/7/2

