2-4-2 / Type systems Type-preserving closure conversion

François Pottier

October 27 and November 3, 2009

Type-preserving compilation

Compilation is type-preserving when each intermediate language is explicitly typed, and each compilation phase transforms a typed program into a typed program in the next intermediate language.

Why preserve types during compilation?

- it can help debug the compiler;
- types can be used to drive optimizations;
- types can be used to produce proof-carrying code;
- proving that types are preserved can be the first step towards proving that the semantics is preserved [Chlipala, 2007].

Type-preserving compilation

A classic paper by Morrisett et al. [1999] shows how to go from System F to Typed Assembly Language, while preserving types along the way. Its main passes are:

- CPS conversion fixes the order of evaluation, names intermediate computations, and makes all function calls tail calls;
- closure conversion makes environments and closures explicit, and produces a program where all functions are closed;
- allocation and initialization of tuples is made explicit;
- the calling convention is made explicit, and variables are replaced with (an unbounded number of) machine registers.

Translating types

In general, a type-preserving compilation phase involves not only a translation of *terms*, mapping t to $[\![t]\!]$, but also a translation of *types*, mapping T to $[\![T]\!]$, with the property:

$$\Gamma \vdash t : T \text{ implies } \llbracket \Gamma \rrbracket \vdash \llbracket t \rrbracket : \llbracket T \rrbracket$$

The translation of types carries a lot of information: examining it is often enough to guess what the translation of terms will be.

Contents

• Towards typed closure conversion

Existential types

• Typed closure conversion

Bibliography

Source and target

In the following,

- the source calculus has unary λ -abstractions, which can have free variables:
- the target calculus has binary λ -abstractions, which must be closed.

Variants of closure conversion

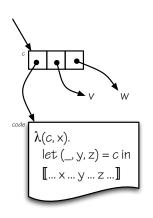
There are at least two variants of closure conversion:

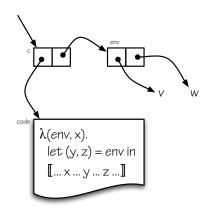
- in the *closure-passing variant*, the closure and the environment are a single memory block;
- in the *environment-passing variant*, the environment is a separate block, to which the closure points.

The impact of this choice on the term translations is minor.

Its impact on the type translations is more important: the closure-passing variant requires more type-theoretic machinery.

Variants of closure conversion





closure-passing variant

environment-passing variant

let
$$y = v$$
 and $z = w$ in let $c = \lambda x.(... \times ... y ... z ...)$ in ...

Closure-passing closure conversion

The closure-passing variant is as follows:

where
$$\{x_1, \ldots, x_n\} = \text{fv}(\lambda x.t)$$
.

Note that the layout of the environment must be known only at the closure allocation site, not at the call site.

(The variables code and c must be suitably fresh.)

Environment-passing closure conversion

The environment-passing variant is as follows:

Towards type-preserving closure conversion

Let us first focus on the environment-passing variant.

How can closure conversion be made type-preserving?

The key issue is to find a sensible definition of the type translation. In particular, what is the translation of a function type, $T_1 \to T_2$?

Towards type-preserving closure conversion

Let us examine the closure allocation code again:

Suppose $\Gamma \vdash \lambda x.t : T_1 \rightarrow T_2$.

Suppose, without loss of generality, $dom(\Gamma) = fv(\lambda x.t) = \{x_1, \dots, x_n\}.$

Overloading notation, if Γ is $x_1 : T_1, ..., x_n : T_n$, write $\llbracket \Gamma \rrbracket$ for the tuple type $T_1 \times ... \times T_n$.

By hypothesis, we have $[\![\Gamma]\!]; x : [\![T_1]\!] \vdash [\![t]\!] : [\![T_2]\!]$, so env has type $[\![\Gamma]\!],$ code has type $([\![\Gamma]\!] \times [\![T_1]\!]) \to [\![T_2]\!],$ and the entire closure has type $(([\![\Gamma]\!] \times [\![T_1]\!]) \to [\![T_2]\!]) \times [\![\Gamma]\!].$

Now, what should be the definition of $[T_1 \rightarrow T_2]$?

A weakening rule

(Parenthesis.)

In order to support the hypothesis $dom(\Gamma) = fv(\lambda x.t)$ at every λ -abstraction, it is possible to introduce a weakening rule:

Weakening
$$\frac{\Gamma_1; \Gamma_2 \vdash t : T \qquad x \# t}{\Gamma_1; x : T'; \Gamma_2 \vdash t : T}$$

If the weakening rule is applied eagerly at every λ -abstraction, then the hypothesis is met, and closures have minimal environments.

Towards a type translation

Can we adopt this as a definition?

$$\llbracket \mathcal{T}_1 \to \mathcal{T}_2 \rrbracket \quad = \quad ((\llbracket \Gamma \rrbracket \times \llbracket \mathcal{T}_1 \rrbracket) \to \llbracket \mathcal{T}_2 \rrbracket) \times \llbracket \Gamma \rrbracket$$

Towards a type translation

Can we adopt this as a definition?

$$\llbracket \mathcal{T}_1 \to \mathcal{T}_2 \rrbracket \quad = \quad ((\llbracket \Gamma \rrbracket \times \llbracket \mathcal{T}_1 \rrbracket) \to \llbracket \mathcal{T}_2 \rrbracket) \times \llbracket \Gamma \rrbracket$$

Naturally not. This definition is mathematically ill-formed: we cannot use Γ out of the blue.

Hmm... Do we really need to have a uniform translation of types?

Towards a type translation

Yes, we do. We need a uniform a translation of types, not just because it is nice to have one, but because it describes a uniform calling convention.

If closures with distinct environment sizes or layouts receive distinct types, then we will be unable to translate this well-typed code:

if ... then
$$\lambda x.x + y$$
 else $\lambda x.x$

Furthermore, we want function invocations to be translated uniformly, without knowledge of the size and layout of the closure's environment.

So, what could be the definition of
$$[T_1 \rightarrow T_2]$$
?

The type translation

The only sensible solution is:

$$\llbracket \mathcal{T}_1 \to \mathcal{T}_2 \rrbracket \ = \ \exists X. ((X \times \llbracket \mathcal{T}_1 \rrbracket) \to \llbracket \mathcal{T}_2 \rrbracket) \times X$$

An existential quantification over the type of the environment abstracts away the differences in size and layout.

Enough information is retained to ensure that the application of the code to the environment is valid: this is expressed by letting the variable X occur twice on the right-hand side.

The type translation

The existential quantification also provides a form of security. The caller cannot do anything with the environment except pass it as an argument to the code. In particular, it cannot inspect or modify the environment.

For instance, in the source language, the following coding style guarantees that x remains even, no matter how f is used:

let
$$f = \text{let } x = \text{ref } O \text{ in } \lambda().x := x + 2; !x$$

After closure conversion, the reference x is reachable via the closure of f. A malicious, untyped client could write an odd value to x. However, a *well-typed* client is unable to do so.

This encoding is *fully abstract:* it preserves (a typed version of) observational equivalence [Ahmed and Blume, 2008].

Contents

• Towards typed closure conversion

• Existential types

• Typed closure conversion

Bibliography

Existential types

One can extend System F with existential types, in addition to universals:

$$T ::= \dots \mid \exists X.T$$

As in the case of universals, there are type-passing and type-erasing interpretations of the terms and typing rules... and in the latter interpretation, there are explicit and implicit versions.

Let's just look at the type-erasing interpretation, with an explicit notation for introducing and eliminating existential types.

Existential types in explicit style

Here is how the existential quantifier is introduced and eliminated:

Pack
$$\begin{array}{c} \Gamma \vdash t : [X \mapsto T']T \\ \hline \Gamma \vdash pack \ t \ as \ \exists X.T : \ \exists X.T \\ \hline \end{array} \qquad \begin{array}{c} \Gamma \vdash t_1 : \exists X.T_1 \quad X \ \# \ T_2 \\ \hline \Gamma \vdash pack \ t \ as \ \exists X.T : \ \exists X.T \\ \hline \end{array} \qquad \begin{array}{c} \Gamma; X; x : T_1 \vdash t_2 : T_2 \\ \hline \Gamma \vdash let \ X, x = \ unpack \ t_1 \ in \ t_2 : T_2 \\ \hline \end{array} \qquad \begin{array}{c} \Gamma \vdash t : \forall X.T \\ \hline \Gamma \vdash \Lambda X.t : \forall X.T \\ \hline \end{array} \qquad \begin{array}{c} \Gamma \vdash t : \forall X.T \\ \hline \Gamma \vdash t \ T' : \ [X \mapsto T']T \\ \end{array}$$

Note the (imperfect) duality between universals and existentials.

It would be nice to have a simpler elimination form, perhaps like this:

$$\frac{\Gamma \vdash t : \exists X.T \qquad X \# \Gamma}{\Gamma \vdash \text{unpack } t : T}$$

Informally, this could mean that, it t has type T for some $unknown\ X$, then it has type T, where X is "fresh"...

Why is this broken?

It would be nice to have a simpler elimination form, perhaps like this:

$$\frac{\Gamma \vdash t : \exists X.T \qquad X \# \Gamma}{\Gamma \vdash \text{unpack } t : T}$$

Informally, this could mean that, it t has type T for some $unknown\ X$, then it has type T, where X is "fresh"...

Why is this broken?

We can immediately universally quantify over X, and conclude that t has type $\forall X.T$. This is nonsense!

A correct elimination rule must force the existential package to be used in a way that does not rely on the value of X.

Hence, the elimination rule must have control over the user of the package — that is, over the term t_2 .

The restriction $X \# T_2$ prevents writing "let $X, x = \text{unpack } t_1 \text{ in } x$ ", which would be equivalent to the unsound "unpack t" of the previous slide.

The fact that X is bound within t_2 forces it to be treated abstractly. In fact, t_2 must be bla-bla-bla-bla in X...

In fact, t_2 must be polymorphic in X. The rule could be written:

Unpack

$$\Gamma \vdash t_1 : \exists X.T_1 \qquad X \# T_2$$

$$\Gamma \vdash \Lambda X.\lambda x.t_2 : \forall X.T_1 \rightarrow T_2$$

$$\Gamma \vdash let X, x = unpack t_1 in t_2 : T_2$$

In fact, t_2 must be polymorphic in X. The rule could be written:

One could even view "unpack $_{\exists X.T}$ " as a constant, equipped with an appropriate type:

In fact, t_2 must be polymorphic in X. The rule could be written:

One could even view "unpack $_{\exists X.T}$ " as a constant, equipped with an appropriate type:

$$\mathsf{unpack}_{\exists X.\mathcal{T}}: \quad \exists X.\mathcal{T} \to \forall Y.((\forall X.(\mathcal{T} \to Y)) \to Y)$$

The variable Y, which stands for T_2 , is bound prior to X, so it naturally cannot be instantiated to a type that refers to X. This reflects the side condition $X \# T_2$.

On existential introduction

Pack
$$\frac{\Gamma \vdash t : [X \mapsto T']T}{\Gamma \vdash \text{pack } t \text{ as } \exists X.T : \exists X.T}$$

If desired, "pack $_{\exists X\,\mathcal{T}}$ " could also be viewed as a constant:

$$pack_{\exists X.T}: \forall X.(T \rightarrow \exists X.T)$$

Summary of existentials

In summary, System F with existential types can also be presented as follows:

 $\begin{array}{ll} \operatorname{pack}_{\exists X.T} & : & \forall X.(T \to \exists X.T) \\ \operatorname{unpack}_{\exists X.T} & : & \exists X.T \to \forall Y.((\forall X.(T \to Y)) \to Y) \end{array}$

These can be read as follows:

- for any X, if you have a T, then, for some X, you have a T;
- if, for some X, you have a T, then, (for any Y,) if you wish to obtain a Y out of it, then you must present a function which, for any X, obtains a Y out of a T.

This is somewhat reminiscent of ordinary first-order logic: $\exists x.F$ is equivalent to, and can be defined as, $\neg(\forall x.\neg F)$. Is there an encoding of existential types into universal types? What is it?

Encoding existentials into universals

The type translation is double negation:

$$\llbracket\exists X.T\rrbracket \quad = \quad \forall Y.((\forall X.(\llbracket T\rrbracket \to Y)) \to Y) \qquad \text{if } Y \ \# \ T$$

The term translation is:

Encoding existentials into universals

The type translation is double negation:

$$\llbracket\exists X.T\rrbracket \quad = \quad \forall Y.((\forall X.(\llbracket T\rrbracket \to Y)) \to Y) \qquad \text{if } Y \;\#\; T$$

The term translation is:

Encoding existentials into universals

The type translation is double negation:

$$\llbracket\exists X.T\rrbracket \quad = \quad \forall Y.((\forall X.(\llbracket T\rrbracket \to Y)) \to Y) \qquad \text{if } Y \ \# \ T$$

The term translation is:

There was little choice, if the translation was to be type-preserving.

This encoding is due to Reynolds [1983], although it has more ancient roots in logic.

What if one wished to extend ML with existential types?

Full type inference for existential types is undecidable, just like type inference for universals.

However, introducing existential types in ML is easy if one is willing to rely on user-supplied annotations that indicate where to pack and unpack.

This iso-existential approach was suggested by Läufer and Odersky [1994].

Iso-existential types are explicitly declared:

$$D\vec{X} \approx \exists \vec{Y}.T$$
 if $ftv(T) \subseteq \vec{X} \cup \vec{Y}$ and $\vec{X} \# \vec{Y}$

This introduces two constants, with the following type schemes:

 $pack_{D} : \forall \bar{X}\bar{Y}.T \to D \vec{X}$ unpack_{D} : $\forall \bar{X}Z.D \vec{X} \to (\forall \bar{Y}.(T \to Z)) \to Z$

(Compare with basic iso-recursive types, where $\bar{Y}=\emptyset$.)

I cut a few corners on the previous slide. The "type scheme:"

$$\forall \bar{X}Z.D \ \vec{X} \rightarrow (\forall \bar{Y}.(T \rightarrow Z)) \rightarrow Z$$

is in fact not an ML type scheme. How could we address this?

I cut a few corners on the previous slide. The "type scheme:"

$$\forall \bar{X}Z.D \ \vec{X} \rightarrow (\forall \bar{Y}.(\mathcal{T} \rightarrow Z)) \rightarrow Z$$

is in fact not an ML type scheme. How could we address this?

A solution is to make $unpack_D$ a binary construct again (rather than a constant), with an ad hoc typing rule:

$$\begin{array}{cccc} & \text{Unpack}_{\text{D}} \\ & \Gamma \vdash t_1 : D \ \vec{T} & \ \vec{Y} \ \# \ \vec{T}, T_2 \\ & & \\ \hline & \Gamma \vdash t_2 : \forall \vec{Y}. ([\vec{X} \mapsto \vec{T}]T \to T_2) \\ & & \\ \hline & \Gamma \vdash \text{unpack}_{\text{D}} \ t_1 \ t_2 : T_2 \end{array} \qquad \text{where } D \ \vec{X} \approx \exists \vec{Y}. T$$

We have seen a version of this rule in System F earlier; this in an ML version. The term t_2 must be polymorphic, which Gen can prove.

Iso-existential types in ML

Iso-existential types are perfectly compatible with ML type inference.

The constant pack $_{\! D}$ admits an ML type scheme, so it is unproblematic.

The construct $unpack_D$ leads to this constraint generation rule:

$$[[\operatorname{unpack}_D t_1 \ t_2 : T_2]] = \exists \bar{X}. \left(\begin{bmatrix} [t_1 : D \ \bar{X}]] \\ \forall \bar{Y}. [[t_2 : T \to T_2]] \end{bmatrix} \right)$$

where $D \vec{X} \approx \exists \vec{Y}.T$ and, w.l.o.g., $\vec{X}\vec{Y} \# t_1, t_2, T_2$.

Again, a universally quantified constraint appears where polymorphism is required.

Iso-existential types in ML

In practice, Läufer and Odersky suggest fusing iso-existential types with algebraic data types.

The (somewhat bizarre) Haskell syntax for this is:

data
$$D\vec{X} = \text{forall } \bar{Y}.\ell T$$

where ℓ is a data constructor. The elimination construct becomes:

where, w.l.o.g., $\bar{X}\bar{Y}$ # t_1 , t_2 , T_2 .

An example

Define Any $\approx \exists Y.Y.$ An attempt to extract the raw contents of a package fails:

(Recall that $Y \# T_2$.)

Define

$$DX \approx \exists Y.(Y \rightarrow X) \times Y$$

A client that regards Y as abstract succeeds:

Uses of existential types

Mitchell and Plotkin [1988] note that existential types offer a means of explaining abstract types. For instance, the type:

```
\existsstack.\{empty : stack;
push : int \times stack \rightarrow stack;
pop : stack \rightarrow option (int \times stack)\}
```

specifies an abstract implementation of integer stacks.

Unfortunately, it was soon noticed that the elimination rule is too awkward, and that existential types alone do not allow designing module systems [Harper and Pierce, 2005].

Montagu and Rémy [2009] make existential types more flexible in several important ways, and argue that they might explain modules after all.

Contents

• Towards typed closure conversion

Existential types

• Typed closure conversion

Bibliography

Typed closure conversion

Everything is now set up to prove that

 $\Gamma \vdash t : T \text{ implies } \llbracket \Gamma \rrbracket \vdash \llbracket t \rrbracket : \llbracket T \rrbracket.$

We find $\llbracket \Gamma \rrbracket \vdash \llbracket \lambda x.t \rrbracket : \llbracket T_1 \rightarrow T_2 \rrbracket$, as desired.

```
Assume \Gamma \vdash t_1 : T_1 \to T_2 and \Gamma \vdash t_2 : T_1. \llbracket t_1 \ t_2 \rrbracket = \text{let } X, (\text{code, env}) = \text{unpack } \llbracket t_1 \rrbracket \text{ in } \quad \text{code} : (X \times \llbracket T_1 \rrbracket) \to \llbracket T_2 \rrbracket \\ \text{code (env, } \llbracket t_2 \rrbracket) \qquad \qquad \text{env} : X \\ (X \# \llbracket T_2 \rrbracket) \\ \text{We find } \llbracket \Gamma \rrbracket \vdash \llbracket t_1 \ t_2 \rrbracket : \llbracket T_2 \rrbracket, \text{ as desired.}
```

Recursive functions can be translated in this way, known as the "fix-code" variant [Morrisett and Harper, 1998]:

where
$$\{x_1,\ldots,x_n\} = \text{fv}(\mu f.\lambda x.t)$$
.

The translation of applications is unchanged: recursive and non-recursive functions have an identical calling convention.

What is the weak point of this variant?

Recursive functions can be translated in this way, known as the "fix-code" variant [Morrisett and Harper, 1998]:

where
$$\{x_1,\ldots,x_n\} = \text{fv}(\mu f.\lambda x.t)$$
.

The translation of applications is unchanged: recursive and non-recursive functions have an identical calling convention.

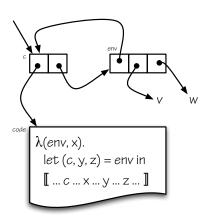
What is the weak point of this variant?

A new closure is allocated at every call.

Instead, the "fix-pack" variant [Morrisett and Harper, 1998] uses an extra field in the environment to store a back pointer to the closure:

where
$$\{x_1,\ldots,x_n\} = \text{fv}(\mu f.\lambda x.t)$$
.

This requires general, recursively-defined values. Closures are now cyclic data structures.



environment-passing variant, fix-pack

let
$$y = v$$
 and $z = w$ in let $rec c = \lambda x.(... c ... x ... y ... z ...)$ in ...

Here is how the "fix-pack" variant is type-checked.

Assume $\Gamma \vdash \mu f. \lambda x.t : T_1 \rightarrow T_2$ and $dom(\Gamma) = \{x_1, \dots, x_n\} = fv(\mu f. \lambda x.t)$.

```
\begin{array}{lll} \text{let } code = \lambda(\text{env}, \textbf{x}). & \text{env} : \llbracket f : T_1 \to T_2; \Gamma \rrbracket; \textbf{x} : \llbracket T_1 \rrbracket \\ & \text{let } (f, \textbf{x}_1, \dots, \textbf{x}_n) = \text{env in} \\ & \llbracket t \rrbracket & \llbracket t \rrbracket : \llbracket T_2 \rrbracket \\ & \text{in} & code : (\llbracket f : T_1 \to T_2; \Gamma \rrbracket \times \llbracket T_1 \rrbracket) \to \llbracket T_2 \rrbracket \\ & \text{let rec } c = \\ & \text{pack } (code, (c, \textbf{x}_1, \dots, \textbf{x}_n)) & \text{this has type } \llbracket T_1 \to T_2 \rrbracket & \text{too...} \\ & \text{so all is well} \end{array}
```

This is simple. However, introducing the construct "let rec x=v" requires altering the operational semantics and updating the type soundness proof.

Now, recall the closure-passing variant:

where
$$\{x_1, \ldots, x_n\} = \text{fv}(\lambda x.t)$$
.

How could we typecheck this? What are the difficulties?

There are two difficulties:

- a closure is a tuple, whose first field should be exposed (it is the code pointer), while the number and types of the remaining fields should be abstract;
- the first field of the closure contains a function that expects the closure itself as its first argument.

What type-theoretic mechanisms could we use to describe this?

There are two difficulties:

- a closure is a tuple, whose first field should be exposed (it is the code pointer), while the number and types of the remaining fields should be abstract;
- the first field of the closure contains a function that expects the closure itself as its first argument.

What type-theoretic mechanisms could we use to describe this?

- existential quantification over the tail of a tuple (a.k.a. a row);
- recursive types.

Tuples, rows, row variables

The standard tuple types that we have used so far are:

$$T ::= ... | \Pi R - types$$

 $R ::= \varepsilon | (T;R) - rows$

The notation $(T_1 \times ... \times T_n)$ was sugar for $\Pi (T_1;...;T_n;\epsilon)$.

Let us now introduce row variables and allow quantification over them:

$$T ::= \dots | \Pi R | \forall \rho.T | \exists \rho.T - \text{types}$$

 $R ::= \rho | \epsilon | (T; R) - \text{rows}$

This allows reasoning about the first few fields of a tuple whose length is not known.

Typing rules for tuples

The typing rules for tuple construction and deconstruction are:

Tuple
$$\frac{\forall i \in [1, n] \quad \Gamma \vdash t_i : T_i}{\Gamma \vdash (t_1, \dots, t_n) : \Pi \ (T_1; \dots; T_n; \epsilon)} \qquad \frac{\Gamma \vdash t : \Pi \ (T_1; \dots; T_i; R)}{\Gamma \vdash \text{proj}_i \ t : T_i}$$

These rules make sense with or without row variables.

Projection does not care about the fields beyond i. Thanks to row variables, this can be expressed in terms of parametric polymorphism:

$$\operatorname{proj}_i : \forall X_1 \dots X_i \rho. \Pi (X_1; \dots; X_i; \rho) \rightarrow X_i$$

About Rows

Rows were invented independently by Wand and Rémy in order to ascribe precise types to operations on records.

The case of tuples, presented here, is simpler.

Rows are used to describe objects in Objective Caml [Rémy and Vouillon, 1998].

Rows are explained in depth by Pottier and Rémy [Pottier and Rémy, 2005].

Rows and recursive types allow to define the translation of types in the closure-passing variant:

See Morrisett and Harper's "fix-type" encoding [1998].

```
Let Clo(R) abbreviate \mu X.\Pi ((X \times [T_1])) \rightarrow [T_2]; R).
Let UClo(R) abbreviate its unfolded version, \Pi((Clo(R) \times \llbracket T_1 \rrbracket) \to \llbracket T_2 \rrbracket; R).
We have ||T_1 \rightarrow T_2|| = \exists \rho.Clo(\rho).
    [\lambda x.t] = \text{let code} = \lambda(c, x).
                                                                                      c: Clo(\llbracket \Gamma \rrbracket); x: \llbracket T_1 \rrbracket
                         let (\_, x_1, \ldots, x_n) = unfold c in
                                                                                      this installs [[
                                                                                       code: (Clo(\llbracket \Gamma \rrbracket) \times \llbracket T_1 \rrbracket) \rightarrow \llbracket T_2 \rrbracket
                                                                                       the tuple has type UClo(||\Gamma||)
                     in pack (fold (code, x_1, \ldots, x_n))
                                                                                       after folding, Clo([[□]])
                                                                                       after packing, [T_1 \rightarrow T_2]
 \llbracket t_1 \ t_2 \rrbracket = \text{let } c, \rho = \text{unpack } \llbracket t_1 \rrbracket \text{ in}
                                                                                      c: Clo(\rho)
                    let code = proj_{0} (unfold c) in
                                                                                       code: (Clo(\rho) \times \llbracket T_1 \rrbracket) \rightarrow \llbracket T_2 \rrbracket
                    code(c, [t_2])
                                                                                       this has type \llbracket T_2 \rrbracket
```

In the closure-passing variant, recursive functions are translated as follows:

where $\{x_1,\ldots,x_n\} = \text{fv}(\mu f. \lambda x.t)$.

Again, this untyped code can be typechecked. - exercise!

No extra field or extra work is required to store or construct a representation of the free variable f: the closure itself plays this role.

Moral of the story

Type-preserving compilation is rather fun. (Yes, really!)

It forces compiler writers to make the structure of the compiled program fully explicit, in type-theoretic terms.

In practice, building explicit type derivations, ensuring that they remain small and can be efficiently typechecked, can be a lot of work.

Optimizations

Because we have focused on type preservation, we have studied only naïve closure conversion algorithms.

More ambitious versions of closure conversion require program analysis: see, for instance, Steckler and Wand [1997]. These versions can be made type-preserving.

Other challenges

Defunctionalization, an alternative to closure conversion, offers an interesting challenge, with a simple solution [Pottier and Gauthier, 2006].

Designing an efficient, type-preserving compiler for an *object-oriented* language is quite challenging. See, for instance, Chen and Tarditi [2005].

Exercise: type-preserving CPS conversion

Here is an untyped version of call-by-value CPS conversion:

Is this is a type-preserving transformation?

The answer is in the 2007-2008 exam.

Another exercise

The 2006–2007 exam discusses a type-preserving translation of λ -calculus into bytecode.

Contents

• Towards typed closure conversion

Existential types

• Typed closure conversion

Bibliography

(Most titles are clickable links to online versions.)

Ahmed, A. and Blume, M. 2008.

Typed closure conversion preserves observational equivalence.

In ACM International Conference on Functional Programming (ICFP). 157-168.

🗐 Chen, J. and Tarditi, D. 2005.

A simple typed intermediate language for object-oriented languages.

In ACM Symposium on Principles of Programming Languages (POPL). 38 - 49.

Bibliography]Bibliography

Chlipala, A. 2007.

A certified type-preserving compiler from lambda calculus to assembly language.

In ACM Conference on Programming Language Design and Implementation (PLDI). 54-65.

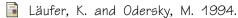
Harper, R. and Pierce, B. C. 2005.

Design considerations for ML-style module systems.

In Advanced Topics in Types and Programming Languages, B. C.

Pierce, Ed. MIT Press, Chapter 8, 293-345.

[][



Polymorphic type inference and abstract data types.

ACM Transactions on Programming Languages and Systems 16, 5 (Sept.), 1411–1430.

🔋 Mitchell, J. C. and Plotkin, G. D. 1988.

Abstract types have existential type.

ACM Transactions on Programming Languages and Systems 10, 3, 470–502.

Montagu, B. and Rémy, D. 2009.

Modeling abstract types in modules with open existential types.

In ACM Symposium on Principles of Programming Languages (POPL).
63–74.

Morrisett, G. and Harper, R. 1998.

Typed closure conversion for recursively-defined functions (extended abstract).

In International Workshop on Higher Order Operational Techniques in Semantics (HOOTS). Electronic Notes in Theoretical Computer Science, vol. 10. Elsevier Science.

Morrisett, G., Walker, D., Crary, K., and Glew, N. 1999. From system F to typed assembly language.

ACM Transactions on Programming Languages and Systems 21, 3 (May), 528–569.

[][

- Pottier, F. and Gauthier, N. 2006.

 Polymorphic typed defunctionalization and concretization.

 Higher-Order and Symbolic Computation 19, 125–162.
- Pottier, F. and Rémy, D. 2005.

 The essence of ML type inference.

 In Advanced Topics in Types and Programming Languages, B. C. Pierce, Ed. MIT Press, Chapter 10, 389–489.
- Rémy, D. and Vouillon, J. 1998.

 Objective ML: An effective object-oriented extension to ML. Theory and Practice of Object Systems 4, 1, 27–50.

[][

Reynolds, J. C. 1983.

Types, abstraction and parametric polymorphism.

In Information Processing 83. Elsevier Science, 513-523.

🔋 Steckler, P. A. and Wand. M. 1997.

Lightweight closure conversion.

ACM Transactions on Programming Languages and Systems 19, 1, 48-86.