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quen
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quen
ourtAbstra
t. In this paper, we present the Fo
 langugage, dedi
ated to the de-velopment of 
erti�ed 
omputer algebra librairies (i.e. sets of programs). Theselibraries are based on a hierar
hy of implementations of mathemati
al stru
tures.After presenting the 
ore set of features of our language, we des
ribe the stati
analyses, whi
h reje
t in
onsistent programs. We then show how we translate Fo
de�nitions into O
aml, and Coq, our target languages for the 
omputational partand the proof 
he
king respe
tively.1. Introdu
tion1.1. The Fo
 Proje
t1.1.1. Computer algebra systems.A 
omputer algebra system (CAS) in
ludes two essential aspe
ts ofmathemati
al knowledge: �rst, it provides, more or less expli
itely, aformalization of the mathemati
al stru
tures (e.g. the de�nition of whatis a monoid, a group, a ring, et
). Se
ond, it must give e�
ient im-plementations of the algorithms used in these stru
tures. E�
ien
y isextremely important, be
ause CAS are used in many �elds of engi-neering and resear
h to perform arbitrarily 
omplex 
omputations. Therange of appli
ations of CAS is only limited by their performan
e, notby the demands of the users. This explains the emphasis of 
urrent CASon speed of built-in algorithms, and on ease of implementation of new,more 
omplex, faster algorithms.On the other hand, the formalization of algebrai
 stru
tures is anessential part of CAS [9℄, so every CAS must have some way of rep-resenting the mathemati
al stru
tures, whi
h provides the 
ontext inwhi
h its algorithms will work. This 
orresponden
e between the math-emati
al obje
ts and their 
omputer representation needs to be 
learlyspe
i�ed and do
umented, even if it is not always the 
ase.1.1.2. State of the art in CAS.The design of 
urrent 
omputer algebra systems puts heavy emphasison the e�
ient implementation of state-of-the-art algorithms. In 
on-trast, the programming language o�ered to the user of these systems
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2is often poorly designed. In some systems (su
h as Maple or Mupad)the language is 
onsidered as some kind of s
ripting language ratherthan an important feature of the CAS. Even in Axiom [16℄, Aldor,or Magma, where the user language is a 
entral part of the system,
omputer algebra issues take pre
eden
e over the language design andspe
i�
ation.Another issue with 
urrent CAS is the 
omplexity of the algorithmsand their implementations. The algorithms used in 
omputer algebraare generally proved 
orre
t with a mathemati
al proof, but they are
omplex and hard to understand, and implementing them is far fromtrivial, whi
h explains the presen
e of obs
ure bugs in all 
urrent CAS.These bugs are dangerous be
ause the engineers and s
ientists tendto trust the answers given by the CAS, and the 
onsequen
es of a wrong
omputation 
an range from a few days of time lost in tra
king downthe error, to a 
omplete failure of the system designed by the engineer.1.1.3. The Fo
 approa
h to 
omputer algebra.The Fo
 proje
t1 [3℄, under the dire
tion of Th. Hardin, attempts todeal with these issues by providing a new programming language dedi-
ated to 
omputer algebra. We intend to ground the language on �rmtheoreti
al results, with 
lear semanti
s and an e�
ient implementationvia translation to O
aml. Our language has fun
tional and obje
t-oriented features 
arefully tailored to the task at hand. In order tota
kle the 
orre
tness problem, the language provides means for theprogrammers to write formal proofs of their 
ode, and to have themveri�ed by a proof 
he
ker (Coq).The programming part of our approa
h is validated by the Fo
library, developped by R. Rioboo [4℄, whi
h in
ludes some 
omplex al-gorithms with performan
e 
omparable to the best CAS in existen
e[4℄.The fa
t that we design our own language allows us to express moreeasily than in a general purpose language some very important 
on-
epts of the 
omputer algebra, and in parti
ular the 
arrier type of astru
ture [12℄. On the other hand, we 
an also restri
t obje
t-orientedfeatures to what is stri
tly ne
essary (Se
. 3) to 
omputer algebra, andavoid unsound 
onstru
tions, su
h as open re
ursion, whi
h 
an lead toin
onsisten
ies when used 
arelessly.1.1.4. ContentsIn this paper we des
ribe the 
ore features of the Fo
 language. Theremainder of this se
tion introdu
es informally the fundamental 
on-
epts of Fo
. Then, we present the 
on
rete syntax (Se
. 2). Some1 http://www-spi.lip6.fr/�fo
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3programming errors 
annot be avoided at the syntax level, and we havedesigned a stati
 
ode analysis to dete
t them (Se
. 3). We are thenable to des
ribe the 
ompilation of the Fo
 sour
e to O
aml (Se
. 4).Finally, we show how this work is extended to statements and proofs(Se
. 5) and explain the translation into Coq (Se
. 6). Main results arethe algorithm that performs the stati
 analysis and the handling of latebinding (see below) in Coq.1.2. Spe
iesSpe
ies 
orrespond to algebrai
 stru
tures in mathemati
s and play aprimordial role in Fo
: they are the nodes of the hierar
hy of stru
tures
onstituting the library. Entities are the elements of spe
ies, the obje
tsmanipulated by the algorithms.1.2.1. Entities.Entities represent mathemati
al obje
ts, su
h as 0 or X2 + 3 �X � Y ,in the 
omputer universe. One issue here is that there is no simplerelationship between these two worlds. On the one hand, the 
onstant1 of the integer type 
an be used to represent 1 2 Z=2Z as well as1 2 Z=5Z. Of 
ourse, it would be a mistake to mix them up, sin
e theydo not have the same properties. On the other hand, the polynomialX+2 
an be viewed as an ordered list of 
oe�
ients, [1;2℄, or as a list ofpairs (sparse representation): [(1,1);(2,0)℄. In this 
ase, adding twopolynomials that do not share the same 
on
rete representation is likelyto produ
e an error. To avoid su
h 
onfusion, we need an abstra
tionme
hanism in the spirit of abstra
t data types.1.2.2. Spe
ies and MethodsA spe
ies 
an be seen as a set of methods, whi
h are identi�ed by theirnames. A method 
an be either de
lared or de�ned. De
lared methodsre�e
t the 
onstants, the primitive operations, and the axioms thatde�ne a stru
ture in mathemati
s. De�ned methods represent imple-mented operations (i.e. algorithms) and theorems built up (and proved)from these de
lared methods. There are three di�erent 
ategories ofmethods:� The 
arrier, or representation type (rep) of a spe
ies is a type fromthe Fo
 type language. In other words (see Se
.2.1), it 
an be anatomi
 type, a produ
t, a fun
tion type, or a parameterized type(su
h as list(int)). It represents the type of the entities that thespe
ies manipulates. The 
arrier of ea
h spe
ies is unique.� fun
tions (when de�ned) and signatures (when only de
lared)denote the operations that are allowed on the 
arrier's elements.
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4� Finally, the developer of a new spe
ies 
an spe
ify the propertiesthat further implementations of this spe
ies must meet. He mayalso prove some theorems for the 
urrent de
larations/de�nitionsof fun
tions and properties.As an example, a monoid is built upon a set whi
h is representedin Fo
 by its 
arrier type. It has some de
lared operations, (spe
i�edby their types), namely +, and zero. These operations must satisfythe axioms of monoids, whi
h are expressed in Fo
 by properties. We
an then de�ne a fun
tion, dble, su
h that dble(x) = x+ x, and provesome theorems about it, for instan
e that 8x 2 rep; dble(zero + x) =dble(x). Following Curry-Howard-de Bruijn isomorphism, we 
an linksignatures and properties on the one hand (both are abstra
t methods),and fun
tions and proofs (as de�ned methods) on the other one.1.2.3. Inheritan
einheritan
e allows to de�ne a new spe
ies from previous one(s). The newspe
ies inherits all the methods of its parent(s). If two parents havemethods that share the same name, they must have the same type.If both methods are de�ned, then we have to 
hoose the de�nitionthat will be exported in the new spe
ies. A spe
ies 
an de�ne somemethods that were de
lared in its parents, or even rede�ne a method.It 
an also de
lare a new method but not rede
lare an old one with adi�erent type. As said later (p. 18), this restri
tion ensures that anyimplementation of a spe
ies that inherits from a spe
ies a has at leastthe same methods as a, with the same type. A spe
ies 
an also de
lareand de�ne a new method at the same time. These features, along withthe parameterization des
ribed further, enables the use of a re�nementmethodology to build new spe
ies. Thus, multiple inheritan
e 
omeswith overriding and late binding, whi
h are usual features of obje
t-oriented languages.1.3. Abstra
tion1.3.1. ParametersIn 
omputer algebra, many stru
tures are built upon previously de�nedalgebrai
 stru
tures by kinds of 
ategori
al operations. For example,an algebra of polynomials is built upon a ring R of 
oe�
ients and amonomial ordering D of degrees. In fa
t, to build polynomials, we needonly to know the operations provided by R, and their spe
i�
ations,but not their parti
ular implementation. On the other hand, to buildan e�e
tive implementation of polynomials over Z, R needs to be in-stantiated by a stru
ture whose all methods are de�ned. This leads tothe two dual notions of interfa
e and 
olle
tion.
main.tex; 14/08/2002; 18:32; p.4



51.3.2. Interfa
esAn interfa
e is a list of de
lared methods. It 
orresponds to the end-user point of view, who wants to know whi
h fun
tions he 
an use, andwhi
h properties these fun
tions have, but doesn't 
are about the detailsof the implementation. In Fo
, the de�nition of a spe
ies must allowthe de�nition of the asso
iated interfa
e, by removing all the bodies ofthe de�ned methods. While this abstra
tion is easy within programminglanguages, it is not always possible when dealing with proofs, as pointedout by S. Boulmé [5℄. Se
. 5 deals with this problem.1.3.3. Colle
tionsAssume that we are using Q as an a
tual parameter for P when buildingS. Suppose that a fun
tion f of Q is only de
lared but is used in S for a
omputation. Then, there are two possibilities. Either we a

ept to waituntil run-time to obtain a de�nition for f and then we a

ept run-timefailures. Or, we for
e any a
tual spe
ies parameter to be a 
ompletelyde�ned spe
ies. We 
hoose the more restri
tive way be
ause it is saferwhile still having enough expressive power.A 
olle
tion is a 
ompletely de�ned spe
ies. This means that every�eld must be de�ned, and every parameter instantiated. It representsa parti
ular mathemati
al stru
ture, su
h as Z[X℄. Moreover, we 
annot a

ess dire
tly the entities belonging to a given 
olle
tion, to avoidbreaking the representation invariants. Colle
tions 
an also be used tointrodu
e a prede�ned types. For instan
e, we 
an assume that thereexist a 
olle
tion bool with an (abstra
t) 
arrier, two element true andfalse, an unary operation not, et
.2. SyntaxIn this se
tion, we present the 
ore syntax of Fo
 and an intuitiveexplanation of its semanti
s. The 
omplete syntax is built upon the
ore syntax by adding synta
ti
 sugar without 
hanging its expressivepower, so the properties of the 
ore language are easily extended.There are three di�erent sets of identi�ers:� x; y denote �-bound variables, fun
tion and method names.� s denotes spe
ies names.� 
 denotes 
olle
tion names.There is also a keyword, self , whi
h 
an be used only inside a spe
ies sand represents the �
urrent� 
olle
tion (thus self is a 
olle
tion name).
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6It is used to handle late binding as seen in the following example. (InFo
, 
!m denotes the method m of 
olle
tion 
).spe
ies A = let f(x) = body; let g = . . . self !f . . .; endspe
ies B inherits A = let f(x) = improved body; endThe new de�nition of f in B overrides the old one, inherited from A.Then, in the value of g in B, self!f is not bound to the de�nition of fin the spe
ies A, where g is de�ned, but to the a
tual value of f.Note that when doing the stati
 analysis of A, we have to assumethat self 
an be any 
olle
tion that inherits from A itself be
ause we donot know in what 
ontext g will be used.2.1. Expressions and Typesidenti�er ::= x, yde
laration ::= x [ in type ℄expression ::= x j
!x j fun de
laration -> expressionj let [ re
 ℄ de
laration = expression in expressionj expression(expression { ,expression }*)type ::= 
 j � j type -> type j type * typeAn expression 
an be a variable, a method x of some 
olle
tion 
, a lo
alde�nition with an expression in its s
ope, a fun
tion appli
ation, or afun
tional abstra
tion. A type 
an be a 
olle
tion name (representingthe 
arrier of that 
olle
tion), a variable, a fun
tion or a produ
t type.2.2. Fields of a Spe
iesdef_�eld ::= rep=type j let de
laration = expressionj let re
 { de
laration = expression; }+de
l_�eld ::= sig x in type j rep�eld ::= def_�eld j de
l_�eldA �eld � of a spe
ies is a de
laration or a de�nition of a method name.In the 
ase of mutually re
ursive methods, a single �eld de�nes severalmethods at on
e (using the let re
 keywords). The 
arrier is 
onsideredalso as a method, introdu
ed by the rep keyword. Ea
h spe
ies musthave exa
tly one rep �eld, either de�ned or inherited.
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72.3. Spe
ies and Colle
tion Definitionsspe
ies_def ::= spe
ies s [ (parameter { , parameter }*) ℄[ inherits spe
ies_expr { , spe
ies_expr }* ℄= { �eld ; }* end
olle
tion_def ::= 
olle
tion 
 implements spe
ies_exprparameter ::= x in type j 
 is spe
ies_exprspe
ies_expr ::= s j s (expr_or_
oll { , expr_or_
oll }*)expr_or_
oll ::= 
 j expressionA spe
ies_expr is a spe
ies identi�er (for an atomi
 spe
ies), ora spe
ies identi�er applied to some arguments (for a parameterizedspe
ies). The arguments 
an be 
olle
tions or expressions: in the de
la-ration of a parameterized spe
ies, a formal parameter 
an be a variable(and its type) or a 
olle
tion name (and its interfa
e). A spe
ies de�-nition is an optional list of parameters, an optional list of inheritan
ede
larations, and a list of �elds (its body). Order of inheritan
e de
-larations is signi�
ant: if a method de�nition is inherited from severalsour
es, the rightmost one is used. In addition, two di�erent �elds inspe
ies_def must de�ne or de
lare disjoint sets of method names.Note that in the 
omplete syntax, we 
an allow a 
olle
tion a im-plementing a spe
ies b to have a body 
omposed of def_field entries.This 
an be translated in the 
ore syntax asspe
ies a spe
 inherits b = def field of a end
olle
tion a implements a spe
2.4. An ExampleAssume that the spe
ies setoid and monoid have already been de�ned,and that we have a 
olle
tion integ that implements Z. We now de�nethe 
artesian produ
ts of two setoids and of two monoids. We also usea few prede�ned operators (fst, snd, 
reate_pair, et
.).spe
ies 
artesian setoid(a is setoid, b is setoid)inherits setoid =rep = a * b;let eq = fun x �> fun y �>and(a!eq(fst(x), fst(y)), b!eq(snd(x), snd(y)));endspe
ies 
artesian monoid(a1 is monoid, b1 is monoid)inherits monoid, 
artesian setoid(a1,b1) =
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8 let plus = fun x �> fun y �>let x1 = fst(x) in let x2 = snd(x) inlet y1 = fst(y) in let y2 = snd(y) in
reate pair(a1!plus(x1, y1), b1!plus(x2, y2));let neutral = 
reate pair(a1!zero, b1!zero);end
olle
tion z square implements 
artesian monoid(integ,integ)3. Analyzing Spe
ies3.1. Informal Des
ription of Stati
 AnalysisNot all synta
ti
ally 
orre
t de�nitions are a

eptable in Fo
. In orderto respe
t the 
oheren
e properties, we need to 
he
k some semanti

onstraints on the de�nitions of spe
ies and 
olle
tions. We imposesome additional 
onstraints, espe
ially on mutually re
ursive methods,to make the proofs easier to write. The restri
tions are:� Typing: all expressions must be well-typed, the arguments passedto parameterized spe
ies must have the expe
ted types, rede�ni-tions of methods must not 
hange their type.� When 
reating a 
olle
tion from a spe
ies, all the �elds of thespe
ies must be de�ned (as opposed to simply de
lared).� The rep �eld must be present or inherited in every spe
ies.� Re
ursion between methods outside a let re
 �eld is forbidden.If a 
olle
tion parameter is required to have interfa
e A, the 
on-straints on method types ensure that any implementation of A 
an beused as an a
tual parameter.We want the programmer to expli
itate all the mutually-re
ursivegroups of methods be
ause we are interested in 
ertifying the 
ode,whi
h in
ludes proving the termination of every re
ursive method. Ifwe had impli
it re
ursion between all methods of a spe
ies (as usualin obje
t-oriented languages), these termination proofs would be
ometoo 
omplex, needlessly involving all the methods (whether de�nedor inherited) of the spe
ies. By for
ing the programmer to �ag themutually-re
ursive groups of methods, we ensure that these groups areas small as possible, whi
h helps making the proofs simpler.
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9Note that this restri
tion involves a global analysis, as shown by thetwo following examples. Let A, B, and C be de�ned as follows:spe
ies A = rep; sig x in self ; let y = self !x; endspe
ies B = rep; let x = self !y; sig y in self ; endspe
ies C inherits A,B = rep = int; end
olle
tion C imp implements C;;The spe
ies A and B are obviously well de�ned. At �rst glan
e, C alsoseems to be well de�ned. However, the evaluation of C_imp!x 
annotterminate be
ause of the re
ursion between x and y. On the 
ontrary, thefollowing example illustrates the need of mutually re
ursive methods:spe
ies odd and even =rep = int;let re
 odd (x in self) =if x = 0 then false else self !even(x�1)and even(x in self) =if x = 0 then true else self !odd(x�1);endHere, the presen
e of a let re
 �eld means that the user has to provide aproof of the termination of the odd and even methods. On
e the proofshave been done, it is safe to use these methods.As far as 
omputing is 
on
erned, the whole point of dependen
yanalysis is to reje
t the �rst example while allowing the se
ond one.When we add properties and proofs, the dependen
y analysis be
omesmore 
omplex, as we see in Se
. 5. To summarize, the analysis of aspe
ies de�nition must take 
are of three issues:� inheritan
e lookup, and resolution of multiple-inheritan
e 
on�i
ts.� dependen
y analysis� type-
he
king of the methods3.2. Basi
 definitionsFirst, we de�ne N (s), the method names that are introdu
ed in a �eld(de
laration or de�nition), and D (s) � N (s) the names introdu
edin a �eld de�nition. This is then extended to spe
ies themselves, byindu
tion on the inheritan
e graph. This graph is indeed a DAG, sin
ea spe
ies 
an only inherit from already-de�ned spe
ies. Formal de�nition
an be found in appendix A.
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10 A method name 
annot be introdu
ed twi
e in a spe
ies body. Froma pra
ti
al point of view, it is always a mistake to give two de�nitionsof the same method in a spe
ies body, be
ause one of the de�nitionswould be useless. The following analyses will keep this uni
ity, so thata spe
ies in normal form (see def. 7) will have at most one de�nitionfor ea
h of its methods. In the remainder of this se
tion, we 
onsider aspe
ies de�nition of the following form, whi
h will be noted defspe
:spe
ies s inherits s1::sn = �1::�mwith 8i 6= j; N (�i) \N (�j) = ;Then, for every x in N (s), we de�ne Bs(x) to be the body of x ins. If x is inherited from another spe
ies, we take the body from thatspe
ies. If x is inherited from several other spe
ies, we take the one thatis mentioned last in the inherits 
lause.DEFINITION 1 (binding of a method x in a spe
ies s).Let x 2 N (s) be the name of a method of s (de�ned by defspe
)� if x =2 D (s), then Bs(x) = ?.� if x = rep, and 9i � m; �i is rep = � , then Bs(rep) = �� if 9i � m; �i is let x = expr then Bs(x) = expr� if 9i � m; �i is let re
 fx1 = e1; : : : ;xn = eng, and xj = x thenBs(x) = exprj� else 9i0 � n; x 2 N (si0) and 8i > i0; x =2 D (si), and x =2Smi=1D (�i) then Bs(x) = Bsi0 (x)By de�nition of D (s) we do not have other 
ases.3.3. Well-typed Spe
iesThe methods of spe
ies and 
olle
tions are not polymorphi
. Instead,we use parameterized spe
ies (see 3.8), whi
h provides generi
ity. Withunbounded polymorphism in methods, we 
ould build up in
onsistentspe
ies, as shown in appendix E. On the 
ontrary, lo
al de�nitions insidea spe
ies body 
an be polymorphi
. We denote by F(�) the set of freetype variables that o

ur in type � .DEFINITION 2 (Con
rete type). A type � is said to be 
on
rete if andonly if F(�) = ; (� may 
ontain names of 
olle
tion parameters)
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11The typing environment of Fo
 is 
omposed of four sets: �;�;�;�,whi
h denote respe
tively the existing 
olle
tions, spe
ies, variables, andthe methods of self. Elements of these sets have the following form:� 
 : hxi : �ii 2 � where the �i's are 
on
rete types� s : fxi : �i = eig 2 � where the �i's are 
on
rete types� x : 8�i; � 2 �� x : � = e 2 �Typing rules for expressions are then basi
ally the same as in theHindley-Milner type inferen
e algorithm. Fig. 1 presents these rules. Wede�ne as usual three auxiliary fun
tions, mgu, Gen and Inst. mgu triesto unify two types �1 and �2, and may instantiate some type variablesduring this pro
ess. In addition to the usual algorithm, we provide twonew rules [Self1℄ and [Self2℄ to 
over uni�
ation steps between selfand � when rep is de�ned to � . The mgu rules are given in B.DEFINITION 3 (Generalization and Instantiation). Let � be a typingenvironment, and � a type.Gen(�;�) = 8�i:� , where f�ig = F(�)nF(�)Inst(8�i:�;�) = � [�i  �0i℄ where the �0i do no appear free in �.We 
an now formally introdu
e the notion of well-typed spe
ies:every method is well-typed, and inherited methods keep their types.DEFINITION 4 (Well-typed spe
ies). Given a spe
ies s de�ned by defspe
.Well-typed-spe
8j; 8xi 2 N (�j); �;�;�; fxi : �i = Bs(xi)g ` Bs(xi) : �i8i; 8j; s.t.xi 2 N (sj); fxi : �i = Bsj (xi)g 2 �(sj)�;�;�; ; ` s : fxi : �i = Bs(xi)gGiven su
h a spe
ies s, we de�ne 8xi 2 N (s); Ts(xi) = �i:3.4. Introdu
ing Dependen
iesAfter a �rst step of typing, we now de�ne the se
ond step of the stati
analysis, the dete
tion of dependen
ies 
y
le between the methods of aspe
ies. A method m1 depends on the method m2 if the name m2 isused in m1's body. So, we �rst introdu
e *e+ that takes an expressione and returns the set of the methods of self that are used in e.
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12 [var℄x : 8�i:� 0 2 � � � Inst(8�i:� 0;�)�;�;�;� ` x : �[abs℄�;�;� + x : �1;� ` e : �2�;�;�;� ` fun x! e : �1 ! �2[let℄�;�;�;� ` e1 : �1 �;�;� + x : Gen(�1;�);� ` e2 : �2�;�;�;� ` let x = e1 in e2 : �2[let re
℄�;�;� + x : Gen(�1;�);� ` e1 : �1�;�;� + x : Gen(�1;�);� ` e2 : �2�;�;�;� ` let re
 x = e1 in e2 : �2[app℄�;�;�;� ` e0 : �1 ! : : :! �n ! � 8i �;�;�;� ` ei : �i�;�;�;� ` e0(e1; : : : ; en) : �
 6= self [meth 
all℄
 2 � x : � 2 �(
)�;�;�;� ` 
!x : � [self 
all℄x : � = expr 2 ��;�;�;� ` self !x : �Figure 1. typing rules for basi
 expressionsThen we extend this to �eld de�nitions, with a distin
tion betweenlet and let re
 de�nitions. Namely, in a let re
 de�nition �, we erasethe mutual dependen
ies between the methods de�ned inside it. Indeed,we only want to dete
t dependen
y 
y
les that o

ur outside of let re
�elds. Appendix C gives a formal de�nition of these dependen
ies.Finally, we de�ne *x+s to be the dependen
ies of a method x on themethods of the spe
ies s in whi
h x is de�ned. As for Bs(x), we 
onsiderthe last de�nition in the order given by the inherits statement.DEFINITION 5 (dependen
ies in a spe
ies).Let s be a spe
ies de�ned by defspe
. Then, 8x 2 D (s):� if 9j � m; x 2 D (�j) then *x+s = *�j+� if 8j � m; x 62 D (�j)^ 9i0 � n; x 2 D (si0)^ 8i > i0 x =2 D (si)then *x+s = *x+si0
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13This leads to the notion of well-formed spe
ies, where there is no
y
le of dependen
ies outside a re
-stru
ture. Only well-formed andwell-typed spe
ies are a

eptable in Fo
.DEFINITION 6 (well-formedness).x1 Js x2 b= 9fyigi=1:::n s.t. y1 = x1; yn = x2;8i < n; yi+1 2 *yi+s.We say that s is well-formed if 8x 2 N (s) : (x Ja x).In addition, s must inherit only from well-formed spe
ies.DEFINITION 7 (normal form). Let nf be a spe
ies de�ned by:spe
ies nf = �1 : : : �n endnf is said to be in normal form if:� There is no inherits 
lause� It is well-typed.� The di�erent �elds introdu
e di�erent names:8i; j; i 6= j ) N (�i) \N (�j) = ;� A given de�nition depends only upon previous �elds:8i � n;8x 2 N (�i); *x+nf � i�1[j=1N (�j)3.5. Merging two fieldsLet s be a spe
ies de�ned by defspe
. To 
he
k that it is well-typed andwell-formed, we 
reate a spe
ies nfs that is equivalent to it, in the sensethat it shares the same de�nitions (and de
larations). Intuitively, s andnfs 
annot be distinguished from ea
h other from �outside�: they rea
tin the same way to all method 
alls.This is done by indu
tion on the inheritan
e graph. In the following,we will assimilate a spe
ies in normal form and the sequen
e of allits de�nitions (its body). a1�a2 denotes the 
on
atenation of two se-quen
es. If s does not have an inherits 
lause, then reordering its �eldsand typing ea
h method is straightforward. Otherwise, let norm(si) bethe normal forms of si and W 1 = norm(s1)�:::�norm(sn)�[�1; :::; �m℄.W 1 may 
ontain several o

urren
es of the same name, due to multipleinheritan
e or rede�nition. So we build a new sequen
e, W 2 , from W 1 ,in whi
h ea
h name is introdu
ed only on
e. W 2 is identi�ed to a
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14spe
ies ~s: spe
ies ~s = W 2 end. We prove that ~s is well-formed ifa is well-formed.To build W 2 from W 1 , we must �nd a pre
ise way to resolve �
on-�i
ts� (multiple de�nitions of the same method) in inheritan
e. To dothat, we provide a fun
tion = to merge two �elds �1 and �2 thathave some names in 
ommon. This is not a total fun
tion be
ause aname might be de�ned with two in
ompatible types. In this 
ase, thede�nition is 
onsidered ill-typed and reje
ted by =. Two let re
 �elds
an be merged even if they do not introdu
e exa
tly the same sets ofnames, be
ause you 
an inherit a let re
 �eld and then rede�ne onlysome of its methods (keeping the inherited de�nition for the others), andalso add some new methods to this re
ursion. In this 
ase, the mergingfun
tion will take every method that are involved in at least one of thetwo mutual re
ursive de�nitions. This will also imply a new terminationproof (see 5.2), involving all the mutually de�ned fun
tions, in
ludingthe inherited ones that are not rede�ned. The full de�nition of = isgiven in appendix D.The operator = enjoys two important properties. First, it preservesall the names introdu
ed by �1 or �2 in one of the de�nition, and if amethod is de�ned in �1 or �2, then it is also de�ned in �1=�2. Se
ond,it is 
ompatible with late binding, whi
h requires that a method 
allalways uses the �newest� de�nition available for it in the inheritan
epath.Proposition 1. (names preservation) 8�1; �2 st N (�1) \N (�2) 6= ;N (�1 = �2) = N (�1) [N (�2)Same property holds for D ()Proposition 2. (late binding) 8�1; �2 s:t: N (�1) \N (�2) 6= ;� 8x 2 D (�2) ; B�1=�2(x) = B�2(x)8x 2 D (�1) nD (�2) ; B�1=�2(x) = B�1(x)This property is interesting only if neither �1 nor �2 is a sig. Otherwise,we deal with empty sets, and the property is trivial.Proof. immediate by 
ase analysis on the stru
ture of �1 and �2. 2
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153.6. Inheritan
e LookupWe then build a sequen
e W 2 of de�nitions from W 1 , by analysing itselements one by one in the order of the list. This is done inside a loop,starting with W 1 = �1 : : : �n and W 2 = ;. At ea
h step, we examinethe �rst �eld remaining in W 1 and we update W 1 and W 2 . The loopends when W 1 is empty. The loop body is the following:Let W 1 = �;X and W 2 =  1 : : :  m� if N (�) \ N (W 2) = ; then W 1  X and W 2  ( 1 : : :  n; �1):if the analyzed �eld does not have any name in 
ommon with theones already pro
essed, we 
an safely add it at the end of W 2 .� else let i0 be the smallest index su
h that N (�)\N ( i0) 6= ;, thenwe do W 1  ((�= i0 );X) and W 2  ( 1 : : :  i0�1;  i0+1 : : :  m).This time, we must use =. However, in the 
ase of mutually re-
ursive de�nitions, � 
an have some names in 
ommon with morethan one  i, so that �=  i0 is kept in W 1 .To ensure the termination of the algorithm, we take the followinglexi
ographi
 ordering: (CardW 1 ;CardW 2 ). Indeed, let gW 1 and gW 2 bethe values 
omputed after one step in the loop. If there wasn't any 
on-�i
t, then CardgW 1 < CardW 1 . Else, we have CardgW 1 = CardW 1 ,and CardgW 2 < CardW 2 . 2We now establish the main properties of this algorithm, in order toshow that W 2 de�nes a well-formed spe
ies equivalent to s. We use thesame notations as above to speak about the �elds of W 1 and W 2 .Proposition 3. (Well-typed merging) With the notations above, if s iswell typed, then  i0 = � never fails.Proof. This is straightforward with the de�nition of = and def.4. 2Proposition 4. (uni
ity) 8�1; �2 2 nfs; N (�1) \N (�2) = ;.Proof. By indu
tion on the length of W 1 : If there is only one de�ni-tion, then this is trivial. If there are n + 1 de�nitions, we 
an use theindu
tion hypothesis for the �rst n steps. It remains to add the lastde�nition, �.� If 8 2 W 2 ; N (�) \N ( ) = ; then we 
an safely add it� Else, we 
on
lude by indu
tion on the size ofN (�)\�S 2W 2 N ( )�:if it 
on
erns only one name x 2 N (�), then,  i0 is the (only) de�nition
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16in W 2 su
h that x 2 N ( i0), we haveN ( i0 = �) \ 0� [�2W 2n i0 N (�)1A = ;Indeed, by de�nition of =, 8x 2 N ( i0 =�1); x 2 N ( i0)_x 2 N (�1).In both 
ases, we 
annot �nd x in any of the remaining  i, by indu
tion.� If there are m+1 names involved, then with the same notations asabove, j N (�) \ ([i 6=i0N ( i)) j� m. Namely, by indu
tion hypothesisany name introdu
ed in  i0 does not appear anywhere else in W 2 . Soevery x 2 N (�1)\N ( i0) disappears from the interse
tion while we donot add any new identi�er. 2As said above, we now de�ne ~s as spe
ies ~s = W 2 end.Proposition 5. (equivalen
e) N (s) = N (~s), D (s) = D (~s), and8x 2 D (~s) ; Bs(x) = B~s(x)Proof. In fa
t, we just have to prove that the following propertieshold at ea
h step:N (s) = n[i=1N (si) [ m[j=1N (�j) = [�2W 1N (�) [ [ 2W 2N ( )8x 2 N (s);9� 2 W 2 [ W 1 ;Bs(x) 2 �At �rst step, this is true, sin
e W 1 
ontains all the de�nitions foundin s or its parents. Suppose that the properties are still true after nsteps. Let �1 be the de�nition to be analyzed.If 8� 2 W 2 N (�1) \ N (�) = ; then we just move �1 from W 1 toW 2 , so that neither the set of names appearing in one of them , northe asso
iated de�nitions 
hange.Else, with  i0 su
h that N (�1) \ N ( i0) 6= ;: names preservationproperty says that N ( i0 = �) = N ( i0) [N (�), so that the globalnamespa
e is left un
hanged. Besides, this is true for D (�).Moreover, the late binding property shows that the methods bod-ies that are removed are nB i0 (x); x 2 D ( i0) \ D (�1)o. Sin
e W 1 isordered, we have, by de�nition of Bs(x)8x 2 D ( i0) \ D (�)Bs(x) 6= B i0 (x)At the end of the 
onstru
tion, W 1 = ;, so that N (x) = S 2W 2 N ( ).Moreover, we have one de�nition for ea
h method: Bs(x) = B~s(x). 2We 
an now state the main result of this se
tion:
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17THEOREM 1 (normal form of a spe
ies).For ea
h well-formed and well-typed spe
ies s, there exists a spe
iesnfs, whi
h is in normal form and enjoys the following properties:� names: N (nfs) = N (s) and D (nfs) = D (s)� de�nitions: 8x 2 D (s) ;Bs(x) = Bnfs(x)Proof. This follows dire
tly from Props. 3, 4 and 5. It just remainsto prove that ~s is well formed.DEFINITION 8. Let s be a spe
ies without inherits 
lause, su
h that8x 2 N (s);9!� 2 s; x 2 N (�)We will note Ds (x) the (unique) de�nition in s where x appears.Proposition 6. Using above notations, 8x 2 N (s),with Dx = f� 2 W 1 j x 2 N (�)g, we have N (D~s (x)) = �S�2Dx N (�)�Proof. On
e again, we will state a property veri�ed at ea
h step ofthe 
onstru
tion of W 2 , namely, that0� [x2N (�)N (�)1A [N (DW 2 (x)) = [�2DxN (�)This is trivial at �rst step, when W 2 is still empty and W 1 
ontainsall the �elds involved in s. If it is still veri�ed after n steps, then with� the �rst �eld of W 1 , we have three possible 
ases:� if we 
an add �, then nothing is 
hanged for the union.� x =2 �; x =2  i0 . Then the de�nitions where x appear do not 
hange.� x 2 �1, or x 2  i0 . Then we remove  i0 , but add  i0 = �. Sin
eN ( i0=�) = N ( i0)[N (�1), by Prop 1, the property is preserved.At the end, we are left with fDW 2 (x)g, and the property holds. 2We 
an now prove that ~s is well-formed: if this wasn't the 
ase,
onsider x1 and x2 in N (~s) su
h that, by de�nition of (non) well-formedness, x1 J~s x2 J~s x1. Then, sin
e 8x 2 D (~s) ; B~s(x) = Bs(x),by mutual re
 Ds (x1) = Ds (x2), so that x2 2 [Dx1N (�) = N (D~s (x1)),and D~s (x1) = D~s (x2)> Then this 
ommon de�nition is a let re
de�nition, in 
ontradi
tion with x1 J~s x2, so that ~s is well-formed.
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18 Sin
e ~s is well-formed, J~s is a stri
t ordering. Then, we just have toreorder the �elds of W 2 a

ording to J~s. 23.7. Colle
tionsA 
olle
tion 
 
an only be 
reated from a 
ompletely de�ned spe
ies s.In addition, we abstra
t its 
arrier type and all the methods.[
oll℄ s : fxi : �i = eig 2 � 8i ei 6= ?�;�;�;� ` 
olle
tion 
 implements s : hxi : �i[self 
℄iAs often in mathemati
s, we denote by the same name the 
olle
tion,and its 
arrier type, that is the set on top of whi
h the 
olle
tion is built:in the types of the interfa
e, self is repla
ed by the 
olle
tion's name.3.8. Parameterized Spe
iesFirst, we de�ne a fun
tion A that takes a spe
ies s and a name 
 andreturns an interfa
e (abstra
ting all the methods and repla
ing self by
 in the types). Indeed a 
olle
tion parameter, of the form �
 is s� addsa 
olle
tion 
 of interfa
e A(s; 
) in the environment.DEFINITION 9 (abstra
tion). Let s = fxi : �i = eigi=1::n be a typedspe
ies, and 
 a 
olle
tion name. ThenA(s; 
) = hxi : �i[self  
℄ii=1::nA 
olle
tion parameter may be instantiated by a ri
her stru
turethan expe
ted. For instan
e, polynomials must be de�ned over a ring,but may perfe
tly be given a �eld instead. So we de�ne a sub-spe
iesrelation, 4 in order to allow su
h instantiations.DEFINITION 10 (sub-spe
ies). Let s1, s2 be two spe
ies.s1 4 s2 b=N (s2) � N (s1) ^ 8x 2 N (s2);Ts1(x) = Ts2(x)Tsi(x) being de�ned as in def.4By def.4, if s1 inherits from s2, then s1 4 s2. Sin
e only the types ofthe methods are 
on
erned, the relation is easily extended to interfa
es.We 
an now present the typing rules for parameterized spe
ies.
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19[ent-prm℄�;�;� + x : �;� ` spe
ies s(prms) expr_spe
 : (x in �)type_spe
�;�;�;� ` spe
ies s(x in �; prms) expr_spe
 : type_spe
[
oll-prm℄�;�;�;� ` i : inst �+ 
 : A(inst; 
);�;�;� ` spe
ies s(prms)expr_spe
 : type_spe
�;�;�;� ` spe
ies s(
 is i; prms) expr_spe
 :(
 is A(inst ; 
))type_spe
[ent-inst℄(s; (x 2 �)type_spe
) 2 � �;�;�;� ` e : ��;�;�;� ` s(e) : type_spe
[
oll-inst℄(s; (
1 is i1)type_spe
) 2 � 
2; i2 2 � i2 4 A(i1; 
2)�;�;�;� ` s(
2) : type_spe
[
1  
2℄[prm-inherit℄�;�;�;� ` si : fxi;j : �i;j = ei;jg�;�;�;� ` spe
ies s inheritsfxi;j : �i;j = ei;jg = defs :fyj : �j = e0jg�;�;�;� ` spe
ies s inherits si = defs : fyj : �j = e0jg4. E�e
tive 
omputation: translation to O
amlThe initial development of Fo
 has been done in O
aml [17℄, a fun
-tional language of the ML family developed at INRIA. The O
amlprodu
es a very e�
ient 
ode, while the language has a 
lear semanti
sand features that 
over the needs of Fo
, as obje
ts and modules[3℄.Indeed, spe
ies 
an be quite easily translated into 
lasses. Spe
iesinheritan
e in Fo
 is translated by 
lass inheritan
e in O
aml. A
olle
tion is represented as an obje
t (i.e an instan
e) of the 
lass that
orrespond to the spe
ies it implements. Type abstra
tion is a
hievedthrough a module wrapper around the obje
t. Fun
tions outside themodule 
an only a

ess entities through the methods of the obje
t.4.1. Translation of Spe
iesTranslation of expressions is straightforward. Ea
h method in Fo
 istranslated into a method in O
aml. There is no di�eren
e between a
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20method whose body is a 
onstant, and a method that is a fun
tion. Thisis a problem for 
onstant methods be
ause in the obje
t-oriented 
on-text of O
aml they are evaluated at ea
h 
all. So we 
an optimize thetranslation by using instan
e variables in O
aml to represent 
onstantmethods of Fo
. These instan
e variables must be initialized when anew obje
t is 
reated. The order in whi
h variables are initialized isexa
tly the order given by the dependen
y analysis of Fo
.4.2. ParametersParameters in Fo
 are translated by abstra
ting the 
lass de�nitionwith respe
t to them. For instan
e, to de�ne modular integers from anypossible implementation of integers, we would have the Fo
 de�nition:spe
ies int mod (base is int spe
, n in base) . . .whi
h is translated into
lass ['t,'base 
arrier,'base imp℄ int mod =fun (base:'base imp) �> fun (n:'base 
arrier) �>obje
t
onstraint 'base imp = ['base 
arrier℄#int spe
. . .endEa
h 
olle
tion parameter adds two type parameters in the O
amltranslation. the �rst one (base_
arrier) 
orrespond to its 
arrier type.The se
ond one (base_imp) allows us to instantiate int_mod with anyinstan
e of a sub
lass of int_spe
. We also add a type 
onstraint whi
hexpresses the fa
t that 'base_
arrier is the 
arrier of base.5. Adding Properties and Proofs5.1. SyntaxWe now extend the syntax of 2.2 with two new �eld de�nitions: the-orem and property. In fa
t, a proof is a term that is built fromother proofs by 
omposition, substitution, et
. This is analogous to the
onstru
tion of a program. The type veri�
ation of this proof term inthe Coq language ensures the validity of the proof itself.def_�eld ::= . . . j theorem x = prop proof: [ deps ℄ proofdeps ::= { (de
l: j def:) { xi }* }*�eld ::= . . . j property x = propprop ::= expr j prop and prop j prop or prop j prop ! propj not prop j all x in typ, prop j ex x in typ, prop
main.tex; 14/08/2002; 18:32; p.20



21For the time being, a proof is a Coq s
ript that 
orresponds to thetranslation of the property it is bound to. A proof language dedi
atedto Fo
 is under development.5.2. Def-Dependen
ies and De
l-dependen
iesWhen talking about proofs, the notion of dependen
y introdu
ed inthe previous se
tions (see 3.4) be
omes too weak. For instan
e, we 
anexpress that plus in the spe
ies monoid is asso
iative:property asso
 =all x,y,z in self,self !eq(self !plus(self !plus(x,y),z)self !plus(x,self !plus(y,z)))then we are able to prove this property for the naive implementation ofplus on Peano's integer: 0 + n = n and su

(m) + n = su

(m + n).It is done by indu
tion on x, y and z, and uses the exa
t de�nitionof plus. In other words, the proof of asso
 that we obtain dependsupon the de�nition of plus, while dependen
ies we have seen so farwere only upon the type of the methods. We 
all def-dependen
ies thisnew kind of dependen
ies, and speak of de
l-dependen
y when only thetype of the method is needed. We need to avoid 
y
les of dependen
ies�both de
l - and def - ones. The distin
tion between the two o

urs dur-ing inheritan
e resolution, when a method is rede�ned. We must nowerase every proof that def-depends upon this method, and prove theproperty for the new implementation. For instan
e, if we de
ide to usea more e�
ient algorithm, that uses internally a binary representationof integers for plus, the old proof of asso
 is not 
orre
t anymore.Apart from expli
itly stated properties, some proof obligations arerequested by Fo
.� For every let re
 de�nition, we have to prove that any 
all to amethod ofN (re
_def) ends. This proof has def-dependen
ies uponall the methods in N (re
_def). Even if only one of the method isrede�ned, a new proof for all the methods involved is requested.� For ea
h spe
ies that has an equality (that is that derives fromsetoid), we must prove that ea
h fun
tion that uses entities of thisspe
ies is 
ompatible with this equality.� For some parti
ular representations, additional proofs are requested.For instan
e, if we work with the native integers of O
aml, wemust ensure that there is no over�ow.
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225.3. Dependen
ies upon the 
arrierUntil now, it is synta
ti
ally impossible to de�ne a 
arrier that dependsupon a method, but 
onversely, �normal� methods often depend uponthe 
arrier. We have to know if we use de
l- or def- dependen
ies.Given an expression e, if a sub-expression of e has type self, thenthere is a de
l-dependen
y upon the 
arrier. Def-dependen
ies uponthe 
arrier 
an be dete
ted during the typing phase. More pre
isely, ifan uni�
ation must use one of the two Self rules of mgu, then there isa def-dependen
y. Indeed e 
annot be typed in an environment wherethe 
arrier is bound to another type. For instan
e, if we de�nespe
ies 
ounter =rep = int;let in
 in self �> self = fun x �> x + 1;endin
 def-depends upon the 
arrier int: in order to type in
 withself! self, we must know that self is bound to int.Su
h def-dependen
ies addresses a new issue, sin
e they may o

urin statements too. For instan
e, we 
an add to 
ounter the theorem:theorem in
 spe
 : all x in self, self !in
(x) >= x + 1 proof : . . .The statement of in
_spe
 has a def-dependen
y on the 
arrier, so thatit would be impossible to build the interfa
e of 
ounter: rep 
annot beabstra
ted. Sin
e we want to build interfa
es for ea
h spe
ies (1.3.2),su
h spe
ies de�nition must be reje
ted.In Fig. 5.3, we de�ne �� = �[Bs(rep)  ?℄ whi
h hide the 
on-
rete representation of rep when typing the statements. This ensuresthat def-dependen
ies upon rep at the property level are reje
ted asill-typed. The Expr rule 
oer
e every boolean expression used in astatement into prop. Following Curry-Howard-de Bruijn isomorphism,we also extend Ts(x) to theorem and property �elds as being thestatement of x in s.5.4. Inheritan
e LookupWe extend straightforwardly the de�nitions of the pre
eding se
tion.*�+ now denotes de
l-dependen
y, while **�++ denotes def-dependen
ies.DEFINITION 11 (binding of a method). Let s be de�ned by defspe
,and x 2 N (s). Bs(x), Is(x) and D (s) are re
ursively de�ned as follows.� if 8i � n; x =2 D (si) ^ 8j � m; x =2 D (�j) then Bs(x) = ?.
main.tex; 14/08/2002; 18:32; p.22



23[expr℄�;�;�;�� ` expr : bool�;�;�;� ` expr : prop [not℄�;�;�;� ` p : prop�;�;�;� ` not p : prop[and℄�;�;�;� ` p1 : prop �;�;�;� ` p2 : prop�;�;�;� ` p1 � p2 : prop[ex℄�;�;� + x : �;� ` p : prop�;�;�;� ` ? x in �; p : propwith � 2 fand;or;!g and ? 2 fall; exgFigure 2. Typing rules for statements� if 9i � m; �i is let x = expr then Bs(x) = expr, and Is(x) =n+ 1.� if 9i � m; �i is let re
 fx1 = expr1 : : : xl = expr lg, and xj = xthen Bs(x) = expr j and Is(x) = n+ 1� if 9i � m; �i is theorem x : :::proof then Bs(x) = proof , andIs(x) = n+ 1� else let i0 be the greatest index su
h that x 2 D (si0) then Bs(x) =Bsi0 (x), and Is(x) = i0DEFINITION 12 (de�ned methods). D (s) = fx 2 N (s);Bs(x) 6= ?gWe then de�ne the dependen
ies of x in a spe
ies s. Note that notonly proofs but also statements may have de
l-dependen
ies, so that weanalyze Ts(x) as well as Bs(x).DEFINITION 13 (dependen
ies inside a spe
ies).� if x is a fun
tion, then its de
l-dependen
ies are de�ned as in def.5� else, *x+s = *Bs(x)+ [ *Ts(x)+ and **x++s = **Bs(x)++DEFINITION 14. x1 Js x2 b=9yii=1:::n s:t: y1 = x1; yn = x2;8i <nyi+1 2 *yi+s [ **yi++s.We say that s is well-formed if 8x 2 N (s):x Js x.
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24 Ea
h well formed and well-typed spe
ies still has a normal form.Due to def-dependen
ies, some inherited proofs must be removed, butwe want to erase as few proofs as possible. So the main result of thisse
tion is that for ea
h well-formed spe
ies s, there exist a normal formwith the same de
larations as s, and a subset of its de�nitions whi
h ismaximal wrt in
lusion.In order to pre
isely state the theorem, we need a te
hni
al de�nition.
hanged(y; x) is true if and only if the de�nition of y has 
hanged sin
ethe last de�nition of x (following the inherits 
lause of s).DEFINITION 15.
hanged(y; x) is a relation over N (s), s being de�ned by defspe

hanged(y; x) () �9j > Is(x); y 2 D (sj) ^ Bsj (y) 6= BsIs(x)(y)�_ (9k; y 2 D (�k) ^ Is(x) 6= n+ 1)= is extended to merge theorems and properties. Names-preservationand late-binding are preserved by this extension.To build nfs , the main di�eren
e is that we must now take def-dependen
ies into a

ount when merging two de�nitions. First, we mustslightly re�ne the 
onstru
tion of W 1 to avoid erasing new de�nitions.Let i1; : : : ; in be a permutation of 1 : : : n su
h that 8j < k; N (�ij )\**�ik++ = ;. Su
h a permutation exists by de�nition of well-formedness.Then W 1 = norm(a1)� : : :�norm(an)�[defi1 : : : defin ℄Then, we build W 2 step by step. Now, if there is a 
on�i
t between�1 and  i0 , some proofs of W 2 must be erased. Let N = N (�1)\N ( i0).Ea
h d 2 W 2 s:t: N \ **d++ 6= ; is repla
ed by property x = Td(x)2.We 
an now prove that we build a normal form. First, de�nitionuni
ity still holds, by indu
tion on the length of W 1 . Then, we stillhave N (nfs) = N (s), sin
e there is no 
hange here. It remains to provethat we do not erase too many proofs.Proposition 7. (preservation of de�nitions)D (nfs) � D (s)8x 2 D (nfs) ;Bs(x) = Bnfs(x)8x 2 D (s) nD (nfs) ;9y 2 **x++s s:t:y =2 D (nfs) or y 2 D (nfs) ^ 
hanged(y; x).Proof. First, D (nfs) � D (s). Indeed, if we don't 
onsider the def-dependen
ies, we would have the equality, as in pre
eding se
tion. More-over, sin
e Prop. 2 still holds, the bodies that are not erased are always2 Only theorems have def-dependen
ies.
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25the latest de�nition of the method. It remains to prove that we do noterase too mu
h proofs.Suppose that we have x 2 D (s) nD (nfs). If 9�i s:t: x 2 D (�i), then9�j s:t: y 2 D (�j) su
h that x def-depends upon y and �i is analyzedbefore �j . Otherwise, x would be de�ned in nfs too. Sin
e we havereordered the list of de�nitions, this 
ase 
annot o

ur.Otherwise, 9si0 s:t: x 2 D (si0), and 8y 2 **Bsi0 (x)++;Bs(y) = Bsi0 (y)Su
h an y may be rede�ned in si0 itself, but sin
e we work with thenormal forms of father spe
ies, the 
orresponding de�nition is analyzedbefore the one of x in building W 2 . If it was rede�ned after si0 , thenthe hypothesis wouldn't hold, so that this 
ase 
annot o

ur. 2It remains to prove that nfs is well-formed. Prop 3 and 6 are easilyextended, so that we 
an 
on
lude the same way as above:THEOREM 2 (normal form of well-formed spe
ies). For ea
h well-formedand well-typed spe
ies s, there exists a spe
ies nfs, whi
h is in normalform and enjoys the following properties:� names: N (nfs) = N (s) and D (nfs) � D (s)� de�nitions: 8x 2 D (nfs) ;Bs(x) = Bnfs(x)� 8x 2 D (s) nD (nfs) ;9y 2 **x++s s:t:(y =2 D (nfs)) or (y 2 D (nfs) ^ 
hanged (y; x)).6. Certi�
ation: the translation into 
oq6.1. Overview of the translationCoq is a proof-
he
ker, based on the Cal
ulus of Indu
tive Constru
-tions [22℄. Its language is very expressive, and it was quite natural to
hoose it as the target language of the 
erti�
ation part of Fo
, be
auseit 
ontains as a sublanguage the purely fun
tional part of O
aml.In his PhD [5℄, S. Boulmé des
ribes a 
omplete axiomatization inCoq of inheritan
e and de
l- and def-dependen
ies (
alled opaque andtransparent in his work). In this formalism, the size of the terms growsup very fast with the number of methods and inheritan
e steps, andthese terms soon be
ome too 
ompli
ated for the Coq type-
he
ker. Wethen designed a new approa
h that deals with smaller Coq expressions.As in Boulmé's work, interfa
es are represented by Re
ords (seebelow), and 
olle
tions by instan
es of the 
orresponding Re
ords.Our spe
ies de�nitions, however, are quite di�erent. In fa
t, we build a
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26set of method generators. A method generator is a lambda-lifting whi
hprodu
es the body of a method. For instan
e, in the spe
ies a below,spe
ies a =sig eq in self�> self�>bool;let neq = fun x �> fun y �> notb(self !eq(x,y));The method generator for neq is (using Coq syntax)[abst T:Set℄[abst eq:abst T�>abst T�>bool℄[x,y:abst T℄(notb (abst eq x y))The �rst line 
orresponds to the abstra
tions we have made. These
ond line is the translation of the method's body in the environmentset up by the appropriated abstra
tions. In parti
ular, the 
all to self !eqhas been repla
ed by the variable abst_eq.To 
reate a 
olle
tion from a 
ompletely de�ned spe
ies s, we followthe order of the methods in the normal form of s. For ea
h method,we sele
t the 
orresponding generator and apply it to the pre
edingmethods of the 
olle
tion.6.2. Dependent Re
ordsCoq Re
ords are quite similar to the re
ords of most programminglanguages: n-uples whose 
omponents (
alled �elds) are named. Themain distin
tion is that the type of one 
omponent may depend on thepre
eding ones, i.e. use their labels. For ea
h spe
ies de�ned in Fo
,we de�ne a Re
ord type in Coq, whi
h denotes its interfa
e. If thespe
ies has the form fsi : �i = eig in Fo
, the Re
ord is de�ned asRe
ord name_spe
 : Type := mk_spe
 fsi : �igIn 
ontrast with the O
aml translation, here we expli
itly give all the�elds of the Re
ord, in the order given by the normal form.6.3. Method generatorsA spe
ies de�nition 
onsists in the 
reation of the method generators,for the fun
tions and theorems that are (re)de�ned in the spe
ies itself.To translate the de�nition of x, we 
onsider the minimal environment� ne
essary to type the body of x. We keep the methods xi x dependsupon, but we need di�erent handling for de
l-dependen
ies (where thebody of xi 
an be forgotten) and def-dependen
ies (where this bodymust be kept in �). Moreover, the bodies of these def-dependen
ies areexpressions themselves, and we also need to keep their dependen
ies.
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27DEFINITION 16 (Minimal Environment). Let � = fxi : �i = eig ande be an expression. � e e is de�ned as follows.� u e = fxj : �j = new_ej jxj 2 *e+ ^ (xj : �j = ej) 2 �gwhere new_ej = � ej if xj 2 **e++? otherwiseU1 = � u eUk+1 = Uk [ [(xj :�j=ej)2Uk � u ej� e e = [k>0Ukwhere fx : � = ?g [ fx : � = eg = fx : � = egSin
e the sequen
e Ui is growing and bounded by �, it has a leastupper bound, so the de�nition of e is 
orre
t. For ea
h identi�er presentin � e d, we de�ne either a �-abstra
tion (for de
l-dependen
ies) or alo
al binding (for def-dependen
ies).DEFINITION 17 (Translation of a method's environment).J;; dK = JdKJfx : � = ?; lg; dK = [abst_x : � ℄ Jl; dKJfx : � = e; lg; dK = Let abst_x : � := (gen_x abst_si)in Jl; dKwhere gen_x is the method generator of x (inherited or not: a

ordingto the dependen
y analysis, it is de�ned before this translation).Of 
ourse, we need to apply gen_x to some arguments, namely themethods si from � e x that are, by def.16, part of the environment weuse. The translation of the body itself is straightforward, ex
ept thatea
h method 
all self !x is turned into a variable referen
e, abst_x.7. Related worksThere exist a 
ertain number of proje
ts in the area of spe
i�
ationof algebrai
 stru
tures. Among them, CoFI [7℄ o�ers a language, CASL(Common Algebrai
 Spe
i�
ation Language), in whi
h it might be inter-esting to express the interfa
es of the Fo
 hierar
hy. On the other hand,OpenMath [8℄ 
an be very useful to represent Fo
 entities. OpenMathprovides a standard for a semanti
ally-ri
h representation of mathemat-i
al obje
ts in XML. OMDo
, an extension of OpenMath whi
h handles
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28whole do
uments 
an also help Fo
 to provide spe
ies des
riptions in astandard XML format. However, this 
on
erns only spe
i�
ations, notthe 
on
rete implementation of the algorithms.Algebrai
 hierar
hies have been developed in various theorem-proversor proof-
he
kers. In parti
ular, Loi
 Pottier [20℄ has developed an hugelibrary in Coq about fundamental notions of algebra, up to �elds. H.Geuvers and the FTA proje
t [13℄ are also using the Re
ords of Coq torepresent algebrai
 stru
tures, in order to de�ne abstra
t and 
on
reterepresentations of reals and 
omplex. In addition, R. Polla
k [19℄ andG. Betarte [2℄ have given their own embedding of dependent re
ords inType Theory. At last, a fairly large amount of proofs has been doneinside the Mizar proje
t, whi
h attempts to build a database of impor-tant theorems of mathemati
s. We 
an also mention Imps [11℄, a proofsystem whi
h aims at providing a 
omputational support for mathe-mati
al proofs. However, none of these works in
lude a 
omputational
ounterpart, similar to the O
aml translation of Fo
. P. Ja
kson [15℄implemented a spe
i�
ation of multivariate polynomials in Nuprl. Hisapproa
h is quite di�erent from Fo
, as in his formalism, a group 
annot be dire
tly 
onsidered as a monoid, for instan
e. In other words,the mathemati
al hierar
hy is not fully re�e
ted in this 
onstru
tion.8. Future work8.1. Higher-order methodsIn addition to the 
ore language, some new features have been addedto 
over pra
ti
al requests from the programmers. Some further workis needed to in
orporate them in the formalization desribed above. Inparti
ular, we need a way to de�ne a method that returns a �
olle
tion�,i.e. a spe
ies with all its methods de�ned. For instan
e, we 
an de�ne thespe
ies of multivariate polynomials. Assuming that polynom is a spe
iesparameterized by the name of the variable, the ring of 
oe�
ients andthe ordered set of degrees, we will de�ne a method that lifts the wholespe
ies to the 
orre
t number of variables for a given operation:let updom (s in string)=polynom(s,self,my degree)It is not 
lear yet how we 
an extend dependen
y analysis to su
hmethods. The most simple solution seems to 
onsider that updom de
l-depends upon all the methods of self that polynom 
an see throughthe interfa
e ring.
main.tex; 14/08/2002; 18:32; p.28



298.2. The proof languageAs said in se
. 5.1, it is now ne
essary to de�ne a proof language for Fo
that will be independent from Coq s
ripts. It is yet possible to writesome basi
 proofs dire
tly in Fo
 but some features are still missing:In parti
ular, proof obligations are not yet generated. In addition, wehave to provide more support for indu
tion and rewriting steps.9. Con
lusionAs a 
on
lusion, we 
an say that Fo
 has now a
hieved quite goodexpressive power, at least for its 
omputational part. The stati
 analysesthat are dis
ussed in se
. 3 and 5 have been su

essfully implementedin a 
ompiler that generates O
aml as well as Coq 
ode, following theideas of se
 4 and 6.On the one hand, we are able to provide a good environment to provethe properties that are needed in ea
h spe
ies' implementation. We stillhave to spe
ify a language to build proofs in this environment.On the other hand, the O
aml 
ode produ
ed by Fo
 
onforms tothe initial requirements of the proje
t. Moreover, the generated 
ode isquite e�
ient, thanks to the optimizations allowed by stati
 analysis.10. A
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31A. Names introdu
ed in a �eld and a spe
iesDEFINITION 18. N (def ) and D (def ) are de�ned in the followingway: N (let x = e) = N (sig x in �) = fxgN (let re
 fx1 = e1; : : : ;xn = eng) = fxigi=1:::nN (rep) = N (rep = �) = repD (def) = ; if def = � sig s in �rep= N (def) elseN (theorem x = :::) = fxg N (property x = :::) = fxgD (theorem x = :::) = fxg D (property x = :::) = ;Consider the following statement:spe
ies s inherits s1; : : : sn = �1 : : : �m su
h that8i; j � m;N (�i) \N (�j) = ;Then, we de�ne N (s) and D (s):N (s) =  n[i=1N (si)! [0� m[j=1N (�j)1AD (s) =  n[i=1D (si)! [0� m[j=1D (�j)1A
B. Most General Uni�erDEFINITION 19 (Most General Uni�er).Let � be either a 
on
rete type � or ?,[Eq℄mgu�(�; �) = �; id [Var1℄mgu�(�; �) = �; [� � ℄ � not free in �[Var2℄mgu�(�; �) = �; [� � ℄ � not free in �
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32 [Arrow℄mgu�(�1; � 01) = � 001 ; � mgu�(�2�; � 02�) = � 002 ; �mgu�(�1 ! �2; � 01 ! � 02) = � 001 ! � 002 ; ��[Prod℄mgu�(�1; � 01) = � 001 ; � mgu�(�2�; � 02�) = � 002 ; �mgu�(�1 � �2; � 01 ! � 02) = � 001 ! � 002 ; ��[Self1℄mgu�(self; �) = self; id [Self2℄mgu�(�; self) = self; idIn every other 
ase, mgu� fails.Given �;�;�;� a typing environment, and �1; �2 two types su
h thatmgu�(rep)(�1; �2) = �3; � we de�ne Mgu(�1; �2)b=�3�.C. Dependen
iesDEFINITION 20. *�+ is de�ned by indu
tion on the expressions of thelanguage: *x+ = ;*let x = e1 in e2+ = *e1+� *e2+*let re
 x = e1 in e2+ = *e1+� *e2+*�x:e+ = *e+*
:x+ = � ; when 
 6= selffxg when 
 = self*e0(e1; : : : ; en)+ = *e0+ [ (Sni=1 *ei+)DEFINITION 21 (dependen
ies of prop). If a proposition p 
onsistsof an expression then its dependen
ies are already de�ned in def.20.Otherwise, we de�ne them by indu
tion on the stru
ture of p:*p1 and p2+ = *p1+� *p2+ *p1 or p2+ = *p1+� *p2+*p1 ! p2+ = *p1+� *p2+ *not p+ = *p+ *all x in �; p+ = *p+*ex x in �; p+ = *p+DEFINITION 22. *let x = e+ = *e+*let re
 fx1 = e1 : : : xn = eng+ = [ni=1*ei+n fxigi=1:::n*sig x in �+ = ;*property x = p+ = *p+*theorem x = p proof: : : : de
l x1; : : : ; xn; : : :+ = *p+ [ fxigi=1::n
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33DEFINITION 23 (def-dependen
ies).**proof: : : : def:x1 : : : xn : : :++ = fxigi=1:::nLet � be a method de�nition� if � is theorem x = : : : proof then **�++ = **proof++� otherwise **�++ = ;D. Merging two �eldsDEFINITION 24.Let �1 and �2 be two �elds, with N (�1) \N (�2) 6= ;.We de�ne �1 = �2 the following way. Note that this is a partialfun
tion, sin
e 
alls to Mgu may fail.sig x in � = sig x in � = sig x in �sig x in �1 = let x in �2 = e2 = let x in Mgu(�1; �2) = e2sig x in �1 = let re
(x in �2 = e2) [ C = let re
(x in Mgu(�1; �2) = e2) [Clet re
(x in �1 = e1) [ C = sig x in �2 = let re
(x in Mgu(�1; �2) = e1) [Clet x in �1 = e1 = let x in �2 = e2 = let x in Mgu(�1; �2) = e2let x in �1 = e1 = sig x in �2 = let x in Mgu(�1; �2) = e1let re
fxi [in �i℄ = exiyi [in �i℄ = eyig = let re
fxi [in �i℄ = ex0izi [in �i℄ = ezig = let re
(fxi in Mgu(�i; �i) = ex0ig[fyi in �i = eyig[fzi in �i = ezig)DEFINITION 25 (merging properties and theorems).property x = p = property x = p = property x = pproperty x = p = theorem x = pproof:prf = theorem x = pproof:prftheorem x = pproof:prf = property x = p = theorem x = pproof:prftheorem x = pproof:prf1 = theorem x = pproof:prf2 = theorem x = pproof:prf2Other 
ases are irrelevant: the two �eld de�nitions must share the samename and the same statement ( i.e. Tdef (x))
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34 E. The Issues of Polymorphi
 Spe
iesspe
ies polymorph = rep; let id = fun x �> x; endspe
ies prm (x is polymorph) =rep = unit;let elt = x!id(true);endspe
ies imp inherits polymorph =rep = unit; let id = fun x �> x + 1;end
olle
tion Imp implements imp
olle
tion error implements prm(Imp)Here, polymorph has a polymorphi
 method id, with type 'a->'a.Then prm takes any implementation x of polymorph as parameter, anduses x!id with type bool -> bool. imp is a sub-spe
ies of polymorphwhi
h rede�nes id with type int->int. Both bool -> bool and int->intare valid instan
es of 'a->'a, so that the de�nition appears to be
orre
t. However, the 
olle
tion error is not well-typed: Its methodelt would evaluate in true + 1.
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