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Abstract. In this paper, we present the Foc langugage, dedicated to the de-
velopment of certified computer algebra librairies (i.e. sets of programs). These
libraries are based on a hierarchy of implementations of mathematical structures.
After presenting the core set of features of our language, we describe the static
analyses, which reject inconsistent programs. We then show how we translate Foc
definitions into OcaMmL, and CoQ, our target languages for the computational part
and the proof checking respectively.

1. Introduction

1.1. THE Foc PROJECT

1.1.1. Computer algebra systems.

A computer algebra system (CAS) includes two essential aspects of
mathematical knowledge: first, it provides, more or less explicitely, a
formalization of the mathematical structures (e.g. the definition of what
is a monoid, a group, a ring, etc). Second, it must give efficient im-
plementations of the algorithms used in these structures. Efficiency is
extremely important, because CAS are used in many fields of engi-
neering and research to perform arbitrarily complex computations. The
range of applications of CAS is only limited by their performance, not
by the demands of the users. This explains the emphasis of current CAS
on speed of built-in algorithms, and on ease of implementation of new,
more complex, faster algorithms.

On the other hand, the formalization of algebraic structures is an
essential part of CAS [9], so every CAS must have some way of rep-
resenting the mathematical structures, which provides the context in
which its algorithms will work. This correspondence between the math-
ematical objects and their computer representation needs to be clearly
specified and documented, even if it is not always the case.

1.1.2. State of the art in CAS.

The design of current computer algebra systems puts heavy emphasis
on the efficient implementation of state-of-the-art algorithms. In con-
trast, the programming language offered to the user of these systems
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is often poorly designed. In some systems (such as Maple or Mupad)
the language is considered as some kind of scripting language rather
than an important feature of the CAS. Even in Axiom [16], Aldor,
or Magma, where the user language is a central part of the system,
computer algebra issues take precedence over the language design and
specification.

Another issue with current CAS is the complexity of the algorithms
and their implementations. The algorithms used in computer algebra
are generally proved correct with a mathematical proof, but they are
complex and hard to understand, and implementing them is far from
trivial, which explains the presence of obscure bugs in all current CAS.

These bugs are dangerous because the engineers and scientists tend
to trust the answers given by the CAS, and the consequences of a wrong
computation can range from a few days of time lost in tracking down
the error, to a complete failure of the system designed by the engineer.

1.1.3. The Foc approach to computer algebra.

The Foc project! [3], under the direction of Th. Hardin, attempts to
deal with these issues by providing a new programming language dedi-
cated to computer algebra. We intend to ground the language on firm
theoretical results, with clear semantics and an efficient implementation
via translation to OCAML. Our language has functional and object-
oriented features carefully tailored to the task at hand. In order to
tackle the correctness problem, the language provides means for the
programmers to write formal proofs of their code, and to have them
verified by a proof checker (C0Q).

The programming part of our approach is validated by the Foc
library, developped by R. Rioboo [4], which includes some complex al-
gorithms with performance comparable to the best CAS in existence[4].

The fact that we design our own language allows us to express more
easily than in a general purpose language some very important con-
cepts of the computer algebra, and in particular the carrier type of a
structure [12]. On the other hand, we can also restrict object-oriented
features to what is strictly necessary (Sec. 3) to computer algebra, and
avoid unsound constructions, such as open recursion, which can lead to
inconsistencies when used carelessly.

1.1.4. Contents

In this paper we describe the core features of the Foc language. The
remainder of this section introduces informally the fundamental con-
cepts of Foc. Then, we present the concrete syntax (Sec. 2). Some
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programming errors cannot be avoided at the syntax level, and we have
designed a static code analysis to detect them (Sec. 3). We are then
able to describe the compilation of the Foc source to OcAML (Sec. 4).
Finally, we show how this work is extended to statements and proofs
(Sec. 5) and explain the translation into CoQ (Sec. 6). Main results are
the algorithm that performs the static analysis and the handling of late
binding (see below) in COQ.

1.2. SPECIES

Species correspond to algebraic structures in mathematics and play a
primordial role in FOC: they are the nodes of the hierarchy of structures
constituting the library. Entities are the elements of species, the objects
manipulated by the algorithms.

1.2.1. Entities.

Entities represent mathematical objects, such as 0 or X2 4+ 3% X Y,
in the computer universe. One issue here is that there is no simple
relationship between these two worlds. On the one hand, the constant
1 of the integer type can be used to represent 1 € Z/27 as well as
1 € Z/5Z. Of course, it would be a mistake to mix them up, since they
do not have the same properties. On the other hand, the polynomial
X +2 can be viewed as an ordered list of coefficients, [1;2], or as a list of
pairs (sparse representation): [(1,1);(2,0)]. In this case, adding two
polynomials that do not share the same concrete representation is likely
to produce an error. To avoid such confusion, we need an abstraction
mechanism in the spirit of abstract data types.

1.2.2. Species and Methods

A species can be seen as a set of methods, which are identified by their
names. A method can be either declared or defined. Declared methods
reflect the constants, the primitive operations, and the axioms that
define a structure in mathematics. Defined methods represent imple-
mented operations (i.e. algorithms) and theorems built up (and proved)
from these declared methods. There are three different categories of
methods:

— The carrier, or representation type (rep) of a species is a type from
the FOC type language. In other words (see Sec.2.1), it can be an
atomic type, a product, a function type, or a parameterized type
(such as list (int)). It represents the type of the entities that the
species manipulates. The carrier of each species is unique.

— functions (when defined) and signatures (when only declared)
denote the operations that are allowed on the carrier’s elements.
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— Finally, the developer of a new species can specify the properties
that further implementations of this species must meet. He may
also prove some theorems for the current declarations/definitions
of functions and properties.

As an example, a monoid is built upon a set which is represented
in Foc by its carrier type. It has some declared operations, (specified
by their types), namely +, and zero. These operations must satisfy
the axioms of monoids, which are expressed in FOC by properties. We
can then define a function, dble, such that dble(z) = x + x, and prove
some theorems about it, for instance that V& € rep,dble(zero + x) =
dble(z). Following Curry-Howard-de Bruijn isomorphism, we can link
signatures and properties on the one hand (both are abstract methods),
and functions and proofs (as defined methods) on the other one.

1.2.3. Inheritance

inheritance allows to define a new species from previous one(s). The new
species inherits all the methods of its parent(s). If two parents have
methods that share the same name, they must have the same type.
If both methods are defined, then we have to choose the definition
that will be exported in the new species. A species can define some
methods that were declared in its parents, or even redefine a method.
It can also declare a new method but not redeclare an old one with a
different type. As said later (p. 18), this restriction ensures that any
implementation of a species that inherits from a species a has at least
the same methods as a, with the same type. A species can also declare
and define a new method at the same time. These features, along with
the parameterization described further, enables the use of a refinement
methodology to build new species. Thus, multiple inheritance comes
with overriding and late binding, which are usual features of object-
oriented languages.

1.3. ABSTRACTION

1.3.1. Parameters

In computer algebra, many structures are built upon previously defined
algebraic structures by kinds of categorical operations. For example,
an algebra of polynomials is built upon a ring R of coefficients and a
monomial ordering D of degrees. In fact, to build polynomials, we need
only to know the operations provided by R, and their specifications,
but not their particular implementation. On the other hand, to build
an effective implementation of polynomials over Z, R needs to be in-
stantiated by a structure whose all methods are defined. This leads to
the two dual notions of interface and collection.
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1.3.2. Interfaces

An interface is a list of declared methods. It corresponds to the end-
user point of view, who wants to know which functions he can use, and
which properties these functions have, but doesn’t care about the details
of the implementation. In FOC, the definition of a species must allow
the definition of the associated interface, by removing all the bodies of
the defined methods. While this abstraction is easy within programming
languages, it is not always possible when dealing with proofs, as pointed
out by S. Boulmé [5]. Sec. 5 deals with this problem.

1.3.3. Collections

Assume that we are using ) as an actual parameter for P when building
S. Suppose that a function f of @ is only declared but is used in S for a
computation. Then, there are two possibilities. Either we accept to wait
until run-time to obtain a definition for f and then we accept run-time
failures. Or, we force any actual species parameter to be a completely
defined species. We choose the more restrictive way because it is safer
while still having enough expressive power.

A collection is a completely defined species. This means that every
field must be defined, and every parameter instantiated. It represents
a particular mathematical structure, such as Z[X]. Moreover, we can
not access directly the entities belonging to a given collection, to avoid
breaking the representation invariants. Collections can also be used to
introduce a predefined types. For instance, we can assume that there
exist a collection bool with an (abstract) carrier, two element true and
false, an unary operation not, etc.

2. Syntax

In this section, we present the core syntax of FOC and an intuitive
explanation of its semantics. The complete syntax is built upon the
core syntax by adding syntactic sugar without changing its expressive
power, so the properties of the core language are easily extended.

There are three different sets of identifiers:
z,y denote A-bound variables, function and method names.
— s denotes species names.
— ¢ denotes collection names.

There is also a keyword, self, which can be used only inside a species s
and represents the “current” collection (thus self is a collection name).
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It is used to handle late binding as seen in the following example. (In
Foc, c!m denotes the method m of collection c).

species A — let f(x) — body; let g — ... self!f ...; end
species B inherits A — let f(x) — improved_body; end

The new definition of £ in B owerrides the old one, inherited from A.
Then, in the value of g in B, self !f is not bound to the definition of £
in the species A, where g is defined, but to the actual value of £.

Note that when doing the static analysis of A, we have to assume
that self can be any collection that inherits from A itself because we do
not know in what context g will be used.

2.1. EXPRESSIONS AND TYPES

identifier == 1z, y
declaration ==z [ in type |
expression z |clz | fun declaration -> expression

let | rec | declaration — expression in expression
expression(expression { ,expression }*)

type ¢ | altype -> type | type * type
An expression can be a variable, a method z of some collection ¢, a local

definition with an expression in its scope, a function application, or a
functional abstraction. A type can be a collection name (representing
the carrier of that collection), a variable, a function or a product type.

2.2. FIELDS OF A SPECIES

def field := rep=type | let declaration — expression
| let rec { declaration — expression; }+
decl field := sig z in type | rep
field == def field | decl_field

A field ¢ of a species is a declaration or a definition of a method name.
In the case of mutually recursive methods, a single field defines several
methods at once (using the let rec keywords). The carrier is considered
also as a method, introduced by the rep keyword. Each species must
have exactly one rep field, either defined or inherited.
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2.3. SPECIES AND COLLECTION DEFINITIONS

species_def ::= species s | (parameter { , parameter }*) |
[ inherits species expr { , species expr }* |
= { field; }* end

collection def := collection ¢ implements species ezpr
parameter = g in type | c is species_expr
species_expr == s | s (expr_or_coll { , expr_or_coll }*)
expr_or_coll == c¢| expression

A species_expr is a species identifier (for an atomic species), or
a species identifier applied to some arguments (for a parameterized
species). The arguments can be collections or expressions: in the decla-
ration of a parameterized species, a formal parameter can be a variable
(and its type) or a collection name (and its interface). A species defi-
nition is an optional list of parameters, an optional list of inheritance
declarations, and a list of fields (its body). Order of inheritance dec-
larations is significant: if a method definition is inherited from several
sources, the rightmost one is used. In addition, two different fields in
species_ def must define or declare disjoint sets of method names.

Note that in the complete syntax, we can allow a collection a im-
plementing a species b to have a body composed of def_field entries.
This can be translated in the core syntax as

species a_spec inherits b = def_field of_a end
collection a implements a_spec

2.4. AN EXAMPLE

Assume that the species setoid and monoid have already been defined,
and that we have a collection integ that implements Z. We now define
the cartesian products of two setoids and of two monoids. We also use
a few predefined operators (fst, snd, create_pair, etc.).

species cartesian_setoid(a is setoid, b is setoid)
inherits setoid =
rep = a * b;
let eq = fun x —> funy —>
and(aleq(fst(x), fst(y)), bleq(snd(x), snd(y)));
end

species cartesian_monoid(al is monoid, bl is monoid)
inherits monoid, cartesian_setoid(al,bl) =

main.tex; 14/08/2002; 18:32; p.7



let plus = fun x —> funy —>
let x1 = fst(x) in let x2 — snd(x) in
let y1 = fst(y) in let y2 = snd(y) in
create_pair(allplus(xl, y1), bilplus(x2, y2));
let neutral = create_pair(allzero, bllzero);
end

collection z_square implements cartesian_monoid(integ,integ)

3. Analyzing Species
3.1. INFORMAL DESCRIPTION OF STATIC ANALYSIS

Not all syntactically correct definitions are acceptable in Foc. In order
to respect the coherence properties, we need to check some semantic
constraints on the definitions of species and collections. We impose
some additional constraints, especially on mutually recursive methods,
to make the proofs easier to write. The restrictions are:

— Typing: all expressions must be well-typed, the arguments passed
to parameterized species must have the expected types, redefini-
tions of methods must not change their type.

— When creating a collection from a species, all the fields of the
species must be defined (as opposed to simply declared).

— The rep field must be present or inherited in every species.
— Recursion between methods outside a let rec field is forbidden.

If a collection parameter is required to have interface A, the con-
straints on method types ensure that any implementation of A can be
used as an actual parameter.

We want the programmer to explicitate all the mutually-recursive
groups of methods because we are interested in certifying the code,
which includes proving the termination of every recursive method. If
we had implicit recursion between all methods of a species (as usual
in object-oriented languages), these termination proofs would become
too complex, needlessly involving all the methods (whether defined
or inherited) of the species. By forcing the programmer to flag the
mutually-recursive groups of methods, we ensure that these groups are
as small as possible, which helps making the proofs simpler.
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Note that this restriction involves a global analysis, as shown by the
two following examples. Let A, B, and C be defined as follows:

species A = rep; sig x in self; let y = selflx; end
species B = rep; let x = selfly; sig y in self; end
species C inherits AB = rep = int; end
collection C_imp implements C;;

The species A and B are obviously well defined. At first glance, C also
seems to be well defined. However, the evaluation of C_imp!x cannot
terminate because of the recursion between x and y. On the contrary, the
following example illustrates the need of mutually recursive methods:

species odd_and_even =
rep — int;
let rec odd (x in self) =

if x = 0 then false else selfleven(x—1)
and even(x in self) =

if x = 0 then true else selflodd(x—1);
end

Here, the presence of a let rec field means that the user has to provide a
proof of the termination of the odd and even methods. Once the proofs
have been done, it is safe to use these methods.

As far as computing is concerned, the whole point of dependency
analysis is to reject the first example while allowing the second one.
When we add properties and proofs, the dependency analysis becomes
more complex, as we see in Sec. 5. To summarize, the analysis of a
species definition must take care of three issues:

— inheritance lookup, and resolution of multiple-inheritance conflicts.
— dependency analysis

— type-checking of the methods

3.2. BASIC DEFINITIONS

First, we define N (s), the method names that are introduced in a field
(declaration or definition), and D (s) C N(s) the names introduced
in a field definition. This is then extended to species themselves, by
induction on the inheritance graph. This graph is indeed a DAG, since
a species can only inherit from already-defined species. Formal definition
can be found in appendix A.
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A method name cannot be introduced twice in a species body. From
a practical point of view, it is always a mistake to give two definitions
of the same method in a species body, because one of the definitions
would be useless. The following analyses will keep this unicity, so that
a species in normal form (see def. 7) will have at most one definition
for each of its methods. In the remainder of this section, we consider a
species definition of the following form, which will be noted defspec:

species s inherits s1..s, = ¢1..¢,
with ¥i # j, N' () NN () =

Then, for every z in N (s), we define Bys(z) to be the body of z in
s. If x is inherited from another species, we take the body from that
species. If z is inherited from several other species, we take the one that
is mentioned last in the inherits clause.

DEFINITION 1 (binding of a method x in a species s).
Let x € N(s) be the name of a method of s (defined by defspec)

— ifx ¢ D(s), then Bs(z) = L.
— if x = rep, and Fi < m, ¢; is rep =T, then Bs(rep) =T
— if 3i < m, ¢; is let © = expr then Bys(x) = expr

— if 3 <m, ¢; is let rec {x1 =ey;...;2, = en}, and xj = = then
Bs(z) = expr;

— else Jig < n, x € N(s4,) and Vi > ig,x ¢ D(s;), and = ¢
iz1 D (¢i) then Bs(z) = Bsio (2)

By definition of D (s) we do not have other cases.

3.3. WELL-TYPED SPECIES

The methods of species and collections are not polymorphic. Instead,
we use parameterized species (see 3.8), which provides genericity. With
unbounded polymorphism in methods, we could build up inconsistent
species, as shown in appendix E. On the contrary, local definitions inside
a species body can be polymorphic. We denote by F(7) the set of free
type variables that occur in type 7.

DEFINITION 2 (Concrete type). A type T is said to be concrete if and
only if F(r) =0 (7 may contain names of collection parameters)
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The typing environment of FOC is composed of four sets: A, II, ', 3,
which denote respectively the existing collections, species, variables, and
the methods of self. Elements of these sets have the following form:

— c¢:(x;: 1) € A where the 7;’s are concrete types

— s:{z;: 71 =e;} € Il where the 7;’s are concrete types
— x:Vo;,TEDl

— z:T=e€X

Typing rules for expressions are then basically the same as in the
Hindley-Milner type inference algorithm. Fig. 1 presents these rules. We
define as usual three auxiliary functions, mgu, Gen and Inst. mgu tries
to unify two types 7 and 79, and may instantiate some type variables
during this process. In addition to the usual algorithm, we provide two
new rules [SELF1| and [SELF2| to cover unification steps between self
and 7 when rep is defined to 7. The mgu rules are given in B.

DEFINITION 3 (Generalization and Instantiation). Let I be a typing
environment, and T o type.

Gen(7,I') = Vay.1, where {a;} = F(7)\F(T)

Inst(Vey;.7,T') = 7[e; < o] where the o do no appear free in T.

We can now formally introduce the notion of well-typed species:
every method is well-typed, and inherited methods keep their types.

DEFINITION 4 (Well-typed species). Given a species s defined by defspec.

Well-typed-spec
Vj, Vmi € N((ﬁ]), A,H,F, {xl T = Bs(xl)} H Bs(xz) 1T
Vi, Vj,s.t.x; € N(Sj), {xz T = st (wl)} S H(Sj)
A,H,F,@ Fs: {xl LT = Bs(xz)}

Given such a species s, we define Vr; € N(s), Ts(z;) = 7.

3.4. INTRODUCING DEPENDENCIES

After a first step of typing, we now define the second step of the static
analysis, the detection of dependencies cycle between the methods of a
species. A method m depends on the method mo if the name my is
used in m1’s body. So, we first introduce [ef that takes an expression
e and returns the set of the methods of self that are used in e.
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[var]
x:Vo;. 7 €T 7 < Inst(Vey.7',T)
ALYz T

[abs]
AILLT+z:7m,YXFe:n
ALY Ffunz —e:m = 7

[let]
AILT,XkFe :m AJILT + z: Gen(m, 1), X Feg: 1
AILD,YXFlet x =e; iney: 7

[let rec]

AJILT + 2 : Gen(r,T), X Fe;: 7y
AILT + 2 : Gen(11,T), X Fes : 1o
AN Y Flet recx =e1 iney: 7y

[app]
AL, Y Fey:71 = oo =T =T Vi A TLT Y Ferm;

AJILT, Y Fegler, ... en) T

[meth call] [self call]
” lchA z:7 € Ac) T:T =expr €N
TS ALY F T AL, S Fselflz : 7

Figure 1. typing rules for basic expressions

Then we extend this to field definitions, with a distinction between
let and let rec definitions. Namely, in a let rec definition ¢, we erase
the mutual dependencies between the methods defined inside it. Indeed,
we only want to detect dependency cycles that occur outside of let rec
fields. Appendix C gives a formal definition of these dependencies.

Finally, we define {zf, to be the dependencies of a method z on the
methods of the species s in which z is defined. As for Bs(z), we consider
the last definition in the order given by the inherits statement.

DEFINITION 5 (dependencies in a species).
Let s be a species defined by defspec. Then, Yz € D (s):

— if 3j <m, x € D(¢p;) then lzf, = 1¢;
— if Vi <m, e €D (p;) NJig <n, x €D (si,) \Vi >ip x ¢ D(s;)
then zf, = lzf

SiO

main.tex; 14/08/2002; 18:32; p.12



13

This leads to the notion of well-formed species, where there is no
cycle of dependencies outside a rec-structure. Only well-formed and
well-typed species are acceptable in Foc.

DEFINITION 6 (well-formedness).
71 45 T2 = Hyitiz1.n St Y1 = 21,y = 32,Vi < n, Yiv1 € (Y,
We say that s is well-formed if Vo € N'(s) = (z 4, ).
In addition, s must inherit only from well-formed species.

DEFINITION 7 (normal form). Let nf be a species defined by:
spectes nf = ¢1...¢, end
nf is said to be in normal form if:
— There is no inherits clause
— It is well-typed.
— The different fields introduce different names:

Vi,j, i # j = N(di) "N (8;) =0

— A given definition depends only upon previous fields:

i—1
Vi <n,Yz € N(¢i), (2§, C U N(¢5)

j=1

3.5. MERGING TWO FIELDS

Let s be a species defined by defspec. To check that it is well-typed and
well-formed, we create a species nfs that is equivalent to it, in the sense
that it shares the same definitions (and declarations). Intuitively, s and
nfs cannot be distinguished from each other from “outside” they react
in the same way to all method calls.

This is done by induction on the inheritance graph. In the following,
we will assimilate a species in normal form and the sequence of all
its definitions (its body). a;@ag denotes the concatenation of two se-
quences. If s does not have an inherits clause, then reordering its fields
and typing each method is straightforward. Otherwise, let norm(s;) be
the normal forms of s; and W = norm(s;)Q...Qnorm(s,)@[¢1, ..., dm].
W1 may contain several occurrences of the same name, due to multiple
inheritance or redefinition. So we build a new sequence, Wy, from W,
in which each name is introduced only once. Wy is identified to a
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species §: species s = Ws end. We prove that § is well-formed if
a is well-formed.

To build W4 from Wy, we must find a precise way to resolve “con-
flicts” (multiple definitions of the same method) in inheritance. To do
that, we provide a function © to merge two fields ¢; and ¢ that
have some names in common. This is not a total function because a
name might be defined with two incompatible types. In this case, the
definition is considered ill-typed and rejected by . Two let rec fields
can be merged even if they do not introduce exactly the same sets of
names, because you can inherit a let rec field and then redefine only
some of its methods (keeping the inherited definition for the others), and
also add some new methods to this recursion. In this case, the merging
function will take every method that are involved in at least one of the
two mutual recursive definitions. This will also imply a new termination
proof (see 5.2), involving all the mutually defined functions, including
the inherited ones that are not redefined. The full definition of © is
given in appendix D.

The operator © enjoys two important properties. First, it preserves
all the names introduced by ¢ or ¢- in one of the definition, and if a
method is defined in ¢, or ¢, then it is also defined in ¢ S ¢o. Second,
it is compatible with late binding, which requires that a method call
always uses the “newest” definition available for it in the inheritance
path.

Proposition 1. (names preservation) V1, ¢o st N'(¢1) NN (¢2) # 0
N(g1 © ¢2) = N (1) UN(¢2)
Same property holds for D ()
Proposition 2. (late binding) Y1, do s.t. N(p1) NN (p2) # 0

{\V$ €D 0?2)7 lg¢ﬂ§¢2($) ::l;¢2($)
Vz € D ($1)\D (¢2), Bpiog,(z) = By, (2)

This property is interesting only if neither ¢ nor ¢ is a sig. Otherwise,
we deal with empty sets, and the property is trivial.

Proof. immediate by case analysis on the structure of ¢; and ¢o. O
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3.6. INHERITANCE LOOKUP

We then build a sequence Wy of definitions from W, by analysing its
elements one by one in the order of the list. This is done inside a loop,
starting with Wy = ¢1...¢, and Wy = (). At each step, we examine
the first field remaining in W, and we update W; and Wy. The loop
ends when W is empty. The loop body is the following:

Let W1 = QS,X and W2 = 'L/Jl”(,bm

— ifN(@)NN(W3) =0 then Wy < X and Wy < (9h1... 95, ¢1):
if the analyzed field does not have any name in common with the
ones already processed, we can safely add it at the end of Ws.

— else let ip be the smallest index such that N (¢) NN (1;,) # 0, then
we do W1 <= (¢S 4;), X) and Wy < (41 ... thig—1, Yig41 - - - Pm)-
This time, we must use ©. However, in the case of mutually re-
cursive definitions, ¢ can have some names in common with more
than one 1;, so that ¢ S 1;, is kept in W .

To ensure the termination of the algorithm, we take the following
lexicographic ordering: (CardW, CardW ). Indeed, let W1 and Wy be
the values computed after one step in the loop. If there wasn’t any con-
flict, then Card W; < Card W;. Else, we have CardW1 = Card W,
and Card Wy < Card Wo. O

We now establish the main properties of this algorithm, in order to
show that W4 defines a well-formed species equivalent to s. We use the
same notations as above to speak about the fields of W1 and Ws.

Proposition 3. (Well-typed merging) With the notations above, if s is
well typed, then 1);, © ¢ never fails.

Proof. This is straightforward with the definition of © and def.4. O
Proposition 4. (unicity) Vo1, de € nfs, N(p1) NN (¢2) = 0.

Proof. By induction on the length of W : If there is only one defini-
tion, then this is trivial. If there are n + 1 definitions, we can use the
induction hypothesis for the first n steps. It remains to add the last
definition, ¢.

~ It Vip € Wo, N(¢) NN () = D then we can safely add it

— Else, we conclude by induction on the size of N'(¢)N (U,pew2 N(¢)) :
if it concerns only one name z € N (¢), then, v;, is the (only) definition
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in Wy such that € N (¢;,), we have

N(¢io®¢)ﬂ< U N(x))ZQ)

XEW 2\1hi

Indeed, by definition of ©, Vz € N (15, © ¢1), = € N (i) Vo € N (¢1).
In both cases, we cannot find z in any of the remaining 1);, by induction.

— If there are m + 1 names involved, then with the same notations as
above, | N(¢) N (UiziyeN (¢;)) |< m. Namely, by induction hypothesis
any name introduced in v;, does not appear anywhere else in Wy. So
every € N (é1) NN (¢;,) disappears from the intersection while we do
not add any new identifier. O

As said above, we now define § as species § = W, end.

Proposition 5. (equivalence) N (s) = N (3), D (s) =D (3), and
Vz € D (5), Bs(z) = Bs(z)

Proof. In fact, we just have to prove that the following properties
hold at each step:

n m

N(s) = UNG) v UNG) = U N u [ M)
i=1 j=1 HEW 1 YEW o
Vo € N(s),3p € Wo UW 1, Bs(z) € ¢

At first step, this is true, since W1 contains all the definitions found
in s or its parents. Suppose that the properties are still true after n
steps. Let ¢ be the definition to be analyzed.

If Vp € Wy N(d1) NN (¢) = 0 then we just move ¢ from Wy to
Wy, so that neither the set of names appearing in one of them , nor
the associated definitions change.

Else, with 1;, such that N'(¢1) NN (¢;,) # 0: names preservation
property says that N (¢;, © ¢) = N () UN(¢), so that the global
namespace is left unchanged. Besides, this is true for D (-).

Moreover, the late binding property shows that the methods bod-
ies that are removed are {B¢i0 (x),z € D (i) N D ((;51)}. Since W1 is

ordered, we have, by definition of B(x)
Vz € D (i) N D (¢) Bs(x) # By, (z)

At the end of the construction, W1 = 0, so that N (z) = Uyew, N (¥).
Moreover, we have one definition for each method: Bs(z) = Bs(z). O

We can now state the main result of this section:
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THEOREM 1 (normal form of a species).
For each well-formed and well-typed species s, there exists a species
nfs, which is in normal form and enjoys the following properties:

— names: N'(nfs) = N (s) and D (nfs) = D (s)
— definitions: Yo € D (s), Bs(x) = Bpgs(x)

Proof. This follows directly from Props. 3, 4 and 5. It just remains
to prove that § is well formed.

DEFINITION 8. Let s be a species without tnherits clause, such that
Vo € N(s),3lp € s,z € N(¢)

We will note Dy (x) the (unique) definition in s where x appears.

Proposition 6. Using above notations, Yz € N (s),
with D, = {¢ € Wy | 5 € N'(9)}, we have N'(Ds (#)) = (Upep, N'(#))

Proof. Once again, we will state a property verified at each step of
the construction of Wy, namely, that

( U N(¢)) UN(Dw, (2) = (J N(¢)

zeN(¢) ¢ED,

This is trivial at first step, when W is still empty and Wy contains
all the fields involved in s. If it is still verified after n steps, then with
¢ the first field of W, we have three possible cases:

— if we can add ¢, then nothing is changed for the union.
— 1z ¢ ¢,z ¢ 1;,. Then the definitions where z appear do not change.

— x € ¢1, or z € 9;,. Then we remove 1;,, but add 9;, S ¢. Since
N (i, ©¢) = N (i, )UN (¢1), by Prop 1, the property is preserved.

At the end, we are left with {Dy, (z)}, and the property holds. O

We can now prove that § is well-formed: if this wasn’t the case,
consider z; and z2 in N(8) such that, by definition of (non) well-
formedness, v, 4; ©o 45 1. Then, since Vx € D (8), Bs(x) = Bs(z),
by mutual rec D (x1) = D (x2), so that zo € Up, N(¢) = N(Ds (21)),
and D; (z1) = D;(x2)> Then this common definition is a let rec
definition, in contradiction with z; 43 2, so that § is well-formed.
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Since 5 is well-formed, «; is a strict ordering. Then, we just have to
reorder the fields of Wy according to «;. O

3.7. COLLECTIONS

A collection ¢ can only be created from a completely defined species s.
In addition, we abstract its carrier type and all the methods.

[coll]
s:{xi:n:ei}eﬂ Vz’ei;ﬁJ_
AIL T, X | collection ¢ implements s : (z; : 7;[self < ¢])

As often in mathematics, we denote by the same name the collection,
and its carrier type, that is the set on top of which the collection is built:
in the types of the interface, self is replaced by the collection’s name.

3.8. PARAMETERIZED SPECIES

First, we define a function A that takes a species s and a name ¢ and
returns an interface (abstracting all the methods and replacing self by
c in the types). Indeed a collection parameter, of the form “c is s” adds
a collection c of interface A(s, c) in the environment.

DEFINITION 9 (abstraction). Let s = {z; : 7; = €;}i=1.n be a typed
species, and ¢ a collection name. Then

A(s,e) = (x; : Ti[self + c])

i=1..n

A collection parameter may be instantiated by a richer structure
than expected. For instance, polynomials must be defined over a ring,
but may perfectly be given a field instead. So we define a sub-species
relation, < in order to allow such instantiations.

DEFINITION 10 (sub-species). Let s, so be two species.
51 X 89=N(s2) C N(s1) AVz € N(s2), Ts, () = Ts, ()
Ts;(z) being defined as in def./

By def .4, if s; inherits from s9, then s; < s9. Since only the types of
the methods are concerned, the relation is easily extended to interfaces.
We can now present the typing rules for parameterized species.
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[ent-prm]|
AILT + z : 7,% F species s(prms) expr _spec: (z in 7)type spec

AVIL T, X | species s(x in 7, prms) expr _spec : type_spec

[coll-prm]
AILT, X i inst A+ c: A(inst, c),I1,T", 3 I species s(prms)
expr _spec : type _spec

ALIL T, X | species s(c is i, prms) expr _spec :
(c is A(inst, c))type _spec

[ent-inst|
(s, (z € T)type _spec) € 11 AL, Y ke:T
AIL T, X F s(e) : type__spec

[coll-inst|
(s, (c1 is i1)type_spec) € 11 co,i9 € A i < A(i1,¢2)
AVIL D, X F s(eg) = type__speccy + ¢

[prm-inherit]
A, H, F, Y S - {xiyj T = ei,j}
AVILT, Y F species s inherits{z; ; : 7;; = €; ;} = defs:
{yj 05 = e'j}
AIL T, ¥ | species s inherits s; = defs: {y; :0; =¢€';}

4. Effective computation: translation to OcAML

The initial development of Foc has been done in OcaML [17], a func-
tional language of the ML family developed at INRIA. The OcAaML
produces a very efficient code, while the language has a clear semantics
and features that cover the needs of FOC, as objects and modules[3].
Indeed, species can be quite easily translated into classes. Species
inheritance in FOC is translated by class inheritance in OCAML. A
collection is represented as an object (i.e an instance) of the class that
correspond to the species it implements. Type abstraction is achieved
through a module wrapper around the object. Functions outside the
module can only access entities through the methods of the object.

4.1. TRANSLATION OF SPECIES

Translation of expressions is straightforward. Each method in Foc is
translated into a method in OCAML. There is no difference between a
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method whose body is a constant, and a method that is a function. This
is a problem for constant methods because in the object-oriented con-
text of OCAML they are evaluated at each call. So we can optimize the
translation by using instance variables in OCAML to represent constant
methods of FOC. These instance variables must be initialized when a
new object is created. The order in which variables are initialized is
exactly the order given by the dependency analysis of Foc.

4.2. PARAMETERS

Parameters in FOC are translated by abstracting the class definition
with respect to them. For instance, to define modular integers from any
possible implementation of integers, we would have the FOC definition:

species int_mod (base is int_spec, n in base) ...

which is translated into

class |[’t,’base_carrier,’base_imp| int_mod =
fun (base:’base_imp) —> fun (n:’base_carrier) —>
object
constraint ’base_imp = |’base_carrier|#int_spec

end
Each collection parameter adds two type parameters in the OCAML
translation. the first one (base_carrier) correspond to its carrier type.
The second one (base_imp) allows us to instantiate int_mod with any

instance of a subclass of int_spec. We also add a type constraint which
expresses the fact that ’base_carrier is the carrier of base.

5. Adding Properties and Proofs

5.1. SYNTAX

We now extend the syntax of 2.2 with two new field definitions: the-
orem and property. In fact, a proof is a term that is built from
other proofs by composition, substitution, etc. This is analogous to the
construction of a program. The type verification of this proof term in
the CoqQ language ensures the validity of the proof itself.

def field == ...| theorem z = prop proof: | deps | proof
deps = { (decl: | def:) { z; }* }*
field == ...| property z — prop
prop == expr | prop and prop | prop or prop | prop — prop

|  not prop | all x in typ, prop | ex x in typ, prop
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For the time being, a proof is a CoqQ script that corresponds to the
translation of the property it is bound to. A proof language dedicated
to FOC is under development.

5.2. DEF-DEPENDENCIES AND DECL-DEPENDENCIES

When talking about proofs, the notion of dependency introduced in
the previous sections (see 3.4) becomes too weak. For instance, we can
express that plus in the species monoid is associative:

property assoc =

all x,y,z in self,
selfleq(self!plus(self!plus(x,y),z)
self!plus(x,self!plus(y,z)))

then we are able to prove this property for the naive implementation of
plus on Peano’s integer: 0 +n = n and succ(m) + n = succ(m + n).
It is done by induction on z, y and z, and uses the exact definition
of plus. In other words, the proof of assoc that we obtain depends
upon the definition of plus, while dependencies we have seen so far
were only upon the type of the methods. We call def-dependencies this
new kind of dependencies, and speak of decl-dependency when only the
type of the method is needed. We need to avoid cycles of dependencies
—both decl- and def- ones. The distinction between the two occurs dur-
ing inheritance resolution, when a method is redefined. We must now
erase every proof that def-depends upon this method, and prove the
property for the new implementation. For instance, if we decide to use
a more efficient algorithm, that uses internally a binary representation
of integers for plus, the old proof of assoc is not correct anymore.

Apart from explicitly stated properties, some proof obligations are
requested by Foc.

— For every let rec definition, we have to prove that any call to a
method of N'(rec_ def) ends. This proof has def-dependencies upon
all the methods in N (rec_def). Even if only one of the method is
redefined, a new proof for all the methods involved is requested.

— For each species that has an equality (that is that derives from
setoid), we must prove that each function that uses entities of this
species is compatible with this equality.

— For some particular representations, additional proofs are requested.

For instance, if we work with the native integers of OCAML, we
must ensure that there is no overflow.
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5.3. DEPENDENCIES UPON THE CARRIER

Until now, it is syntactically impossible to define a carrier that depends
upon a method, but conversely, “normal” methods often depend upon
the carrier. We have to know if we use decl- or def- dependencies.
Given an expression e, if a sub-expression of e has type self, then
there is a decl-dependency upon the carrier. Def-dependencies upon
the carrier can be detected during the typing phase. More precisely, if
an unification must use one of the two SELF rules of mgu, then there is
a def-dependency. Indeed e cannot be typed in an environment where
the carrier is bound to another type. For instance, if we define

species counter =

rep — int;
let inc in self —> self = fun x —> x + 1;
end

inc def-depends upon the carrier int: in order to type inc with
self — self, we must know that self is bound to int.

Such def-dependencies addresses a new issue, since they may occur
in statements too. For instance, we can add to counter the theorem:

theorem inc_spec : all x in self, self!inc(x) >= x + 1 proof: ...

The statement of inc_spec has a def-dependency on the carrier, so that
it would be impossible to build the interface of counter: rep cannot be
abstracted. Since we want to build interfaces for each species (1.3.2),
such species definition must be rejected.

In Fig. 5.3, we define ¥* = X[Bs(rep) < L] which hide the con-
crete representation of rep when typing the statements. This ensures
that def-dependencies upon rep at the property level are rejected as
ill-typed. The Expr rule coerce every boolean expression used in a
statement into prop. Following Curry-Howard-de Bruijn isomorphism,
we also extend Tg(x) to theorem and property fields as being the
statement of z in s.

5.4. INHERITANCE LOOKUP

We extend straightforwardly the definitions of the preceding section.
[-§ now denotes decl-dependency, while {[-{f denotes def-dependencies.

DEFINITION 11 (binding of a method). Let s be defined by defspec,
and © € N (s). Bs(z), Ls(z) and D (s) are recursively defined as follows.

— ifVi<n, ¢ D(s;) A\Vj <m, ¢ D(¢p;) then By(z) = L.
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[expr] [not|

AL T, 3% F expr : bool ATLT, S Fp:prop
AILD, X expr: prop AILT, X - not p: prop
[and]

AILD, X Fpy:prop AJILD, X ps: prop
AaHarazl_pl ® D2 I prop

lex]
AL T+z:7,%Fp:prop
AILLD,YF L zin 7,p: prop

with e € {and,or,—} and L € {all, ex}

Figure 2. Typing rules for statements
—if 3 < m, ¢; is let x = expr then Bs(z) = expr, and I4(z) =
n+1.

— if Fi < m, ¢; is let rec {x1 = expry...x; = expr;}, and x; = x
then Bs(z) = expr; and Is(z) =n +1

— if 3 < m, ¢; is theorem x : ...proof then Bg(x) = proof, and
Is(z) =n+1

— else let iy be the greatest index such that x € D (s;,) then Bs(z) =
Bs, (), and Ls(z) = io

DEFINITION 12 (defined methods). D (s) = {z € N(s), Bs(z) # L}
We then define the dependencies of z in a species s. Note that not
only proofs but also statements may have decl-dependencies, so that we
analyze T;(x) as well as Bs(z).
DEFINITION 13 (dependencies inside a species).
— if x 1s a function, then its decl-dependencies are defined as in def.5
— else, [zf, = [Bs(2)§ UTs(2)f and |z ff, = [ Bs(2) [
DEFINITION 14. z, s z2=3yi—1 , st.y1 = Z1,yn = 22,¥i <

nyiv1 € il ULyl
We say that s is well-formed if Vo € N(s)—z 45 .
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Each well formed and well-typed species still has a normal form.
Due to def-dependencies, some inherited proofs must be removed, but
we want to erase as few proofs as possible. So the main result of this
section is that for each well-formed species s, there exist a normal form
with the same declarations as s, and a subset of its definitions which is
maximal wrt inclusion.

In order to precisely state the theorem, we need a technical definition.
changed(y, z) is true if and only if the definition of y has changed since
the last definition of z (following the inherits clause of s).

DEFINITION 15.
changed(y, z) is a relation over N (s), s being defined by defspec

changed(y,z) < (3j > L,(w), y € D (s;) A By (y) # Bsr (o, ()
V. Gk, y €D (d) Al(w) #n+1)

O is extended to merge theorems and properties. Names-preservation
and late-binding are preserved by this extension.

To build nfs, the main difference is that we must now take def-
dependencies into account when merging two definitions. First, we must
slightly refine the construction of W; to avoid erasing new definitions.

Let i1,...,i, be a permutation of 1...n such that Vj < k, N'(¢;;) N
ll¢i, §§ = 0. Such a permutation exists by definition of well-formedness.
Then Wy = norm(a1)@... Qnorm(a,)@[def;, ...def;, ]

Then, we build W step by step. Now, if there is a conflict between
¢1 and 1;,, some proofs of Wy must be erased. Let N = N (¢1) NN (¢4, )-
Each d € Wy s.t. NN {{dff # 0 is replaced by property = = Ty(z)%.

We can now prove that we build a normal form. First, definition
unicity still holds, by induction on the length of W;. Then, we still
have N (nfs) = N (s), since there is no change here. It remains to prove
that we do not erase too many proofs.

Proposition 7. (preservation of definitions)
D (nfs) C D (s)
Ve eD (nfs) 7Bs($) = ans(x)
Vo € D(s)\D(nfs),Jy € [z, s.t.
y & D (nfs) or y € D (nfs) A changed(y, x).

Proof. First, D (nfs) C D (s). Indeed, if we don’t consider the def-
dependencies, we would have the equality, as in preceding section. More-
over, since Prop. 2 still holds, the bodies that are not erased are always

2 Only theorems have def-dependencies.
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the latest definition of the method. It remains to prove that we do not
erase too much proofs.

Suppose that we have z € D (s) \D (nfs). If 3¢; s.t. = € D (¢;), then
J¢; s.t. y € D (¢;) such that z def-depends upon y and ¢; is analyzed
before ¢;. Otherwise, x would be defined in nfs too. Since we have
reordered the list of definitions, this case cannot occur.

Otherwise, Js;, s.t. z € D (s;,), and Vy € [|Bs, (z)S], Bs(y) = Bs,, (y)
Such an y may be redefined in s;, itself, but since we work with the
normal forms of father species, the corresponding definition is analyzed
before the one of z in building Wo. If it was redefined after s;,, then
the hypothesis wouldn’t hold, so that this case cannot occur. a

It remains to prove that nfs is well-formed. Prop 3 and 6 are easily
extended, so that we can conclude the same way as above:

THEOREM 2 (normal form of well-formed species). For each well-formed
and well-typed species s, there exists a species nfs, which s 4n normal
form and enjoys the following properties:

— names: N(nfs) = N (s) and D (nfs) C D (s)
— definitions: Vo € D (nfs) ,Bs(x) = Byss(x)

— Vz € D(s)\ D (nfs),Ty € [z, s.t.
(y € D(nfs)) or (y € D(nfs) A changed(y,x)).

6. Certification: the translation into coq

6.1. OVERVIEW OF THE TRANSLATION

Coq is a proof-checker, based on the Calculus of Inductive Construc-
tions [22]. Its language is very expressive, and it was quite natural to
choose it as the target language of the certification part of Foc, because
it contains as a sublanguage the purely functional part of OcAML.

In his PhD |5, S. Boulmé describes a complete axiomatization in
CoQ of inheritance and decl- and def-dependencies (called opague and
transparent in his work). In this formalism, the size of the terms grows
up very fast with the number of methods and inheritance steps, and
these terms soon become too complicated for the Coq type-checker. We
then designed a new approach that deals with smaller COQ expressions.

As in Boulmé’s work, interfaces are represented by Records (see
below), and collections by instances of the corresponding Records.
Our species definitions, however, are quite different. In fact, we build a
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set of method generators. A method generator is a lambda-lifting which
produces the body of a method. For instance, in the species a below,

species a =
sig eq in self—> self —>bool;
let neq = fun x —> fun y —> notb(selfleq(x,y));

The method generator for neq is (using COQ syntax)

[abst_T:Set|[abst_eq:abst_T—>abst_T—>bool]
[x,y:abst_T|(notb (abst_eq x y))

The first line corresponds to the abstractions we have made. The
second line is the translation of the method’s body in the environment
set up by the appropriated abstractions. In particular, the call to selfleq
has been replaced by the variable abst_eq.

To create a collection from a completely defined species s, we follow
the order of the methods in the normal form of s. For each method,
we select the corresponding generator and apply it to the preceding
methods of the collection.

6.2. DEPENDENT RECORDS

CoQ Records are quite similar to the records of most programming
languages: n-uples whose components (called fields) are named. The
main distinction is that the type of one component may depend on the
preceding ones, i.e. use their labels. For each species defined in Foc,
we define a Record type in COQ, which denotes its interface. If the
species has the form {s; : 7, = e;} in Foc, the Record is defined as

Record name spec : Type := mk spec {s; : 7}

In contrast with the OCAML translation, here we explicitly give all the
fields of the Record, in the order given by the normal form.

6.3. METHOD GENERATORS

A species definition consists in the creation of the method generators,
for the functions and theorems that are (re)defined in the species itself.
To translate the definition of x, we consider the minimal environment
3} necessary to type the body of . We keep the methods z;  depends
upon, but we need different handling for decl-dependencies (where the
body of z; can be forgotten) and def-dependencies (where this body
must be kept in ). Moreover, the bodies of these def-dependencies are
expressions themselves, and we also need to keep their dependencies.
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DEFINITION 16 (Minimal Environment). Let ¥ = {z; : 7; = e;} and
e be an expression. X M e is defined as follows.

YNe={z;: 7 =new_ej|lz; € l[ef A (z;: 75 =¢;) € X}

where new_e; ={ 4 Sl
U = YXle
Uky1 = Up U LJ E]r]ej
(xj:my=e;j)EU
Sne = |J Uk
k>0

where {z:7=1L}U{z:7T=¢} ={z:7=¢}

Since the sequence Uj; is growing and bounded by 3, it has a least
upper bound, so the definition of M is correct. For each identifier present
in ¥ M d, we define either a A-abstraction (for decl-dependencies) or a
local binding (for def-dependencies).

DEFINITION 17 (Translation of a method’s environment).

[0,d] = [d]
[{z: 7= L1;1},d] = [abst_z :7][l,d]
[{z:7=e;l},d] = Letabst z:7:=(gen_x abst_s;)in[l,d]

where gen_x is the method generator of x (inherited or not: according
to the dependency analysis, it is defined before this translation).

Of course, we need to apply gen x to some arguments, namely the
methods s; from ¥ Mz that are, by def.16, part of the environment we
use. The translation of the body itself is straightforward, except that
each method call self!x is turned into a variable reference, abst_x.

7. Related works

There exist a certain number of projects in the area of specification
of algebraic structures. Among them, CoFI |7] offers a language, CASL
(Common Algebraic Specification Language), in which it might be inter-
esting to express the interfaces of the FOC hierarchy. On the other hand,
OpenMath [8] can be very useful to represent FOC entities. OpenMath
provides a standard for a semantically-rich representation of mathemat-
ical objects in XML. OMDoc, an extension of OpenMath which handles
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whole documents can also help FOC to provide species descriptions in a
standard XML format. However, this concerns only specifications, not
the concrete implementation of the algorithms.

Algebraic hierarchies have been developed in various theorem-provers
or proof-checkers. In particular, Loic Pottier [20] has developed an huge
library in CoQ about fundamental notions of algebra, up to fields. H.
Geuvers and the FTA project [13] are also using the Records of COQ to
represent algebraic structures, in order to define abstract and concrete
representations of reals and complex. In addition, R. Pollack [19] and
G. Betarte [2]| have given their own embedding of dependent records in
Type Theory. At last, a fairly large amount of proofs has been done
inside the Mizar project, which attempts to build a database of impor-
tant theorems of mathematics. We can also mention Imps [11], a proof
system which aims at providing a computational support for mathe-
matical proofs. However, none of these works include a computational
counterpart, similar to the OCAML translation of Foc. P. Jackson [15]
implemented a specification of multivariate polynomials in Nuprl. His
approach is quite different from Foc, as in his formalism, a group can
not be directly considered as a monoid, for instance. In other words,
the mathematical hierarchy is not fully reflected in this construction.

8. Future work

8.1. HIGHER-ORDER METHODS

In addition to the core language, some new features have been added
to cover practical requests from the programmers. Some further work
is needed to incorporate them in the formalization desribed above. In
particular, we need a way to define a method that returns a “collection”,
i.e. a species with all its methods defined. For instance, we can define the
species of multivariate polynomials. Assuming that polynom is a species
parameterized by the name of the variable, the ring of coefficients and
the ordered set of degrees, we will define a method that lifts the whole
species to the correct number of variables for a given operation:

let updom (s in string)=polynom(s,selfmy_degree)
It is not clear yet how we can extend dependency analysis to such
methods. The most simple solution seems to consider that updom decl-

depends upon all the methods of self that polynom can see through
the interface ring.
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8.2. THE PROOF LANGUAGE

As said in sec. 5.1, it is now necessary to define a proof language for Foc
that will be independent from CoOQ scripts. It is yet possible to write
some basic proofs directly in FOC but some features are still missing:
In particular, proof obligations are not yet generated. In addition, we
have to provide more support for induction and rewriting steps.

9. Conclusion

As a conclusion, we can say that FOC has now achieved quite good
expressive power, at least for its computational part. The static analyses
that are discussed in sec. 3 and 5 have been successfully implemented
in a compiler that generates OCAML as well as C0OQ code, following the
ideas of sec 4 and 6.

On the one hand, we are able to provide a good environment to prove
the properties that are needed in each species’ implementation. We still
have to specify a language to build proofs in this environment.

On the other hand, the OcAML code produced by Foc conforms to
the initial requirements of the project. Moreover, the generated code is
quite efficient, thanks to the optimizations allowed by static analysis.
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Appendix
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A. Names introduced in a field and a species

DEFINITION 18. N(def) and D (def) are defined in the following

way:

N(let x=¢)=N(sigz inT) = {z}
N(let rec {x1 =e1;...;zn =e€n}) = {zi},_y ,
N(rep) =N(rep = 1) = rep

S$t1g S N T
rep

D(def) = 0 Z'fdef:{
= N(def) else

N (theorem x = ...) = {z} N (property z = ...) = {z}

D (theorem z = ...) = {x} D (property z = ...) =0

Consider the following statement:
spectes s inherits si,...5, = ¢1 ... Py such that

Vi, j < m, N (i) NN (4;) =0

Then, we define N'(s) and D (s):

N(s) = (L"J N(Si)) U (L"] N(qu))
=1

D(s) = ( D(si)> u (U D(¢j))
i=1 j=1

B. Most General Unifier

DEFINITION 19 (Most General Unifier).
Let o be either a concrete type v or L,

[Eq] [Vari]

myuq(7,7) = T,1d mguq (o, 7) = T, [ < 7] @ not free in 7

[Var2]

mguq (T, ) = T, [ <= 7] @ not free in 7
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[Arrow]
myuy(t1,7) =1/ ,6 mgu, (120, 750) = 14, ¢

! ! n "
MUy (T1 — T2, T] — Ty) = T] — Ty, PO

[Prod]
mgug (11, 7)) = 71,0 mgug (120, 750) = 74, ¢

! ! n n
MGUe (TL * T2, T) — Ty) =T — Ty, PO

[Self1] [Self2]
mgu, (self,v) = self,id mguy (v, self) = self,id
In every other case, mgu, fails.
Given A IL T, X a typing environment, and 11, 7o two types such that
MGUs(rep) (T1, T2) = 73,0 we define Mgu(rl, 72)=T30.

C. Dependencies

DEFINITION 20. (-§ is defined by induction on the expressions of the
language:

lz§ =0
llet z = e; inex] = Jer @ leaf
llet rec . = €1 in e = ler| ® Jeaf
z.ef = lef
[0 when ¢ # self
lea] = { {z} when ¢ = self
leo(er, .- en)] = leof U (Uizy L&)
DEFINITION 21 (dependencies of prop). If a proposition p consists
of an expression then its dependencies are already defined in def.20.
Otherwise, we define them by induction on the structure of p:

[p1 and pof§ = {p1§ @ |p2f lp1 or p2f = 1p1] & [p2f
b1 = pf=1nf@lp2f  (notpf=1pf lallz in7,pf="1pS

lex z in 7,pf = pf
DEFINITION 22.
lletz=ef = lef
llet rec {z1 =e1 ...xn = en}] Ui lef\ {zi}iz1 n
lsig z in 7§ 0
|property = = p| 3)
[theorem z = p proof:...decl zy,...,zp;...5 = (1pfU{z;}i=1.n
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DEFINITION 23 (def-dependencies).
Uproof:...def:xy ...y ...§ ={x;}i=1. 1
Let ¢ be a method definition
— if ¢ is theorem x = ...proof then [|$ff = [[proof S
— otherwise ¢ =0

D. Merging two fields

DEFINITION 24.

Let ¢y and ¢o be two fields, with N (1) NN (p2) # 0.

We define ¢1 © ¢ the following way. Note that this is a partial
function, since calls to Mgu may fail.

S1g T 1N T S sigzinT = SIg T INT
sig T in T S letzxint= e = letzin Mgu(r,n) = e
s$tg T 1N Ty S let rec = let rec
(xin o =e2) UC (z in Mgu(r, ™) =e2) UC

let rec S sig T in T = let rec
(xin T =e)UC (z in Mgu(r,7) =€) UC
letx in T =€ S letxzin 7 =ey = letx in Mgu(r,T2) = ez
letxinmT =€ O sigxinmy = letx in Mgu(m,72) = e
let rec S let rec = let rec

{z; [in 7;] = ex; {z; [in 0j] = ex} ({zi in Mgu(r;,0;) = ex}

yi [in pi] = eyi} zi [in ™) = ez;} U{yi in p; = ey}

U{z in m; = ez})
DEFINITION 25 (merging properties and theorems).

propertyx =p O propertyxr =p = propertyzr =p

propertyxr =p © theoremzxz=p = theorem x=p
proof:prf proof:prf

theorem x =p © propertyx =p = theorem r=7p
proof:prf proof:prf

theorem x =p S theorem x=p = theorem r=7p
proof:prfi proof:pr fo proof:pr fa

Other cases are wrrelevant: the two field definitions must share the same
name and the same statement (i.e. Tger(x))
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E. The Issues of Polymorphic Species
species polymorph = rep; let id = fun x —> x; end

species prm (x is polymorph) =
rep — unit;
let elt = x!id(true);

end

species imp inherits polymorph =
rep = unit; let id = fun x —> x + 1;
end

collection Imp implements imp

collection error implements prm(Imp)

Here, polymorph has a polymorphic method id, with type ’a->’a.
Then prm takes any implementation x of polymorph as parameter, and
uses x!id with type bool -> bool. imp is a sub-species of polymorph
which redefines id with type int->int. Both bool -> bool and int->int
are valid instances of ’a->’a, so that the definition appears to be
correct. However, the collection error is not well-typed: Its method
elt would evaluate in true + 1.
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