Formalizing Asymptotic Complexity Claims via Deductive Program Verification

Armaël Guéneau

Gallium
Formalizing Asymptotic Complexity Claims via Deductive Program Verification
Recall our undergrad algorithm courses...

“Is the value 4 present in this sorted array?”

“Binary search finds the element in time $O(\log n)$”
Homework: implement binary search

(* Requires arr to be a sorted array of integers. Returns k such that i <= k < j and arr.(k) = v or -1 if there is no such k. *)

let rec bsearch (arr: int array) v i j =
 if j <= i then -1 else
 let k = i + (j - i) / 2 in
 if v = arr.(k) then k
 else if v < arr.(k) then bsearch arr v i k
 else bsearch arr v (i+1) j
Homework: implement binary search

(* Requires arr to be a sorted array of integers. Returns k such that i <= k < j and arr.(k) = v or -1 if there is no such k. *)

let rec bsearch (arr: int array) v i j =
 if j <= i then -1 else
 let k = i + (j - i) / 2 in
 if v = arr.(k) then k
 else if v < arr.(k) then bsearch arr v i k
 else bsearch arr v (i+1) j

bsearch [|1;3;4;6;7;8;10;13;14|] 4 0 9;;
- : int = 2

It works! We could even prove that it always works.
Homework: implement binary search

(* Requires \texttt{arr} to be a sorted array of integers. Returns \texttt{k} such that \(i \leq k < j\) and \texttt{arr}(k) = \texttt{v} or -1 if there is no such \texttt{k}. *)

\begin{verbatim}
let rec bsearch (arr: int array) v i j =
 if j <= i then -1 else
 let k = i + (j - i) / 2 in
 if v = arr.(k) then k
 else if v < arr.(k) then bsearch arr v i k
 else bsearch arr v (i+1) j
\end{verbatim}

But there is a complexity bug...
Homework: implement binary search

(*) Requires arr to be a sorted array of integers. Returns k such that i <= k < j and arr.(k) = v or -1 if there is no such k. *)

let rec bsearch (arr: int array) v i j =
 if j <= i then -1 else
 let k = i + (j - i) / 2 in
 if v = arr.(k) then k
 else if v < arr.(k) then bsearch arr v i k
 else bsearch arr v (k+1) j
(* Requires arr to be a sorted array of integers. Returns k such that i <= k < j and arr.(k) = v or -1 if there is no such k. *)

let rec bsearch (arr: int array) v i j =
 if j <= i then -1 else
 let k = i + (j - i) / 2 in
 if v = arr.(k) then k
 else if v < arr.(k) then bsearch arr v i k
 else bsearch arr v (k+1) j
Complexity bugs can be critical

http://ocert.org/advisories/ocert-2011-003.html

“Denial of Service via Algorithmic Complexity Attacks”, S. Crosby, D. Wallach
One of the things we do at Gallium...

Machine-checked proofs of programs
One of the things we do at Gallium...

Machine-checked proofs of programs

including their algorithmic complexity
Formalizing Asymptotic Complexity Claims via Deductive Program Verification
What is formal program verification?

- People write programs
What is formal program verification?

- People write programs
- Programs contain bugs (i.e. sometimes, they do not behave as expected)
What is formal program verification?

- People write programs
- Programs contain bugs (i.e., sometimes, they do not behave as expected)

Formal verification is a set of techniques for:
What is formal program verification?

- People write programs
- Programs contain **bugs** (i.e. sometimes, they do not behave as expected)

Formal verification is a set of techniques for:
- Writing a wishlist about a program (aka specification)
What is formal program verification?

- People write programs
- Programs contain bugs (i.e., sometimes, they do not behave as expected)

Formal verification is a set of techniques for:

- Writing a wishlist about a program (aka specification)
- Checking the program against this wishlist (“is the program correct?”)
Formalizing Asymptotic Complexity Claims via Deductive Program Verification
Deductive verification

From the code of the program and the specification, deduce a set of proof obligations, and try to prove those.

- Automated proofs: FramaC (C), Verifast (C, Java), Infer (C, C++, Obj-C, Java), Why3 (OCaml)
- Interactive proofs, using “proof assistants”: Coq, Isabelle
What are typical properties written in a specification?

• The program does not crash when you run it

• The program terminates (does not get stuck in a loop)

• The program computes the right result

• The program does not leak secrets (e.g. for crypto primitives)

• The program does not use too much time

• The program does not use too much space, network bandwidth...
What are typical properties written in a specification?

- The program does not crash when you run it
- The program terminates (does not get stuck in a loop)
What are typical properties written in a specification?

- The program does not crash when you run it
- The program terminates (does not get stuck in a loop)
- The program computes the right result
What are typical properties written in a specification?

- The program does not crash when you run it
- The program terminates (does not get stuck in a loop)
- The program computes the right result
- The program does not leak secrets (e.g. for crypto primitives)
What are typical properties written in a specification?

- The program does not crash when you run it
- The program terminates (does not get stuck in a loop)
- The program computes the right result
- The program does not leak secrets (e.g. for crypto primitives)
- The program does not use too much time
What are typical properties written in a specification?

- The program does not crash when you run it
- The program terminates (does not get stuck in a loop)
- The program computes the right result
- The program does not leak secrets (e.g. for crypto primitives)
- The program does not use too much time
- The program does not use too much space, network bandwidth...
Formalizing Asymptotic Complexity Claims via Deductive Program Verification
We’re interested in high-level time analysis
Asymptotic time guarantees

We’re interested in high-level time analysis

- Not “binary search terminates in less than 5ms”
Asymptotic time guarantees

We’re interested in high-level time analysis

• Not “binary search terminates in less than 5ms”
• Rather “binary search runs in $O(\log n)$ steps”
Typical paper proofs rely on informal reasoning principles – which can easily be abused

1 let rec bsearch arr v i j =
2 if j <= i then -1 else
3 let k = i + (j - i) / 2 in
4 if v = arr.(k) then k
5 else if v < arr.(k) then
6 bsearch arr v i k
7 else
8 bsearch arr v (k+1) j

Flawed proof: bsearch arr v i j costs $O(1)$. (actual cost: $O(\log(j - i))$)

By induction on $j - i$:
• $j - i \leq 0$: line 2 is $O(1)$. OK!
• $j - i > 0$: $O(1)$ (l. 3-5) + $O(1)$ (l. 6) + $O(1)$ (l. 8) = $O(1)$. OK!
Typical paper proofs rely on informal reasoning principles – which can easily be abused

```
let rec bsearch arr v i j =
  if j <= i then -1 else
  let k = i + (j - i) / 2 in
  if v = arr.(k) then k
  else if v < arr.(k) then
    bsearch arr v i k
  else
    bsearch arr v (k+1) j
```

Flawed proof:

```
bsearch arr v i j costs $O(1)$.
```

By induction on $j - i$:

- $j - i \leq 0$: line 2 is $O(1)$. OK!
- $j - i > 0$: $O(1)$ (l. 3-5) + $O(1)$ (l. 6) + $O(1)$ (l. 8) = $O(1)$. OK!
Typical paper proofs rely on informal reasoning principles – which can easily be abused.

```
let rec bsearch arr v i j =
  if j <= i then -1 else
  let k = i + (j - i) / 2 in
  if v = arr.(k) then k
  else if v < arr.(k) then
    bsearch arr v i k
  else
    bsearch arr v (k+1) j
```

Flawed proof:
```
bsearch arr v i j costs \( O(1) \).
```

By induction on \(j - i \):

- \(j - i \leq 0 \): line 2 is \(O(1) \). OK!
Typical paper proofs rely on informal reasoning principles – which can easily be abused

Flawed proof:

```
let rec bsearch arr v i j =
  if j <= i then -1 else
  let k = i + (j - i) / 2 in
  if v = arr.(k) then k
  else if v < arr.(k) then
    bsearch arr v i k
  else
    bsearch arr v (k+1) j
```

By induction on $j - i$:

- $j - i \leq 0$: line 2 is $O(1)$. OK!
- $j - i > 0$: $O(1)$ (l.3-5) + $O(1)$ (l.6) + $O(1)$ (l.8) = $O(1)$. OK!
Typical paper proofs rely on informal reasoning principles – which can easily be abused

\[
\begin{align*}
1 & \text{let rec bsearch arr } v \ i \ j = \\
2 & \quad \text{if } j \leq i \ \text{then } -1 \ \text{else} \\
3 & \quad \text{let } k = i + (j - i) / 2 \ \text{in} \\
4 & \quad \text{if } v = \text{arr}.(k) \ \text{then } k \\
5 & \quad \text{else if } v < \text{arr}.(k) \ \text{then} \\
6 & \quad \quad \text{bsearch arr } v \ i \ k \\
7 & \quad \text{else} \\
8 & \quad \quad \text{bsearch arr } v \ (k+1) \ j
\end{align*}
\]

Flawed proof:

bsearch arr v i j costs \(O(1)\).

(actual cost: \(O(\log(j - i))\))

“By induction on \(j - i\)” … but which statement are we proving?
Typical paper proofs rely on informal reasoning principles – which can easily be abused

1 let rec bsearch arr v i j =
2 if j <= i then -1 else
3 let k = i + (j - i) / 2 in
4 if v = arr.(k) then k
5 else if v < arr.(k) then
6 bsearch arr v i k
7 else
8 bsearch arr v (k+1) j

Flawed proof:

bsearch arr v i j costs \(O(1)\).
(actual cost: \(O(\log(j - i))\))

“By induction on \(j - i\)” ... but which statement are we proving?

\[\forall n, \exists c, "\text{bsearch costs } c" \neq \exists c, \forall n, "\text{bsearch costs } c"\]
Using a proof assistant steers us clear of these abuses... but maybe also from the simplicity of paper proofs.
Formally, what are we trying to prove?

“bsearch arr v i j runs in $O(\log(j - i))$ steps.”
Formally, what are we trying to prove?

“bsearch arr v i j runs in $O(\log(j - i))$ steps.”
Formally, what are we trying to prove?

“there exists a cost function $f \in O(\log n)$ such that for every arr, v, i, j, $bsearch \ arr \ v \ i \ j$ runs in at most $f(j - i)$ steps.”
Formally, what are we trying to prove?

“there exists a cost function $f \in O(\log n)$ such that for every arr, v, i, j, $\text{bsearch } arr \ v \ i \ j$ runs in at most $f(j - i)$ steps.”

First step of the proof: exhibit a concrete cost function?
let rec bsearch arr v i j =
 if j <= i then -1 else
 let k = i + (j - i) / 2 in
 if v = arr.(k) then k
 else if v < arr.(k) then bsearch arr v i k
 else bsearch arr v (k+1) j

Concrete cost function?
let rec bsearch arr v i j =
 if j <= i then -1 else
 let k = i + (j - i) / 2 in
 if v = arr.(k) then k
 else if v < arr.(k) then bsearch arr v i k
 else bsearch arr v (k+1) j

Concrete cost function? \(2 \log(j - i) + 1\)?
let rec bsearch arr v i j =
 if j <= i then -1 else
 let k = i + (j - i) / 2 in
 if v = arr.(k) then k
 else if v < arr.(k) then bsearch arr v i k
 else bsearch arr v (k+1) j

Concrete cost function? 2\log(j - i) + 1? 3\log(j - i) + 4?
Our approach to this problem

- Interactive proofs (using Coq)

 • Convince Coq to postpone the moment where the concrete cost function is provided
 • Start proving the program and its invariants without knowing the cost function
 • At the same time, infer the cost function from the code of the program
Our approach to this problem

• Interactive proofs (using Coq)
• Convince Coq to postpone the moment where the concrete cost function is provided
Our approach to this problem

- Interactive proofs (using Coq)
- Convince Coq to postpone the moment where the concrete cost function is provided
- Start proving the program and its invariants without knowing the cost function
Our approach to this problem

- Interactive proofs (using Coq)
- Convince Coq to postpone the moment where the concrete cost function is provided
- Start proving the program and its invariants without knowing the cost function
- At the same time, infer the cost function from the code of the program
let rec bsearch arr v i j =
 if j <= i then -1 else
 let k = i + (j - i) / 2 in
 if v = arr.(k) then k
 else if v < arr.(k) then
 bsearch arr v i k
 else
 bsearch arr v (k+1) j

cost (j-i) = 1 + ...
let rec bsearch arr v i j =
 if j <= i then -1 else
 let k = i + (j - i) / 2 in
 if v = arr.(k) then k
 else if v < arr.(k) then
 bsearch arr v i k
 else
 bsearch arr v (k+1) j

cost (j-i) = 1 + (if (j-i) <= 0 then ... else ...)
let rec bsearch arr v i j =
 if j <= i then -1 else
 let k = i + (j - i) / 2 in
 if v = arr.(k) then k
 else if v < arr.(k) then
 bsearch arr v i k
 else
 bsearch arr v (k+1) j

cost (j-i) = 1 + (if (j-i) <= 0 then 0 else ...)

let rec bsearch arr v i j =
 if j <= i then -1 else
 let k = i + (j - i) / 2 in
 if v = arr.(k) then k
 else if v < arr.(k) then
 bsearch arr v i k
 else
 bsearch arr v (k+1) j

cost (j-i) = 1 + (
 if (j-i) <= 0 then 0 else
 0 + ...
)
let rec bsearch arr v i j =
 if j <= i then -1 else
 let k = i + (j - i) / 2 in
 if v = arr.(k) then k
 else if v < arr.(k) then
 bsearch arr v i k
 else
 bsearch arr v (k+1) j

\[
\text{cost (} j-i \text{) } = 1 + (\\
 \begin{array}{l}
 \text{if } (j-i) \leq 0 \text{ then } 0 \\
 0 + 1 + \ldots \\
 \end{array}
)
\]
let rec bsearch arr v i j =
 if j <= i then -1 else
 let k = i + (j - i) / 2 in
 if v = arr.(k) then k
 else if v < arr.(k) then
 bsearch arr v i k
 else
 bsearch arr v (k+1) j

cost (j-i) = 1 + (
 if (j-i) <= 0 then 0 else
 0 + 1 + max
)
let rec bsearch arr v i j =
 if j <= i then -1 else
 let k = i + (j - i) / 2 in
 if v = arr.(k) then k
 else
 if v < arr.(k) then
 bsearch arr v i k
 else
 bsearch arr v (k+1) j

cost (j-i) = 1 + (
 if (j-i) <= 0 then 0 else
 0 + 1 + max 0 …
)
let rec bsearch arr v i j =
 if j <= i then -1 else
 let k = i + (j - i) / 2 in
 if v = arr.(k) then k
 else if v < arr.(k) then
 bsearch arr v i k
 else
 bsearch arr v (k+1) j

\[
\text{cost} (j-i) = 1 + (
 \begin{array}{l}
 \text{if} (j-i) \leq 0 \text{ then } 0 \\
 0 + 1 + \max 0 (1 + \ldots)
 \end{array}
) \]
let rec bsearch arr v i j =
 if j <= i then -1 else
 let k = i + (j - i) / 2 in
 if v = arr.(k) then k
 else if v < arr.(k) then
 bsearch arr v i k
 else
 bsearch arr v (k+1) j

cost (j-i) = 1 + (
 if (j-i) <= 0 then 0 else
 0 + 1 + max 0 (1 + max)
)
let rec bsearch arr v i j =
 if j <= i then -1 else
 let k = i + (j - i) / 2 in
 if v = arr.(k) then k
 else if v < arr.(k) then
 bsearch arr v i k
 else
 bsearch arr v (k+1) j

cost (j-i) = 1 + (
 if (j-i) <= 0 then 0 else
 0 + 1 + max 0 (1 + max (cost ((j-i)/2)) ...)
)
let rec bsearch arr v i j =
 if j <= i then -1
 else let k = i + (j - i) / 2 in
 if v = arr.(k) then k
 else if v < arr.(k) then
 bsearch arr v i k
 else
 bsearch arr v (k+1) j

\[
\text{cost (} j-i \text{)} = 1 + (\
 \begin{align*}
 &\quad \text{if (} j-i \text{) } \leq 0 \text{ then } 0 \text{ else } \\
 &\quad 0 + 1 + \max (1 + \max 0 (\text{cost } ((j-i)/2))) \\
 &\quad \quad (\text{cost } ((j-i) - (j-i)/2 - 1)))
 \end{align*}
\]
let rec bsearch arr v i j =
 if j <= i then -1 else
 let k = i + (j - i) / 2 in
 if v = arr.(k) then k
 else if v < arr.(k) then
 bsearch arr v i k
 else
 bsearch arr v (k+1) j

cost n = 1 + (if n <= 0 then 0 else
 0 + 1 + max 0 (1 + max 0 (cost (n/2))
 (cost (n - n/2 - 1)))
)
To finish the proof

Solve this equation, and prove that $\text{cost}(n)$ is $O(\log n)$: by hand, or using the “Master theorem”.
Conclusion

Machine-checked proofs of the asymptotic complexity of programs.

- Implemented as a Coq library, to verify OCaml programs
- Similar approach implemented in Isabelle at TUM (Munich)
- The approach could be applied to other languages (eg. C, C++, Java)