Formal proofs of asymptotic complexity

Armaél Guéneau
supervised by A. Charguéraud & F. Pottier

The setting

Consider:

- Higher-order imperative programs (OCaml)

- An interactive proof assistant (Coq)

1/15

Functional correctness

The CFML tool: sound and complete approach based on
Separation Logic.

For example, a specification for a sorting function on arrays:

{t ~ Array L}
(sortt)
{X().3L. t~ Array L’ » [permutation L L' A sorted L]}

2/15

Time complexity

Extend the logic with a new resource: time credits.

- “$n" asserts the ownership of n time credits

- Function calls and loop steps consume $1

{t ~ Array L » $(3|L| log |L| + 2|L| + 7)}
(sortt)
{A().3L". t ~ Array L’ « [permutation L L' A sorted L]}

A. Charguéraud, F. Pottier, Machine-Checked Verification of the Correctness and
Amortized Complexity of an Efficient Union-Find Implementation

3/15

Amortized time complexity & modular specifications

Specifications with explicit credits count are not modular.

Just as in paper proofs, use the O() notation to introduce
abstraction.

Jsort_cost,

{t ~ Array L » $(sort_cost |L|)}
(sortt)
{X().3L'. t ~ Array L’ « [permutation L L' A sorted L]} A

sort_cost € O(An.nlogn)

4/15

Formalizing O() in Coq

Standard definition, from e.g. Cormen et al:

f(n) € 0(g(n)) = 3c¢,3no, ¥n = no, [f(n)| < ¢ x [g(n))

Are we done here?

5/15

The case of multivariate O()

What does “f(m, n) € O(g(m, n))" mean?

One possible answer:
Jcng,Ymn,m =ng A n=ng=|f(m,n)] <cxl|g(m,n)|
But then desirable properties do not always hold.

Other possibility: use an alternative definition of O().
Typically has nicer properties, but is harder to prove directly.

R. Howell, On Asymptotic Notation with Multiple Variables

7/15

Reusing multivariate O() specifications

function R(m,n)
fori<—O0tom
forj<—0ton
0 R(m,n) e O(mn)
done
done
end

What is the asymptotic complexity of R(0,n)?

- Not O(0n) (i.e. 0(0))
- We cannot deduce it from the previous specification

8/15

Reusing multivariate O() specifications

Can we prove a specification we can instantiate with m = 0?

function R(m,n)
fori<—O0tom
forj<—0ton
9)
done
done
end

vm,R(m,n) e O(mn + n)
Vn,R(m,n) e O(mn + m)

9/15

Multivariate O() specifications

R(m,n) e O(mn)

10/15

Multivariate O() specifications

vVm,R(m,n) e O(mn + n)
- vn,R(m,n) e O(mn + m)

1/15

Multivariate O() specifications

Question:

Is there a most general specification for a multivariate
function?

12/15

Infrastructure for proving asymptotic
costs

Proving a program specification with O()

dsort_cost,

{t ~ Array L » $(sort_cost |L|)}
(sortt)
{X().3L'. t~ Array L’ « [permutation L L' A sorted L]} A

sort_cost € O(An.nlogn)

Provide “sort_cost = An. 3nlogn + 2n + 7" upfront?

13/15

- Tactics to automatically and interactively infer cost
functions

- Future work: for recursive functions, infer recurrence
equations, then feed them to a “Master Theorem”

14/15

Theoretical foundations

Strengthen the theoretical foundations of time credits

- Time credits count function calls and loop iterations

- Unspecified gap between these and wall-clock time

Future work (long term project):
- In the line of previous work on CakeML

- Prove an end-to-end compiler theorem
relating time credits and execution time

A. Guéneau, M. Myreen, R. Kumar, M. Norrish, Verified characteristic formulae for
CakeML

15/15

function F(m,n)
fori—0tom—1
G(i, n) G(i,n) € O(in)
done = F(m,n) e O(m?n)
end

Does not hold e.g. for:

2N ifm=0
G(mvn): .
mn ifm=>1

16/15

	Formalizing O() in Coq
	Infrastructure for proving asymptotic costs
	Theoretical foundations

