Formal proofs of asymptotic complexity

Armaël Guéneau
supervised by A. Charguéraud & F. Pottier
The setting

Consider:

- Higher-order imperative programs (OCaml)
- An interactive proof assistant (Coq)
The CFML tool: sound and complete approach based on Separation Logic.

For example, a specification for a sorting function on arrays:

\[
\begin{align*}
\{ t \leadsto \text{Array } L \} \\
(\text{sort } t) \\
\{ \lambda(). \exists L'. \ t \leadsto \text{Array } L' \bullet [\text{permutation } L L' \land \text{sorted } L'] \}
\end{align*}
\]
Time complexity

Extend the logic with a new resource: time credits.

- “n” asserts the ownership of n time credits
- Function calls and loop steps consume 1

\[
\{ t \mapsto \text{Array } L \star \$(3|L| \log |L| + 2|L| + 7)\} \\
(\text{sort } t) \\
\{ \lambda(). \exists L'. \ t \mapsto \text{Array } L' \star [\text{permutation } L L' \land \text{sorted } L']\}\]

A. Charguéraud, F. Pottier, *Machine-Checked Verification of the Correctness and Amortized Complexity of an Efficient Union-Find Implementation*
Specifications with explicit credits count are not *modular*. Just as in paper proofs, use the $O()$ notation to introduce abstraction.

\[\exists \text{sort_cost}, \]

\[
\{ t \leadsto \text{Array } L \star (\text{sort_cost } |L|) \}
\]

(sort t)

\[
\{ \lambda(). \exists L'. t \leadsto \text{Array } L' \star [\text{permutation } L L' \land \text{sorted } L'] \} \land \\
\text{sort_cost} \in O(\lambda n. n \log n)
\]
Formalizing $O()$ in Coq
Standard definition, from e.g. Cormen et al:

\[f(n) \in O(g(n)) \equiv \exists c, \exists n_0, \forall n \geq n_0, |f(n)| \leq c \times |g(n)| \]

Are we done here?
The case of multivariate $O()$

What does “$f(m, n) \in O(g(m, n))$” mean?

One possible answer:

$$\exists c n_0, \forall m n, m \geq n_0 \land n \geq n_0 \Rightarrow |f(m, n)| \leq c \times |g(m, n)|$$

But then desirable properties do not always hold.

Other possibility: use an alternative definition of $O()$. Typically has nicer properties, but is harder to prove directly.

R. Howell, *On Asymptotic Notation with Multiple Variables*
Reusing multivariate $O()$ specifications

```plaintext
function R(m,n)
    for i ← 0 to m
        for j ← 0 to n
            ()
        done
    done
end
```

$R(m, n) \in O(mn)$

What is the asymptotic complexity of $R(0,n)$?

- Not $O(0n)$ (i.e. $O(0)$)
- We cannot deduce it from the previous specification
Can we prove a specification we can instantiate with $m = 0$?

```plaintext
function R(m,n)
    for $i \leftarrow 0$ to $m$
        for $j \leftarrow 0$ to $n$
            \()
        done
    done
end
```

$\forall m, R(m, n) \in O(mn + n)$

$\forall n, R(m, n) \in O(mn + m)$
Multivariate $O()$ specifications

$R(m, n) \in O(mn)$
Multivariate $O()$ specifications

$\forall m, R(m, n) \in O(mn + n)$

$\forall n, R(m, n) \in O(mn + m)$
Question:

Is there a most general specification for a multivariate function?
Infrastructure for proving asymptotic costs
Proving a program specification with $O()$

$\exists \text{sort_cost}$,

\[\{t \leadsto \text{Array}\ L \star \$(\text{sort_cost} \ |\ L||)\}\]

(sort t)
\[\{\lambda(). \exists L'.\ t \leadsto \text{Array}\ L' \star [\text{permutation} \ L \ L' \land \text{sorted} \ L']\} \land \]

\text{sort_cost} \in O(\lambda n. n \log n)

Provide “sort_cost = \lambda n. 3n \log n + 2n + 7” upfront?
• Tactics to automatically and interactively infer cost functions

• Future work: for recursive functions, infer recurrence equations, then feed them to a “Master Theorem”
Theoretical foundations
Strengthen the theoretical foundations of time credits

- Time credits count function calls and loop iterations
- Unspecified gap between these and wall-clock time

Future work (long term project):
- In the line of previous work on CakeML
- Prove an end-to-end compiler theorem relating time credits and execution time

A. Guéneau, M. Myreen, R. Kumar, M. Norrish, *Verified characteristic formulae for CakeML*
function $F(m,n)$

for $i \leftarrow 0$ to $m - 1$

$G(i, n)$

done

end

$G(i, n) \in O(in)$

$\Rightarrow F(m, n) \in O(m^2n)$

Does not hold e.g. for:

$$G(m, n) = \begin{cases} 2^n & \text{if } m = 0 \\ mn & \text{if } m \geq 1 \end{cases}$$