
Formal proofs of asymptotic complexity

Armaël Guéneau
supervised by A. Charguéraud & F. Pottier

The setting

Consider:

• Higher-order imperative programs (OCaml)
• An interactive proof assistant (Coq)

1/15

Functional correctness

The CFML tool: sound and complete approach based on
Separation Logic.

For example, a specification for a sorting function on arrays:

tt⇝ Array Lu

psort tq
tλpq. DDL1. t⇝ Array L1 ‹ rpermutation L L’ ^ sorted L’su

2/15

Time complexity

Extend the logic with a new resource: time credits.

• “$n” asserts the ownership of n time credits
• Function calls and loop steps consume $1

tt⇝ Array L ‹ $p3|L| log |L| ` 2|L| ` 7qu

psort tq
tλpq. DDL1. t⇝ Array L1 ‹ rpermutation L L’ ^ sorted L’su

A. Charguéraud, F. Pottier, Machine-Checked Verification of the Correctness and
Amortized Complexity of an Efficient Union-Find Implementation

3/15

Amortized time complexity & modular specifications

Specifications with explicit credits count are not modular.

Just as in paper proofs, use the Opq notation to introduce
abstraction.

D sort_cost,

tt⇝ Array L ‹ $psort_cost |L|qu

psort tq
tλpq. DDL1. t⇝ Array L1 ‹ rpermutation L L’ ^ sorted L’su ^

sort_cost P Opλn.n lognq

4/15

Formalizing Opq in Coq

Standard definition, from e.g. Cormen et al:

fpnq P Opgpnqq ” Dc, Dn0,@n ě n0, |fpnq| ď c ˆ |gpnq|

Are we done here?

5/15

The case of multivariate Opq

What does “fpm,nq P Opgpm,nqq” mean?

One possible answer:
Dc n0,@mn,m ě n0 ^ n ě n0 ñ |fpm,nq| ď c ˆ |gpm,nq|

But then desirable properties do not always hold.

Other possibility: use an alternative definition of Opq.
Typically has nicer properties, but is harder to prove directly.

R. Howell, On Asymptotic Notation with Multiple Variables

7/15

Reusing multivariate Opq specifications

function R(m,n)
for i Ð 0 to m

for j Ð 0 to n
()

done
done

end

Rpm,nq P Opmnq

What is the asymptotic complexity of R(0,n)?

• Not Op0nq (i.e. Op0q)
• We cannot deduce it from the previous specification

8/15

Reusing multivariate Opq specifications

Can we prove a specification we can instantiate with m “ 0?

function R(m,n)
for i Ð 0 to m

for j Ð 0 to n
()

done
done

end

@m,Rpm,nq P Opmn ` nq

@n,Rpm,nq P Opmn ` mq

9/15

Multivariate Opq specifications

Rpm,nq P Opmnq

10/15

Multivariate Opq specifications

@m,Rpm,nq P Opmn ` nq

@n,Rpm,nq P Opmn ` mq

11/15

Multivariate Opq specifications

Question:

Is there a most general specification for a multivariate
function?

12/15

Infrastructure for proving asymptotic
costs

Proving a program specification with Opq

D sort_cost,

tt⇝ Array L ‹ $psort_cost |L|qu

psort tq
tλpq. DDL1. t⇝ Array L1 ‹ rpermutation L L’ ^ sorted L’su ^

sort_cost P Opλn.n lognq

Provide “sort_cost “ λn. 3n logn ` 2n ` 7” upfront?

13/15

• Tactics to automatically and interactively infer cost
functions

• Future work: for recursive functions, infer recurrence
equations, then feed them to a “Master Theorem”

14/15

Theoretical foundations

Strengthen the theoretical foundations of time credits

• Time credits count function calls and loop iterations
• Unspecified gap between these and wall-clock time

Future work (long term project):
• In the line of previous work on CakeML
• Prove an end-to-end compiler theorem
relating time credits and execution time

A. Guéneau, M. Myreen, R. Kumar, M. Norrish, Verified characteristic formulae for
CakeML

15/15

function F(m,n)
for i Ð 0 to m ´ 1

G(i, n)
done

end

Gpi,nq P Opinq
?

ñ Fpm,nq P Opm2nq

Does not hold e.g. for:

Gpm,nq “

$

&

%

2n if m “ 0
mn if m ě 1

16/15

	Formalizing O() in Coq
	Infrastructure for proving asymptotic costs
	Theoretical foundations

