
Formally verified incremental cycle detection

Armaël Guéneau

with J.-H. Jourdan, A. Charguéraud and F. Pottier

Formally Verified Algorithms

Can we formally verify the functional correctness...

and asymptotic complexity

...

of non-trivial algorithms

...

with respect to concrete source code?

1/31

Formally Verified Algorithms

Can we formally verify the functional correctness

...

and asymptotic complexity...

of non-trivial algorithms

...

with respect to concrete source code?

1/31

Formally Verified Algorithms

Can we formally verify the functional correctness

...

and asymptotic complexity

...

of non-trivial algorithms...

with respect to concrete source code?

1/31

Formally Verified Algorithms

Can we formally verify the functional correctness

...

and asymptotic complexity

...

of non-trivial algorithms

...

with respect to concrete source code?

1/31

Previous work: time credits (1)

Previous work: interactive proofs in Separation Logic with
Time Credits, using Coq and the CFML library.

Charguéraud and Pottier (2017) verify Tarjan’s Union-Find.

• Manual accounting of credits: “union costs 4αpnq ` 12”;• Challenging mathematical analysis but fairly short code;

2/31

Previous work: time credits (2)

Guéneau, Charguéraud and Pottier (2018) formalize theO
notation and advertise for asymptotic complexity
specifications, e.g. “union costs fpnq where f P Opαpnqq”.

• Required for specifications to be modular;• Proofs use a semi-automated cost synthesis mechanism;• However, only small illustrative examples are presented.

Question: does this approach scale?

3/31

In this talk

Verification of a state-of-the-art incremental cycle detection
algorithm due to Bender, Fineman, Gilbert and Tarjan (2016).

• non-trivial implementation (200 lines of OCaml code)• subtle complexity analysis• used in Coq (universe constraints) and Dune (build
dependencies)

4/31

Incremental cycle detection

The problem: checking for acyclicity of a dynamically
constructed graph

5/31

Incremental cycle detection

The problem: checking for acyclicity of a dynamically
constructed graph

5/31

Incremental cycle detection

The problem: checking for acyclicity of a dynamically
constructed graph

5/31

Incremental cycle detection

The problem: checking for acyclicity of a dynamically
constructed graph

5/31

Incremental cycle detection

The problem: checking for acyclicity of a dynamically
constructed graph

5/31

Incremental cycle detection

The problem: checking for acyclicity of a dynamically
constructed graph

5/31

Naive algorithm: traverse the graph at each step.
Insertingm arcs costsOpm2q.

Using Bender et al.’s algorithm, insertingm arcs in a graph
with n vertices costs:

• Opm
?
mq for sparse graphs;• Opmn2{3q for dense graphs.

In the general case: Opm ¨ minpm1{2, n2{3qq.

Specifies the cost of a sequence of operations, not the
cost of a single operation.

6/31

Contributions

• An OCaml implementation as a standalone library;• A machine-checked Coq proof of both its functional
correctness and amortized asymptotic complexity;• A simple yet crucial improvement to make Bender et al.’s
algorithm truly online;• Time credits that are counted in Z (instead of N): this
leads to significantly fewer proof obligations (!).

7/31

Overview

Overview of the library: interface and specification

Complexity Analysis

Verification Techniques and Methodology

8/31

Overview of the library: interface and
specification

Minimal OCaml interface

val init_graph : unit -> graph

val add_vertex : graph -> vertex -> unit

type add_edge_result =

| EdgeAdded
| EdgeCreatesCycle

val add_edge_or_detect_cycle :

graph -> vertex -> vertex ->

add_edge_result

9/31

Bender et al.’s algorithm in action

Demo

10/31

http://gallium.inria.fr/~agueneau/cycles/demo/

Toplevel specification (functional correctness only) (1)

INITGRAPH
tempu init_graph() tλg. IsGraph g ∅u

ACYCLICITY
@g G. IsGraph g G , IsGraph g G ‹ r@x. x ­ÝÑ `

Gxs

11/31

Toplevel specification (functional correctness only) (2)

ADDVERTEX
@g Gv. v R vertices G ùñ

tIsGraph g G ‹ IsNewVertex vu

padd_vertex g vq

tλpq. IsGraph g pG` vq u

12/31

Toplevel specification (functional correctness only) (3)

ADDEDGE
@g Gv w. let m :“ |edges G| in

let n :“ |vertices G| in

v, w P vertices G ^ pv, wq R edges G ùñ
!

IsGraph g G

‹ $p q

)

padd_edge_or_detect_cycle g v wq
$

’

&

’

%

λ res. match res with

| EdgeAdded ñ IsGraph g pG` pv, wqq

| EdgeCreatesCycle ñ rw ÝÑ˚
G vsq

,

/

.

/

-

COMPLEXITY

ψ P Opm ¨ minpm1{2, n2{3q ` nq

^ nonnegative ψ ^ monotonic ψ

Separation Logic with Time Credits:

• $n asserts the ownership of n time credits• $n is a Separation Logic assertion, like p ãÑ 3• Each function call (or loop iteration) consumes $1• $pn`mq ” $n ‹ $m• Credits are not duplicable: $1 ùñ{ $1 ‹ $1• Specifications are of the form:
tIsGraph g G ‹ $p3|edges G| ` 5qu dfs g tIsGraph g Gu

13/31

Toplevel specification (functional correctness only) (3)

ADDEDGE
@g Gv w. let m :“ |edges G| in

let n :“ |vertices G| in

v, w P vertices G ^ pv, wq R edges G ùñ
!

IsGraph g G

‹ $p q

)

padd_edge_or_detect_cycle g v wq
$

’

&

’

%

λ res. match res with

| EdgeAdded ñ IsGraph g pG` pv, wqq

| EdgeCreatesCycle ñ rw ÝÑ˚
G vsq

,

/

.

/

-

COMPLEXITY
ψ P Opm ¨ minpm1{2, n2{3q ` nq ^ nonnegative ψ ^ monotonic ψ

Separation Logic with Time Credits:

• $n asserts the ownership of n time credits• $n is a Separation Logic assertion, like p ãÑ 3• Each function call (or loop iteration) consumes $1• $pn`mq ” $n ‹ $m• Credits are not duplicable: $1 ùñ{ $1 ‹ $1• Specifications are of the form:
tIsGraph g G ‹ $p3|edges G| ` 5qu dfs g tIsGraph g Gu

13/31

Toplevel specification (correctness and complexity) (1)

ADDEDGE
@g Gv w. let m :“ |edges G| in

let n :“ |vertices G| in

v, w P vertices G ^ pv, wq R edges G ùñ
!

IsGraph g G ‹ $p . . . q

)

padd_edge_or_detect_cycle g v wq
$

’

&

’

%

λ res. match res with

| EdgeAdded ñ IsGraph g pG` pv, wqq

| EdgeCreatesCycle ñ rw ÝÑ˚
G vsq

,

/

.

/

-

COMPLEXITY
ψ P Opm ¨ minpm1{2, n2{3q ` nq ^ nonnegative ψ ^ monotonic ψ

Separation Logic with Time Credits:

• $n asserts the ownership of n time credits• $n is a Separation Logic assertion, like p ãÑ 3• Each function call (or loop iteration) consumes $1• $pn`mq ” $n ‹ $m• Credits are not duplicable: $1 ùñ{ $1 ‹ $1• Specifications are of the form:
tIsGraph g G ‹ $p3|edges G| ` 5qu dfs g tIsGraph g Gu

13/31

Toplevel specification (correctness and complexity) (1)

ADDEDGE
@g Gv w. let m :“ |edges G| in

let n :“ |vertices G| in

v, w P vertices G ^ pv, wq R edges G ùñ
!

IsGraph g G ‹ $pψ pm` 1, nq ´ ψ pm,nqq

)

padd_edge_or_detect_cycle g v wq
$

’

&

’

%

λ res. match res with

| EdgeAdded ñ IsGraph g pG` pv, wqq

| EdgeCreatesCycle ñ rw ÝÑ˚
G vsq

,

/

.

/

-

COMPLEXITY
ψ P Opm ¨ minpm1{2, n2{3q ` nq ^ nonnegative ψ ^ monotonic ψ

Separation Logic with Time Credits:

• $n asserts the ownership of n time credits• $n is a Separation Logic assertion, like p ãÑ 3• Each function call (or loop iteration) consumes $1• $pn`mq ” $n ‹ $m• Credits are not duplicable: $1 ùñ{ $1 ‹ $1• Specifications are of the form:
tIsGraph g G ‹ $p3|edges G| ` 5qu dfs g tIsGraph g Gu

13/31

Toplevel specification (correctness and complexity) (2)

ADDVERTEX
@g Gv. let m :“ |edges G| in

let n :“ |vertices G| in

v R vertices G ùñ
#

IsGraph g G ‹ IsNewVertex v ‹

$pψpm,n` 1q ´ ψpm,nqq

+

padd_vertex g vq

tλpq. IsGraph g pG` vq u

14/31

Toplevel specification (correctness and complexity) (3)

INITGRAPH
Dk. t$ku init_graph() tλg. IsGraph g ∅u

ACYCLICITY
@g G. IsGraph g G , IsGraph g G ‹ r@x. x ­ÝÑ `

Gxs

DISPOSEGRAPH
@g G. IsGraph g G , emp

15/31

Analyzing the cost of a sequence of operations

let g = init_graph () in

add_vertex g 1; $pψp0, 1q ´ ψp0, 0qq

. . .

add_vertex g n; $pψp0, nq ´ ψp0, n´ 1qq

add_edge_or_detect_cycle g 1 2; $pψp1, nq ´ ψp0, nqq

add_edge_or_detect_cycle g 2 3; $pψp2, nq ´ ψp1, nqq

. . .

add_edge_or_detect_cycle g (m-1) m; $pψpm,nq ´ ψpm´ 1, nqq

Total cost: ψpm,nq ´ ψp0, 0q

P Opm ¨ minpm1{2, n2{3q ` nq

ψpm,nq: the cost of insertingm edges and n vertices in an
empty graph.

16/31

Analyzing the cost of a sequence of operations

let g = init_graph () in

add_vertex g 1; $pψp0, 1q ´ ψp0, 0qq

. . .

add_vertex g n; $pψp0, nq ´ ψp0, n´ 1qq

add_edge_or_detect_cycle g 1 2; $pψp1, nq ´ ψp0, nqq

add_edge_or_detect_cycle g 2 3; $pψp2, nq ´ ψp1, nqq

. . .

add_edge_or_detect_cycle g (m-1) m; $pψpm,nq ´ ψpm´ 1, nqq

Total cost: ψpm,nq ´ ψp0, 0q P Opm ¨ minpm1{2, n2{3q ` nq

ψpm,nq: the cost of insertingm edges and n vertices in an
empty graph.

16/31

Analyzing the cost of a sequence of operations

let g = init_graph () in

add_vertex g 1; $pψp0, 1q ´ ψp0, 0qq

. . .

add_vertex g n; $pψp0, nq ´ ψp0, n´ 1qq

add_edge_or_detect_cycle g 1 2; $pψp1, nq ´ ψp0, nqq

add_edge_or_detect_cycle g 2 3; $pψp2, nq ´ ψp1, nqq

. . .

add_edge_or_detect_cycle g (m-1) m; $pψpm,nq ´ ψpm´ 1, nqq

Total cost: ψpm,nq ´ ψp0, 0q P Opm ¨ minpm1{2, n2{3q ` nq

ψpm,nq: the cost of insertingm edges and n vertices in an
empty graph.

16/31

Complexity Analysis

IsGraph’s hidden potential

@g Gv w.

let m,n :“ |edges G| , |vertices G| in

v, w P vertices G ^ pv, wq R edges G ùñ
!

IsGraph g G ‹ $pψ pm` 1, nq ´ ψ pm,nqq

)

padd_edge_or_detect_cycle g v wq
$

’

&

’

%

λ res. match res with

| EdgeAdded ñ IsGraph g pG` pv, wqq

| EdgeCreatesCycle ñ rw ÝÑ˚
G vsq

,

/

.

/

-

IsGraph g G :“ DDLM I. IsRawGraph g GLM I ‹ rInv G L Is ‹ $ϕpG,Lq

Inv G L I :“ p@x. x ­ÝÑ `
G xq ^ . . .

17/31

IsGraph’s hidden potential

@g Gv w.

let m,n :“ |edges G| , |vertices G| in

v, w P vertices G ^ pv, wq R edges G ùñ
!

IsGraph g G ‹ $pψ pm` 1, nq ´ ψ pm,nqq

)

padd_edge_or_detect_cycle g v wq
$

’

&

’

%

λ res. match res with

| EdgeAdded ñ IsGraph g pG` pv, wqq

| EdgeCreatesCycle ñ rw ÝÑ˚
G vsq

,

/

.

/

-

IsGraph g G :“ DDLM I. IsRawGraph g GLM I ‹ rInv G L Is ‹ $ϕpG,Lq

Inv G L I :“ p@x. x ­ÝÑ `
G xq ^ . . .

17/31

IsGraph’s hidden potential

@g GLM I v w.

let m,n :“ |edges G| , |vertices G| in

v, w P vertices G ^ pv, wq R edges G ùñ
#

IsRawGraph g GLM I ‹ rInv G L Is ‹ $ϕpG,Lq

‹ $pψ pm` 1, nq ´ ψ pm,nqq

+

padd_edge_or_detect_cycle g v wq
$

’

’

’

&

’

’

’

%

λ res. match res with

| EdgeAdded ñ let G1 :“ G` pv, wq in DDL1 M 1 I 1.

IsRawGraph g G1 L1 M 1 I 1 ‹ rInv G1 L1 I 1s ‹ $ϕpG1, L1q

| EdgeCreatesCycle ñ rw ÝÑ˚
G vsq

,

/

/

/

.

/

/

/

-

IsGraph g G :“ DDLM I. IsRawGraph g GLM I ‹ rInv G L Is ‹ $ϕpG,Lq

Inv G L I :“ p@x. x ­ÝÑ `
G xq ^ . . .

17/31

An overview of the complexity analysis

Phase 1 (enumeration of vertices at the current level):
worst-case cost analysis: Opψpm` 1, nq ´ ψpm,nqq.

Phase 2 (updating levels):
amortized cost analysis: Op1q using the potential ϕ.

Adding the new edge:
increases the potential ϕ, the variation must be
Opψpm` 1, nq ´ ψpm,nqq.

18/31

Main complexity invariant: levels are “replete” (1)

For every node x at level k ` 1 there are at least k edges at
level k from which x can be reached.

19/31

Main complexity invariant: levels are “replete” (2)

Corollary: there are at least k edges at level k.

This provides a bound on the number of levels:

@v. Lpvq ď
?
2m` 1.

I.e. the number of (non-empty) levels isOp
?
mq.

(For simplicity we focus on the case of sparse graphs in the rest of the analysis)

20/31

Phase 1: worst-case costOpψpm ` 1, nq ´ ψpm,nqq

When inserting an edge v ÝÑ w, Phase 1 runs inLpvq steps.

Due to the invariant on levels,Lpvq isOp
?
mq.

ñ Phase 1 runs inOp
?
mq.

Define ψ (for some constantC 1, more on that later) as:

ψpm,nq :“ C 1 ¨ pm
?
m`m` n` 1q

From the definition: ?
m P Opψpm` 1, nq ´ ψpm,nqq.

21/31

Phase 2: amortized costOp1q

The potential ϕ stores Time Credits for edges depending on
their current level (lower level = more credits).

ϕpG,Lq :“ C ¨
ř

pv,wqPGp
?
m´ Lpvqq

Phase 2 increases the level of edges
ñ decreases ϕ, releases Time Credits

22/31

Edge insertion: potential variation isOpψpm` 1, nq ´ ψpm,nqq

We need to provide potential for the new edge.

ϕppG` pv, wqq, Lq ´ ϕpG,Lq “ C ¨ p
?
m` 1 ´ Lpvqq

ď C ¨
?
m` 1

P Opψpm` 1, nq ´ ψpm,nqq

QED.

23/31

Verification Techniques and Methodology

Complexity invariants depend on concrete code

We define ϕ and ψ as follows:

ϕpG,Lq :“ C ¨
ř

pv,wqPGp
?
m´ Lpvqq

ψpm,nq :“ C 1 ¨ pm
?
m`m` n` 1q

...for some constantsC andC 1 which we must define.

NB: “ψpm,nq :“ Opm
?
m` nq” does not make sense!

C andC 1 closely depend on details of the implementation.
We do not want to write them by hand in the proof!

24/31

Robust complexity proofs using abstract constants

The solution relies on our mechanisms for cost synthesis and
deferring proof obligations.

Proof sketch of update_levels’s specification:

DC. @g w l. t$pC ¨ p. . .qq ‹ . . .u update_levels g w l t. . .u

• Defer choosing a value forC;• Cost synthesis yields obligations of the form
“C ě cost_foo ` cost_bar ` . . .”: defer them;• Automatically deduce a suitable value forC.

Then, ϕ is defined using “the”C from the specification.

25/31

Time Credits in Z

Originally, Time Credits are counted in N:

$0 ” emp

@mn P N. $pm` nq ” $m ‹ $n

@n P N. $n , emp

We work in a variant of SL with credits counted in Z:

$0 ” emp

@mn P Z. $pm` nq ” $m ‹ $n

@n P Z. $n ‹ rn ě 0s , emp

26/31

Time Credits in Z (2)

Time Credits in Z are more flexible as they allow one to have
debts (temporarily!).

As Tarjan puts it: “we can allow borrowing of credits...”

@n P Z. emp ” $n ‹ $p´nq

“...as long as any debt incurred is eventually paid off.”

@n P Z. $n ‹ rn ě 0s , emp

27/31

Time Credits inZenable simpler specifications (& invariants)

let rec walk (l: int list): int list =

match l with
| x :: xs when x <> 0 -> walk xs

| _ -> l

@l. let k :“ “index of the first 0 in l” in

t$pk ` 1qu walk l tλl1. rsuffix l1 lsu

ñ Too complicated: the specification paraphrases the code

28/31

Time Credits inZenable simpler specifications (& invariants)

let rec walk (l: int list): int list =

match l with
| x :: xs when x <> 0 -> walk xs

| _ -> l

@l. let k :“ “index of the first 0 in l” in

t$pk ` 1qu walk l tλl1. rsuffix l1 lsu

ñ Too complicated: the specification paraphrases the code

28/31

Time Credits inZenable simpler specifications (& invariants)

let rec walk (l: int list): int list =

match l with
| x :: xs when x <> 0 -> walk xs

| _ -> l

@l. let k :“ “index of the first 0 in l” in

t$pk ` 1qu walk l tλl1. rsuffix l1 lsu

ñ Too complicated: the specification paraphrases the code

28/31

Time Credits inZenable simpler specifications (& invariants)

let rec walk (l: int list): int list =

match l with
| x :: xs when x <> 0 -> walk xs

| _ -> l

@l. t$p|l| ` 1qu walk l tλl1. $|l1| ‹ rsuffix l1 lsu

@l. tempu walk l tλl1. $p|l1| ´ |l| ´ 1q ‹ rsuffix l1 lsu

These two specifications are equivalent.

29/31

Time Credits inZenable simpler specifications (& invariants)

let rec walk (l: int list): int list =

match l with
| x :: xs when x <> 0 -> walk xs

| _ -> l

@l. t$p|l| ` 1qu walk l tλl1. $|l1| ‹ rsuffix l1 lsu

@l. tempu walk l tλl1. $p|l1| ´ |l| ´ 1q ‹ rsuffix l1 lsu

These two specifications are equivalent.

29/31

Time Credits inZenable simpler specifications (& invariants)

let rec walk (l: int list): int list =

match l with
| x :: xs when x <> 0 -> walk xs

| _ -> l

@l. t$p|l| ` 1qu walk l tλl1. $|l1| ‹ rsuffix l1 lsu

@l. tempu walk l tλl1. $p|l1| ´ |l| ´ 1q ‹ rsuffix l1 lsu

These two specifications are equivalent.

29/31

Summary

• We improve and verify a state-of-the-art algorithm;

• SL with (Possibly Negative) Time Credits is powerful; it
allows writing rich and modular specifications;

• Our code is already useful: integrated into Dune,
bringing a 7x performance improvement (!);

• Our cost synthesis and deferring mechanisms allow
manageable proofs at scale.

More in the paper and my (upcoming) PhD dissertation.

ùñ https://gitlab.inria.fr/agueneau/incremental-cycles

30/31

https://gitlab.inria.fr/agueneau/incremental-cycles

Producing the right answer is good.

Producing the right answer at the right time is better.

Don’t promise—just prove it!

31/31

Producing the right answer is good.

Producing the right answer at the right time is better.

Don’t promise—just prove it!

31/31

Producing the right answer is good.

Producing the right answer at the right time is better.

Don’t promise—just prove it!

31/31

Program verification framework: Coq and CFML

Example specifications using time credits

Complexity specification using explicit time credits:

@ g G. t IsGraph g G ‹ $p3 |edges G| ` 5q u dfspgq t IsGraph g G u

Asymptotic complexity specification:

Dpf : Z Ñ Zq.

f P OZpλm.mq

^ @ g G. t IsGraph g G ‹ $ fp|edges G|q u dfspgq t IsGraph g G u

Idea 1: Levels

Each vertex v is given a levelLpvq.

Invariant: v ÝÑG w ùñ Lpvq ď Lpwq

Levels can accelerate the search, but need to be maintained:

Idea 1: Levels

Each vertex v is given a levelLpvq.

Invariant: v ÝÑG w ùñ Lpvq ď Lpwq

Levels can accelerate the search, but need to be maintained:

Idea 1 (bis): Tradeoff on the number of levels

(cheap) (expensive)

• Too many levels: the expensive case triggers often,
outweighting the cheap case• Too few levels: similar to the naive algorithm,
insufficient benefit out of the cheap case

Idea 1 (ter): Tradeoff on the number of levels

Why do we gain anything?

Adding a horizontal edge: the search for a cycle can be
restricted to this level.

Idea 2: Two-way Search

The backward search is:

• restricted to the same level• bounded by a predetermined number of edges F

The forward search restores the invariant on levels as it goes.

Idea 3: when do new levels get created?

If the backward search explores all F edges...

then nodes are moved to a higher level during the forward
search.

Forward traversal economics

• Traversing an edge pu, vq costs 1• Raising v releases cardptw | pv, wq P Guq from ϕ

(this pays for exploring all the successors of v)• The stack holds credits for the next edges to explore

The traversal stack contains credits representing the
“working capital” of the traversal.

outpvq :“ cardptw | pv, wq P Guq

|stack| :“
ř

vPstack outpvq

let rec visit_forward g new_level visited stack =

match stack with

| [] -> ()

| u :: stack ->

let stack = List.fold_left (fun stack v ->

...

set_level g v new_level;

v :: stack

) stack (get_outgoing g u) in

visit_forward g new_level visited stack

outpvq :“ cardptw | pv, wq P Guq

|stack| :“
ř

vPstack outpvq

let rec visit_forward g new_level visited stack =

match stack with

| [] -> ()

| u :: stack ->

let stack = List.fold_left (fun stack v ->

...

set_level g v new_level;

v :: stack

) stack (get_outgoing g u) in

visit_forward g new_level visited stack

$|stack|$ϕ(G,L)

$(out(u) +|stack|)

$|stack|

$(out(v) + |stack|)

Proof methodology, in practice

In practice, credit counts involve multiplicative constants:

ϕpG,Lq :“ C ¨
ř

pu,vqPGphighest_level G L´ Lpuqq

|stack| :“ C 1 ¨
ř

vPstack outpvq

DC2. 0 ď C2 ^ @g nl vs stack

t$C2 ‹ $|stack| ‹ . . .u visit_forward g nl vs stack tλpq. . . .u

C,C 1 andC2 depend on specifics of the implementation.

We develop tactics to make the proofs independent from
their exact expression, and avoid writing it explicitly by hand.

Time Credits in N and redundant proof obligations

Starting with $n then paying for operations with costsm1,
m2, …,mk produces redundant proof obligations:

$n

pay $m1 ⇝ n´m1 ě 0

$pn´m1q

pay $m2 ⇝ n´m1 ´m2 ě 0

. . .

$pn´m1 ´m2 ´ . . .´mk´1q

pay $mk ⇝ n´m1 ´m2 ´ . . .´mk ě 0

Time Credits in Z eliminate redundant proof obligations

Paying for a sequence of operations produces a single final
proof obligation:

$n

pay $m1 ⇝ no proof obligation

$pn´m1q

pay $m2 ⇝ no proof obligation

. . .

$pn´m1 ´ . . .´mk´1q

pay $mk ⇝ no proof obligation

discard $pn´m1 ´ . . .´mkq ⇝ n´m1 ´ . . .´mk ě 0

This also allows for simpler loop invariants and specifications.

Pre/Post-condition duality

With integer time credits, these two specifications are
equivalent (using the frame rule):

t$nu f n tλpq. empu

tempu f n tλpq. $p´nqu

Bonus: returning negative credits allow the complexity to
depend on the result of the function! Example:

tempu collatz_stopping_time n tλi. $p´iqu

Interaction with loops

From the proof of the forward traversal:
{{ $ϕpG,Lq ‹ rInv G L Is

List.fold_left ... (fun ... ->

{{ DDL1. $ϕpG,L1q

rextract credits from $ϕpG,L1qs

. . .

)

{{ $ϕpG,L2q ‹ rInv G L2 I2s

(Difficult) Lemma: @GLI. Inv G L I ùñ ϕpG,Lq ě 0

Time Credits in N would require a nontrivial strengthening of
the loop invariant.

Walk

let rec walk (a: int array) (i: int): int =

if i < Array.length a && a.(i) <> 0 then walk a (i+1)

else i+1

@a iA. 0 ď i ď |A| ùñ

ta⇝ ArrayAu walk a i tλj. a⇝ ArrayA ‹ $pi´ jq ‹ ri ă j ď |A|su

@a iA. 0 ď i ď |A| ùñ

ta⇝ ArrayA ‹ $p|A| ´ iqu

walk a i

tλj. a⇝ ArrayA ‹ $p|A| ´ jq ‹ ri ă j ď |A|su

Walk

let rec walk (a: int array) (i: int): int =

if i < Array.length a && a.(i) <> 0 then walk a (i+1)

else i+1

@a iA. 0 ď i ď |A| ùñ

ta⇝ ArrayAu walk a i tλj. a⇝ ArrayA ‹ $pi´ jq ‹ ri ă j ď |A|su

@a iA. 0 ď i ď |A| ùñ

ta⇝ ArrayA ‹ $p|A| ´ iqu

walk a i

tλj. a⇝ ArrayA ‹ $p|A| ´ jq ‹ ri ă j ď |A|su

Walk

let rec walk (a: int array) (i: int): int =

if i < Array.length a && a.(i) <> 0 then walk a (i+1)

else i+1

@a iA. 0 ď i ď |A| ùñ

ta⇝ ArrayAu walk a i tλj. a⇝ ArrayA ‹ $pi´ jq ‹ ri ă j ď |A|su

@a iA. 0 ď i ď |A| ùñ

ta⇝ ArrayA ‹ $p|A| ´ iqu

walk a i

tλj. a⇝ ArrayA ‹ $p|A| ´ jq ‹ ri ă j ď |A|su

Interruptible Iteration

let rec interruptible_iter f l =

match l with
| [] -> true

| x :: l’ -> f x && interruptible_iter f l’

Integer time credits allow for an intuitive specification:

@I l f.

p@x l1. prefix l1 l ùñ tI l1u f x tλb. I px :: l1quq ùñ

tI rs ‹ $|l|u

interruptible_iter f l

tλb. if b then I l else DDl1 l2. I l1 ‹ $|l2| ‹ rl “ l1 `̀ l2su

Interruptible Iteration

let rec interruptible_iter f l =

match l with
| [] -> true

| x :: l’ -> f x && interruptible_iter f l’

Integer time credits allow for an intuitive specification:

@I l f.

p@x l1. prefix l1 l ùñ tI l1u f x tλb. I px :: l1quq ùñ

tI rs ‹ $|l|u

interruptible_iter f l

tλb. if b then I l else DDl1 l2. I l1 ‹ $|l2| ‹ rl “ l1 `̀ l2su

Challenges

• Understanding the algorithm (!)

• (Re)inventing the complexity invariants

• Designing robust and generic invariants for
(interruptible) graph traversals

• Designing Coq tactics for interactive reasoning using
integer time credits

Idea 3: Policy for raising nodes to a new level

w and its descendants need to be raised toLpvq or higher.

Bender et al.’s policy:

• If the backward search from v was not interrupted:
raised toLpvq• Otherwise, raised toLpvq ` 1 (possibly creating a new
level).

Idea 4: choice ofF

Recall: backward search is bounded to visit at most F edges.

The choice of F is crucial to get the correct complexity.

In Bender et al.:

F “ minpm1{2, n2{3q, form and n of the final graph
(hard to know in practice).

In our modified algorithm:

F “ Lpvq, in the current graph
(this makes the algorithm truly online).

Low-level Data Structure

IsRawGraph g GLM I: a SL predicate that asserts the
ownership of a data structure at address g, with logical
modelG,L,M , I.

• G: a mathematical graph• L: levels, as a map vertex Ñ Z• M : marks, as a map vertex Ñ mark• I: horizontal incoming edges, a map vertex Ñ set vertex

Functional Invariant

Inv G L I: a pure proposition that relatesGwithL and I.

Inv G L I :“
$

’

’

’

’

’

&

’

’

’

’

’

%

acyclicity : @x. x ­ÝÑ `
G x

positive levels : @x. Lpxq ě 1

pseudo t́opological levels : @x y. x ÝÑG y ùñ Lpxq ď Lpyq

incoming edges : @x y. x P Ipyq ðñ x ÝÑG y ^ Lpxq “ Lpyq

replete levels : @x. enough_edges_below G L x

enough_edges_below G L x :“

|coacc_edges_at_level G L k x| ě k where k “ Lpxq ´ 1

coacc_edges_at_level G L k x :“

t py, zq | y ÝÑG z ÝÑ˚
G x ^ Lpyq “ Lpzq “ k u

Potential and Advertised Cost (formally)

Potential of an edge pu, vq: max_level m n´ Lpuq.

ϕpG,Lq :“ C ¨ pnet G Lq

net G L :“ received m n´ spent G L

,

.

-

where m “ |edges G|

and n “ |vertices G|

spent G L :“
ř

pu,vq P edges G

Lpuq

received m n :“ m ¨ pmax_level m n` 1q

max_level m n :“ minprp2mq1{2s, tp 3
2nq2{3uq ` 1

ψpm,nq :“ C 1 ¨ preceived m n`m` nq

Proof methodology

Specification excerpt for the backward traversal:

Da b. 0 ď a ^ @F g v w

t$pa ¨ F ` bq ‹ . . .u backward_search F g v w tλres. . . .u

Well-behaved credits inference with integer credits

Credit synthesis requires solving heap entailments of the form:

$p?cq ‹ $potential , $cost1 ‹ . . . ‹ $costn ‹ ?F

(functions returning credits makes solving these even more tricky)

Integer credits would allow turning these into:

$p?cq ‹ $potential ‹ $p´cost1q ‹ . . . ‹ $p´costnq , ?F

Is this useful?...

Automation for processing synthesized cost expressions

Credit synthesis produces in the end goals of the form:

Df. . . . f . . .

Da b. . . . a . . . b . . .

Where “. . .” usually:

• are complex expressions unwieldy to handle manually;• contain symbolic expressions (abstract cost functions or
constants).

	Overview of the library: interface and specification
	Complexity Analysis
	Verification Techniques and Methodology
	Appendix

