Formally verified incremental cycle detection

Armaél Guéneau

with].-H.Jourdan, A. Charguéraud and F. Pottier

Formally Verified Algorithms

Can we formally verify the functional correctness...

1/31

Formally Verified Algorithms

Can we formally verify the functional correctness

and asymptotic complexity...

1/31

Formally Verified Algorithms

Can we formally verify the functional correctness

and asymptotic complexity

of non-trivial algorithms...

1/31

Formally Verified Algorithms

Can we formally verify the functional correctness

and asymptotic complexity

of non-trivial algorithms

with respect to concrete source code?

1/31

Previous work: time credits (1)

Previous work: interactive proofs in Separation Logic with
Time Credits, using Coq and the CFML library.

Charguéraud and Pottier (2017) verify Tarjan’s Union-Find.

¢ Manual accounting of credits: “union costs 4a(n) + 127
e Challenging mathematical analysis but fairly short code;

2/31

Previous work: time credits (2)

Guéneau, Charguéraud and Pottier (2018) formalize the O
notation and advertise for asymptotic complexity
specifications, e.g. “union costs f(n) where f € O(a(n))".

e Required for specifications to be modular;
¢ Proofs use a semi-automated cost synthesis mechanism;
e However, only small illustrative examples are presented.

Question: does this approach scale?

3/31

In this talk

Verification of a state-of-the-art incremental cycle detection
algorithm due to Bender, Fineman, Gilbert and Tarjan (2016).

e non-trivial implementation (200 lines of OCaml code)
e subtle complexity analysis

e used in Coq (universe constraints) and Dune (build
dependencies)

4/31

Incremental cycle detection

The problem: checking for acyclicity of a dynamically
constructed graph

5/31

Incremental cycle detection

The problem: checking for acyclicity of a dynamically
constructed graph

5/31

Incremental cycle detection

The problem: checking for acyclicity of a dynamically
constructed graph

5/31

Incremental cycle detection

The problem: checking for acyclicity of a dynamically
constructed graph

5/31

Incremental cycle detection

The problem: checking for acyclicity of a dynamically
constructed graph

5/31

Incremental cycle detection

The problem: checking for acyclicity of a dynamically
constructed graph

5/31

Naive algorithm: traverse the graph at each step.
Inserting m arcs costs O(m?).

Using Bender et al’s algorithm, inserting m arcs in a graph
with n vertices costs:

e O(m+/m) for sparse graphs;
e O(mn??) fordense graphs.

In the general case: O(m - min(m'/2, n%3)).

Specifies the cost of a sequence of operations, not the
A cost of a single operation.

6/31

Contributions

e An OCamlimplementation as a standalone library;

¢ A machine-checked Coq proof of both its functional
correctness and amortized asymptotic complexity;

e Asimpleyet crucial improvement to make Benderetal’s
algorithm truly online;

e Time credits that are counted in Z (instead of N): this
leads to significantly fewer proof obligations (!).

7/31

Overview

Overview of the library: interface and specification

Complexity Analysis

Verification Techniques and Methodology

8/31

Overview of the library: interface and
specification

Minimal OCaml interface

val init graph : unit -> graph
val add vertex : graph -> vertex -> unit
type add edge result =
| EdgeAdded
| EdgeCreatesCycle
val add edge or detect cycle :

graph -> vertex -> vertex ->

add_edge result

9/31

Bender et al.’s algorithmin action

Demo

10/31

http://gallium.inria.fr/~agueneau/cycles/demo/

Toplevel specification (functional correctness only) (1)

INITGRAPH
{emp} init_graph() {\g. IsGraph g &}

ACYCLICITY
Vg G.IsGraphg G I+ IsGraphg G [Vz. 2 — 2]

11/31

Toplevel specification (functional correctness only) (2)

ADDVERTEX

VgGuv. v ¢ vertices G —
{IsGraph g G * IsNewVertex v}
(add_vertex g v)
{A(). IsGraph g (G + v) }

12/31

Toplevel specification (functional correctness only) (3)

ADDEDGE
VgGouw. let m:=|edges G| in
let n := |vertices G| in
v, w € vertices G A (v,w) ¢ edges G =
{ IsGraph g G }
(add_edge_or_detect_cycle g v w)
Ares. match res with

| EdgeAdded = IsGraph g (G + (v, w))
| EdgeCreatesCycle = [w —§ v])

13/31

Separation Logic with Time Credits:

$n asserts the ownership of n time credits

$n is a Separation Logic assertion, like p — 3

Each function call (or loop iteration) consumes $1
$(n+m) = $n » $m

Credits are not duplicable: $1 =& $1«$1

Specifications are of the form:
{IsGraph g G * $(3|edges G| + 5)} dfs g {IsGraph g G}

13/31

Toplevel specification (correctness and complexity) (1)

ADDEDGE
VgGouw. let m:=|edges G| in
let n := |vertices G| in

v, w € vertices G A (v,w) ¢ edges G —
{ IsGraph g G » $() }
(add_edge_or_detect_cycle g v w)

Ares. match res with
| EdgeAdded = IsGraph g (G + (v, w))
| EdgeCreatesCycle = [w —§ v])

13/31

Toplevel specification (correctness and complexity) (1)

ADDEDGE
VgGouw. let m:=|edges G| in
let n := |vertices G| in

v, w € vertices G A (v,w) ¢ edges G —
{ IsGraphg G * $(¢ (m + 1,n) — ¢ (m, n)) }
(add_edge_or_detect_cycle g v w)

Ares. match res with
| EdgeAdded = IsGraph g (G + (v, w))
| EdgeCreatesCycle = [w —§ v])

COMPLEXITY
Y € O(m - min(m'/? n?3) + n) A nonnegative 1) A monotonic 1

13/31

Toplevel specification (correctness and complexity) (2)

ADDVERTEX

YgGu.

let m := |edges G| in
let n := |vertices G| in

v ¢ vertices G =

$(p(m,n +1) —p(m,n))
(add_vertex g v)
{A(). IsGraph g (G + v) }

{ IsGraph g G * [sNewVertex v * }

14/31

Toplevel specification (correctness and complexity) (3)

INITGRAPH
Jk. {$k} init_graph() {\g. IsGraph g @}

ACYCLICITY
Vg G.IsGraphg G I+ IsGraphg G [Vz. 2 — [z]

Di1sPOSEGRAPH
Vg G. IsGraphg G |- emp

15/31

Analyzing the cost of a sequence of operations

let g = init graph () in

add vertex g 1; $(1(0,1) —9(0,0))
add_vertex g n; $(v(0,n) — ¢ (0,n — 1))
add_edge or detect cycle g 1 2; $(¢(1,n) —(0,n))
add edge or detect cycle g 2 3; $((2,n) —¥(1,n))

add_edge_or_detect cycle g (m-1) m; $(e(m,n) —(m —1,n))

Total cost: +(m,n) —+(0,0)

16/31

Analyzing the cost of a sequence of operations

let g = init graph () in

add vertex g 1; $(1(0,1) —9(0,0))
add_vertex g n; $(v(0,n) — ¢ (0,n — 1))
add_edge or detect cycle g 1 2; $(¢(1,n) —(0,n))
add edge or detect cycle g 2 3; $((2,n) —¥(1,n))

add_edge_or_detect cycle g (m-1) m; $(e(m,n) —(m —1,n))

Total cost: «(m,n) —(0,0) € O(m - min(m'/? n?3) + n)

16/31

Analyzing the cost of a sequence of operations

let g = init graph () in
add vertex g 1;

add vertex g n;
add edge or detect cycle

add edge or detect cycle

add edge or detect cycle

gl2;
g 2 3;

g (m-1) m;

$((0,1) —+(0,0))
$(¥(0,n) —¥(0,n — 1))
$(¢(1,n) —4(0,n))
$(¢(2,n) —¥(1,n))

$(¥(m,n) —¢(m —1,n))

Total cost: «(m,n) —(0,0) € O(m - min(m'/? n?3) + n)

Y (m,n): the cost of inserting m edges and n verticesin an

empty graph.

16/31

Complexity Analysis

IsGraph’s hidden potential

Vg Gvw.
let m,n :=|edges G|, |vertices G| in
v,w € vertices G A (v,w) ¢ edges G —
{ IsGraphg G » $(¢ (m + 1,n) — ¢ (m,n)) }
(add_edge_or_detect_cycle g v w)
Ares. match res with

| EdgeAdded = IsGraph g (G + (v, w))
| EdgeCreatesCycle = [w —¢ v])

17/31

IsGraph’s hidden potential

Vg Gvw.
let m,n :=|edges G|, |vertices G| in
v,w € vertices G A (v,w) ¢ edges G —

{ IsGraphg G » $(¢ (m + 1,n) — ¢ (m,n)) }
(add_edge_or_detect_cycle g v w)

Ares. match res with
| EdgeAdded = IsGraphg (G + (v, w))
| EdgeCreatesCycle = [w —¢ v])

IsGraph g G := IL M I. IsRawGraphg GLM I » [Inv G L I| * $¢(G, L)

InvGLI:= (Vz.o—Fz) A ...

17/31

IsGraph’s hidden potential

YgGLMIvw.
let m,n :=|edges G|, |vertices G| in
v, w € vertices G A (v,w) ¢ edges G =

*3(¢p (m +1,n) — ¢ (m, n))

{ IsRawGraph g G L M I + [Inv G L I] » $6(G, L) }
(add_edge or detect cycle g v w)

Ares. match res with
| EdgeAdded = let G’ := G + (v,w) in IL" M' I'.
IsRawGraph g G’ L' M’ I's[InvG@ L' '] > $o(G, L))
| EdgeCreatesCycle = [w —§ v])

17/31

An overview of the complexity analysis

Phase 1 (enumeration of vertices at the current level):
worst-case cost analysis: O(y(m + 1,n) — ¥(m,n)).

Phase 2 (updating levels):
amortized cost analysis: O(1) using the potential ¢.

Adding the new edge:
increases the potential ¢, the variation must be

O(W(m+1,n) —(m,n)).

18/31

Main complexity invariant: levels are “replete” (1)

For every node z at level k + 1 there are at least k edges at
level k from which z can be reached.

A levels

19/31

Main complexity invariant: levels are “replete” (2)

Corollary: there are at least k edges at level k.

This provides a bound on the number of levels:

Vo. L(v) < vV2m + 1.

l.e. the number of (non-empty) levels is O(/m).

(For simplicity we focus on the case of sparse graphs in the rest of the analysis)

20/31

Phase 1: worst-case cost O(v)(m + 1,n) — 1 (m,n))

When inserting an edge v — w, Phase1runsin L(v) steps.
Due to the invariant on levels, L(v) is O(y/m).

= Phase1runsin O(y/m).

Define ¢ (for some constant C’, more on that later) as:

P(m,n) = C" - (mym+m+n+1)

From the definition: /m € O(¢(m + 1,n) — ¥(m, n)).

21/31

Phase 2: amortized cost O(1)
The potential ¢ stores Time Credits for edges depending on
their current level (lower level = more credits).

highest level

$2
(b(G? L) o= C'Z(v,w)eG(\/ﬁ_L(vn

Phase 2 increases the level of edges
= decreases ¢, releases Time Credits

22/31

Edge insertion: potential variationis O(y)(m + 1,n) — 1(m,n))

We need to provide potential for the new edge.

QED.

23/31

Verification Techniques and Methodology

Complexity invariants depend on concrete code

We define ¢ and ¢ as follows:

$(G, L) = C- Xy wyec(vm — L(v))
p(m,n) = C" - (my/m+m+n+1)

...for some constants C and ¢’ which we must define.
NB: “¢(m,n) := O(m+/m + n)” does not make sense!

C and ¢’ closely depend on details of the implementation.
We do not want to write them by hand in the proof!

24/31

Robust complexity proofs using abstract constants

The solution relies on our mechanisms for cost synthesis and
deferring proof obligations.

Proof sketch of update levels’s specification:
AC. Vgwl. {$(C - (...)) * ...} update levels gwl {...}

e Defer choosingavalue for C;

e Costsynthesisyields obligations of the form
“C' = cost_foo + cost_bar + ...": defer them:;

e Automatically deduce a suitable value for C.
Then, ¢ is defined using “the” C from the specification.

25/31

Time CreditsinZ

Originally, Time Credits are counted in N:

$0 = emp
VmneN. $(m+n) = $m * $n
Vn € N. $n I emp

We work in a variant of SL with credits counted in Z:

$0 = emp
+n) = $m *$n
VneZ. $n*[n=0] | emp

26/31

Time CreditsinZ (2)

Time Credits in Z are more flexible as they allow one to have
debts (temporarily!).

As Tarjan puts it: “we can allow borrowing of credits...”

VneZ. emp = nx(—n)

“..aslongasany debtincurred is eventually paid off”

VneZ. $n x [n = 0] - emp

27/31

TimeCreditsinZenablesimplerspecifications (S&invariants)

let rec walk (1: int list): int list =
match 1 with
| x :: xs when x <> 0 -> walk xs
|1

28/31

TimeCreditsinZenablesimplerspecifications (S&invariants)

let rec walk (1: int list): int list =
match 1 with
| x :: xs when x <> 0 -> walk xs
|1

VI. let k := “index of the first 0 in 1” in
{$(k + 1)} walkl {\'. [suffix I" []}

28/31

TimeCreditsinZenablesimplerspecifications (S&invariants)

let rec walk (1: int list): int list =
match 1 with
| x :: xs when x <> 0 -> walk xs
|1

VI. let k := “index of the first 0 in 1” in
{$(k + 1)} walkl {\'. [suffix I" []}

= Too complicated: the specification paraphrases the code

28/31

TimeCreditsinZenablesimplerspecifications (S&invariants)

let rec walk (1: int list): int list =
match 1 with
| x :: xs when x <> 0 -> walk xs
|1

VI {S(1] + 1)} walk ! {\. $|I'| » [suffix V' 1]}

29/31

TimeCreditsinZenablesimplerspecifications (S&invariants)

let rec walk (1: int list): int list =
match 1 with
| x :: xs when x <> 0 -> walk xs
|1

VI {S(1] + 1)} walk ! {\. $|I'| » [suffix V' 1]}

VI. {emp} walk ! {\'. $(|I'| —|I| — 1) * [suffix I' []}

29/31

TimeCreditsinZenablesimplerspecifications (S&invariants)

let rec walk (1: int list): int list =
match 1 with
| x :: xs when x <> 0 -> walk xs
|1

VI {$(|I] + 1)} walkl {AI'. $]I'| * [suffix I []}
VI. {emp} walk ! {\'. $(|I'| —|I| — 1) * [suffix I' []}
These two specifications are equivalent.

29/31

Summary

e We improve and verify a state-of-the-art algorithm;

o SLwith (Possibly Negative) Time Credits is powerful; it
allows writing rich and modular specifications;

e Qurcode is already useful: integrated into Dune,
bringing a 7x performance improvement (!);

e Our cost synthesis and deferring mechanisms allow
manageable proofs at scale.

More in the paper and my (upcoming) PhD dissertation.

= https://gitlab.inria.fr/agueneau/incremental-cycles

30/31

https://gitlab.inria.fr/agueneau/incremental-cycles

Producing the right answer is good.

31/31

Producing the right answer is good.

Producing the right answer at the right time is better.

31/31

Producing the right answer is good.
Producing the right answer at the right time is better.

Don’'t promise—just prove it!

31/31

Program verification framework: Coq and CFML

.ml

CFML generator

» .V

OCaml program

(generated)
characteristic
formulae

+

Vv

(hand written)
Specifications
and proofs

Example specifications using time credits

Complexity specification using explicit time credits:

VgG. {IsGraph g G » $(3 |edges G| + 5) } dfs(g) {IsGraphg G}

Asymptotic complexity specification:

Af:Z — 7).
f e Oz(Am.m)
AV gG. {IsGraphg G « $ f(|edges G|) } dfs(g) {IsGraphg G }

Idea1: Levels

Each vertex v is given a level L(v).

Invariant: v —gw = L(v) < L(w)

Levels can accelerate the search, but need to be maintained:

e Q..
Q/%OK! !

~
~

O—0—0

Idea1: Levels

Each vertex v is given a level L(v).

[nvariant: v —gw = L(v

Levels can accelerate the search, but need to be maintained:

O—O—0

Idea1 (bis): Tradeoff on the number of levels

~

//O Q ~
(O 7-0k T TO—0—0

(cheap) (expensive)

e Too many levels: the expensive case triggers often,
outweighting the cheap case

e Too few levels: similar to the naive algorithm,
insufficient benefit out of the cheap case

Idea1 (ter): Tradeoff on the number of levels

Why do we gain anything?
OO

Adding a horizontal edge: the search fora cycle can be
restricted to this level.

Idea 2: Two-way Search

B — —_—
backward search forward search

The backward search is:

o restricted to the same level
e bounded by a predetermined number of edges F

The forward search restores the invariant on levels as it goes.

Idea 3: when do new levels get created?

If the backward search explores all F edges...

................ H forward search

backward search
(explored F edges)

then nodes are moved to a higher level during the forward
search.

Forward traversal economics

e Traversing an edge (u,v) costs 1

e Raising v releases card({w | (v, w) € G}) from ¢
(this pays for exploring all the successors of v)

e Thestack holds credits for the next edges to explore

The traversal stack contains credits representing the
“working capital” of the traversal.

out(v) := card({w| (v,w) € G})
‘Smdﬂ 2= Zvestack Out(”)

let rec visit forward g new level visited stack =
match stack with
| [1->0)
| u :: stack ->
let stack = List.fold left (fun stack v ->

set level g v new level;
v :: stack
) stack (get outgoing g u) in
visit forward g new level visited stack

out(v) := card({w| (v,w) € G})
|Sta0k| = ZUEStaCk OUt(v)

$0(G.L) $|stack|

let rec visit forward g new level visited stack =
match stack with
| [T -> ()
out(u) +|stack
| u :: stack -ie///’ $lout(u) | |)
let stack = List.fold left (fun stack v ->
$|stack|

set level g v new level;
$(out(v) + |stack|)

v :: stack
) stack (get outgoing g u) in
visit forward g new level visited stack

Proof methodology, in practice

In practice, credit counts involve multiplicative constants:

(G, L) = C- X ec(highest_level G L — L(u))
‘Stacm = - Zvestack out (U)

3C". 0 < C" A Vg nl vs stack
{$C”" * $|stack| » ...} visit forward g nl vs stack {\(). ...}

C, ¢’ and C” depend on specifics of the implementation.

We develop tactics to make the proofs independent from
their exact expression, and avoid writing it explicitly by hand.

Time Credits in N and redundant proof obligations

Starting with $n then paying for operations with costs m;,
ma, ..., my, produces redundant proof obligations:

$n

pay $m; ~ n—mq =0
$(n—m1)

pay $meo ~ n—mi—mg =0
$(n—my —mgo — ... — mg_1q)

pay $my, ~ i —my—Mmg —...—my =0

Time Credits in Z eliminate redundant proof obligations

Paying for a sequence of operations produces a single final
proof obligation:

$n

pay $m; ~> no proof obligation
$(n — ml)

pay $mso ~» mno proof obligation
$(n—m1 —...—mk_l)

pay $my ~» no proof obligation

discard $(n —m3 —...—mg) ~ n—mp—...—mp =0

This also allows for simpler loop invariants and specifications.

Pre/Post-condition duality

With integer time credits, these two specifications are
equivalent (using the frame rule):

{$n} fn {A(). emp}
{emp} £ n {A(). $(—n)}

Bonus: returning negative credits allow the complexity to
depend on the result of the function! Example:

{emp} collatz_stopping time n {A\i. $(—i)}

Interaction with loops

From the proof of the forward traversal:

/] $6(G,L) * [Inv G L I]
List.fold left ... (fun ... ->
// 3AL. $¢(G, L)
[extract credits from $¢(G,L/)]

)
/) $6(G,L") * [Inv G L" I"

(Difficult) Lemma: VG LI.Inv G LI — ¢(G,L) >0

Time Credits in N would require a nontrivial strengthening of
the loop invariant.

Walk

let rec walk (a: int array) (i: int): int =
if i < Array.length a && a.(i) <> 0 then walk a (i+l)
else i+l

Walk

let rec walk (a: int array) (i: int): int =
if i < Array.length a && a.(i) <> 0 then walk a (i+l)
else i+l

Vaid 0<i<|A] —
{a ~ Array A} walk a i {\j. a ~ Array A > $(i — j) * [i < j < |A[]}

Walk

let rec walk (a: int array) (i: int): int =
if i < Array.length a && a.(i) <> 0 then walk a (i+l)
else i+l

Vaid 0<i<|A] —
{a ~ Array A} walk a i {\j. a ~ Array A > $(i — j) * [i < j < |A[]}

VaiA.0<i< |A] =
{a ~> Array A x $(|A| — i)}
walk a 1
{\j. a ~ Array A« $(|A| —j) * [i < j < |A]]}

Interruptible Iteration

let rec interruptible iter f 1 =
match 1 with
| [1 -> true
| x :: 1" -> f x & interruptible iter f 1’

Interruptible Iteration

let rec interruptible iter f 1 =
match 1 with
| [1 -> true
| x :: 1" -> f x & interruptible iter f 1’

Integer time credits allow for an intuitive specification:

VIlf.
(Val'. prefix 'l = {IU'} fx {\b.1(x:10)}) =
{1 1+ 8l}
interruptible iter f
{Ab.if bthen I lelse A 1" TV x$|I"| x [l =1+ 1"]}

Challenges

¢ Understanding the algorithm (!)
¢ (Re)inventing the complexity invariants

e Designing robust and generic invariants for
(interruptible) graph traversals

e Designing Coq tactics for interactive reasoning using
integer time credits

Idea 3: Policy for raising nodes to a new level

w and its descendants need to be raised to L(v) or higher.
Benderetal’s policy:

¢ |fthe backward search from v was not interrupted:
raised to L(v)

e Otherwise, raised to L(v) + 1 (possibly creating a new
level).

Idea 4: choice of F

Recall: backward search is bounded to visit at most F edges.

The choice of Fis crucial to get the correct complexity.

In Benderetal.:

F = min(m'? n?/3), form and n of the final graph
(hard to know in practice).

In our modified algorithm:

F = L(v), in the current graph
(this makes the algorithm truly online).

Low-level Data Structure

IsRawGraph g G L M I: a SL predicate that asserts the
ownership of a data structure at address g, with logical
model G, L, M, I.

G: a mathematical graph

L: levels, as a map vertex — Z

M: marks, as a map vertex — mark

I: horizontal incoming edges, a map vertex — set vertex

Functional Invariant

Inv G L I: a pure proposition that relates G with L and I.

InvG LI :=
acyclicity : Ve. z— Sz
positive levels: Ve, L(z) =1
pseudo—topological levels: Yxy. © — gy = L(z) < L(y)
incoming edges: Vey. x€l(y) < v —cgy A L(z) = L(y)
replete levels : Vz. enough_edges_below G L x

enough_edges_below G L x :=
|coacc_edges_at_level G L k x| = k where k = L(z) — 1

coacc_edges_at_level G L k x =
{(1,2) | y—c2—%x A L(y) = L(2) =k}

Potential and Advertised Cost (formally)

Potential of an edge (u, v): max_level m n — L(u).

(G, L)
net G L

spent G L

received m n

max_level m n

C-(net G L) where m = |edges G|
received m n — spent G L and n = |vertices G|
2 L(u)

(u,v) € edges G

m - (max_level m n + 1)

min([(2m)"?], [(3n)*7]) + 1

¢(m,n)

C" - (received mn + m + n)

Proof methodology

Specification excerpt for the backward traversal:

Jab.0<a A VFgow
{$(a- F +b) ...} backward_search F g v w {)res. ...}

Well-behaved credits inference with integer credits

Credit synthesis requires solving heap entailments of the form:

$(7c) » $potential |- $costy ... Scosty, * TF

(functions returning credits makes solving these even more tricky)

Integer credits would allow turning these into:
$(7¢c) » $potential x $(—costy) * ... * §(—cost,,) I+ ?7F

Is this useful?...

Automation for processing synthesized cost expressions

Credit synthesis produces in the end goals of the form:

dab. ...a...b...

Where “...” usually:

e are complex expressions unwieldy to handle manually;

e contain symbolic expressions (abstract cost functions or
constants).

	Overview of the library: interface and specification
	Complexity Analysis
	Verification Techniques and Methodology
	Appendix

