
The ins and outs of iteration in Mezzo

François Pottier
francois.pottier@inria.fr

Jonathan Protzenko
jonathan.protzenko@inria.fr

Armaël Guéneau
armael.gueneau@ens-lyon.org

INRIA & ENS Lyon

HOPE'13

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 1 / 37

francois.pottier@inria.fr
jonathan.protzenko@inria.fr
armael.gueneau@ens-lyon.org

What is Mezzo?

Mezzo is a new programming language in the spirit of ML.

Mezzo's type system allows reasoning about state and state change.

It does so by keeping track of ownership via a mechanism of affine
permissions.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 2 / 37

Expressing state

We are interested in expressing object protocols, which present an
inherent notion of state, in Mezzo.

Our case study, iteration over a collection:

• involves relatively simple protocols;

• illustrates how Mezzo expresses transfers of ownership.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 3 / 37

Outline

Algebraic data structures

Higher-order iteration

Tree iterators as an abstract data type

Generic iterators as objects

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 4 / 37

..

Algebraic data structures

A mutable tree

data mutable tree a =
Leaf

| Node { left: tree a; elem: a; right: tree a }

After this declaration:

• The algebraic type “tree a” is defined
• It will appear in permissions of shape “t @ tree a”, for some
term t

Permission analysis is flow-sensitive: different permissions will be
available at different points of the program.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 6 / 37

A mutable tree

The permission “t @ tree a” represents:

• Structural information: t is a tree with elements of type a
• Ownership information: we possess t and its elements

It can be seen as a token that grants access to t with type tree a.

Without this permission, you cannot access t.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 7 / 37

A mutable tree

One can also write so-called structural permissions:
t @ Leaf
t @ Node { left: tree a; elem: a; right: tree a }

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 8 / 37

Permission refinement

..

match t with
| Leaf ->

.....
| Node { left; elem; right } ->

.....
end

..

.

.

.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 9 / 37

Permission refinement

..

match t with
| Leaf ->

.....
| Node { left; elem; right } ->

.....
end

..

t @ tree a

.
.
.
.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 9 / 37

Permission refinement

..

match t with
| Leaf ->

.....
| Node { left; elem; right } ->

.....
end

...

t @ Leaf

.

.

.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 9 / 37

Permission refinement

..

match t with
| Leaf ->

.....
| Node { left; elem; right } ->

.....
end

..

..

t @ Node { left: tree a; elem: a; right: tree a }

.

.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 9 / 37

Permission refinement

..

match t with
| Leaf ->

.....
| Node { left; elem; right } ->

.....
end

..

.

..

t @ Node { left: (=l); elem: (=x); right: (=r) }
* l @ tree a
* x @ a
* r @ tree a

Remark: “*” is separating.
.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 9 / 37

Permission refinement

..

match t with
| Leaf ->

.....
| Node { left; elem; right } ->

.....
end

..

.

.

Remark: “*” is separating.
..

t @ Node { left = l; elem = x; right = r }
* l @ tree a
* x @ a
* r @ tree a

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 9 / 37

Recursive functions on trees

val size: [a] tree a -> int

• size requires an argument t, along with the permission
“t @ tree a”.

• size returns a value n, and produces the permission
“n @ int * t @ tree a”

The input permissions of a function are returned, unless the
keyword “consumes” is used.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 10 / 37

A size function

val rec size [a] (t: tree a) : int =
..

match t with
| Leaf ->

0
| Node { left = l; right = r } -> ..

size l + 1 + size r
end

.

.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 11 / 37

A size function

val rec size [a] (t: tree a) : int =
..

match t with
| Leaf ->

0
| Node { left = l; right = r } -> ..

size l + 1 + size r
end

..

t @ tree a

.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 11 / 37

A size function

val rec size [a] (t: tree a) : int =
..

match t with
| Leaf ->

0
| Node { left = l; right = r } -> ..

size l + 1 + size r
end

.

..

t @ Node { left = l; elem = x; right = r }
* l @ tree a
* x @ a
* r @ tree a

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 11 / 37

A size function

val rec size [a] (t: tree a) : int =

match t with
| Leaf ->

0
| Node { left = l; right = r } -> ..

let n1 = size l in
let n2 = size r in
n1 + 1 + n2

end

Type- and permission-checking is a forward, step-by-step analysis.
..

t @ Node { left = l; elem = x; right = r }
* l @ tree a
* x @ a
* r @ tree a

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 12 / 37

..

Higher-order iteration

A higher-order iteration function

val iter : [a, s: perm] (
f: (a | s) -> bool,
t: tree a

| s) -> bool

A call f x requires the permission (x @ a) * s and returns it.

Similarly, a call iter(f, t) requires and returns (t @ tree a) * s.

iter is polymorphic in s, which represents the effect of f.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 14 / 37

A higher-order iteration function

val rec iter [a, s: perm] (
f: (a | s) -> bool,
t: tree a

| s) : bool =
..

match t with
| Leaf -> ..

true
| Node -> ..

iter (f, t.left) && f t.elem && iter (f, t.right)
end
..

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 15 / 37

On the way to iterators

Our iter function is easy to write and easy to use.

However, approaches where control is inverted, like iterators, are
sometimes necessary, e.g., to solve the “same-fringe problem”.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 16 / 37

..

Tree iterators
as an abstract data type

Tree iterators, ADT style

Let's start with an OCaml implementation.

We wish to define:

• a data type tree_iterator;
• a new_iterator function: creates an iterator from a tree;

• a next function: produces a new element, if there is one.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 18 / 37

OCaml implementation

type 'a tree_iterator = 'a tree list ref

let new_iterator (t: 'a tree) =
ref [t]

let rec next (it: 'a tree_iterator) : 'a option =
match !it with
| [] -> None
| Leaf :: ts -> it := ts; next it
| Node (l, x, r) :: ts -> it := l :: r :: ts; Some x

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 19 / 37

Iterator's object protocol

..collection. iterator. element. new. next.

surrender

.

stop

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 20 / 37

Permissions in the iterator

. ∗ . = t
. = . −−∗ t

P−−∗ Q : a one-off permission to trade P for Q.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 21 / 37

Permissions through the protocol

..t @ tree a. it @ …. x@a * (x@a−−∗ it@…). new. next.

apply magic wand

.

stop

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 22 / 37

Simulating the magic wand

In Mezzo, a function can be called as many times as one wishes (if
suitable arguments and permissions are provided).

Yet, one can define a type of “one-shot functions”:

alias osf a b =
{ammo: perm} (

(consumes a | consumes ammo) -> b
| ammo)

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 23 / 37

Simulating the magic wand

A wand is a one-shot function that deals only with permissions:

alias wand (pre: perm) (post: perm) =
osf (| pre) (| post)

A function of type “wand pre post” is a one-shot opportunity to
convert pre to post.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 24 / 37

A typical use of the magic wand

alias focused a (post: perm) =
(x: a, surrender: wand (x @ a) post)

This is a pair of a value x of type a and a unique opportunity to
convert “x @ a” to post.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 25 / 37

An interface for tree iterators (1/2)

The type of iterators is parameterized by a permission post, which is
consumed by new and recovered via stop.

abstract tree_iterator a (post: perm)

val new: [a]
(consumes t: tree a) ->
tree_iterator a (t @ tree a)

val stop: [a, post: perm]
(consumes it: tree_iterator a post) -> (| post)

stop does nothing at runtime.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 26 / 37

An interface for tree iterators (2/2)

next queries the iterator for a new element.

val next: [a, post: perm]
(consumes it: tree_iterator a post) ->
either (focused a (it @ tree_iterator a post))

(| post)

It returns either:

• an element x of type a, and the ability to recover
“it @ tree_iterator a post” by abandoning “x @ a”.

• post because the iterator has stopped (no more elements).

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 27 / 37

Implementation

The concrete type of tree iterators is almost as simple as in OCaml:

alias tree_iterator a (post: perm) =
ref (focused (list (tree a)) post)

Unfortunately, the code (omitted) is a lot more verbose:

• magic wands must be explicitly constructed and invoked;

• existential packages must often be explicitly constructed.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 28 / 37

..

Generic iterators
as objects

Generic iterators: motivation

We want to be able to write code that uses “an iterator”, instead of
“a tree iterator” or “a list iterator”...

We define an object-oriented iterator: an object with next and stop
methods.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 30 / 37

Generic iterators

data iterator a (post: perm) =
{s: perm}

Iterator {
next: (| consumes s) -> either (focused a s)

(| post);
stop: (| consumes s) -> (| post)

| s }

The abstract permission s represents the internal state of the
iterator.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 31 / 37

ADT → OO conversion

We can “wrap” our ADT-style tree iterator as a generic OO-style
iterator.

In that case, the witness for s is “it @ tree_iterator a post”.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 32 / 37

Generic functions on iterators

Many standard stream operations can be defined on iterator.

For example, filter transforms an iterator into a new iterator.

val filter [a, s: perm, post: perm] (
consumes it: iterator a post,
f: (a | s) -> bool

| consumes s) -> iterator a (s * post)

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 33 / 37

..

Conclusion

Summary

Things we are happy with:

• Mezzo can express ownership transfers

• iter is easy to write, easy to use

• Mezzo can express simple object protocols

Things we are not so happy with:

• Too many type annotations are needed in the code

• Our iterator protocol is somewhat inflexible

• Will this scale to more complex protocols?

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 35 / 37

Related work

Design Patterns in Separation Logic, N. R. Krishnaswami et al.

Implements iterators in separation logic with a more precise
analysis:

• Multiple iterators on one collection

• Updating the collection invalidates any existing iterator

They use a rich higher-order separation logic.

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 36 / 37

Prospects

• Add a builtin notion of “ghost” function, which would be erased
at runtime

• Improve the type inference

• See how other objects protocols can be expressed in Mezzo

Armaël Guéneau — INRIA & ENS Lyon Iteration in Mezzo HOPE'13 37 / 37

	Algebraic data structures
	Higher-order iteration
	Tree iterators as an abstract data type
	Generic iterators as objects

