FORMAL VERIFICATION OF ASYMPTOTIC COMPLEXITY BOUNDS FOR OCAMML PROGRAMS

Armaël Guéneau
supervised by François Pottier & Arthur Charguéraud
November 12, 2015
Time complexity can be formalized in separation logic, thanks to *time credits*.

Example of specification:

\[
\{ \text{UF N D R} \star (3 \times (\text{alpha N}) + 6) \}
\]

union \ x \ y

\[
\{ \lambda z \Rightarrow \text{UF N D} (\text{fun w} \Rightarrow \text{If R w = R x \lor R w = R y then z else R w}) \star [z = R x \lor z = R y] \}
\]

Amortized cost for union: \(3 \times \alpha(N) + 6\).
Counting credits explicitly quickly becomes impractical, compared to using the “$O()$” notation:

- $n^2 \times m + 3nm + 3n + 6m + 5\log(n) + 2\log(m) + 5\log(n)\log(m) + 8$ instead of $O(n^2 \times m)$
- Specifications using explicit credits count are not modular
- Credits count are to be considered up to a constant factor anyway
We present “CFML+credits+big-Os”, an extension of “CFML+credits” which formalizes (in Coq) the big-O notation, to be used in program specifications.
OUTLINE OF THIS TALK

Formalizing big-Os: challenges and proposed solutions

Proof automation

Case studies
FORMALIZING BIG-OS: CHALLENGES AND PROPOSED SOLUTIONS
Recall the standard textbook definition for “$O()$”:

$$f \in O(g) \equiv \exists c, \exists n_0, \forall n \geq n_0, |f(n)| \leq c \times |g(n)|$$

Why is this not trivial to formalize?
We often informally write “f is $O(n^2)$”.

However $O()$ is a relation on functions, not expressions.

\Rightarrow We should write “f is $O(\lambda n.n^2)$” instead.
CHALLENGE 2: GOING TO INFINITY

How do we handle cost functions with multiple parameters?

let fill_rect n m =
for j = 1 to m do
 for i = 1 to n do
 draw_pixel i j
 done
done

Concrete cost:

\[
\begin{align*}
 f(n, m) &= m \times (1 + n) + 1 \\
 &= m \times n + m + 1
\end{align*}
\]
Is \texttt{fill_rect} $O(\lambda(n, m).m \times n)$?

- If n and m go to infinity, then indeed $f(n, m) \in O(\lambda(n, m).m \times n)$

What about the asymptotic cost of “\texttt{fill_rect 0 m}”?

- Concrete cost: $f(0, m) = m + 1$
- Clearly not $O(\lambda m.m \times 0) = O(0)$

\Rightarrow We cannot reuse the previous asymptotic bound
CHALLENGE 2: GOING TO INFINITY

- Big-O bounds are proved for one given notion of “going to infinity”
- There are multiple, non-equivalent ones

⇒ Let the user choose, while keeping a lightweight notation for the common cases.
CHALLENGE 2 SOLUTION: FILTERS, A FORMAL NOTION OF “GOING TO INFINITY”

A filter on a set A:

- is of type $(A \rightarrow \text{Prop}) \rightarrow \text{Prop}$, named `filter A`;
- represents the set of neighborhoods of infinity;
- must satisfy additional properties, bundled in a `Filter` Coq class.

E.g. the standard filter on \mathbb{Z} is:

```
Definition towards_infinity_Z : filter Z :=
  fun (P : Z \rightarrow \text{Prop}) \Rightarrow \exists x \theta, \forall x, x \theta \leq x \rightarrow P x
```
“O()” definition parameterized by a filter \textit{ultimately}:

\begin{verbatim}
Definition dominated
 (ultimately: filter A)
 (f g : A \rightarrow \mathbb{Z}) :=
 \exists c, ultimately (\lambda x. \text{norm}(f x) \leq c \times \text{norm}(g x)).
\end{verbatim}

We use Coq typeclasses to allow the filter to be inferred in standard cases.
What were the filters involved in our `fill_rect` example?

- “Both components go to infinity”:

 \[
 \text{Definition} \quad \text{towards_infinity_ZZ} := \text{fun}(P: \mathbb{Z}^2 \rightarrow \text{Prop}) \Rightarrow \exists P1, P2, \text{towards_infinity_Z} P1 \land \text{towards_infinity_Z} P2 \land \forall x1, x2, P1 \ x1 \rightarrow P2 \ x2 \rightarrow P(x1, x2)
 \]

- “The first component is fixed to \(x0\), the second goes to infinity”:

 \[
 \text{Definition} \quad \text{towards_infinity_xZ} (x0: \mathbb{Z}) := \text{fun}(P: \{ p: \mathbb{Z}^2 | \text{fst} \ p = x0 \} \rightarrow \text{Prop}) \Rightarrow \text{towards_infinity_Z} (\text{fun} y \Rightarrow P(x0, y))
 \]
“The cost of p is $O(g)$” hides an additional existential quantification.

“The cost of p is $O(g)$” is in fact “there exists a cost function f st. $f \in O(g)$ and running $p(n)$ takes $f(n)$ steps”.

- Convenient informal notation
- But more error prone: some incorrect proofs are harder to detect syntactically
let rec loop n =
 if n <= 0 then () else loop (n - 1)

Lemma (incorrect)

The asymptotic complexity of \texttt{loop} is $O(1)$.

Proof.

(flawed, but not so obviously). By induction on \(n \),

- \(n \leq 0 \): \texttt{loop} terminates in $O(1)$;
- \(n \geq 1 \): the cost of \texttt{loop}(n) is the cost of \texttt{loop}(n-1) plus $O(1)$. By induction, the cost of \texttt{loop}(n-1) is $O(1)$. $O(1) + O(1) = O(1) \Rightarrow$ total cost of $O(1)$.
The mistake: an invalid quantifier permutation.

- “there exists a cost function f st. for all n, …”, is not
- “for all n, there exists a cost function f …”.

The explicit cost function must be instantiated before entering the induction.

Coq is able to reject this kind of incorrect reasoning; the challenge is to keep a lightweight presentation.
We define SpecO, in order to write specifications using big-Os:

Definition $\text{SpecO}(\text{ultimately: filter } A) \ (g: A \to Z)(\text{spec: } (A \to Z) \to \text{Prop})$

$$:= \exists (f: A \to Z), \text{dominated } _f g \land \text{spec } f.$$

$$\forall n, \{\$ (3 \ast n^2 + 2 \ast n + 5) \ast H \} t(n) \{Q\}$$

becomes

$$\text{SpecO } _{(\lambda n \Rightarrow n^2)(\lambda F \Rightarrow \forall n, \{\$ F n \ast H \} t(n) \{Q\})}$$
Remark: arguments of the cost function do not have to be the arguments of the program.

Example: specification for List.length

\[
\forall l, \\
\text{SpecO } (\lambda n \Rightarrow n)(\lambda F \Rightarrow \\
\quad \{ F(\text{length } l) \} \text{List.length } l \{ \lambda n \Rightarrow [n = \text{length } l] \})
\]
It does not cover all usages though, e.g. quantifying over a class of filters for the same cost function.

\[\exists (f: A \rightarrow Z), \]
\[(\forall x\theta, \text{dominated}(\text{towards_infinity}_xZ _x\theta)f _g) \land \]
\[\text{spec } f \]

\[\Rightarrow \text{ More general version of SpecO parameterized by any relation on } f, g. \]
Paper proofs assume extensively that cost functions are non-decreasing.
Example:

\[F(h) \preceq G(N) \]

\[F \in O(\lambda h. h) \quad G \in O(\lambda N. \log(N)) \]

\[G(N) := F(\log(N) + 1) \]

\[\Rightarrow \text{We need to prove } F(h) \preceq G(N). \]

\[\Rightarrow \text{We need } F \text{ to be non-decreasing.} \]
Definition SpecO (ultimately: filter A) le
 (g: A → Z)(spec: (A → Z) → Prop)
:=
 ∃(f: A → Z),
 (∀ x, 0 ≤ f x) ∧
 monotonic _ _ f ∧
 dominated _ f g ∧
 spec f.
We would like to have:

“if f is $O(g)$, then $f + c$ is also $O(g)$ (with c a constant)”.

Yet, this is false for $g = 0$.

We would like to have:

“if f is $O(g)$, then $\lambda n. \log(f(n))$ is $O(\lambda n. \log(g(n)))$”.

Yet, this is false for $g = 1$ and $f \geq 2$.
Alternative notion of $O()$: idominated.

- Matches dominated on the interesting cases: when costs functions go to infinity;
- Handles more pathological cases.

Definition idominated

$$(\text{ultimately} : \text{filter } A)(\text{leA} : A \to A \to \text{Prop})$$

$$(\text{fg} : A \to Z)$$

$$:=$$

$$\text{ultimately } (\text{monotonic_after } \text{leA} \text{ leZ } \text{fg}) \land$$

$$((\text{bounded } _f \land \text{bounded } _g) \lor \text{dominated } _f \text{fg}).$$
The following lemmas are now true:

\[
\text{idominated} \quad f \quad g \rightarrow \\
\text{idominated} \quad (\text{fun} \quad n \rightarrow c + f \quad n) \quad g
\]

\[
\text{idominated} \quad f \quad g \rightarrow \\
\text{idominated} \quad (\text{fun} \quad x \rightarrow Z.\log2 (f \quad x))
\]

\[
(fun \quad x \rightarrow Z.\log2 (g \quad x))
\]

We also adapt Spec0 to use \text{idominated} in place of \text{dominated}.
Goal-directed tactics to solve / simplify \textit{idominated}, monotonic, \textit{monotonic_after} goals.

Able to prove or simplify automatically goals involving $+ , \times , \log , ^\wedge$.

\textbf{Goal} \textit{idominated __}

\begin{verbatim}
 (fun n => 5 * Z.log2 (3 * n + 2) + 8) Z.log2.
\end{verbatim}

\textbf{Proof}. \textit{idominated_Z_auto}; \texttt{math. Qed}.
Auxiliary tactics to deal with η-equivalence for n-ary functions (still imperfect).

- We have to reason modulo η-equivalence.
 - $O(\log) \text{ vs } O(\lambda n. \log(n))$
 - $f \in O(h) \Rightarrow g \in O(h) \Rightarrow \lambda n. f(n) + g(n) \in O(h)$

- Not automatic on n-ary (uncurried) functions.
 - They are of the form $\lambda p. \text{let } (n, m) = p \text{ in } \ldots$
 - $f \in O(h) \Rightarrow g \in O(h) \Rightarrow$
 $\lambda p. (\text{let } (n, m) = p \text{ in } f((n, m)) + g((n, m))) \in O(h)$
WIP: a set of tactics to elaborate the cost function through the proof.

SpecO _ _ (\(\lambda n \Rightarrow n\)) (\(\lambda F \Rightarrow \text{spec } F\))

\text{xfcO} (\text{fun } n \Rightarrow 3 \times n + 12).

[...]

\text{add_credits} (\lambda n \Rightarrow 1).

[...]

\text{add_credits} (\lambda n \Rightarrow 2 \times n).

[...]
CASE STUDIES
We used the resulting library to formalize two non-trivial data structures:

- Dynamic Arrays, an imperative structure with amortized $O(1)$ costs;
- Binary Random Access Lists, a purely functional data structure with $O(\log n)$ costs, parameter transformation and filters on \mathbb{Z}^2.
Why a parameter transformation and filters on \mathbb{Z}^2?

Figure 1: Induction for lookup and update
CONCLUSION: SOME NUMBERS

- Binary Random Access Lists:
 - Code: 80 lines, proof: 630 lines
 - Whole complexity analysis (credits + big-Os): $\approx 40\%$
 - Reasoning on big-Os: $\approx 25\%$

- Dynamic Arrays:
 - Code: 95 lines, proof: 520 lines
 - Whole complexity analysis (credits + big-Os): $\approx 50\%$
 - Reasoning on big-Os: $\approx 6\%$

- Size of the library: ≈ 2300 lines of Coq
 - $\text{dominated, idominated}$ (definition, lemmas, tactics): 1260 lines
 - Filters (definitions, instances): 730 lines
 - Monotonicity (tactics): 250 lines
 - SpecO (definition, lemmas, tactics): 70 lines