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1 ML

By François Pottier and Didier Rémy

1.1 Preliminaries

Names and renaming

Mathematiians and omputer sientists use names to refer to arbitrary or

unknown objets in the statement of a theorem, to refer to the parameters

of a funtion, et. Names are onvenient beause they are understandable

by humans; nevertheless, they an be triky. An in-depth treatment of the

di�ulties assoiated with names and renaming is beyond the sope of the

present hapter: we enourage the reader to study Gabbay and Pitts' exellent

series of papers (Gabbay and Pitts, 2002; Pitts, 2002b). Here, we merely reall

a few notions that are used throughout this hapter. Consider, for instane, an

indutive de�nition of the abstrat syntax of a simple programming language,

the pure �-alulus:

t ::= z j �z:t j t t

Here, the meta-variable z ranges over an in�nite set of variables�that is,

names�while the meta-variable t ranges over terms. As usual in mathematis,

we write �the variable z� and �the term t� instead of �the variable denoted by

z� and �the term denoted by t�. The above de�nition states that a term may

be a variable z, a pair of a variable and a term, written �z:t, or a pair of terms,

written t

1

t

2

. However, this is not quite what we need. Indeed, aording to

The (urrently un�nished) ode that aompanies this hapter may be found at http:

//pauilla.inria.fr/~remy/mlrow/. For spae reasons, some material, inluding proofs,

exerises, and more, has been left out of this version. In the future, a full version of this

hapter that inludes the missing material will be made available at the same address. In

spite of these omissions, this hapter is still oversize with respet to Benjamin's 100 page

barrier: we urrently have roughly 135 pages of text and 15 pages of solutions to exerises.

We would appreiate omments and suggestions from the proofreaders as to how this hapter

ould be made shorter, without severely ompromising its interest or readability.
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this de�nition, the terms �z

1

:z

1

and �z

2

:z

2

are distint, while we would like

them to be a single mathematial objet, beause we intend �z:z to mean �the

funtion that maps z to z��a meaning that is independent of the name z.

To ahieve this e�et, we omplete the above de�nition by stating that the

onstrution �z:t binds z within t. One may also say that �z is a binder whose

sope is t. Then, �z:t is no longer a pair: rather, it is an abstration of the

variable z within the term t. Abstrations have the property that the identity

of the bound variable does not matter; that is, �z

1

:z

1

and �z

2

:z

2

are the same

term. Informally, we say that terms are onsidered equal modulo �-onversion.

One the position and sope of binders are known, several standard notions

follow, suh as the set of free variables of a term t, written fv(t), and the

apture-avoiding substitution of a term t

1

for a variable z within a term t

2

,

written [z 7! t

1

℄t

2

. For oniseness, we write fv (t

1

; t

2

) for fv (t

1

) [ fv (t

2

). A

term is said to be losed when it has no free variables.

A renaming is a total bijetive mapping from variables to variables that

a�ets only a �nite number of variables. The sole property of a variable is its

identity, that is, the fat that it is distint from other variables. As a result,

at a global level, all variables are interhangeable: if a theorem holds in the

absene of hypotheses about any partiular variable, then any renaming of it

holds as well. We often make use of this fat. When proving a theorem T , we

say that a hypothesis H may be assumed wihout loss of generality (w.l.o.g.)

if the theorem T follows from the theorem H ) T via a renaming argument,

whih is usually left impliit.

If �z

1

and �z

2

are sets of variables, we write �z

1

# �z

2

as a shorthand for

�z

1

\ �z

2

= ?, and say that �z

1

is fresh for �z

2

(or vie-versa). We say that �z is

fresh for t if and only if �z # fv(t) holds.

In this hapter, we work with several distint varieties of names: program

variables, memory loations, and type variables, the latter of whih may be

further divided into kinds. We draw names of di�erent varieties from disjoint

sets, eah of whih is in�nite.

1.2 What is ML?

The name �ML� appeared during the late seventies. It then referred to a

general-purpose programming language that was used as a meta-language

(whene its name) within the theorem prover LCF (Gordon, Milner, and

Wadsworth, 1979b). Sine then, several new programming languages, eah

of whih o�ers several di�erent implementations, have drawn inspiration from

it. So, what does �ML� stand for today?

For a semantiist, �ML� might stand for a programming language featuring

�rst-lass funtions, data strutures built out of produts and sums, mutable
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memory ells alled referenes, exeption handling, automati memory man-

agement, and a all-by-value semantis. This view enompasses the Standard

ML (Milner, Tofte, and Harper, 1990) and Caml (Leroy, 2000) families of

programming languages. We refer to it as ML-the-programming-language.

For a type theorist, �ML� might stand for a partiular breed of type sys-

tems, based on the simply-typed �-alulus, but extended with a simple form

of polymorphism introdued by let delarations. These type systems have

deidable type inferene; their type inferene algorithms ruially rely on

�rst-order uni�ation and an be made e�ient in pratie. In addition to

Standard ML and Caml, this view enompasses programming languages suh

as Haskell (Hudak, Peyton Jones, Wadler, Boutel, Fairbairn, Fasel, Guzman,

Hammond, Hughes, Johnsson, Kieburtz, Nikhil, Partain, and Peterson, 1992)

and Clean (Brus, van Eekelen, van Leer, and Plasmeijer, 1987), whose seman-

tis is rather di�erent�indeed, it is pure and lazy�but whose type system

�ts this desription. We refer to it as ML-the-type-system. It is also referred

to as Hindley and Milner's type disipline in the literature.

For us, �ML� might also stand for the partiular programming language

whose formal de�nition is given and studied in this hapter. It is a ore alulus

featuring �rst-lass funtions, let delarations, and onstants. It is equipped

with a all-by-value semantis. By ustomizing onstants and their seman-

tis, one may reover data strutures, referenes, and more. We refer to this

partiular alulus as ML-the-alulus.

Why study ML-the-type-system today, suh a long time after its initial

disovery? One may think of at least two reasons.

First, its treatment in the literature is often ursory, beause it is onsidered

either as a simple extension of the simply-typed �-alulus (TAPL Chapter

9) or as a subset of Girard and Reynolds' System F (TAPL Chapter 23).

The former view is supported by the laim that the let onstrut, whih

distinguishes ML-the-type-system from the simply-typed �-alulus, may be

understood as a simple textual expansion faility. However, this view only tells

part of the story, beause it fails to give an aount of the prinipal types prop-

erty enjoyed by ML-the-type-system, leads to a naïve type inferene algorithm

whose time omplexity is exponential, and breaks down when the language

is extended with side e�ets, suh as state or exeptions. The latter view is

supported by the fat that every type derivation within ML-the-type-system

is also a valid type derivation within an impliity-typed variant of System F.

Suh a view is orret, but again fails to give an aount of type inferene for

ML-the-type-system, sine type inferene for System F is undeidable (Wells,

1999).

Seond, existing aounts of type inferene for ML-the-type-system (Milner,

1978; Damas and Milner, 1982; Tofte, 1988; Leroy, 1992; Lee and Yi, 1998;
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Jones, 1999) usually involve heavy manipulations of type substitutions. Suh

an ubiquitous use of type substitutions is often quite obsure. Furthermore,

atual implementations of the type inferene algorithm do not expliitly ma-

nipulate substitutions; instead, they extend a standard �rst-order uni�ation

algorithm, where terms are updated in plae as new equations are disov-

ered (Huet, 1976). Thus, it is hard to tell, from these aounts, how to write

an e�ient type inferene algorithm for ML-the-type-system. Yet, in spite of

the inreasing speed of omputers, e�ieny remains ruial when ML-the-

type-system is extended with expensive features, suh as Objetive Caml's

objet types (Rémy and Vouillon, 1998) or polymorphi methods (Garrigue

and Rémy, 1999).

For these reasons, we believe it is worth giving an aount of ML-the-type-

system that fouses on type inferene and strives to be at one elegant and

faithful to an e�ient implementation. To ahieve these goals, we forego type

substitutions and instead put emphasis on onstraints, whih o�er a number

of advantanges. First, onstraints allow a modular presentation of type in-

ferene as the ombination of a onstraint generator and a onstraint solver.

Suh a deomposition allows reasoning separately about when a program is

orret, on the one hand, and how to hek whether it is orret, on the

other hand. It has long been standard in the setting of the simply-typed �-

alulus (TAPL Chapter 22), but, to the best of our knowledge, has never

been proposed for ML-the-type-system. Seond, it is often natural to de-

�ne and implement the solver as a onstraint rewriting system. Then, the

onstraint language allows reasoning not only about orretness�is every

rewriting step meaning-preserving?�but also about low-level implementation

details, sine onstraints are the data strutures manipulated throughout the

type inferene proess. For instane, desribing uni�ation in terms of multi-

equations (Jouannaud and Kirhner, 1991) allows reasoning about the sharing

of nodes in memory, whih a substitution-based approah annot aount for.

Last, onstraints are more general than type substitutions, and allow desrib-

ing many extensions of ML-the-type-system, among whih extensions with

reursive types, rows, subtyping, �rst-order uni�ation under a mixed pre�x,

and more.

Before delving into the details of this new presentation of ML-the-type-

system, however, it is worth realling its standard de�nition. Thus, in what

follows, we �rst de�ne the syntax and operational semantis of the program-

ming language ML-the-alulus, and equip it with a type system, known as

Damas and Milner's type system.
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x; y ::= Identi�ers:

z Variable

m Memory loation

 Constant

t ::= Expressions:

x Identi�er

�z:t Funtion

t t Appliation

let z = t in t Loal de�nition

v; w ::= Values:

z Variable

m Memory loation

�z:t Funtion

 v

1

: : : v

k

Data

 2 Q

+

^ k � a()

 v

1

: : : v

k

Partial appliation

 2 Q

�

^ k < a()

E ::= Evaluation Contexts:

[℄ Empty ontext

E t Left side of an appliation

v E Right side of an appliation

let z = E in t Loal de�nition

Figure 1-1: Syntax of ML-the-alulus

ML-the-alulus

The syntax of ML-the-alulus is de�ned in Figure 1-1. It is made up of several

syntati ategories.

Identi�ers group several kinds of names that may be referened in a pro-

gram: variables, memory loations, and onstants. We let x and y range

over identi�ers. Variables�sometimes alled program variables to avoid

ambiguity�are names that may be bound to values using � or let binding

forms; in other words, they are names for funtion parameters or loal de�-

nitions. We let z and f range over program variables. We sometimes write

for a program variable that does not our free within its sope: for instane,

� :t stands for �z:t, provided z is fresh for t. Memory loations are names

that represent memory addresses. By onvention, memory loations never ap-

pear in soure programs, that is, programs that are submitted to a ompiler.

They only appear during exeution, when new memory bloks are alloated.

Constants are �xed names for primitive values and operations, suh as integer

literals and integer arithmeti operations. Constants are elements of a �nite

or in�nite set Q. They are never subjet to �-onversion. Program variables,

memory loations, and onstants belong to distint syntati lasses and may

never be onfused.

The set of onstants Q is kept abstrat, so most of our development is

independent of its onrete de�nition. We assume that every onstant  has a

nonnegative integer arity a(). We further assume that Q is partitioned into

subsets of onstrutors Q

+

and destrutors Q

�

. Construtors and destrutors

di�er in that the former are used to form values, while the latter are used to
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operate on values.

1.2.1 Example [Integers℄: For every integer n, one may introdue a nullary on-

strutor n̂. In addition, one may introdue a binary destrutor

^

+, whose appli-

ations are written in�x, so t

1

^

+ t

2

stands for the double appliation

^

+ t

1

t

2

of the destrutor

^

+ to the expressions t

1

and t

2

. 2

Expressions�also known as program terms or programs�are the main syn-

tati ategory. Indeed, unlike proedural languages suh as C and Java, fun-

tional languages, inluding ML-the-programming-language, suppress the dis-

tintion between expressions and statements. Expressions inlude identi�ers,

�-abstrations, appliations, and loal de�nitions. The �-abstration �z:t rep-

resents the funtion of one parameter named z whose result is the expression t,

or, in other words, the funtion that maps z to t. Note that the variable z

is bound within the term t, so (for instane) �z

1

:z

1

and �z

2

:z

2

are the same

objet. The appliation t

1

t

2

represents the result of alling the funtion t

1

with atual parameter t

2

, or, in other words, the result of applying t

1

to t

2

.

Appliation is left-assoiative, that is, t

1

t

2

t

3

stands for (t

1

t

2

) t

3

. The on-

strut let z = t

1

in t

2

represents the result of evaluating t

2

after binding the

variable z to t

1

. Note that the variable z is bound within t

2

, but not within

t

1

, so for instane let z

1

= z

1

in z

1

and let z

2

= z

1

in z

2

are the same

objet. The onstrut let z = t

1

in t

2

has the same meaning as (�z:t

2

) t

1

,

but is dealt with in a more �exible way by ML-the-type-system. To sum up,

the syntax of ML-the-alulus is that of the pure �-alulus, extended with

memory loations, onstants, and the let onstrut.

Values form a subset of expressions. They are expressions whose evaluation

is ompleted. Values inlude identi�ers, �-abstrations, and appliations of

onstants, of the form  v

1

: : : v

k

, where k does not exeed 's arity if  is a

onstrutor, and k is smaller than 's arity if  is a destrutor. In what follows,

we are often interested in losed values, that is, values that do not ontain

any free program variables. We use the meta-variables v and w for values.

1.2.2 Example: The integer literals : : : ;



�1;

^

0;

^

1; : : : are nullary onstrutors, so

they are values. Integer addition

^

+ is a binary destrutor, so it is a value, and

so is every partial appliation

^

+ v. Thus, both

^

+

^

1 and

^

+

^

+ are values. An

appliation of

^

+ to two values, suh as

^

2

^

+

^

2, is not a value. 2

1.2.3 Example [Pairs℄: Let (�; �) be a binary onstrutor. If t

1

are t

2

are expres-

sions, then the double appliation (�; �) t

1

t

2

may be alled the pair of t

1

and

t

2

, and may be written (t

1

; t

2

). By the de�nition above, (t

1

; t

2

) is a value if

and only if t

1

and t

2

are both values. 2

Stores are �nite mappings from memory loations to losed values. A store �

represents what is usually alled a heap, that is, a olletion of data strutures,
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eah of whih is alloated at a partiular address in memory and may ontain

pointers to other elements of the heap. ML-the-programming-language allows

overwriting the ontents of an existing memory blok�an operation some-

times referred to as a side e�et. In the operational semantis, this e�et is

ahieved by mapping an existing memory loation to a new value. We write

? for the empty store. We write �[m 7! v℄ for the store that maps m to v and

otherwise oinides with �. When � and �

0

have disjoint domains, we write

��

0

for their union. We write dom(�) for the domain of � and range(�) for

the set of memory loations that appear in its odomain.

The operational semantis of a purely funtional language, suh as the pure

�-alulus, may be de�ned as a rewriting system on expressions. Beause ML-

the-alulus has side e�ets, however, we de�ne its operational semantis as a

rewriting system on on�gurations. A on�guration t=� is a pair of an expres-

sion t and a store �. The memory loations in the domain of � are onsidered

bound within t=�, so (for instane) m

1

=(m

1

7!

^

0) and m

2

=(m

2

7!

^

0) are

the same objet. In what follows, we are often interested in losed on�gura-

tions, that is, on�gurations t=� suh that t has no free program variables

and every memory loation that appears within t or within the range of �

is in the domain of �. If t is a soure program, its evaluation begins within

an empty store�that is, with the on�guration t=?. Beause, by onvention,

soure programs do not ontain memory loations, this is a losed on�gura-

tion. Furthermore, we shall see that all reduts of a losed on�guration are

losed as well. Please note that, instead of separating expressions and stores,

it is possible to make store fragments part of the syntax of expressions; this

idea, proposed in (Crank and Felleisen, 1991), is reminisent of the enoding of

referene ells in proess aluli (Turner, 1995; Fournet and Gonthier, 1996).

A ontext is an expression where a single subexpression has been replaed

with a hole, written [℄. Evaluation ontexts form a strit subset of ontexts. In

an evaluation ontext, the hole is meant to highlight a point in the program

where it is valid to apply a redution rule. Thus, the de�nition of evaluation

ontexts determines a redution strategy: it tells where and in what order

redution steps may our. For instane, the fat that �z:[℄ is not an eval-

uation ontext means that the body of a funtion is never evaluated�that

is, not until the funtion is applied, see R-Beta below. The fat that t E is

an evaluation ontext only if t is a value means that, to evaluate an appli-

ation t

1

t

2

, one should fully evaluate t

1

before attempting to evaluate t

2

.

More generally, in the ase of a multiple appliation, it means that arguments

should be evaluated from left to right. Of ourse, other hoies ould be made:

for instane, de�ning E ::= : : : j t E j E v j : : : would enfore a right-to-left

evaluation order, while de�ning E ::= : : : j t E j E t j : : : would leave the eval-

uation order unspei�ed, e�etively allowing redution to alternate between
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(�z:t) v �! [z 7! v℄t (R-Beta)

let z = v in t �! [z 7! v℄t (R-Let)

t=�

Æ

�!
t

0

=�

0

t=� �! t

0

=�

0

(R-Delta)

t=� �! t

0

=�

0

dom(�

00

) # dom(�

0

)

range(�

00

) # dom(�

0

n �)

t=��

00

�! t

0

=�

0

�

00

(R-Extend)

t=� �! t

0

=�

0

E [t℄=� �_ E [t

0

℄=�

0

(R-Context)

Figure 1-2: Semantis of ML-the-alulus

both subexpressions, and making evaluation nondeterministi. The fat that

let z = v in E is not an evaluation ontext means that the body of a loal

de�nition is never evaluated�that is, not until the de�nition itself is redued,

see R-Let below. We write E [t℄ for the expression obtained by replaing the

hole in E with the expression t.

Figure 1-2 de�nes �rst a relation�! between on�gurations, then a relation

�_ between losed on�gurations. If t=� �! t

0

=�

0

or t=� �_ t

0

=�

0

holds,

then we say that the on�guration t=� redues to the on�guration t

0

=�

0

; the

ambiguity involved in this de�nition is benign. If t=� �! t

0

=� holds for every

store �, then we write t �! t

0

and say that the redution is pure.

The key redution rule is R-Beta, whih states that a funtion applia-

tion (�z:t) v redues to the funtion body, namely t, where every ourrene

of the formal argument z has been replaed with the atual argument v.

The � onstrut, whih prevented the funtion body t from being evaluated,

disappears, so the new term may (in general) be further redued. Beause

ML-the-alulus adopts a all-by-value strategy, rule R-Beta is appliable

only if the atual argument is a value v. In other words, a funtion annot

be invoked until its atual argument has been fully evaluated. Rule R-Let

is very similar to R-Beta. Indeed, it spei�es that let z = v in t has the

same behavior, with respet to redution, as (�z:t) v. We remark that sub-

stitution of a value for a program variable throughout a term is expensive, so

R-Beta and R-Let are never implemented literally: they are only a simple

spei�ation. Atual implementations usually employ runtime environments,

whih may be understood as a form of expliit substitutions (Abadi, Cardelli,

Curien, and Lévy, 1991). Please note that our hoie of a all-by-value re-

dution strategy is fairly arbitrary, and has essentially no impat on the type

system; the programming language Haskell (Hudak, Peyton Jones, Wadler,

Boutel, Fairbairn, Fasel, Guzman, Hammond, Hughes, Johnsson, Kieburtz,
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Nikhil, Partain, and Peterson, 1992), whose redution strategy is known as

lazy or all-by-need, also relies on Hindley and Milner's type disipline.

Rule R-Delta desribes the semantis of onstants. It merely states that a

ertain relation

Æ

�! is a subset of �!. Of ourse, sine the set of onstants is

unspei�ed, the relation

Æ

�! must be kept abstrat as well. We require that,

if t=�

Æ

�! t

0

=�

0

holds, then

(i) t is of the form  v

1

: : : v

n

, where  is a destrutor of arity n; and

(ii) dom(�) is a subset of dom(�

0

).

Condition (i) ensures that Æ-redution onerns full appliations of destru-

tors only, and that these are evaluated in aordane with the all-by-value

strategy. Condition (ii) ensures that Æ-redution may alloate new memory

loations, but not dealloate existing loations. In partiular, a �garbage ol-

letion� operator, whih destroys unreahable memory ells, annot be made

available as a onstant. Doing so would not make muh sense anyway in the

presene of R-Extend, whih states that any valid redution is also valid in

a larger store. Condition (ii) allows proving that, if t=� redues to t

0

=�

0

, then

dom(�) is a subset of dom(�

0

); this is left as an exerise to the reader.

1.2.4 Example [Integers, ontinued℄: The operational semantis of integer ad-

dition may be de�ned as follows:

^

k

1

^

+

^

k

2

Æ

�!

\

k

1

+ k

2

(R-Add)

The left-hand term is the double appliation

^

+

^

k

1

^

k

2

, while the right-hand

term is the integer literal

^

k, where k is the sum of k

1

and k

2

. The distintion

between objet level and meta level (that is, between

^

k and k) is needed here

to avoid ambiguity. 2

1.2.5 Example [Pairs, ontinued℄: In addition to the pair onstrutor de�ned

in Example 1.2.3, we may introdue two destrutors �

1

and �

2

of arity 1. We

may de�ne their operational semantis as follows, for i 2 f1; 2g:

�

i

(v

1

; v

2

)

Æ

�! v

i

(R-Proj)

Thus, our treatment of onstants is general enough to aount for pair on-

strution and destrution; we need not build these features expliitly into the

language. 2

1.2.6 Exerise [Booleans, Reommended, FF℄: Let true and false be

nullary onstrutors. Let if be a ternary destrutor. Extend the operational

semantis with

if true v

1

v

2

Æ

�!
v

1

(R-True)
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if false v

1

v

2

Æ

�! v

2

(R-False)

Let us use the syntati sugar if t

0

then t

1

else t

2

for the triple appliation

of if t

0

t

1

t

2

. Explain why these de�nitions do not quite provide the expeted

behavior. Without modifying the semantis of if, suggest a new de�nition of

the syntati sugar if t

0

then t

1

else t

2

that orrets the problem. 2

1.2.7 Example [Sums℄: Booleans may in fat be viewed as a speial ase of the

more general onept of sum. Let inj

1

and inj

2

be unary onstrutors, alled

respetively left and right injetions. Let ase be a ternary destrutor, whose

semantis is de�ned as follows, for i 2 f1; 2g:

ase (inj

i

v) v

1

v

2

Æ

�!
v

i

v

(R-Case)

Here, the value inj

i

v is being srutinized, while the values v

1

and v

2

, whih

are typially funtions, represent the two arms of a standard ase onstrut.

The rule selets an appropriate arm (here, v

i

) based on whether the value un-

der srutiny was formed using a left or right injetion. The arm v

i

is exeuted

and given aess to the data arried by the injetion (here, v). 2

1.2.8 Exerise [F, 9℄: Explain how to enode true, false and the if onstrut

in terms of sums. Chek that the behavior of R-True andR-False is properly

emulated. 2

1.2.9 Example [Referenes℄: Let ref and ! be unary destrutors. Let := be a

binary destrutor. We write t

1

:= t

2

for the double appliation := t

1

t

2

.

De�ne the operational semantis of these three destrutors as follows:

ref v=?

Æ

�! m=(m 7! v) if m is fresh for v

(R-Ref)

!m=(m 7! v)

Æ

�! v=(m 7! v)

(R-Deref)

m := v=(m 7! v

0

)

Æ

�! v=(m 7! v)

(R-Assign)

Aording to R-Ref, evaluating ref v alloates a fresh memory loation

m and binds v to it. Beause on�gurations are onsidered equal up to �-

onversion of memory loations, the hoie of the name m is irrelevant, pro-

vided it is hosen fresh for v, so as to prevent inadvertent apture of the

memory loations that appear free within v. By R-Deref, evaluating !m re-

turns the value bound to the memory loation m within the urrent store. By

R-Assign, evaluating m := v disards the value v

0

urrently bound to m and

produes a new store where m is bound to v. Here, the value returned by the

assignment m := v is v itself; in ML-the-programming-language, it is usually

a nullary onstrutor (), pronouned unit. 2

1.2.10 Example [Reursion℄: Let fix be a binary destrutor, whose operational

semantis is:
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fix v

1

v

2

Æ

�! v

1

(fix v

1

) v

2

(R-Fix)

fix is a �xpoint ombinator: it e�etively allows reursive de�nitions of

funtions. Indeed, the onstrut letre f = �z:t

1

in t

2

provided by ML-

the-programming-language may be viewed as syntati sugar for let f =

fix (�f:�z:t

1

) in t

2

. 2

Rule R-Context ompletes the de�nition of the operational semantis by

de�ning �_, a relation between losed on�gurations, in terms of �!. The

rule states that redution may take plae not only at the term's root, but also

deep inside it, provided the path from the root to the point where redution

ours forms an evaluation ontext. This is how evaluation ontexts determine

an evaluation strategy. As a purely tehnial point, beause �_ relates losed

on�gurations only, we do not need to require that the memory loations in

dom(�

0

n�) be fresh for E : indeed, every memory loation that appears within

E must be a member of dom(�).

1.2.11 Exerise [FF, Reommended, 9℄: Assuming the availability of Booleans

and onditionals, integer literals, subtration, multipliation, integer ompar-

ison, and a �xpoint ombinator, most of whih were de�ned in previous ex-

amples, de�ne a funtion that omputes the fatorial of its integer argument,

and apply it to

^

3. Determine, step by step, how this expression redues to a

value. 2

It is straightforward to hek that, if t=� redues to t

0

=�

0

, then t is not

a value. In other words, values are irreduible: they represent a ompleted

omputation. The proof is left as an exerise to the reader. The onverse,

however, does not hold: if t=� is irreduible with respet to �_, then t is not

neessarily a value. In that ase, the on�guration t=� is said to be stuk. It

represents a runtime error, that is, a situation that does not allow omputation

to proeed, yet is not onsidered a valid outome. A losed soure program

t is said to go wrong if and only if the on�guration t=? redues to a stuk

on�guration.

1.2.12 Example: Runtime errors typially arise when destrutors are applied to

arguments of an unexpeted nature. For instane, the expressions + 1 m and

�

1

2 and !3 are stuk, regardless of the urrent store. The program let z =

^

+

^

+ in z 1 is not stuk, beause

^

+

^

+ is a value. However, its redut through

R-Let is

^

+

^

+ 1, whih is stuk, so this program goes wrong. The primary

purpose of type systems is to prevent suh situations from arising. 2

1.2.13 Example: The on�guration !m=� is stuk if m is not in the domain of �.

In that ase, however, !m=� is not losed. Beause we onsider �_ as a rela-

tion between losed on�gurations only, this situation annot arise. In other
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words, the semantis of ML-the-alulus never allows the reation of dan-

gling pointers. As a result, no partiular preautions need be taken to guard

against them. Several strongly typed programming languages do neverthe-

less allow dangling pointers in a ontrolled fashion (Tofte and Talpin, 1997;

Crary, Walker, and Morrisett, 1999b; DeLine and Fähndrih, 2001; Grossman,

Morrisett, Jim, Hiks, Wang, and Cheney, 2002a). 2

Damas and Milner's type system

ML-the-type-system was originally de�ned by Milner (1978). Here, we repro-

due the de�nition given a few years later by Damas and Milner (1982), whih

is written in a more standard style: typing judgements are de�ned indutively

by a olletion of typing rules. We refer to this type system as DM.

To begin, we must de�ne types. In DM, like in the simply-typed �-alulus,

types are �rst-order terms built out of type onstrutors and type variables.

We begin with several onsiderations onerning the spei�ation of type on-

strutors.

First, we do not wish to �x the set of type onstrutors. Certainly, sine ML-

the-alulus has funtions, we need to be able to form an arrow type T ! T

0

out of arbitrary types T and T

0

; that is, we need a binary type onstrutor!.

However, beause ML-the-alulus inludes an unspei�ed set of onstants,

we annot say muh else in general. If onstants inlude integer literals and

integer operations, as in Example 1.2.1, then a nullary type onstrutor int is

needed; if they inlude pair onstrution and destrution, as in Examples 1.2.3

and 1.2.5, then a binary type onstrutor � is needed; and so on.

Seond, it is ommon to refer to the parameters of a type onstrutor by

position, that is, by numeri index. For instane, when one writes T ! T

0

,

it is understood that the type onstrutor ! has arity 2, that T is its �rst

parameter, known as its domain, and that T

0

is its seond parameter, known

as its odomain. Here, however, we refer to parameters by names, known as

diretions. For instane, we de�ne two diretions domain and odomain and let

the type onstrutor ! have arity fdomain ; odomaing. The extra generality

a�orded by diretions is exploited in the de�nition of nonstrutural subtyping

(Example 1.3.9) and in the de�nition of rows (Setion 1.11).

Last, we allow types to be lassi�ed using kinds. As a result, every type on-

strutor must ome not only with an arity, but with a riher signature, whih

desribes the kinds of the types to whih it is appliable and the kind of the

type that it produes. A distinguished kind ? is assoiated with �normal� types,

that is, types that are diretly asribed to expressions and values. For instane,

the signature of the type onstrutor! is fdomain 7! ?; odomain 7! ?g ) ?,

beause it is appliable to two �normal� types and produes a �normal� type.
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Introduing kinds other than ? allows viewing some terms as ill-formed types;

this is illustrated, for instane, in Setion 1.11. In the simplest ase, however,

? is really the only kind, so the signature of a type onstrutor is nothing but

its arity (a set of diretions), and every term is a well-formed type, provided

every appliation of a type onstrutor respets its arity.

1.2.14 Definition: Let d range over a �nite or denumerable set of diretions. Let �

range over a �nite or denumerable set of kinds. Let ? be a distinguished kind.

Let K range over partial mappings from diretions to kinds. Let F range over

a �nite or denumerable set of type onstrutors, eah of whih has a signature

of the formK ) �. The domain ofK is referred to as the arity of F , while � is

referred to as its image kind. We write � instead of K ) � when K is empty.

Let ! be a type onstrutor of signature fdomain 7! ?; odomain 7! ?g ) ?.

2

The type onstrutors and their signatures olletively form a signature S.

In the following, we assume that a �xed signature S is given and that every

type onstrutor in it has �nite arity, so as to ensure that types are mahine

representable. However, in Setion 1.11, we shall expliitly work with several

distint signatures, some of whih involve type onstrutors of denumerable

arity.

A type variable is a name that is used to stand for a type. For simpli-

ity, we assume that every type variable is branded with a kind, or, in other

words, that type variables of distint kinds are drawn from disjoint sets. Eah

of these sets of type variables is individually subjet to �-onversion: that

is, renamings must preserve kinds. Attahing kinds to type variables is only

a tehnial onveniene: in pratie, every operation performed during type

inferene preserves the property that every type is well-kinded, so it is not

neessary to keep trak of the kind of every type variable. It is only neessary

to hek that all types supplied by the user, within type delarations, type

annotations, or module interfaes, are well-kinded.

1.2.15 Definition: For every kind �, let V

�

be a disjoint, denumerable set of type

variables. Let X, Y, and Z range over the set V of all type variables. Let

�

X and

�

Y range over �nite sets of type variables. We write

�

X

�

Y for the set

�

X [

�

Y and

often write X for the singleton set fXg. We write ftv(o) for the set of free type

variables of an objet o. 2

The set of types, ranged over by T, is the free many-kinded term algebra

that arises out of the type onstrutors and type variables.

1.2.16 Definition: A type of kind � is either a member of V

�

, or a term of the form

F fd

1

7! T

1

; : : : ; d

n

7! T

n

g, where F has signature fd

1

7! �

1

; : : : ; d

n

7! �

n

g )

� and T

1

; : : : ; T

n

are types of kind �

1

; : : : ; �

n

, respetively. 2
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As a notational onvention, we assume that, for every type onstrutor F ,

the diretions that form the arity of F are impliitly ordered, so that we may

say that F has signature �

1


 : : :
�

n

) � and employ the syntax F T

1

: : : T

n

for appliations of F . Appliations of the type onstrutor! are written in�x

and assoiate to the right, so T! T

0

! T

00

stands for T! (T

0

! T

00

).

In order to give meaning to the free type variables of a type, or, more

generally, of a typing judgement, traditional presentations of ML-the-type-

system, inluding Damas and Milner's, employ type substitutions. Most of

our presentation avoids substitutions and uses onstraints instead. However,

we do need substitutions on a few oasions, espeially when relating our

presentation to Damas and Milner's.

1.2.17 Definition: A type substitution � is a total, kind-preserving mapping of type

variables to types that is the identity everywhere but on a �nite subset of V ,

whih we all the domain of � and write dom(�). The range of �, whih we

write range(�), is the set ftv(�(dom(�))). A type substitution may naturally be

viewed as a total, kind-preserving mapping of types to types. In the following,

we write

�

X # � for

�

X # (dom(�) [ range(�)). We write � n

�

X for the restrition

of � outside

�

X, that is, the restrition of � to V n

�

X. We sometimes let ' denote

a type substitution. 2

If

~

X and

~

T are respetively a vetor of distint type variables and a vetor

of types of the same (�nite) length, suh that, for every index i, X

i

and T

i

have the same kind, then [

~

X 7!

~

T℄ denotes the substitution that maps X

i

to T

i

for every index i. The domain of [

~

X 7!

~

T℄ is a subset of

�

X, the set underlying

the vetor

~

X. Its range is a subset of ftv(

�

T), where

�

T is the set underlying the

vetor

~

T. Every substitution � may be written under the form [

~

X 7!

~

T℄, where

�

X = dom(�). Then, � is idempotent if and only if

�

X # ftv(

�

T) holds.

As pointed out earlier, types are �rst-order terms; that is, in the grammar

of types, none of the produtions binds a type variable. As a result, every type

variable that appears within a type T appears free within T. This situation is

idential to that of the simply-typed �-alulus. Things beome more inter-

esting when we introdue type shemes. As its name implies, a type sheme

may desribe an entire family of types; this e�et is ahieved via universal

quanti�ation over a set of type variables.

1.2.18 Definition: A type sheme S is an objet of the form 8

�

X:T, where T is a type

of kind ? and the type variables

�

X are onsidered bound within T. 2

One may view the type T as the trivial type sheme 8?:T, where no type

variables are universally quanti�ed, so types may be viewed as a subset of type

shemes. The type sheme 8

�

X:T may be viewed as a �nite way of desribing

the possibly in�nite family of types of the form [

~

X 7!

~

T℄T, where

~

T is arbitrary.



TOP

2003/5/20

page 16

16 Draft of May 20, 2003 1 ML

�(x) = S

� ` x : S

(dm-Var)

�; z : T ` t : T

0

� ` �z:t : T! T

0

(dm-Abs)

� ` t

1

: T! T

0

� ` t

2

: T

� ` t

1

t

2

: T

0

(dm-App)

� ` t

1

: S �; z : S ` t

2

: T

� ` let z = t

1

in t

2

: T

(dm-Let)

� ` t : T

�

X # ftv (�)

� ` t : 8

�

X:T

(dm-Gen)

� ` t : 8

�

X:T

� ` t : [

~

X 7!

~

T℄T

(dm-Inst)

Figure 1-3: Typing rules for DM

Suh types are alled instanes of the type sheme 8

�

X:T. Note that, throughout

most of this hapter, we work with onstrained type shemes, a generalization

of DM type shemes (De�nition 1.3.2).

Typing environments, or environments for short, are used to ollet assump-

tions about an expression's free identi�ers.

1.2.19 Definition: An environment � is a �nite ordered sequene of pairs of a

program identi�er and a type sheme. We write ? for the empty environment

and ; for the onatenation of environments. An environment may be viewed as

a �nite mapping from program identi�ers to type shemes by letting �(x) = S

if and only if � is of the form �

1

; x : S; �

2

, where �

2

ontains no assumption

about x. The set of de�ned program identi�ers of an environment �, written

dpi(�), is de�ned by dpi (?) = ? and dpi (�; x : S) = dpi (�) [ fxg. 2

To omplete the de�nition of Damas and Milner's type system, there

remains to de�ne typing judgements. A typing judgement takes the form

� ` t : S, where t is an expression of interest, � is an environment, whih typ-

ially ontains assumptions about t's free program identi�ers, and S is a type

sheme. Suh a judgement may be read: under assumptions �, the expression

t has the type sheme S. By abuse of language, it is sometimes said that t has

type S. A typing judgement is valid (or holds) if and only if it may be derived

using the rules that appear in Figure 1-3. An expression t is well-typed within

the environment � if and only if some judgement of the form � ` t : S holds;

it is ill-typed within � otherwise.

Rule dm-Var allows fething a type sheme for an identi�er x from the

environment. It is equally appliable to program variables, memory loations,

and onstants. If no assumption onerning x appears in the environment �,

then the rule isn't appliable. In that ase, the expression x is ill-typed within

��an you prove it? Assumptions about onstants are usually olleted in
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a so-alled initial environment �

0

. It is the environment under whih losed

programs are typeheked, so every subexpression is typeheked under some

extension � of �

0

. Of ourse, the type shemes assigned by �

0

to onstants

must be onsistent with their operational semantis; we say more about this

later (Setion 1.7). Rule dm-Abs spei�es how to typehek a �-abstration

�z:t. Its premise requires the body of the funtion, namely t, to be well-typed

under an extra assumption, whih auses all free ourrenes of z within t to

reeive a ommon type T. Its onlusion forms the arrow type T ! T

0

out of

the types of the funtion's formal parameter, namely T, and result, namely

T

0

. It is worth noting that this rule always augments the environment with

a type T�reall that, by onvention, types form a subset of type shemes�

but never with a nontrivial type sheme. dm-App states that the type of a

funtion appliation is the odomain of the funtion's type, provided that the

domain of the funtion's type is a valid type for the atual argument. dm-

Let losely mirrors the operational semantis: whereas the semantis of the

loal de�nition let z = t

1

in t

2

is to augment the runtime environment

by binding z to the value of t

1

prior to evaluating t

2

, the e�et of dm-Let

is to augment the typing environment by binding z to a type sheme for

t

1

prior to typeheking t

2

. dm-Gen turns a type into a type sheme by

universally quantifying over a set of type variables that do not appear free in

the environment; this restrition is disussed in Example 1.2.20 below. dm-

Inst, on the ontrary, turns a type sheme into one of its instanes, whih may

be hosen arbitrarily. These two operations are referred to as generalization

and instantiation. The notion of type sheme and the rules dm-Gen and dm-

Inst are harateristi of ML-the-type-system: they distinguish it from the

simply-typed �-alulus.

1.2.20 Example: It is unsound to allow generalizing type variables that appear free

in the environment. For instane, onsider the typing judgement z : X ` z :

X (1), whih, aording to dm-Var, is valid. Applying an unrestrited version

of dm-Gen to it, we obtain z : X ` z : 8X:X (2), whene, by dm-Inst, z : X `

z : Y (3). By dm-Abs and dm-Gen, we then have ? ` �z:z : 8XY:X ! Y. In

other words, the identity funtion has unrelated argument and result types!

Then, the expression (�z:z)

^

0

^

0, whih redues to the stuk expression

^

0

^

0,

has type sheme 8Z:Z. So, well-typed programs may ause runtime errors: the

type system is unsound.

What happened? It is lear that the judgement (1) is orret only beause

the type assigned to z is the same in its assumption and in its right-hand

side. For the same reason, the judgements (2) and (3)�the former of whih

may be written z : X ` z : 8Y:Y�are inorret. Indeed, suh judgements de-

feat the very purpose of environments, sine they disregard their assumption.
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By universally quantifying over X in the right-hand side only, we break the

onnetion between ourrenes of X in the assumption, whih remain free,

and ourrenes in the right-hand side, whih beome bound. This is orret

only if there are in fat no free ourrenes of X in the assumption. 2

It is a key feature of ML-the-type-system that dm-Abs may only introdue

a type T, rather than a type sheme, into the environment. Indeed, this allows

the rule's onlusion to form the arrow type T ! T

0

. If instead the rule were

to introdue the assumption z : S into the environment, then its onlusion

would have to form S ! T

0

, whih is not a well-formed type. In other words,

this restrition is neessary to preserve the strati�ation between types and

type shemes. If we were to remove this strati�ation, thus allowing universal

quanti�ers to appear deep inside types, we would obtain an impliitly-typed

version of System F (TAPL Chapter 23). Type inferene for System F is

undeidable (Wells, 1999), while type inferene for ML-the-type-system is de-

idable, as we show later, so this design hoie has a rather drasti impat.

1.2.21 Exerise [F, Reommended℄: Build a type derivation for the expression

�z

1

:let z

2

= z

1

in z

2

within DM. 2

1.2.22 Exerise [F, Reommended℄: Let int be a nullary type onstrutor of sig-

nature ?. Let �

0

onsist of the bindings

^

+ : int! int! int and

^

k : int, for

every integer k. Can you �nd derivations of the following valid typing judge-

ments? Whih of these judgements are valid in the simply-typed �-alulus,

where let z = t

1

in t

2

is syntati sugar for (�z:t

2

) t

1

?

�

0

` �z:z : int! int

�

0

` �z:z : 8X:X! X

�

0

` let f = �z:z

^

+

^

1 in f

^

2 : int

�

0

` let f = �z:z in f f

^

2 : int

Show that the expressions

^

1

^

2 and �f:(f f) are ill-typed within �

0

. Could

these expressions be well-typed in a more powerful type system? 2

1.2.23 Exerise [FF℄: In fat, the rules shown in Figure 1-3 are not exatly Damas

and Milner's original rules. In (Damas and Milner, 1982), the generalization

and instantiation rules are:

� ` t : S X 62 ftv(�)

� ` t : 8X:S

(dm-Gen')

� ` t : 8

�

X:T

�

Y # ftv(8

�

X:T)

� ` t : 8

�

Y:[

~

X 7!

~

T℄T

(dm-Inst')
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where 8X:S stands for 8X

�

X:T if S stands for 8

�

X:T. Show that the ombination

of dm-Gen' and dm-Inst' is equivalent to the ombination of dm-Gen and

dm-Inst. 2

DM enjoys a number of nie theoretial properties, whih have pratial

impliations. First, under suitable hypotheses about the semantis of on-

stants, about the type shemes that they reeive in the initial environment,

and�in the presene of side e�ets�under a slight restrition of the syntax

of let onstruts, it is possible to show that the type system is sound: that is,

well-typed (losed) programs do not go wrong. This essential property ensures

that programs that are aepted by the typeheker may be ompiled without

runtime heks. Furthermore, it is possible to show that there exists an algo-

rithm that, given a (losed) environment � and a program t, tells whether t

is well-typed with respet to �, and if so, produes a prinipal type sheme S.

A prinipal type sheme is suh that (i) it is valid, that is, � ` t : S holds, and

(ii) it is most general, that is, every judgement of the form � ` t : S

0

follows

from � ` t : S by dm-Inst and dm-Gen. (For the sake of simpliity, we have

stated the properties of the type inferene algorithm only in the ase of a

losed environment �; the spei�ation is slightly heavier in the general ase.)

This implies that type inferene is deidable: the ompiler does not require

expressions to be annotated with types. It also implies that, under a �xed

environment �, all of the type information assoiated with an expression t

may be summarized in the form of a single (prinipal) type sheme, whih is

very onvenient.

Road map

Before proving the above laims, we �rst generalize our presentation by mov-

ing to a onstraint-based setting. The neessary tools, namely the onstraint

language, its interpretation, and a number of onstraint equivalene laws, are

introdued in Setion 1.3. In Setion 1.4, we desribe the standard onstraint-

based type system HM(X) (Odersky, Sulzmann, and Wehr, 1999a; Sulzmann,

Müller, and Zenger, 1999; Sulzmann, 2000). We prove that, when onstraints

are made up of equations between free, �nite terms, HM(X) is a reformula-

tion of DM. In the presene of a more powerful onstraint language, HM(X)

is an extension of DM. In Setion 1.5, we propose an original reformula-

tion of HM(X), dubbed PCB(X), whose distintive feature is to exploit type

sheme introdution and instantiation onstraints. In Setion 1.6, we show

that, thanks to the extra expressive power a�orded by these onstraint forms,

type inferene may be viewed as a ombination of onstraint generation and

onstraint solving, as promised earlier. Indeed, we de�ne a onstraint genera-

tor and relate it with PCB(X). Then, in Setion 1.7, we give a type soundness
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theorem. It is stated purely in terms of onstraints, but�thanks to the results

developed in the previous setions�applies equally to PCB(X), HM(X), and

DM.

Throughout this ore material, the syntax and interpretation of onstraints

are left partly unspei�ed. Thus, the development is parameterized with re-

spet to them�hene the unknown X in the names HM(X) and PCB(X).

We really desribe a family of onstraint-based type systems, all of whih

share a ommon onstraint generator and a ommon type soundness proof.

Constraint solving, however, annot be independent of X : on the ontrary,

the design of an e�ient solver is heavily dependent on the syntax and inter-

pretation of onstraints. In Setion 1.8, we onsider onstraint solving in the

partiular ase where onstraints are made up of equations interpreted in a

free tree model, and de�ne a onstraint solver on top of a standard �rst-order

uni�ation algorithm.

The remainder of this hapter deals with extensions of the framework. In

Setion 1.9, we explain how to extend ML-the-alulus with a number of fea-

tures, inluding data strutures, pattern mathing, and type annotations. In

Setion 1.10, we extend the onstraint language with universal quanti�ation

and desribe a number of extra features that require this extension, inluding

a di�erent �avor of type annotations, polymorphi reursion, and �rst-lass

universal and existential types. Last, in Setion 1.11, we extend the onstraint

language with rows and desribe their appliations, whih inlude extensible

variants and reords.

1.3 Constraints

In this setion, we de�ne the syntax and logial meaning of onstraints. Both

are partly unspei�ed. Indeed, the set of type onstrutors (De�nition 1.2.14)

must ontain at least the binary type onstrutor!, but might ontain more.

Similarly, the syntax of onstraints involves a set of so-alled prediates on

types, whih we require to ontain at least a binary subtyping prediate �,

but might ontain more. Furthermore, the logial interpretation of type on-

strutors and of prediates is left almost entirely unspei�ed. This freedom

allows reasoning not only about Damas and Milner's type system, but also

about a family of onstraint-based extensions of it.

Type onstrutors other than ! and prediates other than � will never

expliitly appear in the de�nition of our onstraint-based type systems, pre-

isely beause the de�nition is parametri with respet to them. They an

(and usually do) appear in the type shemes assigned to onstrutors and

destrutors by the initial environment �

0

.

The introdution of subtyping has little impat on the omplexity of our
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� ::= type sheme:

8

�

X[C℄:T

C;D ::= onstraint:

true truth

false falsity

P T

1

: : :T

n

prediate appliation

C ^ C onjuntion

9

�

X:C existential quanti�ation

def x : � in C type sheme introdution

x � T type sheme instantiation

� ::= Typing environments:

?

x : �

�; �

C;D ::= Syntati sugar for onstraints:

: : : As before

� � T De�nition 1.3.3

let x : � in C De�nition 1.3.3

9� De�nition 1.3.3

def � in C De�nition 1.3.4

let � in C De�nition 1.3.4

9� De�nition 1.3.4

Figure 1-4: Syntax of type shemes and onstraints

proofs, yet inreases the framework's expressive power. When subtyping is not

desired, we interpret the prediate � as equality.

Syntax

We now de�ne the syntax of onstrained type shemes and of onstraints, and

introdue some extra onstraint forms as syntati sugar.

1.3.1 Definition: Let P range over a �nite or denumerable set of prediates, eah

of whih has a signature of the form �

1


 : : : 
 �

n

) �, where n � 0. Let �

be a distinguished prediate of signature ?
 ?) �. 2

1.3.2 Definition: The syntax of type shemes and onstraints is given in Figure 1-

4. It is further restrited by the following requirements. In the type sheme

8

�

X[C℄:T and in the onstraint x � T, the type T must have kind ?. In the

onstraint P T

1

: : :T

n

, the types T

1

; : : : ; T

n

must have kind �

1

; : : : ; �

n

, respe-

tively, if P has signature �

1


 : : :
�

n

) �. We write 8

�

X:T for 8

�

X[true℄:T, whih

allows viewing DM type shemes as a subset of onstrained type shemes. 2

We write T

1

� T

2

for the binary prediate appliation � T

1

T

2

, and all it a

subtyping onstraint. By onvention, 9 and def bind tighter than ^; that is,

9

�

X:C^D is (9

�

X:C)^D and def x : � in C^D is (def x : � in C)^D. In 8

�

X[C℄:T,

the type variables

�

X are bound within C and T. In 9

�

X:C, the type variables

�

X are bound within C. The sets of free type variables of a type sheme �

and of a onstraint C, written ftv(�) and ftv(C), respetively, are de�ned

aordingly. In def x : � in C, the identi�er x is bound within C. The sets
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of free program identi�ers of a type sheme � and of a onstraint C, written

fpi(�) and fpi (C), respetively, are de�ned aordingly. Please note that x

ours free in the onstraint x � T.

We immediately introdue a number of derived onstraint forms:

1.3.3 Definition: Let � be 8

�

X[C℄:T. If

�

X # ftv (T

0

) holds, then � � T

0

(read: T

0

is

an instane of �) stands for the onstraint 9

�

X:(C^T � T

0

). We write 9� (read:

� has an instane) for 9

�

X:C and let x : � in C for 9� ^ def x : � in C. 2

Constrained type shemes generalize Damas and Milner's type shemes,

while our de�nition of instantiation onstraints generalizes Damas and Mil-

ner's instane relation (De�nition 1.2.18). Let us draw a omparison. First,

Damas and Milner's instane relation yields a �yes/no� answer, and is purely

syntati: for instane, the type Y ! Z is not an instane of 8X:X ! X in

Damas and Milner's sense, beause Y and Z are distint type variables. In

our presentation, on the other hand, 8X:X ! X � Y ! Z is not an assertion;

rather, it is a onstraint, whih by de�nition is 9X:(true ^ X ! X � Y ! Z).

We later prove that it is equivalent to 9X:(Y � X ^ X � Z) and to Y � Z, or,

if subtyping is interpreted as equality, to Y = Z. That is, � � T

0

represents a

ondition on (the types denoted by) the type variables in ftv(�; T

0

) for T

0

to

be an instane of �, in a logial, rather than purely syntati, sense. Seond,

the de�nition of instantiation onstraints involves subtyping, so as to ensure

that any supertype of an instane of � is again an instane of � (see rule

C-ExTrans in Figure 1-6 and Lemma 1.3.17). This is onsistent with the

purpose of subtyping, whih is to allow supplying a subtype where a super-

type is expeted (TAPL Chapter 15). Third and last, every type sheme now

arries a onstraint. The onstraint C, whose free type variables may or may

not be members of

�

X, restrits the instanes of the type sheme 8

�

X[C℄:T. This

is expressed in the instantiation onstraint 9

�

X:(C ^ T � T

0

), where the val-

ues that

�

X may assume are restrited by the requirement that C be satis�ed.

This requirement vanishes in the ase of DM type shemes, where C is true.

Our notions of onstrained type sheme and of instantiation onstraint are

standard: they are exatly those of HM(X) (Odersky, Sulzmann, and Wehr,

1999a).

The onstraint true, whih is always satis�ed, mainly serves to indiate the

absene of a nontrivial onstraint, while false, whih has no solution, may

be understood as the indiation of a type error. Composite onstraints in-

lude onjuntion and existential quanti�ation, whih have their standard

meaning, as well as type sheme introdution and type sheme instantiation

onstraints, whih are similar to Gustavsson and Svenningsson's onstraint

abstrations (2001b). In short, the onstrut def x : � in C binds the name x

to the type sheme � within the onstraint C. If C ontains a subonstraint of
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the form x � T, where this ourrene of x is free in C, then this subonstraint

aquires the meaning � � T. Thus, the onstraint x � T is indeed an instantia-

tion onstraint, where the type sheme that is being instantiated is referred to

by name. The onstraint def x : � in C may be viewed as an expliit substitu-

tion of the type sheme � for the name x within C. Later (Setion 1.5), we use

suh expliit substitutions to supplant typing environments. That is, where

Damas and Milner's type system augments the urrent typing environment

(dm-Abs, dm-Let), we introdue a new def binding in the urrent onstraint;

where it looks up the urrent typing environment (dm-Var), we employ an in-

stantiation onstraint. The point is that it is then up to a onstraint solver to

hoose a strategy for reduing expliit substitutions�for instane, one might

wish to simplify � before substituting it for x within C�whereas the use of

environments in standard type systems suh as DM and HM(X) imposes an

eager substitution strategy, whih is ine�ient and thus never literally imple-

mented. The use of type sheme introdution and instantiation onstraints

allows separating onstraint generation and onstraint solving without om-

promising e�ieny, or, in other words, without introduing a gap between

the desription of the type inferene algorithm and its atual implementation.

Although the algorithm that we plan to desribe is not new, its desription in

terms of onstraints is: to the best of our knowledge, the only lose relative of

our def onstraints is to be found in (Gustavsson and Svenningsson, 2001b).

Fähndrih, Rehof, and Das's instantiation onstraints (2000) are also related,

but may be reursive and are meant to be solved using a semi-uni�ation

proedure, as opposed to a uni�ation algorithm extended with failities for

reating and instantiating type shemes, as in our ase.

One onsequene of introduing onstraints inside type shemes is that some

type shemes have no instanes at all, or have instanes only if a ertain

onstraint holds. For instane, the type sheme � = 8X[bool = int℄:X, where

the nullary type onstrutors int and bool have distint interpretations, has

no instanes; that is, no onstraint of the form � � T

0

has a solution. The

type sheme � = 8Z[X = Y ! Z℄:Z has an instane only if X = Y ! Z holds

for some Z; in other words, for every T

0

, � � T

0

entails 9Z:(X = Y ! Z).

(We de�ne entailment on page 29.) We later prove that the onstraint 9�

is equivalent to 9Z:� � Z, where Z 62 ftv(�) (Exerise 1.3.23). That is, 9�

expresses the requirement that � have an instane. Type shemes that do not

have an instane indiate a type error, so in many situations, one wishes to

avoid them; for this reason, we often use the onstraint form let x : � in C,

whih requires � to have an instane and at the same time assoiates it with

the name x. Beause the def form is more primitive, it is easier to work with

at a low level, but it is no longer expliitly used after Setion 1.3; we always

use let instead.
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1.3.4 Definition: Environments � remain as in De�nition 1.2.19, exept DM type

shemes S are replaed with onstrained type shemes �. We write dfpi(�)

for dpi(�) [ fpi (�). We de�ne def ? in C = C and def �; x : � in C =

def � in def x : � in C. Similarly, we de�ne let ? in C = C and let �; x :

� in C = let � in let x : � in C. We de�ne 9? = true and 9(�; x : �) =

9� ^ def � in 9�. 2

In order to establish or express ertain laws of equivalene between on-

straints, we need onstraint ontexts. A ontext is a onstraint with zero, one,

or several holes, written [℄. The syntax of ontexts is as follows:

C ::= [℄ j C j C ^ C j 9

�

X:C j def x : � in C j def x : 8

�

X[C℄:T in C

The appliation of a onstraint ontext C to a onstraint C, written C[C℄, is

de�ned in the usual way. Beause a ontext may have any number of holes,

C may disappear or be dupliated in the proess. Beause a hole may appear

in the sope of a binder, some of C's free type variables and free program

identi�ers may beome bound in C[C℄. We write dtv (C) and dpi (C) for the

sets of type variables and program identi�ers, respetively, that C may thus

apture. We write let x : 8

�

X[C℄:T in C for 9

�

X:C ^ def x : 8

�

X[C℄:T in C. Being

able to state suh a de�nition is why we require multi-hole ontexts. We let

range over existential onstraint ontexts, de�ned by X ::= [℄ j 9

�

X:X .

Meaning

We have de�ned the syntax of onstraints and given an informal desription

of their meaning. We now give a formal de�nition of the interpretation of

onstraints. We begin with the de�nition of a model :

1.3.5 Definition: For every kind �, let M

�

be a nonempty set, whose elements

are the ground types of kind �. In the following, t ranges over M

�

, for some

� that may be determined from the ontext. For every type onstrutor F of

signature K ) �, let F denote a total funtion from M

K

into M

�

, where

the indexed produt M

K

is the set of all mappings of domain dom(K) that

map every d 2 dom(K) to an element of M

K(d)

. For every prediate P of

signature �

1


 : : : 
 �

n

) �, let P denote a prediate on M

�

1

� : : : �M

�

n

.

We require the prediate � on M

?

�M

?

to be a partial order. 2

For the sake of onveniene, we abuse notation and write F for both the

type onstrutor and its interpretation; similarly for prediates. We freely

assume that a binary equality prediate, whose interpretation is equality on

M

�

, is available at every kind �, so T

1

= T

2

, where T

1

and T

2

have kind �, is

a well-formed onstraint.
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By varying the set of type onstrutors, the set of prediates, the set of

ground types, and the interpretation of type onstrutors and prediates, one

may de�ne an entire family of related type systems. We informally refer to the

olletion of these hoies as X . Thus, the type systems HM(X) and PCB(X),

desribed in Setions 1.4 and 1.5, are parameterized by X .

The following examples give standard ways of de�ning the set of ground

types and the interpretation of type onstrutors.

1.3.6 Example [Syntati models℄: For every kind �, let M

�

onsist of the

losed types of kind �. Then, ground types are types that do not have any

free type variables, and form the so-alled Herbrand universe. Let every type

onstrutor F be interpreted as itself. Models that de�ne ground types and

interpret type onstrutors in this manner are referred to as syntati. 2

1.3.7 Example [Tree models℄: Let a path � be a �nite sequene of diretions.

The empty path is written � and the onatenation of the paths � and �

0

is

written � ��

0

. Let a tree be a partial funtion t from paths to type onstrutors

whose domain is nonempty and pre�x-losed and suh that, for every path

� in the domain of t, if the type onstrutor t(�) has signature K ) �,

then � � d 2 dom(t) is equivalent to d 2 dom(K) and, furthermore, for every

d 2 dom(K), the type onstrutor t(� � d) has image kind K(d). If � is in

the domain of t, then the subtree of t rooted at �, written t=�, is the partial

funtion �

0

7! t(� � �

0

). A tree is �nite if and only if it has �nite domain. A

tree is regular if and only if it has a �nite number of distint subtrees. Every

�nite tree is thus regular. Let M

�

onsist of the �nite (resp. regular) trees

t suh that t(�) has image kind �: then, we have a �nite (resp. regular) tree

model.

If F has signature K ) �, one may interpret F as the funtion that maps

T 2 M

K

to the ground type t 2 M

�

de�ned by t(�) = F and t=d = T (d)

for d 2 dom(T ), that is, the unique ground type whose head symbol is F and

whose subtree rooted at d is T (d). Then, we have a free tree model. Please

note that free �nite tree models oinide with syntati models, as de�ned in

the previous example. 2

Rows (Setion 1.11) are interpreted in a tree model, albeit not a free one.

The following examples suggest di�erent ways of interpreting the subtyping

prediate.

1.3.8 Example [Equality models℄: The simplest way of interpreting the sub-

typing prediate is to let � denote equality on every M

�

. Models that do so

are referred to as equality models. When no prediate other than equality is

available, we say that the model is equality-only. 2
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1.3.9 Example [Strutural, nonstrutural subtyping℄: Let a variane �

be a nonempty subset of f�;+g, written � (ontravariant), + (ovariant),

or � (invariant) for short. De�ne the omposition of two varianes as an

assoiative ommutative operation with + as neutral element and suh that

�� = + and �� = �� = �. Now, onsider a free (�nite or regular) tree

model, where every diretion d omes with a �xed variane �(d). De�ne the

variane �(�) of a path � as the omposition of the varianes of its elements.

Let 6 be a partial order on type onstrutors suh that (i) if F

1

6 F

2

holds

and F

1

and F

2

have signature K

1

) �

1

and K

2

) �

2

, respetively, then K

1

and K

2

agree on the intersetion of their domains and �

1

and �

2

oinide;

and (ii) F

0

6 F

1

6 F

2

implies dom(F

0

) \ dom(F

2

) � dom(F

1

). Let 6

+

, 6

�

,

and 6

�

stand for 6, >, and =, respetively. Then, de�ne the interpretation

of subtyping as follows: if t

1

; t

2

2M

�

, let t

1

� t

2

hold if and only if, for every

path � 2 dom(t

1

) \ dom(t

2

), t

1

(�) 6

�(�)

t

2

(�) holds. It is not di�ult to

hek that � is a partial order on everyM

�

. The reader is referred to (Kozen,

Palsberg, and Shwartzbah., 1995) for more details about this onstrution.

Models that de�ne subtyping in this manner are referred to as nonstrutural

subtyping models.

A simple nonstrutural subtyping model is obtained by letting the diretions

domain and odomain be ontra- and ovariant, respetively, and introduing,

in addition to the type onstrutor !, two type onstrutors ? and > of

signature ?. This gives rise to a model where ? is the least ground type,

> is the greatest ground type, and the arrow type onstrutor is, as usual,

ontravariant in its domain and ovariant in its odomain.

A typial use of nonstrutural subtyping is in type systems for reords. One

may, for instane, introdue a ovariant diretion ontent of kind ?, a kind

�, a type onstrutor abs of signature �, a type onstrutor pre of signature

fontent 7! ?g ) �, and let pre 6 abs. This gives rise to a model where pre

t � abs holds for every t 2 M

?

. This form of subtyping is alled nonstrutural

beause omparable ground types may have di�erent shapes, suh as ? and

? ! >, or pre > and abs. Nonstrutural subtyping has been studied, for

example, in (Kozen, Palsberg, and Shwartzbah., 1995; Palsberg, Wand, and

O'Keefe, 1997; Pottier, 2001b; Niehren and Priesnitz, 2003). Setion 1.11 says

more about typeheking operations on reords.

An important partiular ase arises when any two type onstrutors related

by 6 have the same arity. In that ase, it is not di�ult to show that any two

ground types related by subtyping must have the same shape, that is, if t

1

� t

2

holds, then dom(t

1

) and dom(t

2

) oinide. For this reason, suh an interpre-

tation of subtyping is usually referred to as atomi or strutural subtyping. It

has been studied in the �nite (Mithell, 1984, 1991b; Frey, 1997; Rehof, 1997;

Kunak and Rinard, 2003; Simonet, 2003) and regular (Tiuryn and Wand,
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1993) ases. Strutural subtyping is often used in automated program analy-

ses that enrih standard types with atomi annotations without altering their

shape. 2

Our last example suggests a prediate other than equality and subtyping.

1.3.10 Example [Conditional onstraints℄: Consider a nonstrutural subtyp-

ing model. For every type onstrutor F of image kind � and for every kind

�

0

, let (F 6 � ) � � �) be a prediate of signature �
 �

0


 �

0

) �. Thus, if T

0

has kind � and T

1

, T

2

have the same kind, then F 6 T

0

) T

1

� T

2

is a well-

formed onstraint, alled a onditional subtyping onstraint. Its interpretation

is de�ned as follows: if t

0

2 M

�

and t

1

; t

2

2 M

�

0

, then F 6 t

0

) t

1

� t

2

holds if and only if F 6 t

0

(�) implies t

1

� t

2

. In other words, if t

0

's head

symbol exeeds F aording to the ordering on type onstrutors, then the

subtyping onstraint t

1

� t

2

must hold; otherwise, the onditional onstraint

holds vauously. Conditional onstraints have been studied e.g. in (Reynolds,

1969a; Heintze, 1993; Aiken, Wimmers, and Lakshman, 1994; Pottier, 2000;

Su and Aiken, 2001). 2

Many other kinds of onstraints exist; see e.g. (Comon, 1993).

Throughout this hapter, we assume (unless stated otherwise) that the set

of type onstrutors, the set of prediates, and the model�whih, together,

form the parameter X�are arbitrary and �xed.

As usual, the meaning of a onstraint is a funtion of the meaning of its

free type variables, whih is given by a ground assignment. The meaning of

free program identi�ers may be de�ned as part of the onstraint, if desired,

using a def pre�x, so it need not be given by a separate assignment.

1.3.11 Definition: A ground assignment � is a total, kind-preserving mapping from

V into M. Ground assignments are extended to types by �(F T

1

: : : T

n

) =

F (�(T

1

); : : : ; �(T

n

)). Then, for every type T of kind �, �(T) is a ground type

of kind �. Whether a onstraint C holds under a ground assignment �, written

� ` C (read: � satis�es C), is de�ned by the rules in Figure 1-5. A onstraint

C is satis�able if and only if � ` C holds for some �. It is false if and only if

� ` def � in C holds for no ground assignment � and environment �. 2

Let us now explain the rules that de�ne onstraint satisfation (Figure 1-

5). They are syntax-direted: that is, to a given onstraint, at most one rule

applies. It is determined by the nature of the �rst onstrut that appears

under a maximal def pre�x. CM-True states that a onstraint of the form

def � in true is a tautology, that is, holds under every ground assignment. No

rule mathes onstraints of the form def � in false, whih means that suh

onstraints do not have a solution. CM-Prediate states that the meaning
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� ` def � in true (CM-True)

P (�(T

1

); : : : ; �(T

n

))

� ` def � in P T

1

: : : T

n

(CM-Prediate)

� ` def � in C

1

� ` def � in C

2

� ` def � in (C

1

^ C

2

)

(CM-And)

�[

~

X 7!

~

t℄ ` def � in C

�

X # ftv(�)

� ` def � in 9

�

X:C

(CM-Exists)

� ` def �

1

in � � T

0

x 62 dpi (�

2

)

� ` def �

1

; x : �; �

2

in x � T

0

(CM-Instane)

Figure 1-5: Meaning of onstraints

of a prediate appliation is given by the prediate's interpretation within the

model. More spei�ally, if P 's signature is �

1


 : : : 
 �

n

) �, then, by well-

formedness of the onstraint, every T

i

is of kind �

i

, so �(T

i

) is a ground type

in M

�

i

. By De�nition 1.3.5, P denotes a prediate on M

�

1

� : : :�M

�

n

, so

the rule's premise is mathematially well-formed. It is independent of �, whih

is natural, sine a prediate appliation has no free program identi�ers. CM-

And requires eah of the onjunts to be valid in isolation. The information

in � is made available to eah branh. CM-Exists allows the type variables

~

X to denote arbitrary ground types

~

t within C, independently of their image

through �. We impliitly require

~

X and

~

t to have mathing kinds, so that

�[

~

X 7!

~

t℄ remains a kind-preserving ground assignment. The side ondition

�

X # ftv (�)�whih may always be satis�ed by suitable �-onversion of the

onstraint 9

�

X:C�prevents free ourrenes of the type variables

�

X within �

from being unduly a�eted. CM-Instane onerns onstraints of the form

def � in x � T

0

. The onstraint x � T

0

is turned into � � T

0

, where, aording

to the seond premise, � is �(x). Please reall that onstraints of suh a form

were introdued in De�nition 1.3.3. The environment � is replaed with a

suitable pre�x of itself, namely �

1

, so that the free program identi�ers of �

retain their meaning.

It is intuitively lear that the onstraints def x : � in C and [x 7! �℄C have

the same meaning, where the latter denotes the apture-avoiding substitution

of � for x throughout C. As a matter of fat, it would have been possible to

use this equivalene as a de�nition of the meaning of def onstraints, but the

present style is pleasant as well. This on�rms our (informal) laim that the

def form is an expliit substitution form.

It is possible for a onstraint to be neither satis�able nor false. Consider,

for instane, the onstraint 9Z:x � Z. Beause the identi�er x is free, CM-

Instane is not appliable, so the onstraint is not satis�able. Furthermore,
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plaing it within the ontext let x : 8X:X in [℄makes it satis�ed by every ground

assignment, so it is not false. Here, the assertions �C is satis�able� and �C is

false� are opposite when fpi (C) = ? holds, whereas in a standard �rst-order

logi, they always are.

In a judgement of the form � ` C, the ground assignment � applies to the

free type variables of C. This is made preise by the following statements. In

the seond one, Æ is omposition and �(C) is the apture-avoiding appliation

of the type substitution � to C.

1.3.12 Lemma: If

�

X # ftv(C) holds, then � ` C and �[

~

X 7!

~

t℄ ` C are equivalent. 2

1.3.13 Lemma: � Æ � ` C and � ` �(C) are equivalent. 2

Reasoning with onstraints

Beause onstraints lie at the heart of our treatment of ML-the-type-system,

most of our proofs involve establishing logial properties of onstraints, that

is, entailment or equivalene assertions. Let us �rst de�ne these notions.

1.3.14 Definition: We write C

1

 C

2

, and say that C

1

entails C

2

, if and only if,

for every ground assignment � and for every environment �, � ` def � in C

1

implies � ` def � in C

2

. We write C

1

� C

2

, and say that C

1

and C

2

are

equivalent, if and only if C

1

 C

2

and C

2

 C

1

hold. 2

This de�nition measures the strength of a onstraint by the set of pairs

(�;�) that satisfy it, and onsiders a onstraint stronger if fewer suh pairs

satisfy it. In other words, C

1

entails C

2

when C

1

imposes striter requirements

on its free type variables and program identi�ers than C

2

does. We remark

that C is false if and only if C � false holds. It is straightforward to hek

that entailment is re�exive and transitive and that � is indeed an equivalene

relation.

We immediately exploit the notion of onstraint equivalene to de�ne what

it means for a type onstrutor to be ovariant, ontravariant, or invariant with

respet to one of its parameters. Let F be a type onstrutor of signature �

1




: : :
�

n

) �. Let i 2 f1; : : : ; ng. F is ovariant (resp. ontravariant , invariant)

with respet to its i

th

parameter if and only if, for all types T

1

; : : : ; T

n

and

T

0

i

of appropriate kinds, the onstraint F T

1

: : :T

i

: : : T

n

� F T

1

: : : T

0

i

: : : T

n

is equivalent to T

i

� T

0

i

(resp. T

0

i

� T

i

, T

i

= T

0

i

). We let the reader hek the

following fats: (i) in an equality model, these three notions oinide; (ii) in

an equality free tree model, every type onstrutor is invariant with respet

to eah of its parameters; and (iii) in a nonstrutural subtyping model, if the

diretion d has been delared ovariant (resp. ontravariant, invariant), then

every type onstrutor whose arity inludes d is ovariant (resp. ontravariant,
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invariant) with respet to d. In the following, we require the type onstrutor

! to be ontravariant with respet to its domain and ovariant with respet to

its odomain�a standard requirement in type systems with subtyping (TAPL

Chapter 15). These properties are summed up by the following equivalene

law:

T

1

! T

2

� T

0

1

! T

0

2

� T

0

1

� T

1

^ T

2

� T

0

2

(C-Arrow)

Please note that this is a high-level requirement about the interpretation of

types and of the subtyping prediate. In an equality free tree model, for in-

stane, it is always satis�ed. In a nonstrutural subtyping model, it boils

down to requiring that the diretions domain and odomain be delared on-

travariant and ovariant, respetively. In the general ase, we do not have any

knowledge of the model, and annot formulate a more preise requirement.

Thus, it is up to the designer of the model to ensure that C-Arrow holds.

We also exploit the notion of onstraint equivalene to de�ne what it means

for two type onstrutors to be inompatible. Two type onstrutors F

1

and F

2

with the same image kind are inompatible if and only if all onstraints of the

form F

1

~

T

1

� F

2

~

T

2

and F

2

~

T

2

� F

1

~

T

1

are false; then, we write F

1

./ F

2

. Please

note that in an equality free tree model, any two distint type onstrutors are

inompatible. In the following, we often indiate that a newly introdued type

onstrutor must be isolated . We impliitly require that, whenever eah of F

1

and F

2

is isolated, F

1

and F

2

be inompatible. Thus, the notion of �isolation�

provides a onise and modular way of stating a olletion of inompatibility

requirements. We onsider the type onstrutor ! isolated.

Entailment is preserved by arbitrary onstraint ontexts, as stated by

the following theorem. As a result, onstraint equivalene is a ongruene.

Throughout this hapter, these fats are often used impliitly.

1.3.15 Theorem [Congruene℄: C

1

 C

2

implies C[C

1

℄  C[C

2

℄. 2

We now give a series of lemmas that provide useful entailment laws.

The following is a standard property of existential quanti�ation.

1.3.16 Lemma: C  9

�

X:C. 2

The following lemma states that any supertype of an instane of � is also

an instane of �.

1.3.17 Lemma: � � T ^ T � T

0

 � � T

0

. 2

The next lemma gives another interesting simpli�ation law.

1.3.18 Lemma: X 62 ftv (T) implies 9X:(X = T) � true. 2

The following lemma states that, provided D is satis�ed, the type T is an

instane of the onstrained type sheme 8

�

X[D℄:T.
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1.3.19 Lemma: D  8

�

X[D℄:T � T. 2

This tehnial lemma helps justify De�nition 1.3.21 below.

1.3.20 Lemma: Let Z 62 ftv(C; �; T). Then, C  � � T holds if and only if C ^ T �

Z  � � Z holds. 2

It is useful to de�ne what it means for a type sheme �

1

to be more general

than a type sheme �

2

. Our informal intent is for �

1

� �

2

to mean: every

instane of �

2

is an instane of �

1

. In De�nition 1.3.3, we have introdued

the onstraint form � � T as syntati sugar. Similarly, one might wish to

make �

1

� �

2

a derived onstraint form; however, this is impossible, beause

neither universal quanti�ation nor impliation are available in the onstraint

language. We an, however, exploit the fat that these logial onnetives

are impliit in entailment assertions by de�ning a judgement of the form

C  �

1

� �

2

, whose meaning is: under the onstraint C, �

1

is more general

than �

2

.

1.3.21 Definition: We write C  �

1

� �

2

if and only if Z 62 ftv(C; �

1

; �

2

) implies

C ^ �

2

� Z  �

1

� Z. We write C  �

1

� �

2

when both C  �

1

� �

2

and

C  �

2

� �

1

hold. 2

This notation is not ambiguous beause the assertion C  � � T, whose

meaning was initially given by De�nitions 1.3.3 and 1.3.14, retains the same

meaning under the new de�nition�this is shown by Lemma 1.3.20 above.

The next lemma provides a way of exploiting the ordering between type

shemes introdued by De�nition 1.3.21. It states that a type sheme ours

in ontravariant position when it is within a def pre�x. In other words, the

more general the type sheme, the weaker the entire onstraint.

1.3.22 Lemma: C  �

1

� �

2

implies C ^ def x : �

2

in D  def x : �

1

in D. 2

The following exerise generalizes this result to let forms.

1.3.23 Exerise [FF, 9℄: Prove that Z 62 ftv (�) implies 9� � 9Z:� � Z. Explain

why, as a result, C  �

1

� �

2

implies C ^ 9�

2

 9�

1

. Use this fat to prove

that C  �

1

� �

2

implies C ^ let x : �

2

in D  let x : �

1

in D. 2

The next lemma states that, modulo equivalene, the only onstraint that

onstrains x without expliitly referring to it is false.

1.3.24 Lemma: C  x � T and x 62 fpi (C) imply C � false. 2

The following lemma states that the more universal quanti�ers are present,

the more general the type sheme.
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1.3.25 Lemma: let x : 8

�

X[C

1

℄:T in C

2

 let x : 8

�

X

�

Y[C

1

℄:T in C

2

. 2

Conversely, and perhaps surprisingly, it is sometimes possible to remove

some type variables from the universal quanti�er pre�x of a type sheme

without ompromising its generality. This is the ase when the value of these

type variables is determined in a unique way. In short, C determines

�

Y if and

only if, given the values of ftv(C) n

�

Y and given that C holds, it is possible to

reonstrut, in a unique way, the values of

�

Y.

1.3.26 Definition: C determines

�

Y if and only if, for every environment �, two

ground assignments that satisfy def � in C and that oinide outside

�

Y must

oinide on

�

Y as well. 2

Two onrete instanes of determinay, one of whih is valid only in free

tree models, are given by Lemma 1.8.7 on page 82. Determinay is exploited

by the equivalene law C-LetAll in Figure 1-6.

We now give a toolbox of onstraint equivalene laws. It is worth noting

that they do not form a omplete axiomatization of onstraint equivalene�

in fat, they annot, sine the syntax and meaning of onstraints is partly

unspei�ed.

1.3.27 Theorem: All equivalene laws in Figure 1-6 hold. 2

Let us explain. C-And and C-AndAnd state that onjuntion is ommu-

tative and assoiative. C-Dup states that redundant onjunts may be freely

added or removed, where a onjunt is redundant if and only if it is entailed

by another onjunt. Throughout this hapter, these three laws are often used

impliitly. C-ExEx and C-Ex* allow grouping onseutive existential quan-

ti�ers and suppressing redundant ones, where a quanti�er is redundant if and

only if it does not our free within its sope. C-ExAnd allows onjuntion

and existential quanti�ation to ommute, provided no apture ours; it is

known as a sope extrusion law. When the rule is oriented from left to right, its

side-ondition may always be satis�ed by suitable �-onversion. C-ExTrans

states that it is equivalent for a type T

0

to be an instane of � or to be a super-

type of some instane of �. We remark that the instanes of a monotype are

its supertypes, that is, by De�nition 1.3.3, T � T

0

and T � T

0

are equivalent.

As a result, speializing C-ExTrans to the ase where � is a monotype, we

�nd that T � T

0

is equivalent to 9Z:(T � Z ^ Z � T

0

), for fresh Z, a standard

equivalene law. When oriented from left to right, it beomes an interesting

simpli�ation law: in a hain of subtyping onstraints, an intermediate vari-

able suh as Z may be suppressed, provided it is loal, as witnessed by the

existential quanti�er 9Z. C-InId states that, within the sope of the binding

x : �, every free ourrene of x may be safely replaed with �. The restri-

tion to free ourrenes stems from the side-ondition x 62 dpi (C). When the
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C

1

^ C

2

� C

2

^ C

1

(C-And)

(C

1

^ C

2

) ^ C

3

� C

1

^ (C

2

^ C

3

) (C-AndAnd)

C

1

^ C

2

� C

1

if C

1

 C

2

(C-Dup)

9

�

X:9

�

Y:C � 9

�

X

�

Y:C (C-ExEx)

9

�

X:C � C if

�

X # ftv(C) (C-Ex*)

(9

�

X:C

1

) ^ C

2

� 9

�

X:(C

1

^ C

2

) if

�

X # ftv(C

2

) (C-ExAnd)

9Z:(� � Z ^ Z � T

0

) � � � T

0

if Z 62 ftv(�; T

0

) (C-ExTrans)

let x : � in C[x � T

0

℄ � let x : � in C[� � T

0

℄ (C-InId)

if x 62 dpi(C) and dtv(C) # ftv(�) and fxg [ dpi(C) # fpi(�)

let � in C � 9� ^ C if dpi(�) # fpi(C) (C-In*)

let � in (C

1

^ C

2

) � (let � in C

1

) ^ (let � in C

2

) (C-InAnd)

let � in (C

1

^ C

2

) � (let � in C

1

) ^ C

2

if dpi(�) # fpi(C

2

) (C-InAnd*)

let � in 9

�

X:C � 9

�

X:let � in C if

�

X # ftv(�) (C-InEx)

let �

1

; �

2

in C � let �

2

; �

1

in C (C-LetLet)

if dpi(�

1

) # dpi(�

2

) and dpi(�

2

) # fpi(�

1

) and dpi(�

1

) # fpi(�

2

)

let x : 8

�

X[C

1

^ C

2

℄:T in C

3

� C

1

^ let x : 8

�

X[C

2

℄:T in C

3

if

�

X # ftv(C

1

) (C-LetAnd)

let �; x : 8

�

X[C

1

℄:T in C

2

� let �; x : 8

�

X[let � in C

1

℄:T in C

2

(C-LetDup)

if

�

X # ftv(�) and dpi(�) # fpi(�)

let x : 8

�

X[9

�

Y:C

1

℄:T in C

2

� let x : 8

�

X

�

Y[C

1

℄:T in C

2

if

�

Y # ftv(T) (C-LetEx)

let x : 8

�

X

�

Y[C

1

℄:T in C

2

� 9

�

Y:let x : 8

�

X[C

1

℄:T in C

2

(C-LetAll)

if

�

Y # ftv(C

2

) and 9

�

X:C

1

determines

�

Y

9X:(T � X ^ let x : X in C) � let x : T in C if X 62 ftv(T; C) (C-LetSub)

~

X =

~

T ^ [

~

X 7!

~

T℄C �

~

X =

~

T ^ C (C-Eq)

true � 9

�

X:(

~

X =

~

T) if

�

X # ftv(

�

T) (C-Name)

[

~

X 7!

~

T℄C � 9

�

X:(

~

X =

~

T ^ C) if

�

X # ftv(

�

T) (C-NameEq)

Figure 1-6: Constraint equivalene laws
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rule is oriented from left to right, its other side-onditions, whih require the

ontext let x : � in C not to apture �'s free type variables or free program

identi�ers, may always be satis�ed by suitable �-onversion. C-In* omple-

ments the previous rule by allowing redundant let bindings to be simpli�ed.

We remark that C-InId and C-In* provide a simple proedure for eliminating

let forms. C-InAnd states that the let form ommutes with onjuntion; C-

InAnd* spells out a ommon partiular ase. C-InEx states that it ommutes

with existential quanti�ation. When the rule is oriented from left to right, its

side-ondition may always be satis�ed by suitable �-onversion. C-LetLet

states that let forms may ommute, provided they bind distint program iden-

ti�ers and provided no free program identi�ers are aptured in the proess.

C-LetAnd allows the onjunt C

1

to be moved outside of the onstrained

type sheme 8

�

X[C

1

^C

2

℄:T, provided it does not involve any of the universally

quanti�ed type variables

�

X. When oriented from left to right, the rule yields

an important simpli�ation law: indeed, taking an instane of 8

�

X[C

2

℄:T is less

expensive than taking an instane of 8

�

X[C

1

^ C

2

℄:T, sine the latter involves

reating a opy of C

1

, while the former does not. C-LetDup allows pushing

a series of let bindings into a onstrained type sheme, provided no apture

ours in the proess. It is not used as a simpli�ation law but as a tool in

some proofs. C-LetEx states that it does not make any di�erene for a set

of type variables

�

Y to be existentially quanti�ed inside a onstrained type

sheme or part of the type sheme's universal quanti�ers. Indeed, in either

ase, taking an instane of the type sheme means produing a onstraint

where

�

Y is existentially quanti�ed. C-LetAll provides a restrited onverse

of Lemma 1.3.25. Together, C-LetEx and C-LetAll allow�in some situ-

ations only�to hoist existential quanti�ers out of the left-hand side of a let

form.

1.3.28 Example: C-LetAll would be invalid without the ondition that 9

�

X:C

1

determines

�

Y. Consider, for instane, the onstraint let x : 8Y:Y ! Y in (x �

int ! int ^ x � bool ! bool) (1), where int and bool are inompatible

nullary type onstrutors. By C-InId and C-In*, it is equivalent to 9Y:(Y!

Y � int! int)^9Y:(Y! Y � bool! bool), that is, true. Now, if C-LetAll

was valid without its side-ondition, then (1) would also be equivalent to

9Y:let x : Y! Y in (x � int! int^x � bool! bool), whih by C-InId and

C-In* is 9Y:(Y! Y � int! int^Y! Y � bool! bool). By C-Arrow and

C-ExTrans, this is int = bool, that is, false. Thus, the law is invalid in this

ase. It is easy to see why: when the type sheme � ontains a 8Y quanti�er,

every instane of � reeives its own 9Y quanti�er, making Y a distint (loal)

type variable; when Y is not universally quanti�ed, however, all instanes of �

share referenes to a single (global) type variable Y. This orresponds to the
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intuition that, in the former ase, � is polymorphi in Y, while in the latter ase,

it is monomorphi in Y. Lemma 1.3.25 states that, when deprived of its side-

ondition, C-LetAll is only an entailment law, as opposed to an equivalene

law. Similarly, it is in general invalid to hoist an existential quanti�er out of

the left-hand side of a let form. To see this, one may study the (equivalent)

onstraint let x : 8X[9Y:X = Y! Y℄:X in (x � int! int ^ x � bool! bool).

Naturally, in the above examples, the side-ondition �true determines Y�

does not hold: by De�nition 1.3.26, it is equivalent to �two ground assignments

that oinide outside Ymust oinide on Y as well�, whih is false as soon asM

?

ontains two distint elements, suh as int and bool here. There are ases,

however, where the side-ondition does hold. For instane, we later prove that

9X:Y = int determines Y; see Lemma 1.8.7. As a result, C-LetAll states that

let x : 8XY[Y = int℄:Y! X in C (1) is equivalent to 9Y:let x : 8X[Y = int℄:Y!

X in C (2), provided Y 62 ftv(C). The intuition is simple: beause Y is fored

to assume the value int by the equation Y = int, it makes no di�erene

whether Y is or isn't universally quanti�ed. We remark that, by C-LetAnd,

(2) is equivalent to 9Y:(Y = int ^ let x : 8X:Y ! X in C) (3). In an e�ient

onstraint solver, simplifying (1) into (3) before using C-InId to eliminate the

let form is worthwhile, sine doing so obviates the need for opying the type

variable Y and the equation Y = int at every free ourrene of x inside C. 2

C-LetSub is the analogue of an environment strengthening lemma: roughly

speaking, it states that, if a onstraint holds under the assumption that x has

type X, where X is some supertype of T, then it also holds under the assumption

that x has type T. The last three rules deal with the equality prediate. C-Eq

states that it is valid to replae equals with equals; note the absene of a

side-ondition. When oriented from left to right, C-Name allows introduing

fresh names

~

X for the types

~

T. As always,

~

X stands for a vetor of distint type

variables. Of ourse, this makes sense only if the de�nition is not irular, that

is, if the type variables

�

X do not our free within the terms

�

T. When oriented

from right to left, C-Name may be viewed as a simpli�ation law: it allows

eliminating type variables whose value has been determined. C-NameEq is

a ombination of C-Eq and C-Name. It shows that applying an idempotent

substitution to a onstraint C amounts to plaing C within a ertain ontext.

This immediately yields a proof of the following fat:

1.3.29 Lemma: C  D implies �(C)  �(D). 2

It is important to stress that, beause the e�et of a type substitution may

be emulated using equations, onjuntion, and existential quanti�ation, there

is no need ever to employ type substitutions in the de�nition of a onstraint-

based type system�it is possible, instead, to express every onept in terms
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of onstraints. In this hapter, we follow this route, and use type substitutions

only when dealing with the type system DM, whose historial formulation is

substitution-based.

So far, we have onsidered def a primitive onstraint form and de�ned the

let form in terms of def, onjuntion, and existential quanti�ation. The moti-

vation for this approah was to simplify the proof of several onstraint equiv-

alene laws. However, in the remainder of this hapter, we work with let forms

exlusively and never employ the def onstrut. As a result, it is possible, from

here on, to disard def and pretend that let is primitive. This hange in per-

spetive o�ers us a few extra properties, stated in the next two lemmas. First,

every onstraint that ontains a false subonstraint must be false. Seond, no

satis�able onstraint has a free program identi�er.

1.3.30 Lemma: C[false℄ � false. 2

1.3.31 Lemma: If C is satis�able, then fpi(C) = ?. 2

Reasoning with onstraints in an equality-only syntati model

We have given a number of equivalene laws that are valid with respet to any

interpretation of onstraints, that is, within any model. However, an important

speial ase is that of equality-only syntati models. Indeed, in that spei�

setting, our onstraint-based type systems are in lose orrespondene with

DM. In short, we aim to prove that every satis�able onstraint admits a

anonial solved form, to show that this notion orresponds to the standard

onept of a most general uni�er, and to establish a few tehnial properties

of most general uni�ers.

Thus, let us now assume that onstraints are interpreted in an equality-only

syntati model. Let us further assume that, for every kind �, (i) there are at

least two type onstrutors of image kind � and (ii) for every type onstrutor

F of image kind �, there exists t 2 M

�

suh that t(�) = F . We refer to models

that violate (i) or (ii) as degenerate; one may argue that suh models are of

little interest. The assumption that the model is nondegenerate is used in the

proof of Lemmas 1.3.32 and 1.3.39.

Under these new assumptions, the interpretation of equality oinides with

its syntax: every equation that holds in the model is in fat a syntati truism.

The onverse, of ourse, holds in every model.

1.3.32 Lemma: If true  T = T

0

holds, then T and T

0

oinide. 2

In a syntati model, ground types are �nite trees. As a result, yli equa-

tions, suh as X = int! X, are false.

1.3.33 Lemma: X 2 ftv (T) and T 62 V imply (X = T) � false. 2
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A solved form is a onjuntion of equations, where the left-hand sides are

distint type variables that do not appear in the right-hand sides, possibly

surrounded by a number of existential quanti�ers. Our de�nition is identi-

al to Lassez, Maher and Marriott's solved forms (1988) and to Jouannaud

and Kirhner's tree solved forms (1991), exept we allow for prenex existen-

tial quanti�ers, whih are made neessary by our riher onstraint language.

Jouannaud and Kirhner also de�ne dag solved forms, whih may be expo-

nentially smaller. Beause we de�ne solved forms only for proof purposes, we

need not take performane into aount at this point. The e�ient onstraint

solver presented in Setion 1.8 does manipulate graphs, rather than trees.

Type sheme introdution and instantiation onstruts annot appear within

solved forms; indeed, provided the onstraint at hand has no free program

identi�ers, they an be expanded away. For this reason, their presene in the

onstraint language has no impat on the results ontained in this setion.

1.3.34 Definition: A solved form is of the form 9

�

Y:(

~

X =

~

T), where

�

X # ftv(

�

T). 2

Solved forms o�er a onvenient way of reasoning about onstraints beause

every satis�able onstraint is equivalent to one. In other words, every on-

straint is equivalent to either a solved form or false. This property is estab-

lished by the following lemma, whose proof provides a simple but e�etive

proedure to rewrite a onstraint to either a solved form or false.

1.3.35 Lemma: Let fpi (C) = ?. Then, C is equivalent to either a solved form or

false. 2

Proof: We �rst establish that every onjuntion of equations is equivalent

to either a solved form or false. To do so, we present Robinson's uni�ation

algorithm (1971) as a rewriting system. The system's invariant is to operate on

onstraints of the form either

~

X =

~

T;C, where

�

X # ftv(

�

T; C) and the semiolon

is interpreted as a distinguished onjuntion, or false. We identify equations

in C up to ommutativity. The system is de�ned as follows:

~

X =

~

T; X = X ^ C !

~

X =

~

T;C

~

X =

~

T; F

~

T

1

= F

~

T

2

^ C !

~

X =

~

T;

~

T

1

=

~

T

2

^ C

~

X =

~

T; F

1

~

T

1

= F

2

~

T

2

^ C ! false

if F

1

6= F

2

~

X =

~

T; X = T ^ C !

~

X = [X 7! T℄

~

T ^ X = T; [X 7! T℄C

if X 62 ftv(T)

~

X =

~

T; X = T ^ C ! false

if X 2 ftv(T) and T 62 V

It is straightforward to hek that the above invariant is indeed preserved

by the rewriting system. Let us hek that onstraint equivalene is also pre-

served. For the �rst rule, this is immediate. For the seond and third rules, it
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follows from the fat that we have assumed a free tree model; for the fourth

rule, a onsequene of C-Eq; for the last rule, a onsequene of Lemma 1.3.33.

Furthermore, the system is terminating; this is witnessed by an ordering where

false is the least element and where onstraints of the form

~

X =

~

T;C are ordered

lexiographially, �rst by the number of type variables that appear free within

C, seond by the size of C. Last, a normal form for this rewriting system must

be of the form either

~

X =

~

T; true, where (by the invariant)

�

X # ftv(

�

T)�that

is, a solved form, or false.

Next, we show that the present lemma holds when C is built out of equa-

tions, onjuntion, and existential quanti�ation. Orienting C-ExAnd from

left to right yields a terminating rewriting system that preserves onstraint

equivalene. The normal form of C must be 9

�

Y:C

0

, where C

0

is a onjuntion

of equations. By the previous result, C

0

is equivalent to either a solved form

or false. Beause solved forms are preserved by existential quanti�ation and

beause 9

�

Y:false is false, the same holds of C.

Last, we establish the result in the general ase. We assume fpi (C) = ? (1).

Orienting C-InId and C-In* from left to right yields a terminating rewriting

system that preserves onstraint equivalene. The normal form C

0

of C annot

ontain any type sheme introdution forms; given (1), it annot ontain any

instantiation forms either. Thus, C

0

is built out of equations, onjuntion, and

existential quanti�ation only. By the previous result, it is equivalent to either

a solved form or false, whih implies that the same holds of C. 2

It is possible to impose further restritions on solved forms. A solved form

9

�

Y:(

~

X =

~

T) is anonial if and only if its free type variables are exatly

�

X. This

is stated, in an equivalent way, by the following de�nition.

1.3.36 Definition: A anonial solved form is a onstraint of the form 9

�

Y:(

~

X =

~

T),

where ftv(

�

T) �

�

Y and

�

X #

�

Y. 2

1.3.37 Lemma: Every solved form is equivalent to a anonial solved form. 2

It is easy to desribe the solutions of a anonial solved form: they are the

ground re�nements of the substitution [

~

X 7!

~

T℄.

1.3.38 Lemma: A ground assignment � satis�es a anonial solved form 9

�

Y:(

~

X =

~

T)

if and only if there exists a ground assignment �

0

suh that �(

~

X) = �

0

(

~

T). As

a result, every anonial solved form is satis�able. 2

Proof: Let 9

�

Y:(

~

X =

~

T) be a anonial solved form. By CM-Exists and CM-

Prediate, � satis�es 9

�

Y:(

~

X =

~

T) if and only if there exists

~

t suh that �[

~

Y 7!

~

t℄(

~

X) = �[

~

Y 7!

~

t℄(

~

T). Thanks to the hypotheses

�

X #

�

Y and ftv(

�

T) �

�

Y, this is

equivalent to the existene of a ground assignment �

0

suh that �(

~

X) = �

0

(

~

T).
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Thus, for every ground assignment �

0

, �

0

[

~

X 7! �

0

(

~

T)℄ satis�es 9

�

Y:(

~

X =

~

T), whih

proves that this onstraint is satis�able. 2

Together, Lemmas 1.3.37 and 1.3.38 imply that every solved form is sat-

is�able. Our interest in anonial solved forms stems from the following

fundamental property, whih provides a syntati haraterization of entail-

ment between anonial solved forms: if 9

�

Y

1

:(

~

X =

~

T

1

) is more spei� than

9

�

Y

2

:(

~

X =

~

T

2

), in a logial sense, then

~

T

1

re�nes

~

T

2

, in a syntati sense. The

onverse also holds (an you prove it?), but is not needed here.

1.3.39 Lemma: If 9

�

Y

1

:(

~

X =

~

T

1

)  9

�

Y

2

:(

~

X =

~

T

2

), where both sides are anonial solved

forms, then there exists a type substitution ' suh that

~

T

1

= '(

~

T

2

). 2

As a orollary, we �nd that anonial solved forms are unique up to �-

onversion and up to C-Ex*, provided the set

�

X of their free type variables is

�xed.

1.3.40 Lemma: If the anonial solved forms 9

�

Y

1

:(

~

X =

~

T

1

) and 9

�

Y

2

:(

~

X =

~

T

2

) are

equivalent, then there exists a renaming � suh that

~

T

1

= �(

~

T

2

). 2

Please note that the fat that the anonial solved forms 9

�

Y

1

:(

~

X

1

=

~

T

1

)

and 9

�

Y

2

:(

~

X

2

=

~

T

2

) are equivalent does not imply that

�

X

1

and

�

X

2

oinide.

Consider, for example, the anonial solved forms true and 9Y:(X = Y), whih

by C-NameEq are equivalent. One might wish to further restrit anonial

solved forms by requiring

�

X to be the set of essential type variables of the

onstraint 9

�

Y:(

~

X =

~

T), that is, the set of the type variables that appear free

in all equivalent onstraints. However, as far our tehnial development is

onerned, it seems more onvenient not to do so. Instead, we show that it is

possible to expliitly restrit or extend

�

X when needed (Lemma 1.3.43).

The following de�nition allows entertaining a dual view of anonial solved

forms, either as onstraints or as idempotent type substitutions. The latter

view is ommonly found in standard treatments of uni�ation (Lassez, Maher,

and Marriott, 1988; Jouannaud and Kirhner, 1991) and in lassi presenta-

tions of ML-the-type-system.

1.3.41 Definition: If [

~

X 7!

~

T℄ is an idempotent substitution of domain

�

X, let

9[

~

X 7!

~

T℄ denote the anonial solved form 9

�

Y:(

~

X =

~

T), where

�

Y = ftv(

�

T).

An idempotent substitution � is a most general uni�er of the onstraint C if

and only if 9� and C are equivalent. 2

By de�nition, equivalent onstraints admit the same most general uni�ers.

Many properties of anonial solved forms may be reformulated in terms of

most general uni�ers. By Lemmas 1.3.31, 1.3.35, and 1.3.37, every satis�able

onstraint admits a most general uni�er. By Lemma 1.3.40, if [

~

X 7!

~

T

1

℄ and
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[

~

X 7!

~

T

2

℄ are most general uni�ers of C, then

~

T

1

and

~

T

2

oinide up to a

renaming. Conversely, if [

~

X 7!

~

T℄ is a most general uni�er of C and if

�

X # �

holds, then [

~

X 7! �

~

T℄ is also a most general uni�er of C; indeed, these two

substitutions orrespond to �-equivalent anonial solved forms.

The following result relates the substitution � to the anonial solved form

9�, stating that every ground re�nement of the former satis�es the latter.

1.3.42 Lemma: �(9�) � true. 2

The following lemma o�ers two tehnial results: the domain of a most

general uni�er of C may be restrited so as to beome a subset of ftv (C); it

may also be extended to inlude arbitrary fresh variables. The next lemma is

a simple orollary.

1.3.43 Lemma: Let � be a most general uni�er of C. If

�

Z # ftv(C), then � n

�

Z is also

a most general uni�er of C. If

�

Z # �, then there exists a most general uni�er

of C that extends � and whose domain is dom(�) [

�

Z. 2

1.3.44 Lemma: Let �

1

and �

2

be most general uni�ers of C. Let

�

X = dom(�

1

) \

dom(�

2

). Then, �

1

(

�

X) and �

2

(

�

X) oinide up to a renaming. 2

Our last tehnial result relates the most general uni�ers of C with the most

general uni�ers of 9X:C. It states that the former are extensions of the latter.

Furthermore, under a few freshness onditions, every most general uni�er of

9X:C may be extended to yield a most general uni�er of C.

1.3.45 Lemma: If � is a most general uni�er of C, then � nX is a most general uni�er

of 9X:C. Conversely, if � is a most general uni�er of 9X:C and X # � and

ftv(9X:C) � dom(�), then there exists a type substitution �

0

suh that �

0

extends �, �

0

is a most general uni�er of C, and dom(�

0

) = dom(�) [ X. 2

1.4 HM(X)

Constraint-based type systems appeared during the 1980s (Mithell, 1984; Fuh

and Mishra, 1988) and were widely studied during the following deade (Cur-

tis, 1990; Aiken and Wimmers, 1993; Jones, 1994a; Smith, 1994; Palsberg,

1995; Trifonov and Smith, 1996; Fähndrih, 1999; Pottier, 2001b). We now

present one suh system, baptized HM(X) beause it is a parameterized ex-

tension of Hindley and Milner's type disipline; the meaning of the parameter

X was explained on page 24. Its original desription is due to Odersky, Sulz-

mann, and Wehr (1999a). Sine then, it has been ompleted in a number of

works (Sulzmann, Müller, and Zenger, 1999; Sulzmann, 2000; Pottier, 2001a;
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Skalka and Pottier, 2002). Eah of these presentations introdues minor vari-

ations. Here, we follow (Pottier, 2001a), whih is itself inspired by (Sulzmann,

Müller, and Zenger, 1999).

De�nition

Our presentation of HM(X) relies on the onstraint language introdued in

setion 1.3. Tehnially, our approah of onstraints is more diret than that

of (Odersky, Sulzmann, and Wehr, 1999a). We interpret onstraints within a

model, give onjuntion and existential quanti�ation their standard mean-

ing, and derive a number of equivalene laws (Setion 1.3). Odersky et al., on

the other hand, do not expliitly rely on a logial interpretation; instead, they

axiomatize onstraint equivalene, that is, they onsider a number of equiva-

lene laws as axioms. Thus, they ensure that their high-level proofs, suh as

type soundness and orretness and ompleteness of type inferene, are in-

dependent of the low-level details of the logial interpretation of onstraints.

Their approah is also more general, sine it allows dealing with other log-

ial interpretations�suh as �open-world� interpretations, where onstraints

are interpreted not within a �xed model, but within a family of extensions

of a �urrent� model. In this hapter, we have avoided this extra layer of ab-

stration, for the sake of de�niteness; however, the hanges required to adopt

Odersky et al.'s approah would not be extensive, sine the forthoming proofs

do indeed rely mostly on onstraint equivalene laws, rather than on low-level

details of the logial interpretation of onstraints.

Another slight departure from Odersky et al.'s work lies in the fat that

we have enrihed the onstraint language with type sheme introdution and

instantiation forms, whih were absent in the original presentation of HM(X).

To prevent this addition from a�eting HM(X), we require the onstraints

that appear in HM(X) typing judgements to have no free program identi�ers.

Please note that this does not prevent them from ontaining let forms; we shall

in fat exploit this feature when establishing an equivalene between HM(X)

and the type system presented in setion 1.5, where the new onstraint forms

are e�etively used.

The type system HM(X) onsists of a four-plae judgement whose parame-

ters are a onstraint C, an environment �, an expression t, and a type sheme

�. A judgement is written C;� ` t : � and is read: under the assumptions

C and �, the expression t has type �. One may view C as an assumption

about the judgement's free type variables and � as an assumption about t's

free program identi�ers. Please reall that � now ontains onstrained type

shemes, and that � is a onstrained type sheme.

We would like the validity of a typing judgement to depend not on the
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�(x) = � C  9�

C;� ` x : �

(hmx-Var)

C; (�; z : T) ` t : T

0

C;� ` �z:t : T! T

0

(hmx-Abs)

C;� ` t

1

: T! T

0

C;� ` t

2

: T

C;� ` t

1

t

2

: T

0

(hmx-App)

C;� ` t

1

: � C; (�; z : �) ` t

2

: T

C;� ` let z = t

1

in t

2

: T

(hmx-Let)

C ^D;� ` t : T

�

X # ftv(C;�)

C ^ 9

�

X:D;� ` t : 8

�

X[D℄:T

(hmx-Gen)

C;� ` t : 8

�

X[D℄:T

C ^D;� ` t : T

(hmx-Inst)

C;� ` t : T C  T � T

0

C;� ` t : T

0

(hmx-Sub)

C;� ` t : �

�

X # ftv(�; �)

9

�

X:C;� ` t : �

(hmx-Exists)

Figure 1-7: Typing rules for HM(X)

syntax, but only on the meaning of its onstraint assumption. We enfore this

point of view by onsidering judgements equal modulo equivalene of their

onstraint assumptions. In other words, the typing judgements C;� ` t : �

and D;� ` t : � are onsidered idential when C � D holds. As a result,

it does not make sense to analyze the syntax of a judgement's onstraint

assumption. A judgement is valid, or holds, if and only if it is derivable via

the rules given in Figure 1-7. Please note that a valid judgement may involve

an unsatis�able onstraint. A program t is well-typed within the environment

� if and only if a judgement of the form C;� ` t : � holds for some satis�able

onstraint C.

Let us now explain the rules. Like dm-Var, hmx-Var looks up the environ-

ment to determine the type sheme assoiated with the program identi�er x.

The onstraint C that appears in the onlusion must be strong enough to

guarantee that � has an instane; this is expressed by the seond premise.

This tehnial requirement is used in the proof of Lemma 1.4.1. hmx-Abs,

hmx-App, and hmx-Let are idential to dm-Abs, dm-App, and dm-Let,

respetively, exept that the assumption C is made available to every sub-

derivation. We reall that the type T may be viewed as the type sheme

8?[true℄:T (De�nitions 1.2.18 and 1.3.2). As a result, types form a subset of

type shemes, whih implies that �; z : T is a well-formed environment and

C;� ` t : T a well-formed typing judgement. To understand hmx-Gen, it

is best to �rst onsider the partiular ase where C is true. This yields the

following, simpler rule:

D;� ` t : T

�

X # ftv (�)

9

�

X:D;� ` t : 8

�

X[D℄:T

(hmx-Gen')
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The seond premise is idential to that of dm-Gen: the type variables that

are generalized must not our free within the environment. The onlusion

forms the type sheme 8

�

X[D℄:T, where the type variables

�

X have beome uni-

versally quanti�ed, but are still subjet to the onstraint D. Please note that

the type variables that our free in D may inlude not only

�

X, but also other

type variables, typially free in �. The rule's onlusion arries the onstraint

9

�

X:D, thus reording the requirement that the newly formed type sheme

should have an instane; again, this is used in the proof of Lemma 1.4.1.

hmx-Gen may be viewed as a more liberal version of hmx-Gen', whereby

part of the urrent onstraint, namely C, need not be opied if it does not

onern the type variables that are being generalized, namely

�

X. This opti-

mization is important in pratie, beause C may be very large. An intuitive

explanation for its orretness is given by the onstraint equivalene law C-

LetAnd, whih expresses the same optimization in terms of let onstraints.

Beause HM(X) does not use let onstraints, the optimization is hard-wired

into the typing rule. hmx-Inst allows taking an instane of a type sheme.

The reader may be surprised to �nd that, ontrary to dm-Inst, it does not

involve a type substitution. Instead, the rule merely drops the universal quan-

ti�er, whih amounts to applying the identity substitution

~

X 7!

~

X. One should

reall, however, that type shemes are onsidered equal modulo �-onversion,

so it is possible to rename the type sheme's universal quanti�ers prior to

using hmx-Inst. The reason why this provides su�ient expressive power

appears in the proof of Theorem 1.4.7 below. The onstraint D arried by

the type sheme is reorded as part of the urrent onstraint in hmx-Inst's

onlusion. The subsumption rule hmx-Sub allows a type T to be replaed

at any time with an arbitrary supertype T

0

. Beause both T and T

0

may have

free type variables, whether T � T

0

holds depends on the urrent assumption

C, whih is why the rule's seond premise is an entailment assertion. An op-

erational explanation of hmx-Sub is that it requires all uses of subsumption

to be expliitly reorded in the urrent onstraint. Please note that hmx-Sub

remains a useful and neessary rule even when subtyping is interpreted as

equality: then, it allows exploiting the type equations found in C. Last, hmx-

Exists allows the type variables that our only within the urrent onstraint

to beome existentially quanti�ed. As a result, these type variables no longer

our free in the rule's onlusion; in other words, they have beome loal to

the subderivation rooted at the premise. One may prove that the presene

of hmx-Exists in the type system does not augment the set of well-typed

programs, but does augment the set of valid typing judgements; it is a pleas-

ant tehnial onveniene. Indeed, beause judgements are onsidered equal

modulo onstraint equivalene, onstraints may be transparently simpli�ed at

any time. (By simplifying a onstraint, we mean replaing it with an equiva-
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lent onstraint whose syntati representation is onsidered simpler.) Bearing

this fat in mind, one �nds that an e�et of rule hmx-Exists is to enable

more simpli�ations: beause onstraint equivalene is a ongruene, C � D

implies 9

�

X:C � 9

�

X:D, but the onverse does not hold in general. For instane,

there is in general no way of simplifying the judgement X � Y � Z;� ` t : �,

but if it is known that Y does not appear free in � or �, then hmx-Exists

allows deriving 9Y:(X � Y � Z);� ` t : �, whih is the same judgement as

X � Z;� ` t : �. Thus, an interesting simpli�ation has been enabled. Please

note that X � Y � Z � X � Z does not hold, while, aording to C-ExTrans,

9Y:(X � Y � Z) � X � Z does.

We now establish a few simple properties of the type system HM(X). Our

�rst lemma is a minor tehnial property.

1.4.1 Lemma: C;� ` t : � implies C  9�. 2

The next lemma states that strengthening a judgement's onstraint assump-

tion preserves its validity. In other words, weakening a judgement preserves its

validity. It is worth noting that in traditional presentations, whih rely more

heavily on type substitutions, the analogue of this result is a type substitution

lemma; see for instane (Tofte, 1988, Lemma 2.7), (Leroy, 1992, Proposition

1.2), (Skalka and Pottier, 2002, Lemma 3.4). Here, the lemma further states

that weakening a judgement does not alter the shape of its derivation, a useful

property when reasoning by indution on type derivations.

1.4.2 Lemma [Weakening℄: If C

0

 C, then every derivation of C;� ` t : � may

be turned into a derivation of C

0

;� ` t : � with the same shape. 2

Proof: The proof is by strutural indution on a derivation of C;� ` t : �.

In eah proof ase, we adopt the notations of Figure 1-7.

Æ Case hmx-Var. The rule's onlusion is C;� ` x : �. Its premises are

�(x) = � (1) and C  9� (2). By hypothesis, we have C

0

 C (3). By

transitivity of entailment, (3) and (2) imply C

0

 9� (4). By hmx-Var, (1)

and (4) yield C

0

;� ` x : �.

Æ Cases hmx-Abs, hmx-App, hmx-Let. By the indution hypothesis and

by hmx-Abs, hmx-App, or hmx-Let, respetively.

Æ Case hmx-Gen. The rule's onlusion is C ^ 9

�

X:D;� ` t : 8

�

X[D℄:T. Its

premises are C^D;� ` t : T (1) and

�

X # ftv(C;�) (2). By hypothesis, we have

C

0

 C ^ 9

�

X:D (3). We may assume, w.l.o.g.,

�

X # ftv(C

0

) (4). Applying the

indution hypothesis to (1) and to the entailment assertion C

0

^C^D  C^D,

we obtain C

0

^C ^D;� ` t : T (5). By hmx-Gen, applied to (5), (2) and (4),

we get C

0

^C ^9

�

X:D;� ` t : 8

�

X[D℄:T (6). By (3) and C-Dup, the onstraints

C

0

^ C ^ 9

�

X:D and C

0

are equivalent, so (6) is the goal C

0

;� ` t : 8

�

X[D℄:T.
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Æ Case hmx-Inst. The rule's onlusion is C ^ D;� ` t : T. Its premise

is C;� ` t : 8

�

X[D℄:T (1). By hypothesis, C

0

entails C ^ D (2). Beause (2)

implies C

0

 C, the indution hypothesis may be applied to (1), yielding

C

0

;� ` t : 8

�

X[D℄:T (3). By hmx-Inst, we obtain C

0

^ D;� ` t : T (4).

Beause (2) implies C

0

� C

0

^D, (4) is the goal C

0

;� ` t : T.

Æ Case hmx-Sub. The rule's onlusion is C;� ` t : T

0

. Its premises are

C;� ` t : T (1) and C  T � T

0

(2). By hypothesis, we have C

0

 C (3).

Applying the indution hypothesis to (1) and (3) yields C

0

;� ` t : T (4). By

transitivity of entailment, (3) and (2) imply C

0

 T � T

0

(5). By hmx-Sub,

(4) and (5) yield C

0

;� ` t : T

0

.

Æ Case hmx-Exists. The rule's onlusion is 9

�

X:C;� ` t : �. Its premises

are C;� ` t : � (1) and

�

X # ftv (�; �) (2). By hypothesis, we have C

0



9

�

X:C (3). We may assume, w.l.o.g.,

�

X # ftv(C

0

) (4). Applying the indution

hypothesis to (1) and to the entailment assertion C

0

^ C  C, we obtain

C

0

^ C;� ` t : � (5). By hmx-Exists, (5) and (2) yield 9

�

X:(C

0

^ C);� `

t : � (6). By (4) and C-ExAnd, the onstraint 9

�

X:(C

0

^ C) is equivalent to

C

0

^9

�

X:C, whih, by (3) and C-Dup, is equivalent to C

0

. Thus, (6) is the goal

C

0

;� ` t : �. 2

We do not give a diret type soundness proof for HM(X). Instead, in se-

tion 1.5, we prove that it is equivalent to another type system, whih later

is itself proven sound. A diret type soundness result, based on a denota-

tional semantis, may be found in (Odersky, Sulzmann, and Wehr, 1999a).

Another type soundness proof, whih follows Wright and Felleisen's syntati

approah (1994b), appears in (Skalka and Pottier, 2002). Last, a hybrid ap-

proah, whih ombines some of the advantages of the previous two, is given

in (Pottier, 2001a).

An alternate presentation of HM(X)

The presentation of HM(X) given in Figure 1-7 has only four syntax-direted

rules out of eight. It is a good spei�ation of the type system, but it is far

from an algorithmi desription. As a �rst step towards suh a desription,

we provide an alternate presentation of HM(X), where generalization is per-

formed only at let expressions and instantiation takes plae only at referenes

to program identi�ers (Figure 1-8). It has the property that all judgements

are of the form C;� ` t : T, rather than C;� ` t : �. The following theorem

states that the two presentations are indeed equivalent.

1.4.3 Theorem: C;� ` t : T is derivable via the rules of Figure 1-8 if and only if

it is a valid HM(X) judgement. 2



TOP

2003/5/20

page 46

46 Draft of May 20, 2003 1 ML

�(x) = 8

�

X[D℄:T

C ^D;� ` x : T

(hmd-VarInst)

C; (�; z : T) ` t : T

0

C;� ` �z:t : T! T

0

(hmd-Abs)

C;� ` t

1

: T! T

0

C;� ` t

2

: T

C;� ` t

1

t

2

: T

0

(hmd-App)

C ^D;� ` t

1

: T

1

�

X # ftv(C;�)

C ^ 9

�

X:D; (�; z : 8

�

X[D℄:T

1

) ` t

2

: T

2

C ^ 9

�

X:D;� ` let z = t

1

in t

2

: T

2

(hmd-LetGen)

C;� ` t : T C  T � T

0

C;� ` t : T

0

(hmd-Sub)

C;� ` t : T

�

X # ftv(�; T)

9

�

X:C;� ` t : T

(hmd-Exists)

Figure 1-8: An alternate presentation of HM(X)

This theorem shows that the rule sets of Figures 1-7 and 1-8 derive the

same monomorphi judgements, that is, the same judgements of the form

C;� ` t : T. The fat that judgements of the form C;� ` t : �, where �

is a not a monotype, annot be derived using the new rule set is a tehnial

simpli�ation, without deep signi�ane; the �rst two exerises below shed

some light on this issue.

1.4.4 Exerise [FF℄: Show that both rule sets lead to the same set of well-typed

programs. 2

1.4.5 Exerise [FF℄: Show that, if hmx-Gen is added to the rule set of Figure 1-

8, then both rule sets derive exatly the same judgements. 2

1.4.6 Exerise [FFF, 9℄: Show that it is possible to simplify the presentation

of Damas and Milner's type system in an analogous manner. That is, de�ne an

alternate set of typing rules for DM, whih allows deriving judgements of the

form � ` t : T; then, show that this new rule set is equivalent to the previous

one, in the same sense as above. Whih auxiliary properties of DM does your

proof require? A solution is given in (Clément, Despeyroux, Despeyroux, and

Kahn, 1986). 2

Relating HM(X) with Damas and Milner's type system

In order to explain our interest in HM(X), we wish to show that it is more

general than Damas and Milner's type system. Sine HM(X) really is a family

of type systems, we must make this statement more preise. First, every mem-

ber of the HM(X) family ontains DM. Conversely, DM ontains HM(=), the
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onstraint-based type system obtained by speializing HM(X) to the setting

of an equality-only syntati model.

The �rst of these assertions is easy to prove, beause the mapping from

DM judgements to HM(X) judgements is essentially the identity: every valid

DM judgement may be viewed as a valid HM(X) judgement under the trivial

assumption true. This statement relies on the fat that the DM type sheme

8

�

X:T is identi�ed with the onstrained type sheme 8

�

X[true℄:T, so DM type

shemes (resp. environments) form a subset of HM(X) type shemes (resp.

environments). Its proof is routine, exept perhaps in the ase of dm-Inst,

where it is shown how the e�et of applying a substitution in DM is emulated

by strengthening the urrent onstraint in HM(X).

1.4.7 Theorem: If � ` t : S holds in DM, then true;� ` t : S holds in HM(X). 2

Proof: The proof is by strutural indution on a derivation of � ` t : S. In

eah proof ase, we adopt the notations of Figure 1-3.

Æ Case dm-Var. The rule's onlusion is � ` x : S. Its premise is �(x) =

S (1). By de�nition and by C-Ex*, the onstraint 9S is equivalent to true.

By applying hmx-Var to (1) and to the assertion true  true, we obtain

true;� ` x : S.

Æ Cases dm-Abs, dm-App, dm-Let. By the indution hypothesis and by

hmx-Abs, hmx-App or hmx-Let, respetively.

Æ Case dm-Gen. The rule's onlusion is � ` t : 8

�

X:T. Its premises are

� ` t : T (1) and

�

X # ftv(�) (2). Applying the indution hypothesis to (1)

yields true;� ` t : T (3). Furthermore, (2) implies

�

X # ftv(true;�) (4). By

hmx-Gen, (3) and (4) yield true;� ` t : 8

�

X[true℄:T.

Æ Case dm-Inst. The rule's onlusion is � ` t : [

~

X 7!

~

T℄T. Its premise

is � ` t : 8

�

X:T (1). We may assume, w.l.o.g.,

�

X # ftv(�;

�

T) (2). Applying

the indution hypothesis to (1) yields true;� ` t : 8

�

X[true℄:T (3). By hmx-

Inst, (3) implies true;� ` t : T (4). By Lemma 1.4.2, we may weaken this

judgement so as to obtain

~

X =

~

T;� ` t : T (5). Using C-Eq, C-ExTrans,

and C-ExAnd, it is possible to establish

~

X =

~

T  T = [

~

X 7!

~

T℄T (6). Applying

hmx-Sub to (5) and (6), we �nd

~

X =

~

T;� ` t : [

~

X 7!

~

T℄T (7). Last, (2)

implies

�

X # ftv(�; [

~

X 7!

~

T℄T) (8). Applying hmx-Exists to (7) and (8), we

obtain 9

�

X:(

~

X =

~

T);� ` t : [

~

X 7!

~

T℄T (9). By (2) and C-Name, the onstraint

9

�

X:(

~

X =

~

T) is equivalent to true, so (9) is the goal. 2

We are now interested in proving that HM(=), as de�ned above, is ontained

within DM. To this end, we must translate every HM(=) judgement to a DM

judgement. It quikly turns out that this is possible if the original judgement's

onstraint assumption is satis�able.
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We begin by explaining how an HM(=) is translated into a DM type sheme.

Suh a translation is made possible by the fat that the de�nition of HM(=)

assumes an equality-only syntati model. Indeed, in that setting, every sat-

is�able onstraint admits a most general uni�er (De�nition 1.3.41), whose

properties we make essential use of.

In fat, we must not only translate a type sheme, but also apply a type

substitution to it. Instead of separating these steps, we perform both at one,

and parameterize the translation by a type substitution �. (It does not appear

that separating them would help.) The de�nition of J�K

�

is somewhat involved:

it is given in the statement of the following lemma, whose proof establishes

that the de�nition is indeed well-formed.

1.4.8 Lemma: Consider a type sheme � and an idempotent type substitution �

suh that ftv(�) � dom(�) (1) and 9�  9� (2). Write � = 8

�

X[D℄:T, where

�

X # � (3). Then, there exists a type substitution �

0

suh that �

0

extends

�, dom(�

0

) is dom(�) [

�

X, and �

0

is a most general uni�er of 9� ^ D. Let

�

Y = ftv(�

0

(

�

X)) n range(�). Then, the translation of � under �, written J�K

�

, is

the DM type sheme 8

�

Y:�

0

(T). This is a well-formed de�nition. Furthermore,

ftv(J�K

�

) � range(�) holds. 2

Proof: By (2), 9� is equivalent to 9� ^ 9�, whih may be written 9� ^ 9

�

X:D.

By (3) and C-ExAnd, this is 9

�

X:(9� ^D). Thus, beause � is a most general

uni�er of 9�, � is also a most general uni�er of 9

�

X:(9� ^D) (4). Furthermore,

ftv(9

�

X:(9� ^ D)) is ftv(9� ^ 9�), whih by de�nition of 9� and by (1) is a

subset of dom(�) (5). By (4), (3), (5), and Lemma 1.3.45, there exists a type

substitution �

0

suh that �

0

extends � (6) and �

0

is a most general uni�er of

9� ^D (7) and dom(�

0

) = dom(�) [

�

X (8).

Let us now de�ne

�

Y = ftv(�

0

(

�

X)) n range(�) and J�K

�

= 8

�

Y:�

0

(T). By (1), we

have ftv(T) �

�

X[dom(�). Applying �

0

and exploiting (6), we �nd ftv(�

0

(T)) �

ftv(�

0

(

�

X)) [ range(�), whih by de�nition of

�

Y may be written ftv(�

0

(T)) �

�

Y [ range(�). Subtrating

�

Y on eah side, we �nd ftv(J�K

�

) � range(�) (9).

To show that the de�nition of J�K

�

is valid, there remains to show that it

does not depend on the hoie of

�

X or �

0

. To prove the former, it su�es to es-

tablish

�

X # ftv(J�K

�

), whih indeed follows from (3) and (9). As for the latter,

beause of the onstraints imposed by (6), (7), and (8), and by Lemma 1.3.44,

distint hoies of �

0

may di�er only by a renaming of ftv (�

0

(

�

X)) n range(�),

that is,

�

Y. So, we must hek

�

Y # ftv(J�K

�

), whih holds by de�nition. 2

Please note that if � is in fat a type T, where ftv(T) � dom(�), then

�

X is

empty, so �

0

is �,

�

Y is empty, and JTK

�

= �(T). In other words, the translation

of a type under � is its image through �. More generally, the translation of an

unonstrained type sheme (that is, a type sheme whose onstraint is true)

is its image through �, as stated by the following exerise.
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1.4.9 Exerise [FF, 9℄: Prove that J8

�

X:TK

�

, when de�ned, is �(8

�

X:T). 2

The translation beomes more than a mere type substitution when applied

to a nontrivial onstrained type sheme. Some examples of this situation are

given below.

1.4.10 Example: Let � = 8XY[X = Y ! Y℄:X. Let � be the identity substitution.

The type sheme � is losed and the onstraint 9� is equivalent to true, so

J�K

�

is de�ned. We must �nd a type substitution �

0

whose domain is XY and

that is a most general uni�er of X = Y ! Y. All suh substitutions are of the

form [X 7! (Z! Z); Y 7! Z℄, where Z is fresh. We have ftv(�

0

(XY)) = Z, whene

J�K

�

= 8Z:Z! Z. Note that the hoie of Z does not matter, sine it is bound

in J�K

�

. Roughly speaking, the e�et of the translation was to replae the

body X of the onstrained type sheme with its most general solution under

the onstraint X = Y! Y.

Let � = 8XY

1

[X = Y

1

! Y

2

℄:X. Let � = [Y

2

7! Z

2

℄. We have ftv (�) =

Y

2

� dom(�). The onstraint 9� is equivalent to true, so J�K

�

is de�ned. We

must �nd a type substitution �

0

whose domain is XY

1

Y

2

that extends � and

that is a most general uni�er of X = Y

1

! Y

2

. All suh substitutions are of

the form [X 7! (Z

1

! Z

2

); Y

1

7! Z

1

; Y

2

7! Z

2

℄, where Z

1

is fresh. We have

ftv(�

0

(XY

1

)) n range(�) = Z

1

Z

2

n Z

2

= Z

1

, whene J�K

�

= 8Z

1

:Z

1

! Z

2

. The

type variable Z

2

is not universally quanti�ed�even though it appears in the

image of X, whih was universally quanti�ed in ��beause Z

2

is the image of

Y

2

, whih was free in �. 2

Before attaking the main theorem, let us establish a ouple of tehnial

properties of the translation. First, J�K

�

is insensitive to the behavior of �

outside ftv (�), a natural property, sine our informal intent is for � to be

applied to �.

1.4.11 Lemma: If �

1

and �

2

oinide on ftv(�), then J�K

�

1

and J�K

�

2

are either both

unde�ned, or both de�ned and idential. 2

Seond, if C  � � T

0

holds, then the translations of � and T

0

under a

most general uni�er of C are in Damas and Milner's instane relation. One

might say, roughly speaking, that the instane relation is preserved by the

translation.

1.4.12 Lemma: Let ftv(�; T

0

) � dom(�) (1) and 9�  9� (2). Let 9�  � � T

0

(3).

Then, �(T

0

) is an instane of the DM type sheme J�K

�

. 2

Proof: Write � = 8

�

X[D℄:T, where

�

X # � (4) and

�

X # ftv (T

0

) (5). By (1),

(2), and (4), one may de�ne �

0

,

�

Y, and J�K

�

exatly as in the statement of

Lemma 1.4.8. By (5) and De�nition 1.3.3, (3) is synonymous with 9�  9

�

X:(D^
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T = T

0

). Reasoning in the same manner as in the �rst paragraph of the proof

of Lemma 1.4.8, we �nd that there exists a type substitution �

00

suh that

�

00

extends �, dom(�

00

) is dom(�) [

�

X, and �

00

is a most general uni�er of

9� ^D ^ T = T

0

.

We have dom(�

0

) = dom(�

00

) (6). Furthermore, �

0

is a most general uni�er

of 9� ^D, while �

00

is a most general uni�er of 9� ^D ^ T = T

0

, whih implies

9�

00

 9�

0

(7). By Lemma 1.3.39, �

00

re�nes �

0

. That is, there exists a type

substitution ' suh that �

00

is the restrition of ' Æ �

0

to dom(�) [

�

X (8). We

may require dom(') � range(�) [ ftv(�

0

(

�

X)) (9) without ompromising (8).

Consider X 2 dom(�). Beause �

00

extends �, we have �

00

(X) = �(X) (10).

Furthermore, by (8), we have �

00

(X) = ('Æ�

0

)(X) = ('Æ�)(X) (11). Using (10)

and (11), we �nd �(X) = '(�(X)). Beause this holds for every X 2 dom(�),

' must be the identity over range(�); that is, dom(') # range(�) (12) holds.

Combining (9) and (12), we �nd dom(') � ftv(�

0

(

�

X)) n range(�), that is,

dom(') �

�

Y (13).

By onstrution of �

00

, we have 9�

00

 T = T

0

. By Lemma 1.3.29, this implies

�

00

(9�

00

)  �

00

(T) = �

00

(T

0

), whih by Lemma 1.3.42 may be read true  �

00

(T) =

�

00

(T

0

). By Lemma 1.3.32, �

00

(T) and �

00

(T

0

) oinide. Beause by (1) ftv (T) is

a subset of dom(�)[

�

X and by (8), the former may be written '(�

0

(T)). By (1)

and beause �

00

extends �, the latter is �(T

0

). Thus, we have '(�

0

(T)) = �(T

0

).

Together with (13), this establishes that �(T

0

) is an instane of 8

�

Y:�

0

(T), that

is, J�K

�

. 2

We extend the translation to environments as follows. J?K

�

is ?. If 9�  9�

holds, then J�; x : �K

�

is J�K

�

; x : J�K

�

, otherwise it is J�K

�

. Notie that J�K

�

ontains fewer bindings than �, whih ensures that bindings x : � for whih

9�  9� does not hold will not be used in the translation. Please note that

J�K

�

is de�ned when ftv(�) � dom(�) holds.

We are now ready to prove the main theorem. Please note that, by requir-

ing � to be a most general uni�er of C, we also require C to be satis�able.

Judgements that arry an unsatis�able onstraint annot be translated.

1.4.13 Theorem: Let C;� ` t : � hold in HM(=). Let � be a most general uni�er

of C suh that ftv(�; �) � dom(�). Then, J�K

�

` t : J�K

�

holds in DM. 2

Proof: Let us �rst remark that, by Lemma 1.4.1, we have C  9�. This

may be written 9�  9�, whih guarantees that J�K

�

is de�ned. The proof

is by strutural indution on an HM(=) typing derivation. We assume that

the derivation is expressed in terms of the rules of Figure 1-8, but split hmd-

LetGen into hmx-Let and hmx-Gen for the sake of readability.

Æ Case hmd-VarInst. The rule's onlusion is C ^ D;� ` x : T. By hy-

pothesis, � is a most general uni�er of C ^ D (1), and ftv(T) � dom(�) (2)
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holds. The rule's premise is �(x) = � (3), where � stands for 8

�

X[D℄:T. By

(1), we have 9� � C ^ D  D  9

�

X:D � 9� (4). Furthermore, we have

ftv(�) � ftv(�) � dom(�) (5). These fats show that J�K

�

is de�ned. To-

gether with (3), this implies J�K

�

(x) = J�K

�

. By dm-Var, J�K

�

` x : J�K

�

(6)

follows. Now, by Lemma 1.3.19, we have D  � � T, whih, ombined with

9�  D, yields 9�  � � T (7). By (7), (4), (5), (2), and Lemma 1.4.12, we

�nd that �(T) is an instane of J�K

�

. Thus, applying dm-Inst to (6) yields

J�K

�

` t : �(T).

Æ Case hmd-Abs. The rule's onlusion is C;� ` �z:t : T! T

0

. Its premise

is C; (�; z : T) ` t : T

0

. Applying the indution hypothesis to it yields J�K

�

; z :

�(T) ` t : �(T

0

). By dm-Abs, this implies J�K

�

` �z:t : �(T) ! �(T

0

), that is,

J�K

�

` �z:t : �(T! T

0

).

Æ Case hmd-App. By an extension of dom(�) to inlude ftv (T), by the

indution hypothesis, and by dm-App.

Æ Case hmx-Let. By an extension of dom(�) to inlude ftv(�), by the

indution hypothesis, and by dm-Let.

Æ Case hmx-Gen. The rule's onlusion is C^9�;� ` t : �, where � stands

for 8

�

X[D℄:T. By hypothesis, � is a most general uni�er of C ^ 9� (1), and

ftv(�; �) � dom(�) (2) holds. The rule's premises are C^D;� ` t : T (3) and

�

X # ftv(C;�) (4). We may further assume, w.l.o.g.,

�

X # � (5). Given (1), (2),

and (5), we may de�ne �

0

and

�

Y exatly as in Lemma 1.4.8. Then, �

0

is a most

general uni�er of 9� ^D, that is, C ^D. Furthermore, dom(�

0

) is dom(�)[

�

X,

whih by (2) is a superset of ftv(�; T). Thus, the indution hypothesis applies

to �

0

and to (3), yielding J�K

�

0

` t : �

0

(T). Beause �

0

extends �, by (2)

and by Lemma 1.4.11, this may be read J�K

�

` t : �

0

(T) (6). Aording to

Lemma 1.4.8, we have ftv(J�K

�

) � range(�), whih by onstrution of

�

Y implies

�

Y # ftv(J�K

�

) (7). By dm-Gen, (6) and (7) yield J�K

�

` t : 8

�

Y:�

0

(T), that is,

J�K

�

` t : J�K

�

.

Æ Case hmd-Sub. The rule's onlusion is C;� ` t : T

0

. By hypothesis, �

is a most general uni�er of C (1), and ftv(�; T

0

) � dom(�) (2) holds. The

goal is J�K

�

` t : �(T

0

) (3). The rule's premises are C;� ` t : T (4) and

C  T = T

0

(5). We may assume, w.l.o.g., ftv(T) # range(�) (6). Then,

by (6) and Lemma 1.3.43, we may extend the domain of �, so as to ahieve

ftv(T) � dom(�) (7), without ompromising (1) or (2) or a�eting the goal

(3). By (1), (2), and (7), the indution hypothesis applies to (4), yielding

J�K

�

` t : �(T) (8). Now, thanks to (1), (5) may be read 9�  T = T

0

, whih

by Lemmas 1.3.29 and 1.3.42 implies true  �(T) = �(T

0

). Then, Lemma 1.3.32

shows that �(T) and �(T

0

) oinide. As a result, (8) is the goal (3).

Æ Case hmd-Exists. The rule's onlusion is 9

�

X:C;� ` t : T. By hypothesis,

� is a most general uni�er of 9

�

X:C (1), and ftv(�; T) � dom(�) (2) holds. The
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rule's premises are C;� ` t : T (3) and

�

X # ftv(�; T). We may assume,

w.l.o.g.,

�

X # � (4). As in the previous ase, we may extend the domain of

� to guarantee ftv(9

�

X:C) � dom(�) (5). By (1), (4), (5), and Lemma 1.3.45,

there exists a type substitution �

0

suh that �

0

extends � (6) and �

0

is a

most general uni�er of C. Applying the indution hypothesis to �

0

and to (3)

yields J�K

�

0

` t : �

0

(T). By (2), (6), and Lemma 1.4.11, this may be read

J�K

�

` t : �(T). 2

Together, Theorems 1.4.7 and 1.4.13 yield a preise orrespondene between

DM and HM(=): there exists a ompositional translation from eah to the

other. In other words, they may be viewed as two equivalent formulations of

a single type system. One might also say that HM(=) is a onstraint-based

formulation of DM. Furthermore, Theorem 1.4.7 states that every member of

the HM(X) family is an extension of DM. This explains our double interest in

HM(X), as an alternate formulation of DM, whih we believe is more pleasant,

for reasons already disussed, and as a more expressive framework.

1.5 A purely onstraint-based type system: PCB(X)

In the previous setion, we have presented HM(X), an elegant onstraint-

based extension of Damas and Milner's type system. However, HM(X), as

desribed there, su�ers from a drawbak. A typing judgement involves both

a onstraint, whih represents an assumption about its free type variables,

and an environment, whih represents an assumption about its free program

identi�ers. At a let node, hmd-LetGen turns a part of the urrent onstraint,

namely D, into a type sheme, namely 8

�

X[D℄:T, and stores it into the envi-

ronment. Then, at every ourrene of the let-bound variable, hmd-VarInst

retrieves this type sheme from the environment and adds a opy of D bak to

the urrent onstraint. In pratie, it is important to simplify the type sheme

8

�

X[D℄:T before it is stored in the environment, beause it would be ine�ient

to opy an unsimpli�ed onstraint. In other words, it appears that, in order to

preserve e�ieny, onstraint generation and onstraint simpli�ation annot

be separated.

Of ourse, in pratie, it is not di�ult to intermix these phases, so the

problem is not tehnial, but pedagogial. Indeed, we argued earlier that it is

natural and desirable to separate them. Type sheme introdution and elim-

ination onstraints, whih we introdued in Setion 1.3 but did not use in

the spei�ation of HM(X), are intended as a means of solving this prob-

lem. In the present setion, we exploit them to give a novel formulation of

HM(X), whih no longer requires opying onstraints bak and forth between

the environment and the onstraint assumption. In fat, the environment is
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C  x � T

C ` x : T

(Var)

C ` t : T

0

let z : T in C ` �z:t : T! T

0

(Abs)

C

1

` t

1

: T! T

0

C

2

` t

2

: T

C

1

^ C

2

` t

1

t

2

: T

0

(App)

C

1

` t

1

: T

1

C

2

` t

2

: T

2

let z : 8V [C

1

℄:T

1

in C

2

` let z = t

1

in t

2

: T

2

(Let)

C ` t : T

C ^ T � T

0

` t : T

0

(Sub)

C ` t : T

�

X # ftv (T)

9

�

X:C ` t : T

(Exists)

Figure 1-9: Typing rules for PCB(X)

suppressed altogether: taking advantage of the new onstraint forms, we en-

ode information about program identi�ers within the onstraint assumption.

Presentation

We now employ the full onstraint language (Setion 1.3). Typing judgements

take the form C ` t : T, where C may have free type variables and free

program identi�ers. The rules that allow deriving suh judgements appear in

Figure 1-9. As before, we identify judgements up to onstraint equivalene.

Let us review the rules. Var states that x has type T under any onstraint

that entails x � T. Note that we no longer onsult the type sheme assoiated

with x in the environment�indeed, there is no environment. Instead, we let

the onstraint assumption reord the fat that the type sheme should admit

T as one of its instanes. Thus, in a judgement C ` t : T, any program identi-

�er that ours free within t typially also ours free within C. Abs requires

the body t of a �-abstration to have type T

0

under assumption C. Although

no expliit assumption about z appears in the premise, C typially ontains

a number of instantiation onstraints bearing on z, of the form z � T

i

. In

the rule's onlusion, C is wrapped within the pre�x let z : T in [℄, where T

is the type assigned to z. This e�etively requires every T

i

to denote a super-

type of T, as desired. Please note that z does not our free in the onstraint

let z : T in C, whih is natural, sine it does not our free in �z:t. App

exhibits a minor stylisti di�erene with respet to hmx-App: its onstraint

assumption is split between its premises. It is not di�ult to prove that, when

weakening holds (see Lemma 1.5.2 below), this hoie does not a�et the set

of valid judgements. This new presentation enourages reading the rules in

Figure 1-9 as the spei�ation of an algorithm, whih, given t and T, pro-
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dues C suh that C ` t : T holds. In the ase of App, the algorithm invokes

itself reursively for eah of the two subexpressions, yielding the onstraints

C

1

and C

2

, then onstruts their onjuntion. Let is analogous to Abs: by

wrapping C

2

within a let pre�x, it gives meaning to the instantiation on-

straints bearing on z within C

2

. The di�erene is that z may now be assigned

a type sheme, as opposed to a monotype. An appropriate type sheme is built

in the most straightforward manner from the onstraint C

1

and the type T

1

that desribe t

1

. All of the type variables that appear free in the left-hand

premise are generalized, hene the notation 8V [C

1

℄:T

1

, whih is a onvenient

shorthand for 8ftv(C

1

; T

1

)[C

1

℄:T

1

. The side-ondition that �type variables that

our free in the environment must not be generalized�, whih was present in

DM and HM(X), naturally disappears, sine judgements no longer involve an

environment. Sub again exhibits a minor stylisti di�erene with respet to

hmx-Sub: the omments made about App above apply here as well. Exists

is essentially idential to hmx-Exists.

In the standard spei�ation of HM(X), hmd-Abs and hmd-LetGen au-

mulate information in the environment. Through the environment, this infor-

mation is made available to hmd-VarInst, whih retrieves and opies it. Here,

instead, no information is expliitly transmitted. Where a program identi�er

is bound, a type sheme introdution onstraint is built; where a program

identi�er is used, a type sheme instantiation onstraint is produed. The two

are related only by our de�nition of the meaning of onstraints.

The reader may be puzzled by the fat that Let allows all type variables

that our free in its left-hand premise to be generalized. The following exer-

ise sheds some light on this issue.

1.5.1 Exerise [F, Reommended℄: Build a type derivation for the expression

�z

1

:let z

2

= z

1

in z

2

within PCB(X). Draw a omparison with the solution

of Exerise 1.2.21. 2

The following lemma is an analogue of Lemma 1.4.2.

1.5.2 Lemma [Weakening℄: If C

0

 C, then every derivation of C ` t : T may be

turned into a derivation of C

0

` t : T with the same shape. 2

Proof: The proof is by strutural indution on a derivation of C ` t : T. In

eah proof ase, we adopt the notations of Figure 1-9.

Æ Case Var. By transitivity of entailment.

Æ Case Abs. The rule's onlusion is let z : T in C ` �z:t : T ! T

0

(1).

By hypothesis, we have C

0

 let z : T in C (2). We may assume, w.l.o.g.,

z 62 fpi (C

0

) (3). The rule's premise is C ` t : T

0

(4). Applying the indution

hypothesis to (4) yields C ^C

0

` t : T

0

, whih by Abs implies let z : T in (C ^
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C

0

) ` �z:t : T ! T

0

(5). By (3) and C-InAnd*, let z : T in (C ^ C

0

) is

equivalent to (let z : T in C) ^ C

0

, whih by (2) and C-Dup is equivalent to

C

0

. Thus, (5) is the goal C

0

` �z:t : T! T

0

.

Æ Case App. By applying the indution hypothesis to eah premise, using

the fat that C

0

 C

1

^ C

2

implies C

0

 C

1

and C

0

 C

2

.

Æ Case Let. Analogous to the ase of Abs. The indution hypothesis is

applied to the seond premise only.

Æ Case Sub. Analogous to the ase of App.

Æ Case Exists. See the orresponding ase in the proof of Lemma 1.4.2. 2

Relating PCB(X) with HM(X)

Let us now provide evidene for our laim that PCB(X) is an alternate pre-

sentation of HM(X). The next two theorems de�ne an e�etive translation

from HM(X) to PCB(X) and bak.

The �rst theorem states that if, within HM(X), t has type T under as-

sumptions C and �, then, within PCB(X), t also has type T, under some

assumption C

0

. The relationship C  let � in C

0

states that C entails the

residual onstraint obtained by onfronting �, whih provides information

about the free program identi�ers in t, with C

0

, whih ontains instantiation

onstraints bearing on these program identi�ers. The statement requires C

and � to have no free program identi�ers, whih is natural, sine they are

part of an HM(X) judgement. The hypothesis C  9� exludes the somewhat

pathologial situation where � ontains onstraints not apparent in C. This

hypothesis vanishes when � is the initial environment; see De�nition 1.7.3.

1.5.3 Theorem: Let C  9�. Assume fpi (C;�) = ?. If C;� ` t : T holds in

HM(X), then there exists a onstraint C

0

suh that C

0

` t : T holds in

PCB(X) and C entails let � in C

0

. 2

Proof: The proof is by strutural indution on a derivation of C;� ` t : T.

In eah proof ase, we adopt the notations of Figure 1-8.

Æ Case hmd-VarInst. The rule's onlusion is C^D;� ` x : T. By hypoth-

esis, we have C ^ D  9� (1) and fpi (C;D;�) = ? (2). The rule's premise

is �(x) = 8

�

X[D℄:T (3). By Var, we have x � T ` x : T, so there remains to

establish C ^D  let � in x � T (4). By (3), (2), and C-InId, the onstraint

let � in x � T is equivalent to let � in 8

�

X[D℄:T � T, whih, by (2) and C-In*,

is itself equivalent to 9�^ 8

�

X[D℄:T � T (5). By (1) and Lemma 1.3.19, C ^D

entails (5). We have established (4).

Æ Case hmd-Abs. The rule's onlusion is C;� ` �z:t : T! T

0

. Its premise

is C; (�; z : T) ` t : T

0

(1). The onstraints 9� and 9(�; z : T) are equivalent,
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so the indution hypothesis applies to (1) and yields a onstraint C

0

suh

that C

0

` t : T

0

(2) and C  let �; z : T in C

0

(3). Applying Abs to (2)

yields let z : T in C

0

` �z:t : T ! T

0

. There remains to hek that C entails

let � in let z : T in C

0

�but that is preisely (3).

Æ Case hmd-App. The rule's onlusion is C;� ` t

1

t

2

: T

0

. Its premises

are C;� ` t

1

: T ! T

0

(1) and C;� ` t

2

: T (2). Applying the indution

hypothesis to (1) and (2), we obtain onstraints C

0

1

and C

0

2

suh that C

0

1

`

t

1

: T ! T

0

(3) and C

0

2

` t

2

: T (4) and C  let � in C

0

1

(5) and C 

let � in C

0

2

(6). By App, (3) and (4) imply C

0

1

^C

0

2

` t

1

t

2

: T

0

. Furthermore,

by C-InAnd, (5) and (6) yield C  let � in C

0

1

^ C

0

2

.

Æ Case hmd-LetGen. The rule's onlusion is C ^ 9

�

X:D;� ` let z =

t

1

in t

2

: T

2

. By hypothesis, we have C ^ 9

�

X:D  9� (1) and fpi (C;D;�) =

? (2). The rule's premises are C ^D;� ` t

1

: T

1

(3) and

�

X # ftv(C;�) (4)

and C ^ 9

�

X:D;�

0

` t

2

: T

2

(5), where �

0

is �; z : 8

�

X[D℄:T

1

. Applying the

indution hypothesis to (3) yields a onstraint C

0

1

suh that C

0

1

` t

1

: T

1

(6)

and C ^D  let � in C

0

1

(7). By (1), (2), and C-In*, we have C ^9

�

X:D  9�

0

.

Thus, the indution hypothesis applies to (5) and yields a onstraint C

0

2

suh

that C

0

2

` t

2

: T

2

(8) and C ^ 9

�

X:D  let �

0

in C

0

2

(9). By Let, (6) and (8)

imply let z : 8V [C

0

1

℄:T

1

in C

0

2

` let z = t

1

in t

2

: T

2

(10). By Lemmas 1.3.25

and 1.5.2, (10) yields let z : 8

�

X[C

0

1

℄:T

1

in C

0

2

` let z = t

1

in t

2

: T

2

(11),

where the universal quanti�ation is over

�

X only. There remains to establish

that C ^ 9

�

X:D entails let �; z : 8

�

X[C

0

1

℄:T

1

in C

0

2

(12). By (4), (2), and C-

LetDup, the onstraint (12) is equivalent to let �; z : 8

�

X[let � in C

0

1

℄:T

1

in C

0

2

.

By (7), this onstraint is entailed by let �; z : 8

�

X[C ^ D℄:T

1

in C

0

2

, whih by

(4) and C-LetAnd, is equivalent to C ^ let �; z : 8

�

X[D℄:T

1

in C

0

2

, that is,

C ^ let �

0

in C

0

2

. By (9), this onstraint is entailed by C ^ 9

�

X:D.

Æ Case hmd-Sub. The rule's onlusion is C;� ` t : T

0

. Its premises are

C;� ` t : T (1) and C  T � T

0

(2). Applying the indution hypothesis to

(1) yields a onstraint C

0

suh that C

0

` t : T (3) and C  let � in C

0

(4).

By Sub, (3) implies C

0

^ T � T

0

` t : T

0

. There remains to establish C 

let � in (C

0

^ T � T

0

), whih follows from (4) and (2) by C-InAnd*.

Æ Case hmd-Exists. The rule's onlusion is 9

�

X:C;� ` t : T. Its premises

are C;� ` t : T (1) and

�

X # ftv (�; T) (2). By hypothesis, we have 9

�

X:C 

9�, whih by Lemma 1.3.16 implies C  9�. Thus, the indution hypothesis

applies to (1) and yields a onstraint C

0

suh that C

0

` t : T (3) and C 

let � in C

0

(4). By Exists, (3) and (2) imply 9

�

X:C

0

` t : T. There remains

to establish 9

�

X:C  let � in 9

�

X:C

0

. By ongruene of entailment, (4) implies

9

�

X:C  9

�

X:let � in C

0

. The result follows by (2) and C-InEx. 2

The seond theorem states that if, within PCB(X), t has type T under

assumption C, then, within HM(X), t also has type T, under assumptions
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let � in C and �. The idea is simple: the onstraint C represents a ombined

assumption about the initial judgement's free type variables and free program

identi�ers. In HM(X), these two kinds of assumptions must be maintained

separately. So, we split them into a pair of an environment �, whih may be

hosen arbitrarily, provided it satis�es fpi (C) � dpi (�)�that is, provided it

de�nes all program variables of interest, and the residual onstraint let � in C,

whih has no free program identi�ers, thus represents an assumption about

the new judgement's type variables only. Distint hoies of � give rise to

distint HM(X) judgements, whih may be inomparable; this is related to

the fat that ML-the-type-system does not have prinipal typings (Jim, 1995).

Again, the hypothesis fpi (�) = fpi (let � in C) = ? is natural, sine we wish

� and let � in C to appear in an HM(X) judgement.

1.5.4 Theorem: Assume fpi (�) = fpi (let � in C) = ? and C 6� false. If C ` t : T

holds in PCB(X), then let � in C;� ` t : T holds in HM(X). 2

Proof: The proof is by strutural indution on a derivation of C ` t : T. In

eah proof ase, we adopt the notations of Figure 1-9.

By Lemma 1.3.30, the hypothesis C 6� false is preserved whenever the in-

dution hypothesis is invoked. It is expliitly used only in ase Var, where it

guarantees that the identi�er at hand is bound in �.

Æ Case Var. The rule's onlusion is C ` x : T. Its premise is C  x �

T (1). By Lemma 1.3.24, (1) and the hypothesis C 6� false imply x 2 fpi(C).

Beause let � in C has no free program identi�ers, this implies x 2 dpi (�),

that is, the environment � must de�ne x. Let �(x) = 8

�

X[D℄:T

0

(2), where

�

X # ftv(�; T) (3). By (2), hmd-VarInst, and hmd-Sub, we have D ^ T

0

�

T;� ` x : T. By (3) and hmd-Exists, this implies 9

�

X:(D^T

0

� T);� ` x : T (4).

Now, by (3), the onstraint 9

�

X:(D ^ T

0

� T) may be written 8

�

X[D℄:T

0

� T (5).

The hypothesis fpi (�) = ? implies fpi (D) = ? (6). By (6), C-InId and C-

In*, (5) is equivalent to let � in x � T. Thus, (4) may be written let � in x �

T;� ` x : T. By (1), by ongruene of entailment, and by Lemma 1.4.2, this

implies let � in C;� ` x : T.

Æ Case Abs. The rule's onlusion is let z : T in C ` �z:t : T ! T

0

. Its

premise is C ` t : T

0

(1). Let �

0

stand for �; z : T. Applying the indution

hypothesis to (1) yields let �

0

in C;�

0

` t : T

0

. By hmd-Abs, this implies

let �

0

in C;� ` �z:t : T! T

0

.

Æ Case App. The rule's onlusion is C

1

^ C

2

` t

1

t

2

: T

0

. Its premises are

C

1

` t

1

: T ! T

0

and C

2

` t

2

: T. Applying the indution hypothesis yields

respetively let � in C

1

;� ` t

1

: T ! T

0

and let � in C

2

;� ` t

2

: T, whih by

Lemma 1.4.2 and hmd-App imply let � in (C

1

^ C

2

);� ` t

1

t

2

: T

0

.

Æ Case Let. The rule's onlusion is let z : 8V [C

1

℄:T

1

in C

2

` let z =
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t

1

in t

2

: T

2

. Its premises are C

1

` t

1

: T

1

(1) and C

2

` t

2

: T

2

(2). Let

�

X

stand for ftv(C

1

; T

1

). We may require, w.l.o.g.,

�

X # ftv(�; C

2

) (3). By hypoth-

esis, we have fpi (�) = ? (4). We also have fpi (let �; z : 8V [C

1

℄:T

1

in C

2

) = ?,

whih implies fpi (let � in C

1

) = ?. Thus, the indution hypothesis ap-

plies to (1) and yields let � in C

1

;� ` t

1

: T

1

(5). Now, let � stand

for 8

�

X[let � in C

1

℄:T

1

and �

0

stand for �; z : �. We have fpi (�

0

) =

fpi(let �

0

in C

2

) = ?. Thus, the indution hypothesis applies to (2) and

yields let �

0

in C

2

;�

0

` t

2

: T

2

(6). Let us now weaken (5) and (6) so as to

make them suitable premises for hmd-LetGen. Applying Lemma 1.4.2 to (5)

yields (let �

0

in C

2

) ^ (let � in C

1

);� ` t

1

: T

1

(7). Applying Lemma 1.4.2 to

(6) yields (let �

0

in C

2

) ^ 9

�

X:(let � in C

1

);�

0

` t

2

: T

2

(8). Last, (3) implies

�

X # ftv (�; let �

0

in C

2

) (9). Applying hmd-LetGen to (7), (9) and (8), we

obtain (let �

0

in C

2

)^9

�

X:(let � in C

1

);� ` let z = t

1

in t

2

: T

2

(10). Now, by

(4), (3), and C-LetDup, let �

0

in C

2

is equivalent to let �; z : 8

�

X[C

1

℄:T

1

in C

2

.

Using this fat, as well as (3), C-InEx, and C-InAnd, we �nd that the on-

straint (let �

0

in C

2

) ^ 9

�

X:(let � in C

1

) is equivalent to let � in (let z :

8

�

X[C

1

℄:T

1

in C

2

^ 9

�

X:C

1

), whih by de�nition of the let form, is itself equiv-

alent to let �; z : 8

�

X[C

1

℄:T

1

in C

2

. Last, by de�nition of

�

X, this onstraint is

let �; z : 8V [C

1

℄:T

1

in C

2

. Thus, (10) is the goal.

Æ Case Sub. The rule's onlusion is C^T � T

0

` t : T

0

. Its premise is C ` t :

T (1). Applying the indution hypothesis to (1) yields let � in C;� ` t : T (2).

By Lemma 1.4.2 and hmd-Sub, (2) implies (let � in C) ^ T � T

0

;� ` t : T

0

,

whih by C-InAnd* may be written let � in (C ^ T � T

0

);� ` t : T

0

.

Æ Case Exists. The rule's onlusion is 9

�

X:C ` t : T. Its premises are C `

t : T (1) and

�

X # ftv(T) (2). We may further require, w.l.o.g.,

�

X # ftv(�) (3).

Applying the indution hypothesis to (1) yields let � in C;� ` t : T (4).

Applying hmd-Exists to (2), (3), and (4), we �nd 9

�

X:let � in C;� ` t : T,

whih, by (3) and C-InEx, may be written let � in 9

�

X:C;� ` t : T. 2

As a orollary, we �nd that, for losed programs, the type systems HM(X)

and PCB(X) oinide. In partiular, a program is well-typed with respet to

one if and only if it is well-typed with respet to the other. This supports the

view that PCB(X) is an alternate formulation of HM(X).

1.5.5 Theorem: Assume fpi (C) = ? and C 6� false. Then, C;? ` t : T holds in

HM(X) if and only if C ` t : T holds in PCB(X). 2

1.6 Constraint generation

We now explain how to redue type inferene problems for PCB(X) to on-

straint solving problems. A type inferene problem onsists of an expression
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Jx : TK = x � T

J�z:t : TK = 9X

1

X

2

:(let z : X

1

in Jt : X

2

K ^ X

1

! X

2

� T)

Jt

1

t

2

: TK = 9X

2

:(Jt

1

: X

2

! TK ^ Jt

2

: X

2

K)

Jlet z = t

1

in t

2

: TK = let z : 8X[Jt

1

: XK℄:X in Jt

2

: TK

Figure 1-10: Constraint generation

t and a type T of kind ?. The problem is to determine whether t is well-typed

with type T, that is, whether there exists a satis�able onstraint C suh that

C ` t : T holds. This formulation of the problem may seem to require an

appropriate type T to be known in advane; this is not really the ase, sine T

may be a type variable. A onstraint solving problem onsists of a onstraint

C. The problem is to determine whether C is satis�able. To redue a type

inferene problem (t; T) to a onstraint solving problem, we must produe

a onstraint C that is both su�ient and neessary for C ` t : T to hold.

Below, we explain how to ompute suh a onstraint, whih we write Jt : TK.

We hek that it is indeed su�ient by proving Jt : TK ` t : T. That is, the

onstraint Jt : TK is spei� enough to guarantee that t has type T. We say

that onstraint generation is sound. We hek that it is indeed neessary by

proving that, for every onstraint C, C ` t : T implies C  Jt : TK. That is,

every onstraint that guarantees that t has type T is at least as spei� as

Jt : TK. We say that onstraint generation is omplete. Together, these prop-

erties mean that Jt : TK is the least spei� onstraint that guarantees that t

has type T.

We now see how to redue a type inferene problem to a onstraint solving

problem. Indeed, if there exists a satis�able onstraint C suh that C ` t : T

holds, then, by the ompleteness property, C  Jt : TK holds, so Jt : TK is

satis�able. Conversely, the soundness property states that Jt : TK ` t : T

holds, so, if Jt : TK is satis�able, then there exists a satis�able onstraint C

suh that C ` t : T holds. In other words, t is well-typed with type T if and

only if Jt : TK is satis�able.

The existene of suh a onstraint is the analogue of the existene of prini-

pal type shemes in lassi presentations of ML-the-type-system (Damas and

Milner, 1982). Indeed, a prinipal type sheme is least spei� in the sense

that all valid types are substitution instanes of it. Here, the onstraint Jt : TK

is least spei� in the sense that all valid onstraints entail it. Earlier, we have

established a onnetion between onstraint entailment and re�nement of type

substitutions, in the spei� ase of equality onstraints interpreted over a free

algebra of �nite types; see Lemma 1.3.39.
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The onstraint Jt : TK is de�ned in Figure 1-10 by indution on the struture

of the expression t. We refer to these de�ning equations as the onstraint

generation rules. The de�nition is quite terse. It is perhaps even simpler than

the delarative spei�ation of PCB(X) given in Figure 1-9; yet, we prove

below that the two are equivalent.

Before explaining the de�nition, we state the requirements that bear on

the type variables X

1

, X

2

, and X, whih appear bound in the right-hand sides

of the seond, third, and fourth equations. These type variables must have

kind ?. They must be hosen distint (that is, X

1

6= X

2

in the seond equation)

and fresh in the following sense: type variables that appear bound in an equa-

tion's right-hand side must not appear free in the equation's left-hand side.

Provided this restrition is obeyed, di�erent hoies of X

1

, X

2

, and X lead to

�-equivalent onstraints�that is, to the same onstraint, sine we identify

objets up to �-onversion�whih guarantees that the above equations make

sense. We remark that, sine expressions do not have free type variables, the

freshness requirement may be simpli�ed to: type variables that appear bound

in an equation's right-hand side must not appear free in T. However, this sim-

pli�ation is rendered invalid by the introdution of type annotations within

expressions (page 102). Please note that we are able to state a formal fresh-

ness requirement. This is made possible by the fat that Jt : TK has no free

type variables other than those of T, whih in turn depends on our expliit

use of existential quanti�ation.

Let us now review the four equations. The �rst one simply mirrors Var.

The seond one requires t to have type X

2

under the hypothesis that z has

type X

1

, and forms the arrow type X

1

! X

2

; this orresponds to Abs. Here, X

1

and X

2

must be fresh type variables, beause we annot in general guess the

expeted types of z and t. The expeted type T is required to be a supertype

of X

1

! X

2

; this orresponds to Sub. We must bind the fresh type variables

X

1

and X

2

, so as to guarantee that the generated onstraint is unique up

to �-onversion. Furthermore, we must bind them existentially, beause we

intend the onstraint solver to hoose some appropriate value for them. This

is justi�ed by Exists. The third equation uses the fresh type variable X

2

to stand for the unknown type of t

2

. The subexpression t

1

is expeted to

have type X

2

! T. This orresponds to App. The fourth equation, whih

orresponds to Let, is most interesting. It summons a fresh type variable X

and produes Jt

1

: XK. This onstraint, whose sole free type variable is X, is

the least spei� onstraint that must be imposed on X so as to make it a

valid type for t

1

. As a result, the type sheme 8X[Jt

1

: XK℄:X, abbreviated �

in the following, is a prinipal type sheme for t

1

. There remains to plae

Jt

2

: TK inside the ontext let z : � in [℄. Indeed, when plaed inside this

ontext, an instantiation onstraint of the form z � T

0

aquires the meaning
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� � T

0

, whih by de�nition of � and by Lemma 1.6.4 (see below) is equivalent

to Jt

1

: T

0

K. Thus, the onstraint produed by the fourth equation simulates a

textual expansion of the let onstrut, whereby every ourrene of z would

be replaed with t

1

. Thanks to type sheme introdution and instantiation

onstraints, however, this e�et is ahieved without dupliation of soure ode

or onstraints. In other words, onstraint generation has linear time and spae

omplexity; dupliation may take plae during onstraint solving only.

1.6.1 Exerise [F, 9℄: De�ne the size of an expression, of a type, and of a on-

straint, viewed as abstrat syntax trees. Chek that the size of Jt : TK is linear

in the sum of the sizes of t and T. 2

We now establish several properties of onstraint generation. We begin with

soundness, whose proof is straightforward.

1.6.2 Theorem [Soundness℄: Jt : TK ` t : T. 2

Proof: By indution on the struture of t.

Æ Case x. The goal x � T ` x : T follows from Var.

Æ Case �z:t. By the indution hypothesis, we have Jt : X

2

K ` t : X

2

. By

Abs, this implies let z : X

1

in Jt : X

2

K ` �z:t : X

1

! X

2

. By Sub, this implies

let z : X

1

in Jt : X

2

K ^ X

1

! X

2

� T ` �z:t : T. Lastly, beause X

1

X

2

# ftv(T)

holds, Exists applies and yields J�z:t : TK ` �z:t : T.

Æ Case t

1

t

2

. By the indution hypothesis, we have Jt

1

: X

2

! TK ` t

1

:

X

2

! T and Jt

2

: X

2

K ` t

2

: X

2

. By App, this implies Jt

1

: X

2

! TK ^

Jt

2

: X

2

K ` t

1

t

2

: T. Beause X

2

62 ftv(T) holds, Exists applies and yields

Jt

1

t

2

: TK ` t

1

t

2

: T.

Æ Case let z = t

1

in t

2

. By the indution hypothesis, we have Jt

1

:

XK ` t

1

: X and Jt

2

: TK ` t

2

: T. By Let, these imply let z : 8V [Jt

1

:

XK℄:X in Jt

2

: TK ` let z = t

1

in t

2

: T. Beause ftv (Jt

1

: XK) is X, the universal

quanti�ation on V really bears on X alone. We have proved Jlet z = t

1

in t

2

:

TK ` let z = t

1

in t

2

: T. 2

The following lemmas are used in the proof of the ompleteness property and

in a number of other oasions. The �rst two state that Jt : TK is ovariant with

respet to T. Roughly speaking, this means that enough subtyping onstraints

are generated to ahieve ompleteness with respet to Sub.

1.6.3 Lemma: Jt : TK ^ T � T

0

entails Jt : T

0

K. 2

1.6.4 Lemma: X 62 ftv(T) implies 9X:(Jt : XK ^ X � T) � Jt : TK. 2
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The next lemma gives a simpli�ed version of the seond onstraint genera-

tion rule, in the spei� ase where the expeted type is an arrow type. Then,

fresh type variables need not be generated; one may diretly use the arrow's

domain and odomain instead.

1.6.5 Lemma: J�z:t : T

1

! T

2

K is equivalent to let z : T

1

in Jt : T

2

K. 2

We onlude with the ompleteness property.

1.6.6 Theorem [Completeness℄: if C ` t : T, then C  Jt : TK. 2

Proof: By indution on the derivation of C ` t : T.

Æ Case Var. The rule's onlusion is C ` x : T. Its premise is C  x � T,

whih is also the goal.

Æ Case Abs. The rule's onlusion is let z : T in C ` �z:t : T ! T

0

. Its

premise is C ` t : T

0

. By the indution hypothesis, we have C  Jt : T

0

K. By

ongruene of entailment, this implies let z : T in C  let z : T in Jt : T

0

K,

whih, by Lemma 1.6.5, may be written let z : T in C  J�z:t : T! T

0

K.

Æ Case App. The rule's onlusion is C

1

^ C

2

` t

1

t

2

: T

0

. Its premises are

C

1

` t

1

: T! T

0

and C

2

` t

2

: T. By the indution hypothesis, we have C

1



Jt

1

: T! T

0

K and C

2

 Jt

2

: TK. Thus, C

1

^ C

2

entails Jt

1

: T! T

0

K ^ Jt

2

: TK,

whih, by C-NameEq, may be written 9X

2

:(X

2

= T^Jt

1

: X

2

! T

0

K^Jt

2

: X

2

K),

where X

2

62 ftv(T; T

0

). Forgetting about the equation X

2

= T, we �nd that

C

1

^ C

2

entails 9X

2

:(Jt

1

: X

2

! T

0

K ^ Jt

2

: X

2

K), whih is preisely Jt

1

t

2

: T

0

K.

Æ Case Let. The rule's onlusion is let z : 8V [C

1

℄:T

1

in C

2

` let z =

t

1

in t

2

: T

2

. Its premises are C

1

` t

1

: T

1

and C

2

` t

2

: T

2

. By the

indution hypothesis, we have C

1

 Jt

1

: T

1

K and C

2

 Jt

2

: T

2

K, whih

implies let z : 8V [C

1

℄:T

1

in C

2

 let z : 8V [Jt

1

: T

1

K℄:T

1

in Jt

2

: T

2

K (1).

Now, let us establish true  8X[Jt

1

: XK℄:X � 8V [Jt

1

: T

1

K℄:T

1

(2). By

de�nition, this requires proving 9

�

X

1

:(Jt

1

: T

1

K ^ T

1

� Z)  9X:(Jt

1

: XK ^ X �

Z) (3), where

�

X

1

= ftv(T

1

) and Z 62 X

�

X

1

(4). By Lemma 1.6.3, (4), and C-

Ex*, the left-hand side of (3) entails Jt

1

: ZK. By (4) and Lemma 1.6.4, the

right-hand side of (3) is Jt

1

: ZK. Thus, (3) holds, and so does (2).

By (2) and Lemma 1.3.22, we have let z : 8V [Jt

1

: T

1

K℄:T

1

in Jt

2

: T

2

K 

let z : 8X[Jt

1

: XK℄:X in Jt

2

: T

2

K (5). By transitivity of entailment, (1) and (5)

yield let z : 8V [C

1

℄:T

1

in C

2

 Jlet z = t

1

in t

2

: T

2

K.

Æ Case Sub. The rule's onlusion is C ^ T � T

0

` t : T

0

. Its premise is

C ` t : T. By the indution hypothesis, we have C  Jt : TK, whih implies

C^T � T

0

 Jt : TK^T � T

0

. By lemma 1.6.3 and by transitivity of entailment,

we obtain C ^ T � T

0

 Jt : T

0

K.

Æ Case Exists. The rule's onlusion is 9

�

X:C ` t : T. Its premises are

C ` t : T and

�

X # ftv(T) (1). By the indution hypothesis, we haveC  Jt : TK.
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By ongruene of entailment, this implies 9

�

X:C  9

�

X:Jt : TK (2). Furthermore,

(1) implies

�

X # ftv(Jt : TK) (3). By (3) and C-Ex*, (2) may be written

9

�

X:C  Jt : TK. 2

1.7 Type soundness

We are now ready to establish type soundness for our type system. The state-

ment that we wish to prove is sometimes known as Milner's slogan: well-typed

programs do not go wrong (Milner, 1978). Below, we de�ne well-typedness in

terms of our onstraint generation rules, for the sake of onveniene, and estab-

lish type soundness with respet to that partiular de�nition. Theorems 1.4.7,

1.5.4, and 1.6.6 imply that type soundness also holds when well-typedness is

de�ned with respet to the typing judgements of DM, HM(X), or PCB(X).

We establish type soundness by following Wright and Felleisen's so-alled syn-

tati approah (1994b). The approah onsists in isolating two independent

properties. Subjet redution, whose exat statement will be given below, im-

plies that well-typedness is preserved by redution. Progress states that no

stuk on�guration is well-typed. It is immediate to hek that, if both prop-

erties hold, then no well-typed program an redue to a stuk on�guration.

Subjet redution itself depends on a key lemma, usually known as a (term)

substitution lemma. We immediately give two versions of this lemma: the for-

mer is stated in terms of PCB(X) judgements, while the latter is stated in

terms of the onstraint generation rules.

1.7.1 Lemma [Substitution℄: C ` t : T and C

0

` t

0

: T

0

imply let z

0

:

8

�

X

0

[C

0

℄:T

0

in C ` [z

0

7! t

0

℄t : T. 2

Proof: The proof is by strutural indution on the derivation of C ` t : T.

In eah proof ase, we adopt the notations of Figure 1-9. We write �

0

for

8

�

X

0

[C

0

℄:T

0

. We refer to the hypothesis C

0

` t

0

: T

0

as (1). We assume,

w.l.o.g.,

�

X

0

# ftv(C; T) (2) and z

0

62 fpi (�

0

) (3).

Æ Case Var. The rule's onlusion is C ` x : T (4). Its premise is C  x �

T (5). Two subases arise.

Subase x is z

0

. Applying Sub to (1) yields C

0

^ T

0

� T ` t

0

: T. By (2)

and Exists, this implies 9

�

X

0

:(C

0

^ T

0

� T) ` t

0

: T (6). Furthermore, by

(2) again, the onstraint 9

�

X

0

:(C

0

^ T

0

� T) is �

0

� T, whih is equivalent to

let z

0

: �

0

in z

0

� T. As a result, (6) may be written let z

0

: �

0

in x � T `

[z

0

7! t

0

℄x : T (7).

Subase x isn't z

0

. Then, [z

0

7! t

0

℄x is x. Thus, Var yields 9�

0

^ x � T `

[z

0

7! t

0

℄x : T. By C-In*, this may be read let z

0

: �

0

in x � T ` [z

0

7! t

0

℄x :

T, that is, again (7).
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In either subase, by (5), by ongruene of entailment, and by Lemma 1.5.2,

(7) implies let z

0

: �

0

in C ` [z

0

7! t

0

℄t : T.

Æ Case Abs. The rule's onlusion is let z : T in C ` �z:t : T ! T

0

. Its

premise is C ` t : T

0

(8). We may assume, w.l.o.g., that z is distint from z

0

and does not our free within t

0

or �

0

(9). Applying the indution hypothesis

to (8) yields let z

0

: �

0

in C ` [z

0

7! t

0

℄t : T

0

, whih, by Abs, implies

let z : T in (let z

0

: �

0

in C) ` �z:[z

0

7! t

0

℄t : T! T

0

. By (9) and C-LetLet,

this may be written let z

0

: �

0

in (let z : T in C) ` [z

0

7! t

0

℄(�z:t) : T! T

0

.

Æ Case App. By the indution hypothesis, by App, and by C-InAnd.

Æ Case Let. The rule's onlusion is let z : 8

�

X

1

[C

1

℄:T

1

in C

2

` let z =

t

1

in t

2

: T

2

, where

�

X

1

= ftv(C

1

; T

1

). Its premises are C

1

` t

1

: T

1

(10) and

C

2

` t

2

: T

2

(11). We may assume, w.l.o.g., that z is distint from z

0

and

does not our free within t

0

or �

0

(12). We may also assume, w.l.o.g.,

�

X

1

#

ftv(�

0

) (13). Applying the indution hypothesis to (10) and (11) respetively

yields let z

0

: �

0

in C

1

` [z

0

7! t

0

℄t

1

: T

1

(14) and let z

0

: �

0

in C

2

` [z

0

7!

t

0

℄t

2

: T

2

(15). Applying Let to (14) and (15) produes let z : 8V [let z

0

:

�

0

in C

1

℄:T

1

in let z

0

: �

0

in C

2

` [z

0

7! t

0

℄(let z = t

1

in t

2

) : T

2

(16). Now,

we have

let z

0

: �

0

; z : 8

�

X

1

[C

1

℄:T

1

in C

2

� let z

0

: �

0

; z : 8

�

X

1

[let z

0

: �

0

in C

1

℄:T

1

in C

2

(17)

� let z : 8

�

X

1

[let z

0

: �

0

in C

1

℄:T

1

; z

0

: �

0

in C

2

(18)

 let z : 8V [let z

0

: �

0

in C

1

℄:T

1

; z

0

: �

0

in C

2

(19)

where (17) follows from (13), (3), and C-LetDup; (18) follows from (12) and

C-LetLet; and (19) is by Lemma 1.3.25. Thus, applying Lemma 1.5.2 to (16)

yields let z

0

: �

0

; z : 8

�

X

1

[C

1

℄:T

1

in C

2

` [z

0

7! t

0

℄(let z = t

1

in t

2

) : T

2

.

Æ Case Sub. By the indution hypothesis, by Sub, and by C-InAnd*.

Æ Case Exists. The rule's onlusion is 9

�

X:C ` t : T. Its premises are C `

t : T (20) and

�

X # ftv (T) (21). We may assume, w.l.o.g.,

�

X # ftv(�

0

) (22).

Applying the indution hypothesis to (20) yields let z

0

: �

0

in C ` [z

0

7! t

0

℄t :

T, whih, by (21) and Exists, implies 9

�

X:let z

0

: �

0

in C ` [z

0

7! t

0

℄t : T (23).

By (22) and C-InEx, (23) is let z

0

: �

0

in 9

�

X:C ` [z

0

7! t

0

℄t : T. 2

1.7.2 Lemma: let z : 8

�

X[Jt

2

: T

2

K℄:T

2

in Jt

1

: T

1

K entails J[z 7! t

2

℄t

1

: T

1

K. 2

Before going on, let us give a few de�nitions and formulate several require-

ments. First, we must de�ne an initial environment �

0

, whih assigns a type

sheme to every onstant. A ouple of requirements must be made to ensure

that �

0

is onsistent with the semantis of onstants, as spei�ed by

Æ

�!.

Seond, we must extend onstraint generation and well-typedness to on�gu-

rations, as opposed to programs, sine redution operates on on�gurations.
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Last, we must formulate a restrition to tame the interation between side

e�ets and let-polymorphism, whih is unsound if unrestrited.

1.7.3 Definition: Let �

0

be an environment whose domain is the set of onstants

Q. We require ftv(�

0

) = ?, fpi (�

0

) = ?, and 9�

0

� true. We refer to �

0

as

the initial typing environment. 2

1.7.4 Definition: Let ref be an isolated, invariant type onstrutor of signature

?) ?. A store type M is a �nite mapping from memory loations to types. We

write refM for the environment that maps m to refM(m) when m is in the

domain ofM . Assuming dom(�) and dom(M) oinide, the onstraint J� :MK

is de�ned as the onjuntion of the onstraints J�(m) : M(m)K, where m

ranges over dom(�). Under the same assumption, the onstraint Jt=� : T=MK

is de�ned as Jt : TK ^ J� : MK. A on�guration t=� is well-typed if and only

if there exist a type T and a store type M suh that dom(�) = dom(M) and

the onstraint let �

0

; refM in Jt=� : T=MK is satis�able. 2

The type ref T is the type of referenes (that is, memory loations) that

store data of type T. It must be invariant in its parameter, re�eting the fat

that referenes may be read and written.

A store is a omplex objet: it may ontain values that indiretly refer to

eah other via memory loations. In fat, it is a representation of the graph

formed by objets and pointers in memory, whih may ontain yles. We rely

on store types to deal with suh yles. In the de�nition of well-typedness,

the store type M imposes a onstraint on the ontents of the store�the value

�(m) must have type M(m)�but also plays the role of a hypothesis: by

plaing the onstraint Jt=� : T=MK within the ontext let refM in [℄, we give

meaning to free ourrenes of memory loations within Jt=� : T=MK, and

stipulate that it is valid to assume that m has type M(m). In other words, we

essentially view the store as a large, mutually reursive binding of loations

to values. Sine no satis�able onstraint may have a free program identi�er

(Lemma 1.3.31), every well-typed on�guration must be losed. The ontext

let �

0

in [℄ gives meaning to ourrenes of onstants within Jt=� : T=MK.

We now de�ne a relation between on�gurations that plays a key role in the

statement of the subjet redution property. The point of subjet redution is

to guarantee that well-typedness is preserved by redution. However, suh a

simple statement is too weak to be amenable to indutive proof. Thus, for the

purposes of the proof, we must be more spei�. To begin, let us onsider the

simpler ase of a pure semantis, that is, a semantis without stores. Then,

we must state that if an expression t has type T under a ertain onstraint,

then its redut t

0

has type T under the same onstraint. In terms of generated

onstraints, this statement beomes: let �

0

in Jt : TK entails let �

0

in Jt

0

: TK.
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Let us now return to the general ase, where a store is present. Then, the

statement of well-typedness for a on�guration t=� involves a store type M

whose domain is that of �. So, the statement of well-typedness for its redut

t

0

=�

0

must involve a store type M

0

whose domain is that of �

0

�whih is

larger if alloation ourred. The types of existing memory loations must

not hange: we must request that M and M

0

agree on dom(M), that is, M

0

must extend M . Furthermore, the types assigned to new memory loations in

dom(M

0

)ndom(M) might involve new type variables, that is, variables that do

not appear free in M or T. We must allow these variables to be hidden�that

is, existentially quanti�ed�otherwise the entailment assertion annot hold.

These onsiderations lead us to the following de�nition:

1.7.5 Definition: t=� v t

0

=�

0

holds if and only if, for every type T and for every

store type M suh that dom(�) = dom(M), there exist a set of type variables

�

Y and a store type M

0

suh that

�

Y # ftv(T;M) and ftv(M

0

) �

�

Y[ ftv(M) and

dom(M

0

) = dom(�

0

) and M

0

extends M and

let �

0

; refM in Jt=� : T=MK

 9

�

Y:let �

0

; refM

0

in Jt

0

=�

0

: T=M

0

K

The relation v is intended to express a onnetion between a on�guration

and its redut. Thus, subjet redution may be stated as: (�_) � (v), that

is, v is indeed a onservative desription of redution. 2

We have introdued an initial environment �

0

and used it in the de�nition

of well-typedness, but we haven't yet ensured that the type shemes assigned

to onstants are an adequate desription of their semantis. We now formu-

late two requirements that relate �

0

with

Æ

�!. They are speializations of

the subjet redution and progress properties to on�gurations that involve

an appliation of a onstant. They represent proof obligations that must be

disharged when onrete de�nitions of Q,

Æ

�!, and �

0

are given.

1.7.6 Definition: We require (i) (

Æ

�!) � (v); and (ii) if the on�guration

 v

1

: : : v

k

=� (where k � 0) is well-typed, then either it is reduible, or

 v

1

: : : v

k

is a value. 2

The last point that remains to be settled before proving type soundness

is the interation between side e�ets and let-polymorphism. The following

example illustrates the problem:

let r = ref �z:z in let = (r := �z:(z

^

+

^

1)) in !r true

This expression redues to true

^

+

^

1, so it must not be well-typed. Yet, if

natural type shemes are assigned to ref, !, and := (see Example 1.9.5), then
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it is well-typed with respet to the rules given so far, beause r reeives the

polymorphi type sheme 8X:ref (X ! X), whih allows writing a funtion of

type int ! int into r and reading it bak with type bool ! bool. The

problem is that let-polymorphism simulates a textual dupliation of the let-

bound expression ref �z:z, while the semantis �rst redues it to a value m,

ausing a new binding m 7! �z:z to appear in the store, then dupliates the

address m. The new store binding is not dupliated: both opies of m refer to

the same memory ell. For this reason, generalization is unsound in this ase,

and must be restrited. Many authors have attempted to ome up with a sound

type system that aepts all pure programs and remains �exible enough in the

presene of side e�ets (Tofte, 1988; Leroy, 1992). These proposals are often

omplex, whih is why they have been abandoned in favor of an extremely

simple syntati restrition, known as the value restrition (Wright, 1995).

1.7.7 Definition: A program satis�es the value restrition if and only if all subex-

pressions of the form let z = t

1

in t

2

are in fat of the form let z = v

1

in t

2

.

In the following, we assume that either all onstants have pure semantis, or

all programs satisfy the value restrition. 2

Put slightly di�erently, the value restrition states that only values may be

generalized. This eliminates the problem altogether, sine dupliating values

does not a�et a program's semantis. Note that any program that does not

satisfy the value restrition an be turned into one that does and has the same

semantis: it su�es to hange let z = t

1

in t

2

into (�z:t

2

) t

1

when t

1

is not

a value. Of ourse, suh a transformation may ause the program to beome

ill-typed. In other words, the value restrition auses some perfetly safe pro-

grams to be rejeted. In partiular, as stated above, it prevents generalizing

appliations of the form  v

1

: : : v

k

, where  is a destrutor of arity k. This

is exessive, beause many destrutors have pure semantis; only a few, suh

as ref, alloate new mutable storage. Furthermore, we use pure destrutors

to enode numerous language features (Setion 1.9). Fortunately, it is easy

to relax the restrition to allow generalizing not only values, but also a more

general lass of nonexpansive expressions, whose syntax guarantees that suh

expressions annot alloate new mutable storage (that is, expand the domain

of the store). The term nonexpansive was oined by Tofte (1988). Nonexpan-

sive expressions may inlude appliations of the form  t

1

: : : t

k

, where  is a

pure destrutor of arity k and t

1

; : : : ; t

k

are nonexpansive. Experiene shows

that this slightly relaxed restrition is aeptable in pratie. Some other im-

provements to the value restrition exist; see e.g. Exerise (Garrigue, 2002).

Another frequent limitation of the value restrition are onstrutor funtions,

that is, funtions that only build values, whih are treated as ordinary fun-

tions and not as onstrutors, and their appliations are not onsidered to be
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values. For instane, in the expression let f =  v in let z = f w in t where

 is a onstrutor of arity 2, the partial appliation  v bound to f is a on-

strutor funtion (of arity 1), but f w is treated as a regular appliation and

annot be generalized. Tehnially, the e�et of the (strit) value restrition

is summarized by the following result.

1.7.8 Lemma: Under the value restrition, the prodution E ::= let z = E in t

may be suppressed from the grammar of evaluation ontexts (Figure 1-1)

without altering the operational semantis. 2

We are done with de�nitions and requirements. We now ome to the bulk

of the type soundness proof.

1.7.9 Theorem [Subjet redution℄: (�_) � (v). 2

Proof: Beause �! and �_ are the smallest relations that satisfy the rules

of Figure 1-2, it su�es to prove that v satis�es these rules as well. We remark

that if, for every type T, Jt : TK  Jt

0

: TK holds, then t=� v t

0

=� holds. (Take

�

Y = ? and M

0

=M and use the fat that entailment is a ongruene to hek

that the onditions of De�nition 1.7.5 are met.) We make use of this fat in

ases R-Beta and R-Let below.

Æ Case R-Beta. We have

J(�z:t) v : TK

� 9X:(J�z:t : X! TK ^ Jv : XK) (1)

� 9X:(let z : X in Jt : TK ^ Jv : XK) (2)

� 9X:let z : 8?[Jv : XK℄:X in Jt : TK (3)

 J[z 7! v℄t : TK (4)

where (1) is by de�nition of onstraint generation; (2) is by Lemma 1.6.5; (3)

is by C-LetAnd; (4) is by Lemma 1.7.2 and C-Ex*.

Æ Case R-Let. We have

Jlet z = v in t : TK

= let z : 8X[Jv : XK℄:X in Jt : TK (1)

 J[z 7! v℄t : TK (2)

where (1) is by de�nition of onstraint generation and (2) is by Lemma 1.7.2.

Æ Case R-Delta. This ase is exatly requirement (i) in De�nition 1.7.6.

Æ Case R-Extend. Our hypotheses are t=� v t

0

=�

0

(1) and dom(�

00

) #

dom(�

0

) (2) and range(�

00

) # dom(�

0

n �) (3). Beause dom(�) must be

a subset of dom(�

0

), it is also disjoint with dom(�

00

). Our goal is t=��

00

v

t

0

=�

0

�

00

(4). Thus, let us introdue a type T and a store type of domain
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dom(��

00

), or (equivalently) two store types M and M

00

whose domains are

respetively dom(�) and dom(�

00

). By (1), there exist type variables

�

Y and

a store type M

0

suh that

�

Y # ftv(T;M) (5) and ftv(M

0

) �

�

Y [ ftv(M)

and dom(M

0

) = dom(�

0

) and M

0

extends M (6) and let �

0

; refM in Jt=� :

T=MK  9

�

Y:let �

0

; refM

0

in Jt

0

=�

0

: T=M

0

K. We may further require, w.l.o.g.,

�

Y # ftv(M

00

) (7). Let us now add the onjunt let �

0

; refM in J�

00

: M

00

K

to eah side of this entailment assertion. On the left-hand side, by C-InAnd

and by De�nition 1.7.4, we obtain let �

0

; refM in Jt=��

00

: T=MM

00

K (8).

On the right-hand side, by (5), (7), C-ExAnd, and C-InAnd, we obtain

9

�

Y:let �

0

in (let refM

0

in Jt

0

=�

0

: T=M

0

K ^ let refM in J�

00

: M

00

K) (9).

Now, reall that M

0

extends M (6) and, furthermore, (3) implies fpi (J�

00

:

M

00

K) # dpi (M

0

n M) (10). By (10), C-InAnd*, and C-InAnd, (9) is

equivalent to 9

�

Y:let �

0

; refM

0

in (Jt

0

=�

0

: T=M

0

K ^ J�

00

: M

00

K), that is,

9

�

Y:let �

0

; refM

0

in Jt

0

=�

0

�

00

: T=M

0

M

00

K (11). Thus, we have established

that (8) entails (11). Let us now plae this entailment assertion within

the onstraint ontext let refM

00

in [℄. On the left-hand side, beause

fpi(�

0

;M;M

00

) = ? and dpi(M

00

)\ dpi (�

0

;M) � dom(�

00

)\ (Q[ dom(�)) =

?, C-LetLet applies, yielding let �

0

; refMM

00

in Jt=��

00

: T=MM

00

K (12).

On the right-hand side, by (7), C-InEx, and by analogous reasoning, we ob-

tain 9

�

Y:let �

0

; refM

0

M

00

in Jt

0

=�

0

�

00

: T=M

0

M

00

K (13). Thus, (12) entails (13).

Given (5), (7), given ftv(M

0

M

00

) �

�

Y [ ftv(MM

00

), and given that M

0

M

00

extends MM

00

, this establishes the goal (4).

Æ Case R-Context. The hypothesis is t=� v t

0

=�

0

. The goal is E [t℄=� v

E [t

0

℄=�

0

. Beause �_ relates losed on�gurations only, we may assume that

the on�guration E [t℄=� is losed, so the memory loations that appear free

within E are members of dom(�). Let us now reason by indution on the

struture of E .

Subase E = [℄. The hypothesis and the goal oinide.

Subase E = E

1

t

1

. The indution hypothesis is E

1

[t℄=� v E

1

[t

0

℄=�

0

(1).

Let us introdue a type T and a store type M suh that dom(M) = dom(�).

Consider the onstraint let �

0

; refM in JE [t℄=� : T=MK (2). By de�nition of

onstraint generation, C-ExAnd, C-InEx, and C-InAnd, it is equivalent to

9X:(let �

0

; refM in JE

1

[t℄=� : X! T=MK ^ let �

0

; refM in Jt

1

: XK) (3)

where X 62 ftv(T;M) (4). By (1), there exist type variables

�

Y and a store

type M

0

suh that

�

Y # ftv(X; T;M) (5) and ftv (M

0

) �

�

Y [ ftv(M) (6) and

dom(M

0

) = dom(�

0

) and M

0

extends M and (3) entails

9X:(9

�

Y:let �

0

; refM

0

in JE

1

[t

0

℄=�

0

: X! T=M

0

K ^ let �

0

; refM in Jt

1

: XK) (7):

We pointed out earlier that the memory loations that appear free in t

1

are

members of dom(M), whih implies let refM in Jt

1

: XK � let refM

0

in Jt

1

:
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XK (8). By (5), C-ExAnd, (8), C-InAnd, and by de�nition of onstraint

generation, we �nd that (7) is equivalent to

9X

�

Y:let �

0

; refM

0

in (JE

1

[t

0

℄ : X! TK ^ Jt

1

: XK ^ J�

0

:M

0

K) (9):

(4), (5) and (6) imply X 62 ftv(M

0

). Thus, by C-InEx and C-ExAnd, (9) may

be written

9

�

Y:let �

0

; refM

0

in (9X:(JE

1

[t

0

℄ : X! TK ^ Jt

1

: XK) ^ J�

0

:M

0

K);

whih, by de�nition of onstraint generation, is

9

�

Y:let �

0

; refM

0

in JE [t

0

℄=�

0

: T=M

0

K (10):

Thus, we have proved that (2) entails (10). By De�nition 1.7.5, this establishes

E [t℄=� v E [t

0

℄=�

0

.

Subase E = v E

1

. Analogous to the previous subase.

Subase E = let z = E

1

in t

1

. The indution hypothesis is E

1

[t℄=� v

E

1

[t

0

℄=�

0

(1). This subase is partiularly interesting, beause it is where

let-polymorphism and side e�ets interat. In the previous two subases, we

relied on the fat that the 9

�

Y quanti�er, whih hides the types of the memory

ells reated by the redution step, ommutes with the onnetives 9 and

^ introdued by appliation ontexts. However, it does not in general (left-

)ommute with the let onnetive (Example 1.3.28). Fortunately, under the

value restrition, this subase never arises (Lemma 1.7.8). By De�nition 1.7.7,

this subase may arise only if all onstants have pure semantis, whih implies

� = �

0

= ?. Then, we have

let �

0

in JE [t℄ : TK

= let �

0

; z : 8X[JE

1

[t℄ : XK℄:X in Jt

1

: TK (2)

� let �

0

; z : 8X[let �

0

in JE

1

[t℄ : XK℄:X in Jt

1

: TK (3)

 let �

0

; z : 8X[let �

0

in JE

1

[t

0

℄ : XK℄:X in Jt

1

: TK (4)

� let �

0

in JE [t

0

℄ : TK (5)

where (2) is by de�nition of onstraint generation; (3) follows from ftv(�

0

) =

fpi(�

0

) = ? and C-LetDup; (4) follows from (1), speialized to the ase of a

pure semantis; and (5) is obtained by performing these steps in reverse. 2

1.7.10 Exerise [Reommended, FFF℄: Try to arry out the last subase of the

above proof in the ase of an impure semantis and in the absene of the value

restrition. Find out why it fails. Show that it sueeds if

�

Y is assumed to be

empty. Use this fat to prove that generalization is still safe when restrited to

nonexpansive expressions, provided (i) evaluating a nonexpansive expression
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annot ause new memory ells to be alloated, (ii) nonexpansive expres-

sions are stable by substitution of values for variables, and (iii) nonexpansive

expressions are preserved by redution. 2

Subjet redution ensures that well-typedness is preserved by redution.

1.7.11 Lemma: Let t=� �_ t

0

=�

0

. If t=� is well-typed, then so is t

0

=�

0

. 2

Proof: Assume t=� �_ t

0

=�

0

(1) and t=� is well-typed (2). By (2) and

De�nition 1.7.4, there exist a type T and a store type M suh that dom(�) =

dom(M) and the onstraint let �

0

; refM in Jt=� : T=MK (3) is satis�able.

By Theorem 1.7.9 and De�nition 1.7.5, (1) implies that there exist a set of

type variables

�

Y and a store type M

0

suh that dom(M

0

) = dom(�

0

) (4) and

the onstraint (3) entails 9

�

Y:let �

0

; refM

0

in Jt

0

=�

0

: T=M

0

K (5). Beause (3)

is satis�able, so is (5), whih implies that let �

0

; refM

0

in Jt

0

=�

0

: T=M

0

K is

satis�able (6). By (4) and (6) and De�nition 1.7.4, t

0

=�

0

is well-typed. 2

Let us now establish the progress property.

1.7.12 Lemma: If t

1

t

2

is well-typed, then t

1

=� and t

2

=� are well-typed. If let z =

t

1

in t

2

=� is well-typed, then t

1

=� is well-typed. 2

1.7.13 Theorem [Progress℄: If t=� is well-typed, then either it is reduible, or t

is a value. 2

Proof: The proof is by indution on the struture of t.

Æ Case t = z. Well-typed on�gurations are losed: this ase annot our.

Æ Case t = m. t is a value.

Æ Case t = . By requirement (ii) of De�nition 1.7.6.

Æ Case t = �z:t

1

. t is a value.

Æ Case t = t

1

t

2

. By Lemma 1.7.12, t

1

=� is well-typed. By the indution

hypothesis, either it is reduible, or t

1

is a value. If the former, byR-Context

and beause every ontext of the form E t

2

is an evaluation ontext, the

on�guration t=� is reduible as well. Thus, let us assume t

1

is a value. By

Lemma 1.7.12, t

2

=� is well-typed. By the indution hypothesis, either it is

reduible, or t

2

is a value. If the former, by R-Context and beause every

ontext of the form t

1

E�where t

1

is a value�is an evaluation ontext, the

on�guration t=� is reduible as well. Thus, let us assume t

2

is a value. Let

us now reason by ases on the struture of t

1

.

Subase t

1

= z. Again, this subase annot our.

Subase t

1

= m. Beause t=� is well-typed, a onstraint of the form

let �

0

; refM in (9X:(m � X ! T ^ Jt

2

: XK) ^ J� : MK) must be satis�-

able. This implies that m is a member of dom(M) and that the onstraint
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refM(m) � X! T is satis�able. Beause the type onstrutors ref and ! are

inompatible, this is a ontradition. So, this subase annot our.

Subase t

1

= �z:t

0

1

. By R-Beta, t=� is reduible.

Subase t

1

=  v

1

: : : v

k

. Then, t is of the form  v

1

: : : v

k+1

. The result

follows by requirement (ii) of De�nition 1.7.6.

Æ Case t = let z = t

1

in t

2

. By Lemma 1.7.12, t

1

=� is well-typed. By the

indution hypothesis, either t

1

=� is reduible, or t

1

is a value. If the former,

by R-Context and beause every ontext of the form let z = E in t

2

is

an evaluation ontext, the on�guration t=� is reduible as well. If the latter,

then t=� is reduible by R-Let. 2

We may now onlude:

1.7.14 Theorem [Type Soundness℄: Well-typed soure programs do not go

wrong. 2

Proof: We say that a soure program t is well-typed if and only if the on�gu-

ration t=? is well-typed, that is, if and only if 9X:let �

0

in Jt : XK � true holds.

By Lemma 1.7.11, all reduts of t=? are well-typed. By Theorem 1.7.13, none

is stuk. 2

Let us reall that this result holds only if the requirements of De�nition 1.7.6

are met. In other words, some proof obligations remain to be disharged when

onrete de�nitions of Q,

Æ

�!, and �

0

are given. This is illustrated by several

examples in the next setion.

1.8 Constraint solving

We have introdued a parameterized onstraint language, given equivalene

laws that desribe the interation between its logial onnetives, and ex-

ploited them to prove theorems about type inferene and type soundness,

whih are valid independently of the nature of primitive onstraints�the so-

alled prediate appliations. However, there would be little point in proposing

a parameterized onstraint solver, beause muh of the di�ulty of designing

an e�ient onstraint solver preisely lies in the treatment of primitive on-

straints and in its interation with let-polymorphism. For this reason, in this

setion, we fous on onstraint solving in the setting of an equality-only free

tree model. Thus, the onstraint solver developed here allows performing type

inferene for HM(=) (that is, for Damas and Milner's type system) and for

its extension with reursive types. Of ourse, some of its mehanisms may

be useful in other settings. Other onstraint solvers used in program analysis

or type inferene are desribed e.g. in (Aiken and Wimmers, 1992; Niehren,
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Müller, and Podelski, 1997; Fähndrih, 1999; Melski and Reps, 2000; Müller,

Niehren, and Treinen, 2001; Pottier, 2001b; Nielson, Nielson, and Seidl, 2002;

MAllester, 2002, 2003).

We begin with a rule-based presentation of a standard, e�ient �rst-order

uni�ation algorithm. This yields a onstraint solver for a subset of the

onstraint language, deprived of type sheme introdution and instantiation

forms. On top of it, we build a full onstraint solver, whih orresponds to the

ode that aompanies this hapter.

Uni�ation

Uni�ation is the proess of solving equations between terms. We now present

a uni�ation algorithm due to Huet (1976) as a (nondeterministi) system of

onstraint rewriting rules. The spei�ation is almost the same in the ase

of �nite and regular tree models: only one rule, whih implements the ours

hek, must be removed in the latter ase. In other words, the algorithm works

with possibly yli terms, and does not rely in an essential way on the ours

hek. In order to aurately re�et the behavior of the atual algorithm, whih

relies on a union-�nd data struture (Tarjan, 1975), we modify the syntax of

onstraints by replaing equations with multi-equations. A multi-equation is

an equation that involves an arbitrary number of types, as opposed to exatly

two.

1.8.1 Definition: Let there be, for every kind � and for every n � 1, a predi-

ate =

n

�

, of signature �

n

) �, whose interpretation is (n-ary) equality. The

prediate onstraint =

n

�

T

1

: : : T

n

is written T

1

= : : : = T

n

, and alled a

multi-equation. We onsider the onstraint true as a multi-equation of length

0. In the following, we identify multi-equations up to permutations of their

members, so a multi-equation � of kind � may be viewed as a �nite multi-

set of types of kind �. We write � = �

0

for the multi-equation obtained by

onatenating � and �

0

. 2

Thus, we are interested in the following subset of the onstraint language:

U ::= true j false j � j U ^ U j 9

�

X:U

Equations are replaed with multi-equations; no other prediates are available.

Type sheme introdution and instantiation forms are absent.

1.8.2 Definition: A multi-equation is standard if and only if its variable members

are distint and it has at most one nonvariable member. A onstraint U is

standard if and only if every multi-equation inside U is standard and every

variable that ours (free or bound) in U is a member of at most one multi-

equation inside U . 2
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A union-�nd algorithm maintains equivalene lasses (that is, disjoint sets)

of variables, and assoiates, with eah lass, a desriptor, whih in our ase

is either absent or a nonvariable term. Thus, a standard onstraint represents

a state of the union-�nd algorithm. A onstraint that is not standard may

be viewed as a superposition of a state of the union-�nd algorithm, on the

one hand, and of ontrol information, on the other hand. For instane, a

multi-equation of the form � = T

1

= T

2

, where T

1

and T

2

are nonvariable

terms, may be viewed, roughly speaking, as the equivalene lass � = T

1

,

together with a pending request to solve T

1

= T

2

and to update the lass's

desriptor aordingly. Beause multi-equations enode both state and ontrol,

our spei�ation of uni�ation is rather high-level. It would be possible to

give a lower-level desription, where state (standard onjuntions of multi-

equations) and ontrol (pending binary equations) are distinguished.

1.8.3 Definition: Let U be a onjuntion of multi-equations. Y is dominated by X

with respet to U (written: Y �

U

X) if and only if U ontains a onjunt of

the form X = F

~

T = �, where Y 2 ftv(

�

T). U is yli if and only if the graph of

�

U

exhibits a yle. 2

The spei�ation of the uni�ation algorithm onsists of a set of on-

straint rewriting rules, given in Figure 1-11. Rewriting is performed modulo

�-onversion, modulo permutations of the members of a multi-equation, mod-

ulo ommutativity and assoiativity of onjuntion, and under an arbitrary

ontext. The spei�ation is nondeterministi: several rule instanes may be

simultaneously appliable.

S-ExAnd is a direted version of C-ExAnd, whose e�et is to �oat up all

existential quanti�ers. In the proess, all multi-equations beome part of a

single onjuntion, possibly ausing rules whose left-hand side is a onjun-

tion of multi-equations, namely S-Fuse and S-Cyle, to beome appliable.

S-Fuse identi�es two multi-equations that share a ommon variable X, and

fuses them. The new multi-equation is not neessarily standard, even if the

two original multi-equations were. Indeed, it may have repeated variables or

ontain two nonvariable terms. The purpose of the next few rules, whose left-

hand side onsists of a single multi-equation, is to deal with these situations.

S-Stutter eliminates redundant variables. It only deals with variables, as

opposed to terms of arbitrary size, so as to have onstant time ost. The

omparison of nonvariable terms is implemented by S-Deompose and S-

Clash. S-Deompose deomposes an equation between two terms whose

head symbols math. It produes a onjuntion of equations between their

subterms, namely

~

X =

~

T. Only one of the two terms remains in the original

multi-equation, whih may thus beome standard. The terms

~

X are opied�

there are two ourrenes of

~

X on the right-hand side. For this reason, we
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(9

�

X:U

1

) ^ U

2

! 9

�

X:(U

1

^ U

2

) (S-ExAnd)

if

�

X # ftv(U

2

)

X = � ^ X = �

0

! X = � = �

0

(S-Fuse)

X = X = � ! X = � (S-Stutter)

F

~

X = F

~

T = � !

~

X =

~

T ^ F

~

X = � (S-Deompose)

F T

1

: : : T

i

: : : T

n

= � ! 9X:(X = T

i

^ F T

1

: : : X : : : T

n

= �) (S-Name-1)

if T

i

62 V ^ X 62 ftv(T

1

; : : : ; T

n

; �)

F

~

T = F

0

~

T

0

= � ! false (S-Clash)

if F 6= F

0

T ! true (S-Single)

if T 62 V

U ^ true ! U (S-True)

U ! false (S-Cyle)

if the model is syntati and U is yli

U [false℄ ! false (S-Fail)

if U 6= [℄

Figure 1-11: Uni�ation

require them to be type variables, as opposed to terms of arbitrary size. (We

slightly abuse notation by using

~

X to denote a vetor of type variables whose

elements are not neessarily distint.) By doing so, we allow expliitly rea-

soning about sharing : sine a variable represents a pointer to an equivalene

lass, we expliitly speify that only pointers, not whole terms, are opied. As

a result of this deision, S-Deompose is not appliable when both terms at

hand have a nonvariable subterm. S-Name-1 remedies this problem by intro-

duing a fresh variable that stands for one suh subterm. When repeatedly

applied, S-Name-1 yields a uni�ation problem omposed of so-alled small

terms only�that is, where sharing has been made fully expliit. S-Clash

omplements S-Deompose by dealing with the ase where two terms with

di�erent head symbols are equated; in a free tree model, suh an equation is

false, so failure is signaled. S-Single and S-True suppress multi-equations of

size 1 and 0, respetively, whih are tautologies. S-Single is restrited to non-

variable terms so as not to break the property that every variable is a member
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of exatly one multi-equation (De�nition 1.8.2). S-Cyle is the ours hek:

that is, it signals failure if the onstraint is yli. It is appliable only in the

ase of syntati uni�ation, that is, when ground types are �nite trees. It is

a global hek: its left-hand side is an entire onjuntion of multi-equations.

S-Fail propagates failure; U ranges over uni�ation onstraint ontexts.

The onstraint rewriting system in Figure 1-11 enjoys the following prop-

erties. First, rewriting is strongly normalizing, so the rules de�ne a (nonde-

terministi) algorithm. Seond, rewriting is meaning-preserving. Third, every

normal form is either false or of the form 9

�

X:U , where U is satis�able. The

latter two properties indiate that the algorithm is indeed a onstraint solver.

1.8.4 Lemma: The rewriting system ! is strongly normalizing. 2

1.8.5 Lemma: U

1

! U

2

implies U

1

� U

2

. 2

1.8.6 Lemma: Every normal form is either false or of the form X [U ℄, where X is an

existential onstraint ontext, U is a standard onjuntion of multi-equations

and, if the model is syntati, U is ayli. These onditions imply that U is

satis�able. 2

A onstraint solver

On top of the uni�ation algorithm, we now de�ne a onstraint solver. Its spe-

i�ation is independent of the rules and strategy employed by the uni�ation

algorithm. However, the struture of the uni�ation algorithm's normal forms,

as well as the logial properties of multi-equations, are exploited when per-

forming generalization, that is, when reating and simplifying type shemes.

Like the uni�ation algorithm, the onstraint solver is spei�ed in terms of a

redution system. However, the objets that are subjet to rewriting are not

just onstraints: they have more omplex struture. Working with suh riher

states allows distinguishing the solver's external language�namely, the full

onstraint language, whih is used to express the problem that one wishes

to solve�and an internal language, introdued below, whih is used to de-

sribe the solver's private data strutures. In the following, C and D range

over external onstraints, that is, onstraints that were part of the solver's

input. External onstraints are to be viewed as abstrat syntax trees, subjet

to no impliit laws other than �-onversion. As a simplifying assumption, we

require external onstraints not to ontain any ourrene of false�otherwise

the problem at hand is learly false. Internal data strutures inlude uni�a-

tion onstraints U , as previously studied, and staks. Staks form a subset of

onstraint ontexts, de�ned on page 24. Their syntax is as follows:

S ::= [℄ j S[[℄ ^ C℄ j S[9

�

X:[℄℄ j S[let x : 8

�

X[[℄℄:T in C℄ j S[let x : � in [℄℄
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In the seond and fourth produtions, C is an external onstraint. In the last

prodution, we require � to be of the form 8

�

X[U ℄:X, and we demand 9� � true.

A stak may be viewed as a list of frames. Frames may be added and deleted

at the inner end of a stak, that is, near the hole of the onstraint ontext that

it represents. We refer to the four kinds of frames as onjuntion, existential,

let, and environment frames, respetively. A state of the onstraint solver is

a triple S;U ;C, where S is a stak, U is a uni�ation onstraint, and C is an

external onstraint. The state S;U ;C is to be understood as a representation

of the onstraint S[U ^ C℄. The notion of �-equivalene between states is

de�ned aordingly. In partiular, one may rename type variables in dtv(S),

provided U and C are renamed as well. In short, the three omponents of

a state play the following roles. C is an external onstraint that the solver

intends to examine next. U is the internal state of the underlying uni�ation

algorithm: one might think of it as the knowledge that has been obtained so

far. S tells where the type variables that our free in U and C are bound,

assoiates type shemes with the program variables that our free in C, and

reords what should be done after C is solved. The solver's initial state is

usually of the form [℄; true;C, where C is the external onstraint that one

wishes to solve�that is, whose satis�ability one wishes to determine. For

simpliity, we make the (unessential) assumption that states have no free

type variables.

The solver onsists of a (nondeterministi) state rewriting system, given

in Figure 1-12. Rewriting is performed modulo �-onversion. S-Unify makes

the uni�ation algorithm a omponent of the onstraint solver, and allows the

urrent uni�ation problem U to be solved at any time. Rules S-Ex-1 to S-

Ex-4 �oat existential quanti�ers out of the uni�ation problem into the stak,

and through the stak up to the nearest enlosing let frame, if there is any, or to

the outermost level, otherwise. Their side-onditions prevent apture of type

variables, and may always be satis�ed by suitable �-onversion of the left-hand

state. If S;U ;C is a normal form with respet to the above �ve rules, then

every type variable in dtv(S) is either universally quanti�ed at a let frame, or

existentially bound at the outermost level. (Reall that, by assumption, states

have no free type variables.) In other words, provided these rules are applied

in an eager fashion, there is no need for existential frames to appear in the

mahine representation of staks. Instead, it su�es to maintain, at every let

frame and at the outermost level, a list of the type variables that are bound

at this point; and, onversely, to annotate every type variable in dtv(S) with

an integer rank, whih allows telling, in onstant time, where the variable is

bound: type variables of rank 0 are bound at the outermost level, and type

variables of rank k � 1 are bound at the k

th

let frame down in the stak S.

The ode that aompanies this hapter adopts this onvention. Ranks were
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S;U ;C ! S;U

0

;C (S-Unify)

if U ! U

0

S; 9

�

X:U ;C ! S[9

�

X:[℄℄;U ;C (S-Ex-1)

if

�

X # ftv(C)

S[(9

�

X:[℄) ^ C℄ ! S[9

�

X:([℄ ^ C)℄ (S-Ex-2)

if

�

X # ftv(C)

S[let x : 8

�

X[9

�

Y:[℄℄:T in C℄ ! S[let x : 8

�

X

�

Y[[℄℄:T in C℄ (S-Ex-3)

if

�

Y # ftv(T)

S[let x : � in 9

�

X:[℄℄ ! S[9

�

X:let x : � in [℄℄ (S-Ex-4)

if

�

X # ftv(�)

S;U ; T

1

= T

2

! S;U ^ T

1

= T

2

; true (S-Solve-Eq)

S;U ; x � T ! S;U ;S(x) � T (S-Solve-Id)

S;U ;C

1

^ C

2

! S[[℄ ^ C

2

℄;U ;C

1

(S-Solve-And)

S;U ; 9

�

X:C ! S[9

�

X:[℄℄;U ;C (S-Solve-Ex)

if

�

X # ftv(U)

S;U ; let x : 8

�

X[D℄:T in C ! S[let x : 8

�

X[[℄℄:T in C℄;U ;D (S-Solve-Let)

if

�

X # ftv(U)

S[[℄ ^ C℄;U ; true ! S;U ;C (S-Pop-And)

S[let x : 8

�

X[[℄℄:T in C℄;U ; true ! S[let x : 8

�

XX[[℄℄:X in C℄;

U ^ X = T; true (S-Name-2)

if X 62 ftv(U; T) ^ T 62 V

S[let x : 8

�

XY[[℄℄:X in C℄; Y = Z = � ^ U ; true ! S[let x : 8

�

XY[[℄℄:�(X) in C℄;

Y ^ Z = �(�) ^ �(U); true (S-Compress)

if Y 6= Z ^ � = [Y 7! Z℄

S[let x : 8

�

XY[[℄℄:X in C℄; Y = � ^ U ; true ! S[let x : 8

�

X[[℄℄:X in C℄; � ^ U ; true (S-UnName)

if Y 62 X [ ftv(�; U)

S[let x : 8

�

X

�

Y[[℄℄:X in C℄;U ; true ! S[9

�

Y:let x : 8

�

X[[℄℄:X in C℄;U ; true (S-LetAll)

if

�

Y # ftv(C) ^ 9

�

X:U determines

�

Y

S[let x : 8

�

X[[℄℄:X in C℄;U

1

^ U

2

; true ! S[let x : 8

�

X[U

2

℄:X in [℄℄;U

1

;C (S-Pop-Let)

if

�

X # ftv(U

1

) ^ 9

�

X:U

2

� true

S[let x : � in [℄℄;U ; true ! S;U ; true (S-Pop-Env)

Figure 1-12: A onstraint solver
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initially desribed in (Rémy, 1992a), and also appear in (MAllester, 2003).

Rules S-Solve-Eq to S-Solve-Let enode an analysis of the struture of

the third omponent of the urrent state. There is one rule for eah possible

ase, exept false, whih by assumption annot arise, and true, whih is dealt

with further on. S-Solve-Eq disovers an equation and makes it available to

the uni�ation algorithm. S-Solve-Id disovers an instantiation onstraint

x � T and replaes it with � � T, where the type sheme � = S(x) is the type

sheme arried by the nearest environment frame that de�nes x in the stak

S. It is de�ned as follows:

S[[℄ ^ C℄(x) = S(x)

S[9

�

X:[℄℄(x) = S(x) if

�

X # ftv(S(x))

S[let y : 8

�

X[[℄℄:T in C℄(x) = S(x) if

�

X # ftv(S(x))

S[let y : � in [℄℄(x) = S(x) if x 6= y

S[let x : � in [℄℄(x) = �

If x 2 dpi (S) does not hold, then S(x) is unde�ned and the rule is not applia-

ble. If it does hold, then the rule may always be made appliable by suitable

�-onversion of the left-hand state. Please reall that, if � is of the form

8

�

X[U ℄:X, where

�

X # ftv(T), then � � T stands for 9

�

X:(U ^ X = T). The proess

of onstruting this onstraint is informally referred to as �taking an instane

of ��. It involves taking fresh opies of the type variables

�

X, of the uni�ation

onstraint U , and of the body X. In the worst ase, this proess is just as ine�-

ient as textually expanding the orresponding let onstrut in the program's

soure ode, and leads to exponential time omplexity (Mairson, Kanellakis,

and Mithell, 1991). In pratie, however, the uni�ation onstraint U is often

ompat, beause it was simpli�ed before the environment frame let x : � in [℄

was reated. whih is why the solver usually performs well. (The reation of

environment frames, performed by S-Pop-Let, is disussed below.) S-Solve-

And disovers a onjuntion. It arbitrarily hooses to explore the left branh

�rst, and pushes a onjuntion frame onto the stak, so as to reord that the

right branh should be explored afterwards. S-Solve-Ex disovers an exis-

tential quanti�er and enters it, reating a new existential frame to reord its

existene. Similarly, S-Solve-Let disovers a let form and enters its left-hand

side, reating a new let frame to reord its existene. The hoie of examining

the left-hand side �rst is not arbitrary. Indeed, examining the right-hand side

�rst would require reating an environment frame�but environment frames

must ontain simpli�ed type shemes of the form 8

�

X[U ℄:X, whereas the type

sheme 8

�

X[D℄:T is arbitrary. In other words, our strategy is to simplify type

shemes prior to allowing them to be opied by S-Solve-Id, so as to avoid any

dupliation of e�ort. The side-onditions of S-Solve-Ex and S-Solve-Let

may always be satis�ed by suitable �-onversion of the left-hand state.
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Rules S-Solve-Eq to S-Solve-Let may be referred to as forward rules,

beause they �move down into� the external onstraint, ausing the stak to

grow. This proess stops when the external onstraint at hand beomes true.

Then, part of the work has been �nished, and the solver must examine the

stak in order to determine what to do next. This task is performed by the last

series of rules, whih may be referred to as bakward rules, beause they �move

bak out�, ausing the stak to shrink, and possibly sheduling new external

onstraints for examination. These rules enode an analysis of the struture

of the innermost stak frame. There are three ases, orresponding to on-

juntion, let, and environment frames. The ase of existential stak frames

need not be onsidered, beause rules S-Ex-2 to S-Ex-4 allow either fusing

them with let frames or �oating them up to the outermost level, where they

shall remain inert. S-Pop-And deals with onjuntion frames. The frame is

popped, and the external onstraint that it arries is sheduled for exami-

nation. S-Pop-Env deals with environment frames. Beause the right-hand

side of the let onstrut at hand has been solved�that is, turned into a uni-

�ation onstraint U�it annot ontain an ourrene of x. Furthermore,

by assumption, 9� is true. Thus, this environment frame is no longer useful:

it is destroyed. The remaining rules deal with let frames. Roughly speak-

ing, their purpose is to hange the state S[let x : 8

�

X[[℄℄:T in C℄;U ; true into

S[let x : 8

�

X[U ℄:T in [℄℄; true;C, that is, to turn the urrent uni�ation on-

straint U into a type sheme, turn the let frame into an environment frame,

and shedule the right-hand side of the let onstrut (that is, the external

onstraint C) for examination. In fat, the proess is more omplex, beause

the type sheme 8

�

X[U ℄:T must be simpli�ed before beoming part of an envi-

ronment frame. The simpli�ation proess is desribed by rules S-Name-2 to

S-Pop-Let. In the following, we refer to type variables in

�

X as young and to

type variables in dtv (S) n

�

X as old. The former are the universal quanti�ers of

the type sheme that is being reated; the latter are its free type variables.

S-Name-2 ensures that the body T of the type sheme that is being reated

is a type variable, as opposed to an arbitrary term. If it isn't, then it is

replaed with a fresh variable X, and the equation X = T is added so as to

reall that X stands for T. Thus, the rule moves the term T into the urrent

uni�ation problem, where it potentially beomes subjet to S-Name-1. This

ensures that sharing is made expliit everywhere. S-Compress determines

that the (young) type variable Y is an alias for the type variable Z. Then,

every free ourrene of Y other than its de�ning ourrene is replaed with

Z. In an atual implementation, this ours transparently when the union-�nd

algorithm performs path ompression (Tarjan, 1975, 1979), provided we are

areful never to reate a link from a variable to a variable of higher rank. This

requires making the uni�ation algorithm aware of ranks, but is otherwise
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easily ahieved. S-UnName determines that the (young) type variable Y has

no ourrenes other than its de�ning ourrene in the urrent type sheme.

(This ours, in partiular, when S-Compress has just been applied.) Then,

Y is suppressed altogether. In the partiular ase where the remaining multi-

equation � has ardinal 1, it may then be suppressed by S-Single. In other

words, the ombination of S-UnName and S-Single is able to suppress young

unused type variables as well as the term that they stand for. This may,

in turn, ause new type variables to beome eligible for elimination by S-

UnName. In fat, assuming the urrent uni�ation onstraint is ayli, an

indutive argument shows that every young type variable may be suppressed

unless it is dominated either by X or by an old type variable. (In the setting

of a regular tree model, it is possible to extend the rule so that young yles

that are not dominated either by X or by an old type variable are suppressed

as well.) S-LetAll is a direted version of C-LetAll. It turns the young

type variables

�

Y into old variables. How to tell whether 9

�

X:U determines

�

Y

is disussed later (see Lemma 1.8.7). Why S-LetAll is an interesting and

important rule will be explained shortly. S-Pop-Let is meant to be applied

when the urrent state has beome a normal form with respet to S-Unify, S-

Name-2, S-Compress, S-UnName, and S-LetAll, that is, when the type

sheme that is about to be reated is fully simpli�ed. It splits the urrent

uni�ation onstraint into two omponents U

1

and U

2

, where U

1

is made up

entirely of old variables�as expressed by the side-ondition

�

X # ftv(U

1

)�

and U

2

onstrains young variables only�as expressed by the side-ondition

9

�

X:U

2

� true. Please note that U

2

may still ontain free ourrenes of old type

variables, so the type sheme 8

�

X[U

2

℄:X that appears on the right-hand side is

not neessarily losed. It is not obvious why suh a deomposition must exist;

the proof of Lemma 1.8.11 sheds more light on this issue. Let us say, for now,

that S-LetAll plays a role in guaranteeing its existene, whene part of its

importane. One the deomposition U

1

^ U

2

is obtained, the behavior of S-

Pop-Let is simple. The uni�ation onstraint U

1

onerns old variables only,

that is, variables that are not quanti�ed in the urrent let frame; thus, it need

not beome part of the new type sheme, and may instead remain part of the

urrent uni�ation onstraint. This is justi�ed by C-LetAnd and C-InAnd*

(see the proof of Lemma 1.8.10) and orresponds to the di�erene between

hmx-Gen' and hmx-Gen disussed in Setion 1.4. The uni�ation onstraint

U

2

, on the other hand, beomes part of the newly built type sheme 8

�

X[U

2

℄:X.

The property 9

�

X:U

2

� true guarantees that the newly reated environment

frame meets the requirements imposed on suh frames. Please note that, the

more type variables are onsidered old, the larger U

1

may beome, and the

smaller U

2

. This is another reason why S-LetAll is interesting: by allowing

more variables to be onsidered old, it dereases the size of the type sheme
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8

�

X[U

2

℄:X, making it heaper to take instanes of.

To omplete our desription of the onstraint solver, there remains to ex-

plain how to deide when 9

�

X:U determines

�

Y, sine this prediate ours in

the side-ondition of S-LetAll. The following lemma desribes two impor-

tant situations where, by examining the struture of an equation, it is possible

to disover that a onstraint C determines some of its free type variables

�

Y

(De�nition 1.3.26). In the �rst situation, the type variables

�

Y are equated with

or dominated by a distint type variable X that ours free in C. In that ase,

beause the model is a free tree model, the values of the type variables

�

Y are

determined by the value of X�they are subtrees of it at spei� positions.

For instane, X = Y

1

! Y

2

determines Y

1

Y

2

, while 9Y

1

:(X = Y

1

! Y

2

) de-

termines Y

2

. In the seond situation, the type variables

�

Y are equated with

a term T, all of whose free type variables are free in C. Again, the value of

the type variables

�

Y is then determined by the values of the type variables

ftv(T)�indeed, the term T itself de�nes a funtion that maps the latter to

the former. For instane, X = Y

1

! Y

2

determines X, while 9Y

1

:(X = Y

1

! Y

2

)

does not. In the seond situation, no assumption is in fat made about the

model. Please note that X = Y

1

! Y

2

determines Y

1

Y

2

and determines X, but

does not simultaneously determine XY

1

Y

2

.

1.8.7 Lemma: Let

�

X #

�

Y. Assume either � is X = �

0

, where X 62

�

X

�

Y and

�

Y � ftv(�

0

),

or � is

�

Y = T = �

0

, where ftv(T) #

�

X

�

Y. Then, 9

�

X:(C ^ �) determines

�

Y. 2

Proof: Let

�

X #

�

Y (1). Let � ` def � in 9

�

X:(C ^ �) (2) and �

0

`

def � in 9

�

X:(C ^ �) (3), where � and �

0

oinide outside of

�

Y. We may assume,

w.l.o.g.,

�

X # ftv(�) (4). By (2), (4), CM-Exists, and CM-And, we obtain

�

1

` def � in � (5), where � and �

1

oinide outside

�

X. By CM-Prediate,

(5) implies that all members of � have the same image through �

1

. Similarly,

exploiting (3) and (4), we �nd that all members of � have the same image

through �

0

1

, where �

0

and �

0

1

oinide outside

�

X. Now, we laim that �

1

and

�

0

1

oinide on

�

Y. One the laim is established, by (1), there follows that �

and �

0

must oinide on

�

Y as well, whih is the goal. So, there only remains

to establish the laim; we distinguish two subases.

Subase � is X = �

0

and X 62

�

X

�

Y (6) and

�

Y � ftv(�

0

) (7). Beause �

1

and

�

0

1

oinide outside

�

X

�

Y and by (6), we have �

1

(X) = �

0

1

(X). As a result, all

members of �

0

have the same image through �

1

and �

0

1

. In a free tree model,

where deomposition is valid, a simple indutive argument shows that �

1

and

�

0

1

must oinide on ftv(�

0

), hene�by (7)�also on

�

Y.

Subase � is

�

Y = T = �

0

and ftv(T) #

�

X

�

Y (8). Beause �

1

and �

0

1

oinide

outside

�

X

�

Y and by (8), we have �

1

(T) = �

0

1

(T). Thus, for every Y 2

�

Y, we have

�

1

(Y) = �

1

(T) = �

0

1

(T) = �

0

1

(Y). That is, �

1

and �

0

1

oinide on

�

Y. 2

Thanks to Lemma 1.8.7, a straightforward implementation of S-LetAll
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omes to mind. The problem is, given a onstraint 9

�

X:U , where U is a standard

onjuntion of multi-equations, to determine the greatest subset

�

Y of

�

X suh

that 9(

�

X n

�

Y):U determines

�

Y. By the �rst part of the lemma, it is safe for

�

Y

to inlude all members of

�

X that are diretly or indiretly dominated (with

respet to U) by some free variable of 9

�

X:U . Those an be found, in time

linear in the size of U , by a top-down traversal of the graph of �

U

. By the

seond part of the lemma, it is safe to lose

�

Y under the losure law X 2

�

X ^ (8Y Y �

U

X ) Y 2

�

Y) ) X 2

�

Y. That is, it is safe to also inlude all

members of

�

X whose desendants (with respet to U) have already been found

to be members of

�

Y. This losure omputation may be performed, again in

linear time, by a bottom-up traversal of the graph of �

U

. When U is ayli,

it is possible to show that this proedure is omplete, that is, does ompute

the greatest subset

�

Y that meets our requirement. This is the topi of the

following exerise.

1.8.8 Exerise [FFF, 9℄: Assuming U is ayli, prove that the above proe-

dure omputes the greatest subset

�

Y of

�

X suh that 9(

�

X n

�

Y):U determines

�

Y.

In the setting of a regular tree model, exhibit a satis�able onstraint U suh

that the above proedure is inomplete. Can you de�ne a omplete proedure

in that setting? 2

The above disussion has shown that when Y and Z are equated, if Y is

young and Z is old, then S-LetAll allows making Y old as well. If binding

information is enoded in terms of integer ranks, as suggested earlier, then

this remark may be formulated as follows: when Y and Z are equated, if the

rank of Y exeeds that of Z, then it may be dereased so that both ranks

math. As a result, it is possible to attah ranks with multi-equations, rather

than with variables. When two multi-equations are fused, the smaller rank is

kept.

S-Solve-Let and S-Name-2 to S-Pop-Let are unneessarily omplex

when x is assigned a monotype T, rather than an arbitrary type sheme

8

�

X[D℄:T. In that ase, the ombined e�et of these rules may be obtained

diretly via the following two new rules, whih may be implemented in a more

e�ient way:

S;U ; let x : T in C ! S[9X:[℄℄;U ^ X = T; let x : X in C

(S-Name-2-Mono)

if X 62 ftv(U; T; C) ^ T 62 V

S;U ; let x : X in C ! S[let x : X in [℄℄;U ;C (S-Solve-Let-Mono)

If T isn't a variable, it is replaed with a fresh variable X, together with the

equation X = T. This orresponds to the e�et of S-Name-2. Then, we diretly
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reate an environment frame for x, without bothering to reate and disard a

let frame, sine there is no way the type sheme X may be further simpli�ed.

Let us now state and establish the properties of the onstraint solver. First,

the redution system is terminating, so it de�nes an algorithm.

1.8.9 Lemma: The redution system ! is strongly normalizing. 2

Seond, every rewriting step preserves the meaning of the onstraint that

the urrent state represents. We reall that the state S;U ;C is meant to

represent the onstraint S[U ^ C℄.

1.8.10 Lemma: S;U ;C ! S

0

;U

0

;C

0

implies S[U ^ C℄ � S

0

[U

0

^ C

0

℄. 2

Proof: By examination of every rule.

Æ Case S-Unify. By Lemma 1.8.5.

Æ Case S-Ex-1, S-Ex-2, S-Solve-Ex. By C-ExAnd.

Æ Case S-Ex-3. By C-LetEx.

Æ Case S-Ex-4. By C-InEx.

Æ Case S-Solve-Eq, S-Pop-And. By C-Dup.

Æ Case S-Solve-Id. Beause � is of the form 8

�

X[U ℄:X, we have fpi (�) = ?.

The result follows by C-InId.

Æ Case S-Solve-And. By C-AndAnd.

Æ Case S-Solve-Let. By C-LetAnd.

Æ Case S-Name-2. By De�nition 1.3.21 and C-NameEq, X 62 ftv(U; T) im-

plies true  8

�

X[U ℄:T � 8

�

XX[U ^ X = T℄:X. The result follows by Lemma 1.3.22.

Æ Case S-Compress. Let � = [Y 7! Z℄. By De�nition 1.3.21 and C-

NameEq, Y 6= Z implies true  8

�

XY[Y = Z = � ^ U ℄:X � 8

�

XY[Y ^ Z =

�(�) ^ �(U)℄:�(X). The result follows by Lemma 1.3.22.

Æ Case S-UnName. Using Lemma 1.3.18, it is straightforward to hek

that Y 62 ftv (�) implies 9Y:(Y = �) � �. The result follows by C-ExAnd and

C-LetEx.

Æ Case S-LetAll. By C-LetAll.

Æ Case S-Pop-Let. By C-LetAnd and C-InAnd*.

Æ Case S-Pop-Env. By C-In*, realling that 9� must be true. 2

Last, we lassify the normal forms of the redution system:

1.8.11 Lemma: A normal form for the redution system ! is one of (i) S;U ; x � T,

where x 62 dpi(S); (ii) S; false; true; or (iii) X ;U ; true, where X is an existential

onstraint ontext and U a satis�able onjuntion of multi-equations. 2
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Proof: Beause, by de�nition, S;U ; false is not a valid state, a normal form

for S-Solve-Eq, S-Solve-Id, S-Solve-And, S-Solve-Ex, and S-Solve-

Let must be either an instane of the left-hand side of S-Solve-Id, with

x 62 dpi (S), whih orresponds to ase (i), or of the form S;U ; true. Let us

onsider the latter ase. Beause S;U ; true is a normal form with respet to

S-Unify, by Lemma 1.8.6, U must be either false of the form X [U

0

℄, where

U

0

is a standard onjuntion of multi-equations and, if the model is syntati,

U

0

is ayli. The former ase orresponds to (ii); thus, let us onsider the

latter ase. Beause S;X [U

0

℄; true is a normal form with respet to S-Ex-

1, the ontext X must in fat be empty, and U

0

is U . If S is an existential

onstraint ontext, then we are in situation (iii). Otherwise, beause S;U ; true

is a normal form with respet to S-Ex-2, S-Ex-3, and S-Ex-4, the stak S

does not end with an existential frame. Beause S;U ; true is a normal form

with respet to S-Pop-And and S-Pop-Env, S must then be of the form

S

0

[let x : 8

�

X[[℄℄:T in C℄. Beause S;U ; true is a normal form with respet to

S-Name-2, T must be a type variable X. Let us write U as U

1

^ U

2

, where

�

X # ftv(U

1

), and where U

1

is maximal for this riterion. Then, onsider a

multi-equation � 2 U . By the �rst part of Lemma 1.8.7, if one variable member

of � is free (that is, outside

�

X), then 9

�

X:U determines all other variables in

ftv(�). Beause S;U ; true is a normal form with respet to S-LetAll, all

variables in ftv(�) must then be free (that is, outside

�

X). By de�nition of

U

1

, this implies � 2 U

1

. By ontraposition, for every multi-equation � 2 U

2

,

all variable members of � are in

�

X. Furthermore, let us reall that U

2

is a

standard onjuntion of multi-equations and, if the model is syntati, U

2

is

ayli. We let the reader hek that this implies 9

�

X:U

2

� true; the proof is a

slight generalization of the last part of that of Lemma 1.8.6. Then, S;U ; true

is reduible via S-Pop-Let. This is a ontradition, so this last ase annot

arise. 2

In ase (i), the onstraint S[U^C℄ has a free program identi�er x, so it is not

satis�able. In other words, the soure program ontains an unbound program

identi�er. Suh an error ould of ourse be deteted prior to onstraint solving,

if desired. In ase (ii), the uni�ation algorithm failed. By Lemma 1.3.30, the

onstraint S[U ^ C℄ is then false. In ase (iii), the onstraint S[U ^ C℄ is

equivalent to X [U ℄, where U is satis�able, so it is satis�able as well. Thus,

eah of the three lasses of normal forms may be immediately identi�ed as

denoting suess or failure. Thus, Lemmas 1.8.10 and 1.8.11 indeed prove that

the algorithm is a onstraint solver.
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1.9 From ML-the-alulus to ML-the-programming-language

In this setion, we explain how to extend the framework developed so far

to aommodate operations on values of base type (suh as integers), pairs,

sums, referenes, and reursive funtion de�nitions. Then, we desribe more

omplex extensions, namely algebrai data type de�nitions, pattern mathing,

and type annotations. Last, the issues assoiated with reursive types are

brie�y disussed. Exeptions are not disussed; the reader is referred to (TAPL

Chapter 14).

Simple extensions

Many features of ML-the-programming-language may be introdued into ML-

the-alulus by introduing new onstants and extending

Æ

�! and �

0

appro-

priately. In eah ase, it is neessary to hek that the requirements of Def-

inition 1.7.6 are met, that is, the new initial environment faithfully re�ets

the nature of the new onstants as well as the behavior of the new redution

rules. Below, we desribe several suh extensions in isolation.

1.9.1 Exerise [Integers, Reommended, FF℄: Integer literals and integer

addition have been introdued and given an operational semantis in Exam-

ples 1.2.1, 1.2.2 and 1.2.4. Let us now introdue an isolated type onstrutor

int of signature ? and extend the initial environment �

0

with the bindings

n̂ : int, for every integer n, and

^

+ : int ! int ! int. Chek that these

de�nitions meet the requirements of De�nition 1.7.6. 2

1.9.2 Exerise [Booleans, Reommended, FF, 9℄: Booleans and ondition-

als have been introdued and given an operational semantis in Exerise 1.2.6.

Introdue an isolated type onstrutor bool to represent Boolean values and

explain how to extend the initial environment. Chek that your de�nitions

meet the requirements of De�nition 1.7.6. What is the onstraint generation

rule for the syntati sugar if t

0

then t

1

else t

2

? 2

1.9.3 Exerise [Pairs, FF, 9℄: Pairs and pair projetions have been introdued

and given an operational semantis in Examples 1.2.3 and 1.2.5. Let us now

introdue an isolated type onstrutor � of signature ? 
 ? ) ?, ovariant

in both of its parameters, and extend the initial environment �

0

with the

following bindings:

(�; �) : 8XY:X! Y! X� Y

�

1

: 8XY:X� Y! X

�

2

: 8XY:X� Y! Y

Chek that these de�nitions meet the requirements of De�nition 1.7.6. 2
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1.9.4 Exerise [Sums, FF, 9℄: Sums have been introdued and given an oper-

ational semantis in Example 1.2.7. Let us now introdue an isolated type

onstrutor + of signature ?
?) ?, ovariant in both of its parameters, and

extend the initial environment �

0

with the following bindings:

inj

1

: 8XY:X! X+ Y

inj

2

: 8XY:Y! X+ Y

ase : 8XYZ:(X+ Y)! (X! Z)! (Y! Z)! Z

Chek that these de�nitions meet the requirements of De�nition 1.7.6. 2

1.9.5 Exerise [Referenes, FFF℄: Referenes have been introdued and

given an operational semantis in Example 1.2.9. The type onstrutor ref has

been introdued in De�nition 1.7.4. Let us now extend the initial environment

�

0

with the following bindings:

ref : 8X:X! ref X

! : 8X:ref X! X

:= : 8X:ref X! X! X

Chek that these de�nitions meet the requirements of De�nition 1.7.6. 2

1.9.6 Exerise [Reursion, Reommended, FFF℄: The �xpoint ombinator

fix has been introdued and given an operational semantis in Exam-

ple 1.2.10. Let us now extend the initial environment �

0

with the following

binding:

fix : 8XY:((X! Y)! (X! Y))! X! Y

Chek that these de�nitions meet the requirements of De�nition 1.7.6. Reall

how the letre syntati sugar was de�ned in Example 1.2.10, and hek that

this gives rise to the following onstraint generation rule:

let �

0

in Jletre f = �z:t

1

in t

2

: TK

� let �

0

in let f : 8XY[let f : X! Y; z : X in Jt

1

: YK℄:X! Y in Jt

2

: TK

Note the somewhat peuliar struture of this onstraint: the program variable

f is bound twie in it, with di�erent type shemes. The onstraint requires

all ourrenes of f within t

1

to be assigned the monomorphi type X! Y.

This type is generalized and turned into a type sheme before inspeting t

2

,

however, so every ourrene of f within t

2

may reeive a di�erent type, as

usual with let-polymorphism. A more powerful way of typeheking reursive

funtion de�nitions is disussed in Setion 1.10 (page 113). 2
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Algebrai data types

Exerises 1.9.3 and 1.9.4 have shown how to extend the language with binary,

anonymous produts and sums. These onstruts are quite general, but still

have several shortomings. First, they are only binary, while we would like to

have k-ary produts and sums, for arbitrary k � 0. Suh a generalization is of

ourse straightforward. Seond, more interestingly, their omponents must be

referred to by numeri index (as in �please extrat the seond omponent of the

pair�), rather than by name (�extrat the omponent named y�). In pratie,

it is ruial to use names, beause they make programs more readable and

more robust in the fae of hanges. One ould introdue a mehanism that

allows de�ning names as syntati sugar for numeri indies. That would help

a little, but not muh, beause these names would not appear in types, whih

would still be made of anonymous produts and sums. Third, in the absene

of reursive types, produts and sums do not have su�ient expressiveness to

allow de�ning unbounded data strutures, suh as lists. Indeed, it is easy to

see that every value whose type T is omposed of base types (int, bool, et.),

produts, and sums must have bounded size, where the bound j T j is a funtion

of T. More preisely, up to a onstant fator, we have j int j = j bool j = 1,

j T

1

�T

2

j = 1+ j T

1

j+ j T

2

j, and j T

1

+T

2

j = 1+max(j T

1

j; j T

2

j). The following

example desribes another faet of the same problem.

1.9.7 Example: A list is either empty, or a pair of an element and another list. So,

it seems natural to try and enode the type of lists as a sum of some arbitrary

type (say, unit), on the one hand, and of a produt of some element type

and of the type of lists itself, on the other hand. With this enoding in mind,

we an go ahead and write ode�for instane, a funtion that omputes the

length of a list:

letre length = �l:ase l (� :

^

0) (�z:

^

1

^

+ length (�

2

z))

We have used integers, pairs, sums, and the letre onstrut introdued in

the previous setion. The ode analyzes the list l using a ase onstrut.

If the left branh is taken, the list is empty, so 0 is returned. If the right

branh is taken, then z beomes bound to a pair of some element and the

tail of the list. The latter is obtained using the projetion operator �

2

. Its

length is omputed using a reursive all to length and inremented by 1.

This ode makes perfet sense. However, applying the onstraint generation

and onstraint solving algorithms eventually leads to an equation of the form

X = Y + (Z � X), where X stands for the type of l. This equation aurately

re�ets our enoding of the type of lists. However, in a syntati model, it has

no solution, so our de�nition of length is ill-typed. It is possible to adopt a free
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regular tree model,thus introduing equireursive types into the system (TAPL

Chapter 20); however, there are good reasons not to do so (page 106). 2

To work around this problem, ML-the-programming-language o�ers alge-

brai data type de�nitions, whose elegane lies in the fat that, while repre-

senting only a modest theoretial extension, they do solve the three problems

mentioned above. An algebrai data type may be viewed as an abstrat type

that is delared to be isomorphi to a (k-ary) produt or sum type with named

omponents. The type of eah omponent is delared as well, and may refer

to the algebrai data type that is being de�ned: thus, algebrai data types are

isoreursive (TAPL Chapter 20). In order to allow su�ient �exibility when

delaring the type of eah omponent, algebrai data type de�nitions may be

parameterized by a number of type variables. Last, in order to allow the de-

sription of omplex data strutures, it is neessary to allow several algebrai

data types to be de�ned at one; the de�nitions may then be mutually re-

ursive. In fat, in order to simplify this formal presentation, we assume that

all algebrai data types are de�ned at one at the beginning of the program.

This deision is of ourse at odds with modular programming, but will not

otherwise be a problem.

In the following, D ranges over a set of data types. We assume that data types

form a subset of type onstrutors. We require eah of them to be isolated

and to have a signature of the form ~�) ?. Furthermore, ` ranges over a set L

of labels, whih we use indi�erently as data onstrutors and as reord labels.

An algebrai data type de�nition is either a variant type de�nition or a reord

type de�nition, whose respetive forms are

D

~

X �

k

X

i=1

`

i

: T

i

and D

~

X �

k

Y

i=1

`

i

: T

i

:

In either ase, k must be nonnegative. If D has signature ~�) ?, then the type

variables

~

X must have kind ~�. Every T

i

must have kind ?. We refer to

�

X as

the parameters and to

~

T (the vetor formed by T

1

; : : : ; T

k

) as the omponents

of the de�nition. The parameters are bound within the omponents, and the

de�nition must be losed, that is, ftv (

~

T) �

�

X must hold. Last, for an algebrai

data type de�nition to be valid, the behavior of the type onstrutor D with

respet to subtyping must math its de�nition. This requirement is lari�ed

below.

1.9.8 Definition: Consider an algebrai data type de�nition whose parameters

and omponents are respetively

~

X and

~

T. Let

~

X

0

and

~

T

0

be their images under

an arbitrary renaming. Then, D

~

X � D

~

X

0



~

T �

~

T

0

must hold. 2

The above requirement bears on the de�nition of subtyping in the model.

The idea is, sine D

~

X is delared to be isomorphi to (a sum or a produt of)
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~

T, whenever two types built with D are omparable, their unfoldings should be

omparable as well. The reverse entailment assertion is not required for type

soundness, and it is sometimes useful to delare algebrai data types that

do not validate it�so-alled phantom types (Fluet and Puella, 2002). Note

that the requirement may always be satis�ed by making the type onstrutor D

invariant in all of its parameters. Indeed, in that ase, D

~

X � D

~

X

0

entails

~

X =

~

X

0

,

whih must entail

~

T =

~

T

0

sine

~

T

0

is preisely [

~

X 7!

~

X

0

℄

~

T. In an equality free

tree model, every type onstrutor is naturally invariant, so the requirement

is trivially satis�ed. In other settings, however, it is often possible to satisfy

the requirement of De�nition 1.9.8 while assigning D a less restritive variane.

The following example illustrates suh a ase.

1.9.9 Example: Let list be a data type of signature ? ) ?. Let Nil and Cons be

data onstrutors. Then, the following is a de�nition of list as a variant type:

listX � � (Nil : unit; Cons : X� list X)

Beause data types form a subset of type onstrutors, it is valid to form the

type listX in the right-hand side of the de�nition, even though we are still in

the proess of de�ning the meaning of list. In other words, data type de�nitions

may be reursive. However, beause � is not interpreted as equality, the type

listX is not a reursive type: it is nothing but an appliation of the unary

type onstrutor list to the type variable X. To hek that the de�nition of list

satis�es the requirement of De�nition 1.9.8, we must ensure that

listX � listX

0

 unit � unit ^ X� list X � X

0

� list X

0

holds. This assertion is equivalent to list X � listX

0

 X � X

0

. To satisfy the

requirement, it is su�ient to make list a ovariant type onstrutor, that is,

to de�ne subtyping in the model so that listX � listX

0

� X � X

0

holds.

Let tree be a data type of signature ? ) ?. Let root and sons be reord

labels. Then, the following is a de�nition of tree as a reord type:

tree X � �(root : X; sons : list (tree X))

This de�nition is again reursive, and relies on the previous de�nition. Beause

list is ovariant, it is straightforward to hek that the de�nition of tree is valid

if tree is made a ovariant type onstrutor as well. 2

1.9.10 Exerise [FF, 9℄: Consider a nonreursive algebrai data type de�nition,

where the variane of every type onstrutor that appears on the right-hand

side is known. Can you systematially determine, for eah of the parameters,

the least restritive variane that makes the de�nition valid? Generalize this

proedure to the ase of reursive and mutually reursive algebrai data type

de�nitions. 2
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A prologue is a set of algebrai data type de�nitions, where eah data type is

de�ned at most one and where eah data onstrutor or reord label appears

at most one. A program is a pair of a prologue and an expression. The e�et of

a prologue is to enrih the programming language with new onstants. That

is, a variant type de�nition extends the operational semantis with several

injetions and a ase onstrut, as in Example 1.2.7. A reord type de�nition

extends it with a reord formation onstrut and several projetions, as in

Examples 1.2.3 and 1.2.5. In either ase, the initial typing environment �

0

is

extended with information about these new onstants. Thus, algebrai data

type de�nitions might be viewed as a simple on�guration language that allows

speifying in whih instane of ML-the-alulus the expression that follows

the prologue should be typeheked and interpreted. Let us now give a preise

aount of this phenomenon.

To begin, suppose the prologue ontains the de�nition D

~

X �

P

k

i=1

`

i

: T

i

.

Then, for eah i 2 f1; : : : ; kg, a onstrutor of arity 1, named `

i

, is intro-

dued. Furthermore, a destrutor of arity k + 1, named ase

D

, is introdued.

When k > 0, it is ommon to write ase t [`

i

: t

i

℄

k

i=1

for the appliation

ase

D

t t

1

: : : t

n

. The operational semantis is extended with the following

redution rules, for i 2 f1; : : : ; kg:

ase (`

i

v) [`

j

: v

j

℄

k

j=1

Æ

�! v

i

v

(R-Alg-Case)

For eah i 2 f1; : : : ; kg, the initial environment is extended with the binding

`

i

: 8

�

X:T

i

! D

~

X. It is further extended with the binding ase

D

: 8

�

XZ:D

~

X !

(T

1

! Z)! : : : (T

k

! Z)! Z.

Now, suppose the prologue ontains the de�nition D

~

X �

Q

k

i=1

`

i

: T

i

. Then,

for eah i 2 f1; : : : ; kg, a destrutor of arity 1, named `

i

, is introdued. Fur-

thermore, a onstrutor of arity k, named make

D

, is introdued. It is ommon

to write t:` for the appliation ` t and, when k > 0, to write f`

i

= t

i

g

k

i=1

for

the appliation make

D

t

1

: : : t

k

. The operational semantis is extended with

the following redution rules, for i 2 f1; : : : ; kg:

(f`

j

= v

j

g

k

j=1

):`

i

Æ

�!
v

i

(R-Alg-Proj)

For eah i 2 f1; : : : ; kg, the initial environment is extended with the binding

`

i

: 8

�

X:D

~

X! T

i

. It is further extended with the binding make

D

: 8

�

X:T

1

! : : :!

T

k

! D

~

X.

1.9.11 Example: The e�et of de�ning list (Example 1.9.9) is to make Nil and Cons

data onstrutors of arity 1 and to introdue a binary destrutor ase

list

. The

de�nition also extends the initial environment as follows:

Nil : 8X:unit! list X

Cons : 8X:X� listX! listX

ase

list

: 8XZ:list X! (unit! Z)! (X� list X! Z)! Z
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Thus, the value Cons(

^

0; Nil()), an integer list of length 1, has type listint. A

funtion that omputes the length of a list may now be written as follows:

letre length = �l:ase l [ Nil : � :

^

0 j Cons : �z:

^

1

^

+ length (�

2

z) ℄

Reall that this notation is syntati sugar for

letre length = �l:ase

list

l (� :

^

0) (�z:

^

1

^

+ length (�

2

z))

The di�erene with the ode in Example 1.9.7 appears minimal: the ase

onstrut is now annotated with the data type list. As a result, the type

inferene algorithm employs the type sheme assigned to ase

list

, whih is

derived from the de�nition of list, instead of the type sheme assigned to the

anonymous ase onstrut, given in Exerise 1.9.4. This is good for a ouple

of reasons. First, the former is more informative than the latter, beause it

ontains the type T

i

assoiated with the data onstrutor `

i

. Here, for instane,

the generated onstraint requires the type of z to be X� listX for some X, so a

good error message would be given if a mistake was made in the seond branh,

suh as omitting the use of �

2

. Seond, and more fundamentally, the ode is

now well-typed, even in the absene of reursive types. In Example 1.9.7, a

yli equation was produed beause ase required the type of l to be a sum

type and beause a sum type arries the types of its left and right branhes as

subterms. Here, instead, ase

list

requires l to have type listX for some X. This

is an abstrat type: it does not expliitly ontain the types of the branhes. As

a result, the generated onstraint no longer involves a yli equation. It is, in

fat, satis�able; the reader may hek that length has type 8X:listX ! int,

as expeted. 2

Example 1.9.11 stresses the importane of using delared, abstrat types, as

opposed to anonymous, onrete sum or produt types, in order to obviate the

need for reursive types. The essene of the trik lies in the fat that the type

shemes assoiated with operations on algebrai data types impliitly fold and

unfold the data type's de�nition. More preisely, let us reall the type sheme

assigned to the i

th

injetion in the setting of (k-ary) anonymous sums: it is

8X

1

: : : X

k

:X

i

! X

1

+ : : :+ X

k

, or, more onisely, 8X

1

: : : X

k

:X

i

!

P

k

i=1

X

i

. By

instantiating eah X

i

with T

i

and generalizing again, we �nd that a more spe-

i� type sheme is 8

�

X:T

i

!

P

k

i=1

T

i

. Perhaps this ould have been the type

sheme assigned to `

i

? Instead, however, it is 8

�

X:T

i

! D

~

X. We now realize that

this type sheme not only re�ets the operational behavior of the i

th

inje-

tion, but also folds the de�nition of the algebrai data type D by turning the

anonymous sum

P

k

i=1

T

i

�whih forms the de�nition's right-hand side�into

the parameterized abstrat type D

~

X�whih is the de�nition's left-hand side.

Conversely, the type sheme assigned to ase

D

unfolds the de�nition. The
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situation is idential in the ase of reord types: in either ase, onstrutors

fold, destrutors unfold. In other words, ourrenes of data onstrutors and

reord labels in the ode may be viewed as expliit instrutions for the type-

heker to fold or unfold an algebrai data type de�nition. This mehanism is

harateristi of isoreursive types.

1.9.12 Exerise [F, 9℄: For a �xed k, hek that all of the mahinery assoiated

with k-ary anonymous produts�that is, onstrutors, destrutors, redution

rules, and extensions to the initial typing environment�may be viewed as the

result of a single algebrai data type de�nition. Condut a similar hek in

the ase of k-ary anonymous sums. 2

1.9.13 Exerise [FFF, 9℄: Chek that the above de�nitions meet the require-

ments of De�nition 1.7.6. 2

1.9.14 Exerise [FFF, 9℄: For sake of simpliity, we have assumed that data

onstrutors are always of arity one. It is indeed possible to allow data on-

strutors of any arity and de�ne variants as D

~

X �

P

k

i=1

`

i

:

~

T

i

. For instane,

the de�nition of list ould then be listX � � (Nil; Cons : X � listX) and for

instane Cons(

^

0; Nil) would be a list value. Make the neessary hanges in

the de�nitions above and hek that they still meet the requirements of De�-

nition 1.7.6. 2

In this formal presentation of algebrai data types, we have assumed that all

algebrai data type de�nitions are known before the program is typeheked.

This simplifying assumption is fored on us by the fat that we interpret

onstraints in a �xed model, that is, we assume a �xed universe of types.

In pratie, programming languages have module systems, whih allow dis-

tint modules to have distint, partial views of the universe of types. Then,

it beomes possible for eah module to ome with its own data type de�-

nitions. Interestingly, it is even possible, in priniple, to split the de�nition

of a single data type over several modules, yielding extensible algebrai data

types. For instane, module A might delare the existene of a parameter-

ized variant type D

~

X, without giving its omponents. Later on, module B

might de�ne a omponent ` : T, where ftv (T) �

�

X. Suh a de�nition makes

` a unary onstrutor with type sheme 8

�

X:T ! D

~

X, as before. It beomes

impossible, however, to introdue a destrutor ase

D

, beause the de�nition

of an extensible variant type an never be assumed to be omplete�other,

unknown modules might extend it further. To ompensate for its absene, one

may supplement every onstrutor ` with a destrutor `

�1

, whose semantis

is given by `

�1

(` v) v

1

v

2

Æ

�! v

1

v and `

�1

(`

0

v) v

1

v

2

Æ

�! v

2

(`

0

v) when

` 6= `

0

, and whose type sheme is 8

�

XZ:D

~

X! (T! Z)! (D

~

X! Z)! Z. When
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pattern mathing is available, `

�1

may in fat be de�ned in the language. ML-

the-programming-language does not o�er extensible algebrai data types as a

language feature, but does have one built-in extensible variant type, namely

the type exn of exeptions. Thus, it is possible to de�ne new onstrutors for

the type exn within any module. The prie of this extra �exibility is that no

exhaustive ase analysis on values of type exn is possible.

One signi�ant drawbak of algebrai data type de�nitions resides in the

fat that a label ` annot be shared by two distint variant or reord type

de�nitions. Indeed, every algebrai data type de�nition extends the alulus

with new onstants. Stritly speaking, our presentation does not allow a sin-

gle onstant  to be assoiated with two distint de�nitions. Even if we did

allow suh a ollision, the initial environment would ontain two bindings for

, one of whih would then beome inaessible. This phenomenon arises in

atual implementations of ML-the-programming-language, where a new alge-

brai data type de�nition may hide some of the data onstrutors or reord

labels introdued by a previous de�nition. An elegant solution to this lak of

expressiveness is disussed in Setion 1.11.

Pattern mathing

Our presentation of produts, sums and algebrai data types has remained

within the setting of ML-the-alulus: that is, data strutures have been built

out of onstrutors, while the ase analysis and reord aess operations have

been viewed as destrutors. Some syntati sugar has been used to reover

standard notations. The language is now expressive enough to allow de�n-

ing and manipulating omplex data strutures, suh as lists and trees. Yet,

experiene shows that programming in suh a language is still somewhat um-

bersome. Indeed, ase analysis and reord aess are low-level operations: the

former allows inspeting a tag and branhing, while the latter allows deref-

erening a pointer. In pratie, one often needs to arry out more omplex

tasks, suh as determining whether a data struture has a ertain shape or

whether two data strutures have omparable shapes. Currently, the only

way to arry out these tasks is to program an expliit sequene of low-level

operations. It would be muh preferable to extend the language so that it be-

omes diretly possible to desribe shapes, alled patterns, and so that hek-

ing whether a patterns mathes a value beomes an elementary operation.

ML-the-programming-language o�ers this feature, alled pattern mathing.

Although pattern mathing may be added to ML-the-alulus by introdu-

ing a family of destrutors, we rather hoose to extend the alulus with a

new math onstrut, whih subsumes the existing let onstrut. This ap-

proah appears somewhat simpler and more powerful. We now arry out this
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p ::= Patterns:

Wildard

z Variable

 p

1

: : : p

k

Data

 2 Q

+

^ k = a()

p ^ p Conjuntion

p _ p Disjuntion

Pattern mathing

[ 7! v℄ = ?

[ p

1

: : : p

k

7!  v

1

: : : v

k

℄

= [p

1

7! v

1

℄
 : : :
 [p

k

7! v

k

℄

[p

1

^ p

2

7! v℄ = [p

1

7! v℄
 [p

2

7! v℄

[p

1

_ p

2

7! v℄ = [p

1

7! v℄� [p

2

7! v℄

Figure 1-13: Patterns and pattern mathing

extension.

Let us �rst de�ne the syntax of patterns (Figure 1-13) and desribe (in-

formally, for now) whih values they math. To a pattern p, we assoiate a

set of de�ned program variables dpi (p), whose de�nition appears in the text

that follows. The pattern p is well-formed if and only if dpi (p) is de�ned.

To begin, the wildard is a pattern, whih mathes every value and binds

no variables. We let dpi ( ) = ?. Although the wildard may be viewed as

an anonymous variable, and we have done so thus far, it is now simpler to

view it as a distint pattern. A program variable z is also a pattern, whih

mathes every value and binds z to the mathed value. We let dpi (z) = fzg.

Next, if  is a onstrutor of arity k, then  p

1

: : : p

k

is a pattern, whih

mathes  v

1

: : : v

k

when p

i

mathes v

i

for every i 2 f1; : : : ; kg. We let

dpi( p

1

: : : p

k

) = dpi (p

1

) ℄ : : : ℄ dpi (p

k

). That is, the pattern  p

1

: : : p

k

is

well-formed when p

1

; : : : ; p

k

de�ne disjoint sets of variables. This ondition

rules out nonlinear patterns suh as (z; z). De�ning the semantis of suh a

pattern would require a notion of equality at every type, whih introdues vari-

ous ompliations, so it is ommonly onsidered ill-formed. The pattern p

1

^p

2

mathes all values that both p

1

and p

2

math. It is ommonly used with p

2

a

program variable: then, it allows examining the shape of a value and binding a

name to it at the same time. Again, we de�ne dpi (p

1

^p

2

) = dpi(p

1

)℄dpi (p

2

).

The pattern p

1

_p

2

mathes all values that either p

1

or p

2

mathes. We de�ne

dpi(p

1

_ p

2

) = dpi (p

1

) = dpi(p

2

). That is, the pattern p

1

_ p

2

is well-formed

when p

1

and p

2

de�ne the same variables. Thus, (inj

1

z)_ (inj

2

z) is a well-

formed pattern, whih binds z to the omponent of a binary sum, without

regard for its tag. However, (inj

1

z

1

) _ (inj

2

z

2

) is ill-formed, beause one

annot statially predit whether it de�nes z

1

or z

2

.

Let us now formally de�ne whether a pattern p mathes a value v and

how the variables in dpi (p) beome bound to values in the proess. This is

done by introduing a generalized substitution, written [p 7! v℄, whih is either



TOP

2003/5/20

page 96

96 Draft of May 20, 2003 1 ML

t ::= . . . Expressions:

math t with (p

i

: t

i

)

k

i=1

E ::= . . . Evaluation Contexts:

math E with (p

i

: t

i

)

k

i=1

Redution rules

math v with (p

i

: t

i

)

k

i=1

�!

k

L

i=1

[p

i

7! v℄t

i

(R-Math)

Figure 1-14: Extended syntax and semantis of ML-the-alulus

unde�ned or a substitution of values for the program variables in dpi (p). If the

former, then p does not math v. If the latter, then p mathes v and, for every

z 2 dpi (p), the variable z beomes bound to the value [p 7! v℄z. Of ourse,

when p is a variable z, the generalized substitution [z 7! v℄ is de�ned and

oinides with the substitution [z 7! v℄, whih justi�es our abuse of notation.

To onstrut generalized substitutions, we use two simple ombinators. First,

when dpi (p

1

) and dpi(p

2

) are disjoint, [p

1

7! v

1

℄ 
 [p

2

7! v

2

℄ stands for

the set-theoreti union of [p

1

7! v

1

℄ and [p

2

7! v

2

℄, if both are de�ned, and is

unde�ned otherwise. We use this ombinator to ensure that p

1

mathes v

1

and

p

2

mathes v

2

and to ombine the two orresponding sets of bindings. Seond,

when o

1

and o

2

are two possibly unde�ned mathematial objets that belong

to the same spae when de�ned, o

1

� o

2

stands for o

1

, if it is de�ned, and

for o

2

otherwise�that is, � is an angeli hoie operator with a left bias. In

partiular, when dpi (p

1

) and dpi(p

2

) oinide, [p

1

7! v

1

℄�[p

2

7! v

2

℄ stands for

[p

1

7! v

1

℄, if it is de�ned, and for [p

2

7! v

2

℄ otherwise. We use this ombinator

to ensure that p

1

mathes v

1

or p

2

mathes v

2

and to retain the orresponding

set of bindings. The full de�nition of generalized substitutions, whih relies on

these ombinators, appears in Figure 1-13. It re�ets the informal presentation

of the previous paragraph.

One patterns and pattern mathing are de�ned, it is straightforward to ex-

tend the syntax and operational semantis of ML-the-alulus. We enrih the

syntax of expressions with a new onstrut, math t with (p

i

: t

i

)

k

i=1

, where

k � 1. It onsists of a term t and a nonempty, ordered list of lauses, eah

of whih is omposed of a pattern p

i

and a term t

i

. The syntax of evaluation

ontexts is extended as well, so that the term t that is being examined is �rst

redued to a value v. The operational semantis is extended with a new rule,

R-Math, whih states that math v with (p

i

: t

i

)

k

i=1

redues to [p

i

7! v℄t

i

,

where i is the least element of f1; : : : ; kg suh that p

i

mathes v

i

. Tehnially,

L

k

i=1

[p

i

7! v℄t

i

stands for [p

1

7! v℄t

1

� : : :� [p

k

7! v℄t

k

, so that the redut

is the �rst term that is de�ned in this sequene.

As far as semantis is onerned, the math onstrut may be viewed as a
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generalization of the let onstrut. Indeed, let z = t

1

in t

2

may now be

viewed as syntati sugar for math t

1

with z : t

2

, that is, a math onstrut

with a single lause and a variable pattern. Then, R-Let beomes a speial

ase of R-Math.

It is pleasant to introdue some more syntati sugar. We write �(p

i

:t

i

)

k

i=1

for �z:math z with (p

i

: t

i

)

k

i=1

, where z is fresh for (p

i

:t

i

)

k

i=1

. Thus, it be-

omes possible to de�ne funtions by ases�a ommon idiom in ML-the-

programming-language.

1.9.15 Example: Using pattern mathing, a funtion that omputes the length of a

list (Example 1.9.11) may now be written as follows:

letre length = �(Nil :

^

0 j Cons ( ; z) :

^

1

^

+ length z)

The seond pattern mathes a nonempty list and binds z to its tail at the

same time, obviating the need for an expliit appliation of �

2

. 2

1.9.16 Exerise [FF, Reommended, 9℄: Under the above de�nition of length,

onsider an appliation of length to the list Cons(

^

0; Nil()). After eliminating

the syntati sugar, determine by whih redution sequene this expression

redues to a value. 2

Before we an proeed and extend the type system to deal with the new

math onstrut, we must make two mild extensions to the syntax and meaning

of onstraints. First, if � is 8

�

X[C℄:T, where

�

X # ftv (T

0

), then T

0

� � stands

for the onstraint 9

�

X:(C ^ T

0

� T). This relation is idential to the instane

relation (De�nition 1.3.3), exept the diretion of subtyping is reversed. We

extend the syntax of onstraints with instantiation onstraints of the form

T � x and de�ne their meaning by adding a symmetri ounterpart of CM-

Instane. We remark that, when subtyping is interpreted as equality, the

relations � � T and T � � oinide, so this extension is unneessary in that

partiular ase. Seond, we extend the syntax of environments so that several

suessive bindings may share a set of quanti�ers and a onstraint. That

is, we allow writing 8

�

X[C℄:(x

1

: T

1

; : : : ; x

k

: T

k

) for x

1

: 8

�

X[C℄:T

1

; : : : ; x

k

:

8

�

X[C℄:T

k

. From a theoretial standpoint, this is little more than syntati

sugar; however, in pratie, it is useful to implement this new idiom literally,

sine it avoids unneessary opying of the onstraint C.

Let us now extend the type system. For the sake of brevity, we extend

the onstraint generation rules only. Of ourse, it would also be possible to

de�ne orresponding extensions of the rule-based type systems shown earlier,

namely DM, HM(X), and PCB(X). We begin by de�ning a onstraint JT : pK

that represents a neessary and su�ient ondition for values of type T to

be aeptable inputs for the pattern p. Its free type variables are a subset of
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JT : K = true

JT : zK = T � z

JT :  p

1

: : : p

k

K = 9

�

X:(

~

X! T �  ^

V

k

i=1

JX

i

: p

i

K)

JT : p

1

^ p

2

K = JT : p

1

K ^ JT : p

2

K

JT : p

1

_ p

2

K = JT : p

1

K ^ JT : p

2

K

Jmath t with (p

i

: t

i

)

k

i=1

: TK =

V

k

i=1

let 8X

�

X

i

[Jt : XK ^ let ~z

i

:

~

X

i

in JX : p

i

K℄:(~z

i

:

~

X

i

) in Jt

i

: TK

where ~z

i

= dpi(p

i

)

Figure 1-15: Constraint generation for patterns and pattern mathing

ftv(T), while its free program identi�ers are either onstrutors or program

variables bound by p. It is de�ned in the upper part of Figure 1-15. The �rst

rule states that a wildard mathes values of arbitrary type. The seond and

third rules govern program variables and onstrutor appliations in patterns.

They are idential to the rules that govern these onstruts in expressions

(page 59), exept that the diretion of subtyping is reversed. In the absene

of subtyping, they would be entirely idential. We write

~

X for X

1

: : : X

k

and

~

X ! T for X

1

! : : : ! X

k

! T. As usual, the type variables X

1

; : : : ; X

k

must

have kind ? and must be distint and fresh for the equation's left-hand side.

The last two rules simply distribute the type T to both subpatterns. It is easy

to hek that JT : pK is ontravariant in T:

1.9.17 Lemma: T

0

� T ^ JT : pK entails JT

0

: pK. 2

This property re�ets the fat that T represents the type of an input for the

pattern p. Compare it with Lemma 1.6.3.

1.9.18 Example: Consider the pattern Cons ( ; z), whih appears in Exam-

ple 1.9.15. We have

JT : Cons ( ; z)K

� 9Z

1

:(JZ

1

! T : ConsK ^ JZ

1

: ( ; z)K)

� 9Z

1

:(Z

1

! T � Cons ^ 9Z

2

Z

3

:(JZ

2

! Z

3

! Z

1

: (�; �)K ^ JZ

2

: K ^ JZ

3

: zK))

� 9Z

1

Z

2

Z

3

:(Z

1

! T � Cons ^ Z

2

! Z

3

! Z

1

� (�; �) ^ Z

3

� z)

where Z

1

, Z

2

, Z

3

are fresh for T. Let us now plae this onstraint within the

sope of the initial environment, whih assigns type shemes to the onstru-

tors Cons and (�; �), and within the sope of a binding of z to some type T

0

.
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We �nd

let �

0

in let z : T

0

in JT : Cons ( ; z)K

� 9Z

1

Z

2

Z

3

:(9X:(Z

1

! T � X� listX! listX)^

9Y

1

Y

2

:(Z

2

! Z

3

! Z

1

� Y

1

! Y

2

! Y

1

� Y

2

) ^ Z

3

� T

0

)

� 9X:(T � list X ^ list X � T

0

)

where the �nal simpli�ation relies mainly on C-Arrow, on the orrespond-

ing rule for produts, and on C-ExTrans, and is left as an exerise to the

reader. Thus, the onstraint states that the pattern mathes values that have

type listX (equivalently, values whose type T is a subtype of listX), for some

undetermined element type X, and binds z to values of type list X (equivalently,

values whose type T

0

is a supertype of listX). 2

The above example seems to indiate that the onstraint generation rules for

patterns make some sense. Still, the areful reader may be somewhat puzzled

by the third rule, whih, ompared to its analogue for expressions, reverses

the diretion of subtyping, but does not reverse the diretion of instantiation.

Indeed, in order for this rule to make sense, and to be sound, we must for-

mulate a requirement onerning the type shemes assigned to onstrutors.

1.9.19 Definition: A onstrutor  is invertible if and only if, when

~

X and

~

X

0

have

length a(), the onstraint let �

0

in (

~

X

0

! T �  ^  �

~

X ! T) entails

~

X �

~

X

0

.

In the following, we assume patterns ontain invertible onstrutors only. 2

Intuitively, when  is invertible, it is possible to reover the type of every v

i

from the type of  v

1

: : : v

k

, a ruial property for pattern mathing to be

possible. Please note that, if �

0

() is monomorphi, then  is invertible. The

following lemma identi�es another important lass of invertible onstrutors.

1.9.20 Lemma: The onstrutors of algebrai data types are invertible. 2

Proof: Let  be a onstrutor introdued by the de�nition of an algebrai data

type D. Let k = a(). Then, the type sheme �

0

() is of the form 8

�

Y:

~

T! D

~

Y,

where

~

Y are the parameters of the de�nition and

~

T, a vetor of length k,

onsists of some of the de�nition's omponents. (More preisely,

~

T ontains

just one omponent in the ase of variant types and ontains all omponents

in the ase of reord types.) Let

~

X and

~

X

0

have length k. Let 8

�

Y

1

:

~

T

1

! D

~

Y

1

and 8

�

Y

2

:

~

T

2

! D

~

Y

2

be two �-equivalent forms of the type sheme �

0

(), with

�

Y

1

#

�

Y

2

and

�

Y

1

�

Y

2

# ftv(

�

X;

�

X

0

; T). The onstraint let �

0

in (

~

X

0

! T �  ^  �

~

X! T) is, by de�nition, equivalent to

~

X

0

! T � �

0

()^�

0

() �

~

X! T, that is,

9

�

Y

1

:(

~

X

0

! T �

~

T

1

! D

~

Y

1

) ^ 9

�

Y

2

:(

~

T

2

! D

~

Y

2

�

~

X ! T). By C-ExAnd and C-

Arrow, this may be written 9

�

Y

1

�

Y

2

:(D

~

Y

2

� T � D

~

Y

1

^

~

X �

~

T

2

^

~

T

1

�

~

X

0

). Now,
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by De�nition 1.9.8, D

~

Y

2

� D

~

Y

1

entails

~

T

2

�

~

T

1

, so the previous onstraint

entails 9

�

Y

1

�

Y

2

:(

~

X �

~

X

0

), that is,

~

X �

~

X

0

. 2

An important lass of noninvertible onstrutors are those assoiated with

existential type de�nitions (page 118), where not all quanti�ers of the type

sheme �

0

() are parameters of the type onstrutor D. For instane, under

the de�nition D � ` : 9X:X, the type sheme assoiated with ` is 8X:X ! D.

Then, it is easy to hek that ` is not invertible. This re�ets the fat that it

is not possible to reover the type of v from the type of ` v�whih must be

D in any ase�and explains why existential types require speial treatment.

We are now ready to assoiate a onstraint generation rule with the math

onstrut. It is given in the lower part of Figure 1-15. In the rule's right-hand

side, we write ~z

i

for the program variables bound by the pattern p

i

, and we

write

~

X

i

for a vetor of type variables of the same length. The type variables X

�

X

i

must have kind ?, must be pairwise distint and must not appear free in the

rule's left-hand side. Let us now explain the rule. Its right-hand side is a on-

juntion, where eah onjunt deals with one lause of the math onstrut,

requiring t

i

to have type T under ertain assumptions about the program

variables ~z

i

bound by the pattern p

i

. There remains to explain how these as-

sumptions are built. First, as in the ase of a let onstrut, we summon a fresh

type variable X and produe Jt : XK, the least spei� onstraint that guar-

antees t has type X. Then, re�eting the operational semantis, whih feeds

(the value produed by) t into the pattern p

i

, we feed the type X into p

i

and

produe let ~z

i

:

~

X

i

in JX : p

i

K, a onstraint that guarantees that

~

X

i

is a orret

vetor of type assumptions for the program variables ~z

i

(see Example 1.9.18).

This explains why we may plae JT : t

i

K within the sope of (~z

i

:

~

X

i

). There re-

mains to point out that, as in the ase of the let onstrut, every assignment

of ground types to X

�

X

i

that satis�es the onstraint Jt : XK^ let ~z

i

:

~

X

i

in JX : p

i

K

is aeptable, so it is valid to universally quantify these type variables. This

allows the program variables ~z

i

to reeive polymorphi type shemes when t

itself has polymorphi type.

1.9.21 Exerise [F, Reommended℄: We have previously suggested viewing

let z = t

1

in t

2

as syntati sugar for math t

1

with z : t

2

, and shown

that the operational semantis validates this view. Chek that it is also valid

from a typing perspetive. 2

The math onstraint generation rule, if implemented literally, takes k opies

of the onstraint Jt : XK. When k is greater than 1, this ompromises the linear

time and spae omplexity of onstraint generation. To remedy this problem,

one may modify the rule as follows: replae every opy of Jt : XK with z � X

and plae the onstraint within the ontext let z : 8X[Jt : XK℄:X in [℄, where z is
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a fresh program variable. It is not di�ult to hek that the logial meaning of

the onstraint is not a�eted and that a linear behavior is reovered. In pra-

tie, solving the new onstraint requires taking instanes of the type sheme

8X[Jt : XK℄:X, whih essentially requires opying Jt : XK again�however, an

e�ient solver may now simplify this subonstraint before dupliating it.

The following lemma is a key to establishing subjet redution for R-

Math. It relies on the requirement that onstrutors be invertible.

1.9.22 Lemma: Assume [p 7! v℄ is de�ned and maps ~z to ~w, where �z = dpi (p).

Let ~z :

~

T be an arbitrary monomorphi environment of domain �z. Then,

let �

0

in (Jv : TK ^ let ~z :

~

T in JT : pK) entails let �

0

in J~w :

~

TK. 2

We now prove that our extension of ML-the-alulus with pattern math-

ing enjoys subjet redution. We only state that R-Math preserves types,

and leave the new subase of R-Context, where the evaluation ontext in-

volves a math onstrut, to the reader. For this subase to sueed, the value

restrition (De�nition 1.7.7) must be extended to require that either all on-

stants have pure semantis or all math onstruts are in fat of the form

math v with (p

i

: t

i

)

k

i=1

.

1.9.23 Theorem [Subjet redution℄: (R-Math) � (v). 2

1.9.24 Exerise [FFF, 9℄: For the sake of simpliity, we have omitted the pro-

dution ref p from the syntax of patterns. The pattern ref p mathes every

memory loation whose ontent (with respet to the urrent store) is mathed

by p. Determine how the previous de�nitions and proofs must be extended in

order to aommodate this new prodution. 2

The progress property does not hold in general: for instane,

math Nil with (Cons z : z) is well-typed (with type 8X:X) but is stuk.

In atual implementations of ML-the-programming-language, suh errors are

dynamially deteted. This may be onsidered a weakness of ML-the-type-

system. Fortunately, however, it is often possible to statially prove that a

partiular math onstrut is exhaustive and annot go wrong. Indeed, if

math v with (p

i

: t

i

)

k

i=1

is well-typed, then for every i 2 f1; : : : ; kg, the

onstraint let �

0

in (Jv : XK^9

�

X:let ~z

i

:

~

X in JX : p

i

K), where �z

i

are the program

variables bound by p

i

, must be satis�able; that is, v must have some type

that is an aeptable input for p

i

. This fat yields information about v, from

whih it may be possible to derive that v must math one of the patterns p

i

.

1.9.25 Example: Let k = 2, p

1

= Nil , and p

2

= Cons (z

1

; z

2

). Then, the on-

straints let �

0

in 9

�

X:let ~z

i

:

~

X in JX : p

i

K, for i 2 f1; 2g, are both equivalent

(after simpli�ation, when i = 2) to 9Z:X � listZ. Beause the type onstru-

tor list is isolated, every losed value v whose type X satis�es this onstraint
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must be an appliation of Nil or Cons. If the latter, beause Cons has type

8X:X� listX! listX, and beause the type onstrutor � is isolated, the argu-

ment to Cons must be a pair. We onlude that v must math either p

1

or p

2

,

whih guarantees that this math onstrut is exhaustive and its evaluation

annot go wrong. 2

It is beyond the sope of this hapter to give more details about the hek for

exhaustiveness. The reader is referred to (Sekar, Ramesh, and Ramakrishnan,

1995; Le Fessant and Maranget, 2001).

Type annotations

So far, we have been interested in a very pure, and extreme, form of type

inferene. Indeed, in ML-the-alulus, expressions ontain no expliit type in-

formation whatsoever: it is entirely inferred. In pratie, however, it is often

useful to insert type annotations within expressions, beause they provide a

form of mahine-heked doumentation. Type annotations are also helpful

when attempting to trae the ause of a type error: by supplying the type-

heker with (supposedly) orret type information, one runs a better hane

of �nding a type inonsisteny near an atual programming mistake.

When type annotations are allowed to ontain type variables, one must

be quite areful about where (at whih program point) and how (existen-

tially or universally) these variables are bound. Indeed, the meaning of type

annotations annot be made preise without settling these issues. In what fol-

lows, we �rst explain how to introdue type annotations whose type variables

are bound loally and existentially. We show that extending ML-the-alulus

with suh limited type annotations is again a simple matter of introduing

new onstants. Then, we turn to a more general ase, where type variables

may be expliitly existentially introdued at any program point. We defer the

disussion of universally bound type variables to Setion 1.10.

Let a loal existential type annotation 9

�

X:T be a pair of a set of type vari-

ables

�

X and a type T, where T has kind ?,

�

X is onsidered bound within T,

and

�

X ontains ftv(T). For every suh annotation, we introdue a new unary

destrutor (� : 9

�

X:T). Suh a de�nition is valid only beause a type annota-

tion must be losed, that is, does not have any free type variables. We write

(t : 9

�

X:T) for the appliation ((� : 9

�

X:T)) t. Sine a type annotation does not

a�et the meaning of a program, the new destrutor has identity semantis:

(v : 9

�

X:T)

Æ

�!
v

(R-Annotation)

Its type sheme, however, is not that of the identity, namely 8X:X! X: instead,

it is less general, so that annotating an expression restrits its type. Indeed,
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we extend the initial environment �

0

with the binding

(� : 9

�

X:T) : 8

�

X:T! T

1.9.26 Exerise [F℄: Chek that 8

�

X:T ! T is an instane of 8X:X ! X in Damas

and Milner's sense, that is, the former is obtained from the latter via the

rule dm-Inst' given in Exerise 1.2.23. Does this allow arguing that the type

sheme assigned to (� : 9

�

X:T) is sound? Chek that the above de�nitions meet

the requirements of De�nition 1.7.6. 2

Although inserting a type annotation does not hange the semantis of the

program, it does a�et onstraint generation, hene type inferene. We let the

reader hek that, assuming

�

X # ftv (t; T

0

), the following derived onstraint

generation rule holds:

let �

0

in J(t : 9

�

X:T) : T

0

K � let �

0

in 9

�

X:(Jt : TK ^ T � T

0

)

So far, expressions annot have free type variables, so the hypothesis

�

X #

ftv(t) may seem super�uous. However, we shall soon allow expressions to

ontain type annotations with free type variables, so we prefer to make this

ondition expliit now. Aording to this rule, the e�et of the type annotation

is to fore the expression t to have type T, for some hoie of the type variables

�

X. As usual in type systems with subtyping, the expression's �nal type T

0

may then be an arbitrary supertype of this partiular instane of T. When

subtyping is interpreted as equality, T

0

and T are equated by the onstraint,

so this onstraint generation rule may be read: a valid type for (t : 9

�

X:T) must

be of the form T, for some hoie of the type variables

�

X.

1.9.27 Example: In DM extended with integers, the expression (�z:z : int! int)

has most general type int! int, even though the underlying identity fun-

tion has most general type 8X:X ! X, so the annotation restrits its type.

The expression (�z:z

^

+

^

1 : 9X:X ! X) has type int ! int, whih is also the

most general type of the underlying funtion, so the annotation ats merely

as doumentation in this ase. Note that the type variable X is instantiated to

int by the onstraint solver. The expression (�z:(z

^

1) : 9X:X! int) has type

(int! int)! int beause the underlying funtion has type (int! Y)! Y,

whih suessfully uni�es with X ! int by instantiating X to int ! int

and Y to int. Last, the expression (�z:(z

^

1) : 9X:int ! X) is ill-typed�

even though the underlying expression is well-typed�beause the equation

(int! Y)! Y = int! X is unsatis�able. 2
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1.9.28 Example: In DM extended with pairs, the expression �z

1

:�z

2

:((z

1

:

9X:X); (z

2

: 9X:X)) has most general type 8XY:X! Y! X� Y. In other words,

the two ourrenes of X do not represent the same type. Indeed, one ould

just as well have written �z

1

:�z

2

:((z

1

: 9X:X); (z

2

: 9Y:Y)). If one wishes z

1

and z

2

to reeive the same type, one must lift the type annotations and merge

them above the pair onstrutor, as follows: �z

1

:�z

2

:((z

1

; z

2

) : 9X:X � X). In

the proess, the type onstrutor � has appeared in the annotation, ausing

its size to inrease. 2

The above example reveals a limitation of this style of type annotations:

by requiring every type annotation to be losed, we lose the ability for two

separate annotations to share a type variable. Yet, suh a feature is sometimes

desirable. If the two annotations where sharing is desired are distant in the

ode, it may be awkward to lift and merge them into a single annotation; so,

more expressive power is sometimes truly needed.

Thus, we are lead to onsider more general type annotations, of the form

(t : T), where T has kind ?, and where the type variables that appear within

T are onsidered free, so that distint type annotations may refer to shared

type variables. For this idea to make sense, however, it is still neessary to

speify where these type variables are bound. We do so using expressions

of the form 9

�

X:t. Suh an expression binds the type variables

�

X within the

expression t, so that all free ourrenes of X (where X 2

�

X) in type annotations

inside t stand for the same type. Thus, we break the simple type annotation

onstrut (� : 9

�

X:T) into two more elementary onstituents, namely existential

type variable introdution 9

�

X:� and type onstraint (� : T). Note that both are

new forms of expressions; neither an be enoded by adding new onstants to

the alulus, beause it is not possible to assign losed type shemes to them.

Tehnially, allowing expressions to ontain type variables requires some

are. Several onstraint generation rules employ auxiliary type variables,

whih beome bound in the generated onstraint. These type variables may

be hosen in an arbitrary way, provided they do not appear free in the rule's

left-hand side�a side-ondition intended to avoid inadvertent apture. So far,

this side-ondition ould be read: the auxiliary type variables used to form the

onstraint Jt : TK must not appear free within T. Now, sine type annotations

may ontain free type variables, the side-ondition beomes: the auxiliary type

variables used to form Jt : TK must not appear free within t or T.

With this extended side-ondition in mind, our original onstraint genera-

tion rules remain unhanged. We add two new rules to desribe how the new

expression forms a�et onstraint generation:

J9

�

X:t : TK = 9

�

X:Jt : TK provided

�

X # ftv(T)

J(t : T) : T

0

K = Jt : TK ^ T � T

0
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The e�et of these rules is simple. The onstrut 9

�

X:t is an indiation to the

onstraint generator that the type variables

�

X, whih may our free within

type annotations inside t, should be existentially bound at this point. The

side-ondition

�

X # ftv(T) ensures that quantifying over

�

X in the generated

onstraint does not apture type variables in the expeted type T. It an always

be satis�ed by �-onversion of the expression 9

�

X:t. The onstrut (t : T) is

an indiation to the onstraint generator that the expression t should have

type T, and it is treated as suh by generating the subonstraint Jt : TK. The

expression's type may be an arbitrary supertype of T, hene the auxiliary

onstraint T � T

0

.

1.9.29 Example: In DM extended with pairs, the expression �z

1

:�z

2

:9X:((z

1

:

X); (z

2

: X)) has most general type 8X:X ! X ! X� X. Indeed, the onstraint

generated for this expression ontains the pattern 9X:(Jz

1

: XK^ Jz

2

: XK^ : : :),

whih auses z

1

and z

2

to reeive the same type. Note that this style is more

�exible than that employed in Example 1.9.28, where we were fored to use a

single, monolithi type annotation to express this sharing onstraint. 2

1.9.30 Remark: In pratie, a type variable is usually represented as a memory ell

in the typeheker's heap. So, one annot say that the soure ode ontains

type variables; rather, it ontains names that are meant to stand for type

variables. Let us write X for suh a name, and T for a type made of type

onstrutors and names, rather than of type onstrutors and type variables.

Then, our new expression forms are really 9

�

X:t and (t : T ). When the on-

straint generator enters the sope of an introdution form 9

�

X:t, it alloates a

vetor of fresh type variables

�

X, and augments an internal environment with

the bindings

�

X 7!

�

X. Beause the type variables are fresh, the side-ondition

of the �rst onstraint generation rule above is automatially satis�ed. When

the onstraint generator �nds a type annotation (t : T ), it looks up the in-

ternal environment to translate the type annotation T into an internal type

T�whih fails if T ontains a name that is not in sope�and applies the

seond onstraint generation rule above. 2

1.9.31 Exerise [FF, 9℄: Let

�

X � ftv(T) and

�

X # ftv(t). Chek that the on-

straints J(t : 9

�

X:T) : T

0

K and J9

�

X:(t : T) : T

0

K are equivalent. In other words,

the loal type annotations introdued earlier may be expressed in terms of the

more omplex onstruts desribed above. 2

1.9.32 Exerise [FF, 9℄: One way of giving identity semantis to our new type

annotation onstruts is to erase them altogether prior to exeution. Give

an indutive de�nition of bt, the expression obtained by removing all type

annotation onstruts from the expression t. Chek that Jt : TK entails Jbt :

TK and explain why this is su�ient to ensure type soundness. 2
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It is interesting to study how expliit introdution of existentially quanti�ed

type variables interats with let-polymorphism. The soure of their intera-

tion lies in the di�erene between the onstraints let z : 8

�

X[9X:C

1

℄:T in C

2

and 9X:let z : 8

�

X[C

1

℄:T in C

2

, whih was explained in Example 1.3.28. In the

former onstraint, every free ourrene of z inside C

2

auses a opy of 9X:C

1

to be taken, thus reating its own fresh opy of X. In the latter onstraint,

on the other hand, every free ourrene of z inside C

2

produes a opy of

C

1

. All suh opies share referenes to X, beause its quanti�er was not dupli-

ated. In the former ase, one may say that the type sheme assigned to z is

polymorphi with respet to X, while in the latter ase it is monomorphi. As

a result, the plaement of type variable introdution expressions with respet

to let bindings in the soure ode is meaningful: introduing a type variable

outside of a let onstrut prevents it from being generalized.

1.9.33 Example: In DM extended with integers and Booleans, the program let f =

9X:�z:(z : X) in (f 0; f true) is well-typed. Indeed, the type sheme assigned

to f is 8X:X! X. However, the program 9X:let f = �z:(z : X) in (f 0; f true)

is ill-typed. Indeed, the type sheme assigned to f is X ! X; then, no value

of X satis�es the onstraints assoiated with the appliations f 0 and f true.

The latter behavior is observed in Objetive Caml, where type variables are

impliitly introdued at the outermost level of expressions:

# let f z = (z:'a) in (f 0, f true);;

This expression has type bool but is here used with type int

More details about the treatment of type annotations in Standard ML, Ob-

jetive Caml, and Haskell are given on page 113. 2

1.9.34 Exerise [F, 9℄: Determine whih onstraints are generated for the two

programs in Example 1.9.33. Chek that the former is indeed well-typed, while

the latter is ill-typed. 2

Reursive types

We have shown that speializing HM(X) with an equality-only syntati

model yields HM(=), a onstraint-based formulation of Damas and Milner's

type system. Similarly, it is possible to speialize HM(X) with an equality-

only free regular tree model, yielding a onstraint-based type system that may

be viewed as an extension of Damas and Milner's type disipline with reur-

sive types. This �avor of reursive types is sometimes known as equireursive,

sine yli equations, suh as X = X ! X, are then satis�able. Our theorems

about type inferene and type soundness, whih are independent of the model,

remain valid. The onstraint solver desribed in Setion 1.8 may be used in



TOP

2003/5/20

page 107

1.10 Universal quanti�ation in onstraints 107

the setting of an equality-only free regular tree model: the only di�erene with

the syntati ase is that the ours hek is no longer performed.

Please note that, although ground types are regular, types remain �nite

objets: their syntax is unhanged. The � notation ommonly employed to

desribe reursive types may be emulated using type equations: for instane,

the notation �X:X ! X orresponds, in our onstraint-based approah, to the

type sheme 8X[X = X! X℄:X.

Although reursive types ome for free, as explained above, they have not

been adopted in mainstream programming languages based on ML-the-type-

system. The reason is pragmati: experiene shows that many nonsensial

expressions are well-typed in the presene of reursive types, whereas they

are not in their absene. Thus, the gain in expressiveness is o�set by the fat

that many programming mistakes are deteted later than otherwise possible.

Consider, for instane, the following OCaml session:

oaml -retypes

# let re map f = funtion

| [℄ ! [℄

| x :: l ! (map f x) :: (map f l);;

val map : 'a ! ('b list as 'b) ! (' list as ') = <fun>

This nonsensial variant of map is essentially useless, yet well-typed. Its prin-

ipal type sheme, in our notation, is 8XYZ[Y = listY ^ Z = listZ℄:X ! Y ! Z.

In the absene of reursive types, it is ill-typed, sine the onstraint Y =

listY ^ Z = listZ is then false.

The need for equireursive types is usually suppressed by the presene of al-

gebrai data types, whih o�er isoreursive types, in the language. Yet, they

are still neessary in some situations, suh as in Objetive Caml's objet-

oriented extension (Rémy and Vouillon, 1998), where reursive objet types

are ommonly inferred. In order to allow reursive objet types while still

rejeting the above variant of map, Objetive Caml's onstraint solver imple-

ments a seletive ours hek, whih forbids yles unless they involve the

type onstrutor h�i assoiated with objets. The orresponding model is a

tree model where every in�nite path down a tree must enounter the type

onstrutor h�i in�nitely often.

1.10 Universal quanti�ation in onstraints

The onstraint logi studied so far allows a set of variables

�

X to be existentially

quanti�ed within a formula C. The resulting formula 9

�

X:C reeives its stan-

dard meaning: it requires C to hold for some

�

X. However, we urrently have

no way of requiring a formula C to hold for all

�

X. Is it possible to extend our
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logi with universal quanti�ation? If so, what are the new possibilities o�ered

by this extension, in terms of type inferene? The present setion proposes

some answers to these questions.

It is worth noting that, although the standard notation for type shemes

involves the symbol 8, type sheme introdution and instantiation onstraints

do not allow an enoding of universal quanti�ation. Indeed, a universal quan-

ti�er in a type sheme is very muh like an existential quanti�er in a onstraint:

this is suggested, for instane, by De�nition 1.3.3 and by C-LetEx.

Constraints

We extend the syntax of onstraints as follows:

C ::= : : : j 8

�

X:C

Universally quanti�ed variables are often referred to as rigid, while existen-

tially quanti�ed variables are known as �exible. The logial interpretation of

onstraints (Figure 1-5) is extended as follows:

8

~

t �[

~

X 7!

~

t℄ ` def � in C

�

X # ftv(�)

� ` def � in 8

�

X:C

(CM-Forall)

We let the reader hek that none of the results established in Setion 1.3

are a�eted by this addition. Furthermore, the extended onstraint language

enjoys the following properties.

1.10.1 Lemma: 8

�

X:C  C. Conversely,

�

X # ftv(C) implies C  8

�

X:C. 2

1.10.2 Lemma:

�

X # ftv(C

2

) implies 8

�

X:(C

1

^ C

2

) � (8

�

X:C

1

) ^ C

2

. 2

1.10.3 Lemma: 8

�

X:8

�

Y:C � 8

�

X

�

Y:C. 2

1.10.4 Lemma: Let

�

X #

�

Y. Then, 9

�

X:8

�

Y:C entails 8

�

Y:9

�

X:C. Conversely, if 9

�

Y:C de-

termines

�

X, then 8

�

Y:9

�

X:C entails 9

�

X:8

�

Y:C. 2

Constraint solving

We brie�y explain how to extend the onstraint solver desribed in Setion 1.8

with support for universal quanti�ation. (Thus, we again assume an equality-

only free tree model.) Constraint solving in the presene of equations and of

existential and universal quanti�ers is known as uni�ation under a mixed

pre�x. It is a partiular ase of the deision problem for the �rst-order theory

of equality on trees; see e.g. (Comon and Lesanne, 1989). Extending our

solver is straightforward: in fat, the treatment of universal quanti�ers turns
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S;U ;8

�

X:C ! S[8

�

X:[℄℄;U ;C (S-Solve-All)

if

�

X # ftv(U)

S[8

�

X:9

�

Y

�

Z:[℄℄;U ; true ! S[9

�

Y:8

�

X:9

�

Z:[℄℄;U ; true (S-AllEx)

if

�

X #

�

Y ^ 9

�

X

�

Z:U determines

�

Y

S[8

�

XX:9

�

Y:[℄℄;U ; true ! false (S-All-Fail-1)

if X 62

�

Y ^ X �

?

U

Z ^ Z 62 X

�

Y

S[8

�

XX:9

�

Y:[℄℄; X = T = � ^ U ; true ! false (S-All-Fail-2)

if X 62

�

Y ^ T 62 V

S[8

�

X:9

�

Y:[℄℄;U

1

^ U

2

; true ! S;U

1

; true (S-Pop-All)

if

�

X

�

Y # ftv(U

1

) ^ 9

�

Y:U

2

� true

Figure 1-16: Solving universal onstraints

out to be surprisingly analogous to that of let onstraints. To begin, we extend

the syntax of staks with so-alled universal frames :

S ::= : : : j S[8

�

X:[℄℄

Beause existential quanti�ers annot, in general, be hoisted out of universal

quanti�ers, rules S-Ex-1 to S-Ex-4 now allow �oating them up to the nearest

enlosing let or universal frame, if any, or to the outermost level, otherwise.

Thus, in our mahine representation of staks, where rules S-Ex-1 to S-Ex-4

are applied in an eager fashion, every universal frame arries a list of the type

variables that are existentially bound immediately after it, and integer ranks

ount not only let frames, but also universal frames.

The solver's spei�ation is extended with the rules in Figure 1-16. S-

Solve-All, a forward rule, disovers a universal onstraint and enters it,

reating a new universal frame to reord its existene. S-AllEx exploits

Lemma 1.10.4 to hoist existential quanti�ers out of the universal frame. It

is analogous to S-LetAll, and its implementation may rely upon the same

proedure (Exerise 1.8.8). The next two rules detet failure onditions. S-

All-Fail-1 states that the onstraint 8X:9

�

Y:U is false if the rigid variable

X is diretly or indiretly dominated by a free variable Z. Indeed, the value

of X is then determined by that of Z�but a universally quanti�ed variable

ranges over all values, so this is a ontradition. In suh a ase, X is om-

monly said to esape its sope. S-All-Fail-2 states that the same onstraint

is false if X is equated with a nonvariable term. Indeed, the value of X is then
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partially determined, sine its head onstrutor is known, whih again on-

tradits its universal status. Last, S-Pop-All splits the urrent uni�ation

onstraint into two omponents U

1

and U

2

, where U

1

is made up entirely of

old variables and U

2

onstrains young variables only. This deomposition is

analogous to that performed by S-Pop-Let. Then, it is not di�ult to hek

that 8

�

X:9

�

Y:(U

1

^ U

2

) is equivalent to U

1

. So, the universal frame, as well as

U

2

, are disarded, and the solver proeeds by examining whatever remains on

top of the stak S.

It is possible to further extend the treatment of universal frames with two

rules analogous to S-Compress and S-UnName. In pratie, this improves

the solver's e�ieny, and makes it easier to share ode between the treatment

of let frames and that of universal frames.

It is interesting to remark that, as far as the underlying uni�ation algo-

rithm is onerned, there is no di�erene between existentially and universally

quanti�ed type variables. The algorithm solves whatever equations are pre-

sented to it, without inquiring about the status of their variables. Equations

that lead to failure, beause a rigid variable esapes its sope or is equated

with a nonvariable term, are deteted only when the universal frame is ex-

ited. A perhaps more ommon approah is to mark rigid variables as suh,

allowing the uni�ation algorithm to signal failure as soon as one of the two

error onditions is enountered. In this approah, a rigid variable may suess-

fully unify only with itself or with �exible variables fresher than itself. It is

often alled a Skolem onstrutor in the literature (Läufer and Odersky, 1994;

Shields and Peyton Jones, 2002). An interesting variant of this approah ap-

pears in Dowek, Hardin, Kirhner and Pfenning's treatment of (higher-order)

uni�ation (1995; 1998), where �exible variables are represented as ordinary

variables, while rigid variables are enoded using De Bruijn indies.

The properties of our onstraint solver are preserved by this extension: it

is possible to prove that Lemmas 1.8.9, 1.8.10, and 1.8.11 remain valid.

Type annotations, ontinued

In Setion 1.9, we introdued the expression form (t : 9

�

X:T), allowing an ex-

pression t to be annotated with a type T whose free variables

�

X are loally and

existentially bound. It is now natural to introdue the symmetri expression

form (t : 8

�

X:T), where T has kind ?,

�

X is bound within T, and

�

X ontains ftv(T),

as before. Its onstraint generation rule is as follows:

J(t : 8

�

X:T) : T

0

K = 8

�

X:Jt : TK ^ 9

�

X:(T � T

0

) provided

�

X # ftv(t; T

0

)

The �rst onjunt requires t to have type T for all values of

�

X. Here, the type

variables

�

X are universally bound, as expeted. The seond onjunt requires
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T

0

to be some instane of the universal annotation 8

�

X:T. Sine T

0

is only a

monotype, it seems di�ult to think of another sensible way of onstraining

T

0

. For this reason, the type variables

�

X are still existentially bound in the

seond onjunt. This makes the interpretation of the universal quanti�er in

type annotations a bit more omplex than that of the existential quanti�er. For

instane, when subtyping is interpreted as equality, the onstraint generation

rule may be read: a valid type for (t : 8

�

X:T) is of the form T, for some hoie

of the type variables

�

X, provided t has type T for all hoies of

�

X.

We remark that (t : 8

�

X:T) must be a new expression form: it annot be

enoded by adding new onstants to the alulus�whereas (t : 9

�

X:T) ould�

beause none of the existing onstraint generation rules produe universally

quanti�ed onstraints. Like all type annotations, it has identity semantis.

What is the use of universal type annotations, ompared with existential

type annotations?When a type variable is existentially bound, the typeheker

is free to assign it whatever value makes the program well-typed. As a result,

the expressions (�z:z

^

+

^

1 : 9X:X ! X) and (�z:z : 9X:X ! X) are both well-

typed: X is assigned int in the former ase, and remains undetermined in the

latter. However, it is sometimes useful to be able to insist that an expression

should be polymorphi. This e�et is naturally ahieved by using a universally

bound type variable. Indeed, (�z:z

^

+

^

1 : 8X:X! X) is ill-typed, beause 8X:(X =

int) is false, while (�z:z : 8X:X! X) is well-typed.

1.10.5 Exerise [F℄: Write down the onstraints 9Z:J(�z:z

^

+

^

1 : 8X:X! X) : ZK and

9Z:J(�z:z : 8X:X! X) : ZK, whih tell whether these expressions are well-typed.

Chek that the former is false, while the latter is satis�able. 2

A universal type annotation, as de�ned above, is nothing but a (losed)

Damas-Milner type sheme. Thus, the new onstrut (t : 8

�

X:T) gives us the

ability to ensure that the expression t admits the type sheme 8

�

X:T. This

feature is exploited at the module level in ML-the-programming-language,

where it is neessary to hek that the inferred type for a module omponent t

is more general than the type sheme S that appears in the module's signature.

In our view, this proess simply onsists in ensuring that (t : S) is well-typed.

In Setion 1.9, we have pointed out that loal (that is, losed) type annota-

tions o�er limited expressiveness, beause they annot share type variables. To

lift this limitation, we have introdued the expression forms 9

�

X:t and (t : T).

The former binds the type variables

�

X within t, making them available for use

in type annotations, and instruts the onstraint generator to existentially

quantify them at this point. The latter requires t to have T. It is natural to

proeed in the same manner in the ase of universal type annotations. We now

introdue the expression form 8

�

X:t, whih also binds

�

X within t, but omes
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with a di�erent onstraint generation rule:

J8

�

X:t : TK = 8

�

X:9Z:Jt : ZK ^ 9

�

X:Jt : TK provided

�

X # ftv(T) ^ Z 62 ftv (t)

This rule is a bit more omplex than that assoiated with the expression form

9

�

X:t. Again, this is due to the fat that we do not wish to overonstrain T.

The �rst exerise below shows that a more naïve version of the rule does not

yield the desired behavior. The seond exerise shows that this version does.

The third exerise lari�es an e�ieny onern.

1.10.6 Exerise [F℄: Assume that J8

�

X:t : TK is de�ned as 8

�

X:Jt : TK, provided

�

X # ftv (T). Write down the onstraint J8X:(�z:z : X ! X) : ZK. Can you

desribe its solutions? Does it have the intended meaning? 2

1.10.7 Exerise [FF℄: Let

�

X � ftv(T) and

�

X # ftv(t). Chek that the onstraints

J(t : 8

�

X:T) : T

0

K and J8

�

X:(t : T) : T

0

K are equivalent. In other words, loal

universal type annotations may also be expressed in terms of the more omplex

onstruts desribed above. 2

1.10.8 Exerise [FFFF, 9℄: The onstraint generation rule that appears above

ompromises the linear time and spae omplexity of onstraint generation,

beause it dupliates the term t. It is possible to avoid this problem, but

this requires a slight generalization of the onstraint language. Let us write

let x : 8

�

X

�

Y[C

1

℄:T in C

2

for 8

�

X:9

�

Y:C

1

^ def x : 8

�

X

�

Y[C

1

℄:T in C

2

. In this extended

let form, the underlined variables

�

X are interpreted as rigid, instead of �exible,

while heking that C

1

is satis�able. However, the type sheme assoiated

with x is not a�eted. Chek that the above onstraint generation rule may

now be written as follows:

J8

�

X:t : TK = let x : 8

�

XZ[Jt : ZK℄:Z in x � T provided Z 62 ftv (t)

Roughly speaking, the new rule forms a most general type sheme for t,

ensures that the type variables

�

X are unonstrained in it, and heks that T

is an instane of it. Furthermore, it does not dupliate t. To omplete the

exerise, extend the spei�ation of the onstraint solver (Figures 1-12 and 1-

16), as well as its implementation, to deal with this extension of the onstraint

language. 2

To onlude, let us one again stress that, if T has free type variables, the

e�et of the type annotation (t : T) depends on how and where they are

bound. The e�et of how stems from the fat that binding a type variable

universally, rather than existentially, leads to a striter onstraint. Indeed,

we let the reader hek that J8

�

X:t : TK entails J9

�

X:t : TK, while the onverse
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does not hold in general. The e�et of where has been illustrated, in the ase

of existentially bound type variables, in Setion 1.9. It is due, in that ase,

to the fat that let and 9 do not ommute. In the ase of universally bound

type variables, it may be imputed to the fat that 8 and 9 do not ommute.

For instane, �z:8X:(z : X) is ill-typed, beause inside the �-abstration, the

program variable z annot be said to have every type. However, 8X:�z:(z : X)

is well-typed, beause the identity funtion does have type X! X for every X.

1.10.9 Exerise [F℄: Write down the onstraints 9Z:J�z:8X:(z : X) : ZK and

9Z:J8X:�z:(z : X) : ZK, whih tell whether these expressions are well-typed.

Is the former satis�able? Is the latter? 2

In Standard ML and Objetive Caml, the type variables that appear in

type annotations are impliitly bound. That is, there is no syntax in the

language for the onstruts 9

�

X:t and 8

�

X:t. When a type annotation (t : T)

ontains a free type variable X, a �xed onvention tells how and where X is

bound. In Standard ML, X is universally bound at the nearest val binding

that enloses all related ourrenes of X (Milner, Tofte, and Harper, 1990).

The 1997 revision of Standard ML (Milner, Tofte, Harper, and MaQueen,

1997b) slightly improves on this situation by allowing type variables to be

expliitly introdued at val bindings. However, they still must be universally

bound. In Objetive Caml, X is existentially bound at the nearest enlosing

toplevel let binding; this behavior seems to be presently undoumented. We

argue that (i) allowing type variables to be impliitly introdued is onfusing;

and (ii) for expressiveness, both universal and existential quanti�ers should

be made available to programmers. Surprisingly, these language design and

type inferene issues seem to have reeived little attention in the literature,

although they have most likely been �folklore� for a long time. Peyton Jones

and Shields (2003) study these issues in the ontext of Haskell, and onur

with (i). Conerning (ii), they seem to think that the language designer must

hoose between existential and universal type variable introdution forms�

whih they refer to as �type-sharing� and �type-lambda��whereas we point

out that they may and should oexist.

Polymorphi reursion

Example 1.2.10 explains how the letre onstrut found in ML-the-

programming-language may be viewed as an appliation of the onstant fix,

wrapped inside a normal let onstrut. Exerise 1.9.6 shows that this gives

rise to a somewhat restritive onstraint generation rule: generalization o-

urs only after the appliation of fix is typeheked. In other words, in

letre f = �z:t

1

in t

2

, all ourrenes of f within t

1

must have the same
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(monomorphi) type. This restrition is sometimes a nuisane, and seems un-

warranted: if the funtion that is being de�ned is polymorphi, it should be

possible to use it at di�erent types even inside its own de�nition. Indeed, My-

roft (1984) extended Damas and Milner's type system with a more liberal

treatment of reursion, ommonly known as polymorphi reursion. The idea

is to only request ourrenes of f within t

1

to have the same type sheme.

Hene, they may have di�erent types, all of whih are instanes of a ommon

type sheme. It was later shown that well-typedness in Myroft's extended

type system is undeidable (Henglein, 1993; Kfoury, Tiuryn, and Urzyzyn,

1993). To work around this stumbling blok, one solution is to use a semi-

algorithm, falling bak to monomorphi reursion if it does not sueed or

fail in reasonable time. Although suh a solution might be appealing in the

setting of an automated program analysis, it is less so in the setting of a

programmer-visible type system, beause it may beome di�ult to under-

stand why a program is ill-typed. Thus, we desribe a simpler solution, whih

onsists in requiring the programmer to expliitly supply a type sheme for

f. This is an instane of a mandatory type annotation.

To begin, we must hange the status of fix, beause if fix remains a

onstant, then f must remain �-bound and annot reeive a polymorphi

type sheme. We turn fix into a language onstrut, whih binds a program

variable f, and annotates it with a DM type sheme. The syntax of values

and expressions is thus extended as follows:

v ::= : : : j fix f : S:�z:t t ::= : : : j fix f : S:�z:t

Please note that f is bound within �z:t. The operational semantis is extended

as follows.

(fix f : S:�z:t) v �! (let f = fix f : S:�z:t in �z:t) v (R-Fix')

The type annotation S plays no essential role in the redution; it is merely

preserved. It is now possible to de�ne letre f : S = �z:t

1

in t

2

as syntati

sugar for let f = fix f : S:�z:t

1

in t

2

.

We now give a onstraint generation rule for fix:

Jfix f : S:�z:t : TK = let f : S in J�z:t : SK ^ S � T

The left-hand onjunt requires the funtion �z:t to have type sheme S, under

the assumption that f has type S. Thus, it is now possible for di�erent our-

renes of f within t to reeive di�erent types. If S is 8

�

X:T, where

�

X # ftv(t),

then we write Jt : SK for 8

�

X:Jt : TK. Indeed, heking the validity of a poly-

morphi type annotation�be it mandatory, as is the ase here, or optional,

as was previously the ase�requires a universally quanti�ed onstraint. The

right-hand onjunt merely onstrains T to be an instane of S.
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Given the de�nition of letre f : S = �z:t

1

in t

2

as syntati sugar, the

above rule leads to the following derived onstraint generation rule for letre:

Jletre f : S = �z:t

1

in t

2

: TK = let f : S in (J�z:t

1

: SK ^ Jt

2

: TK)

This rule is arguably quite natural. The program variable f is assigned the

type sheme S throughout its sope, that is, both inside and outside of the

funtion's de�nition. The funtion �z:t

1

must itself have type sheme S. Last,

t

2

must have type T, as in every let onstrut.

1.10.10 Exerise [FF℄: Prove that the derived onstraint generation rule above is

indeed valid. 2

It is straightforward to prove that the extended language still enjoys subjet

redution. The proof relies on the following lemma: if t has type sheme S,

then every instane of S is also a valid type for t.

1.10.11 Lemma: Jt : SK ^ S � T  Jt : TK. 2

1.10.12 Theorem [Subjet redution℄: (R-Fix') � (v). 2

The programming language Haskell (Hudak, Peyton Jones, Wadler, Boutel,

Fairbairn, Fasel, Guzman, Hammond, Hughes, Johnsson, Kieburtz, Nikhil,

Partain, and Peterson, 1992) o�ers polymorphi reursion. Interesting details

about its typing rules may be found in (Jones, 1999).

It is worth pointing out that some restrited instanes of type inferene

in the presene of polymorphi reursion are deidable. This is typially the

ase in ertain program analyses, where a type derivation for the program is

already available, and the goal is only to infer extra atomi annotations, suh

as binding time or stritness properties. Several papers that exploit this idea

are (Dussart, Henglein, and Mossin, 1995a; Jensen, 1998; Rehof and Fähn-

drih, 2001).

Universal types

ML-the-type-system enfores a strit strati�ation between types and type

shemes, or, in other words, allows only prenex universal quanti�ers inside

types. We have pointed out earlier that there is good reason to do so: type

inferene for ML-the-type-system is deidable, while type inferene for Sys-

tem F, whih has no suh restrition, is undeidable. Yet, this restrition omes

at a ost in expressiveness: it prevents higher-order funtions from aepting

polymorphi funtion arguments, and forbids storing polymorphi funtions

inside data strutures. Fortunately, it is in fat possible to irumvent the

problem by requiring the programmer to supply additional type information.
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The approah that we are about to desribe is reminisent of the way alge-

brai data type de�nitions allow irumventing the problems assoiated with

equireursive types (Setion 1.9). Beause we do not wish to extend the syn-

tax of types with universal types of the form 8

�

Y:T, we instead allow universal

type de�nitions, of the form

D

~

X � 8

�

Y:T

where D still ranges over data types. If D has signature ~� ) ?, then the type

variables

~

X must have kind ~�. The type T must have kind ?. The type variables

�

X and

�

Y are onsidered bound within T, and the de�nition must be losed, that

is, ftv(T) �

�

X

�

Y must hold. Last, the variane of the type onstrutor D must

math its de�nition�a requirement stated as follows:

1.10.13 Definition: Let D

~

X � 8

�

Y:T and D

~

X

0

� 8

�

Y

0

:T

0

be two �-equivalent instanes

of a single universal type de�nition, suh that

�

Y # ftv(T

0

) and

�

Y

0

# ftv(T).

Then, D

~

X � D

~

X

0

 8

�

Y

0

:9

�

Y:T � T

0

must hold. 2

This requirement is analogous to that found in De�nition 1.9.8. The idea

is, if D

~

X and D

~

X

0

are omparable, then their unfoldings 8

�

Y:T and 8

�

Y

0

:T

0

should

be omparable as well. The omparison between them is expressed by the

onstraint 8

�

Y

0

:9

�

Y:T � T

0

, whih may be read: every instane of 8

�

Y

0

:T

0

is (a

supertype of) an instane of 8

�

Y:T. Again, when subtyping is interpreted as

equality, the requirement of De�nition 1.10.13 is always satis�ed; it beomes

nontrivial only in the presene of true subtyping.

The e�et of the universal type de�nition D

~

X � 8

�

Y:T is to enrih the pro-

gramming language with a new onstrut:

v ::= : : : j pak

D

v t ::= : : : j pak

D

t E ::= : : : j pak

D

E

and with a new unary destrutor open

D

. Their operational semantis is as

follows:

open

D

(pak

D

v)

Æ

�!
v

(R-Open-All)

Intuitively, pak

D

and open

D

are the two oerions that witness the isomor-

phism between D

~

X and 8

�

Y:T. The value pak

D

v behaves exatly like v, exept

it is marked, as a hint to the typeheker. As a result, the mark must be

removed using open

D

before the value an be used.

What are the typing rules for pak

D

and open

D

? In System F, they would

reeive types 8

�

X:(8

�

Y:T) ! D

~

X and 8

�

X:D

~

X ! 8

�

Y:T, respetively. However, nei-

ther of these is a valid type sheme: both exhibit a universal quanti�er under

an arrow.

In the ase of pak

D

, whih has been made a language onstrut rather

than a onstant, we work around the problem by embedding this universal
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quanti�er in the onstraint generation rule:

Jpak

D

t : T

0

K = 9

�

X:(Jt : 8

�

Y:TK ^ D

~

X � T

0

)

The rule impliitly requires that

�

X be fresh for the left-hand side and that

D

~

X � 8

�

Y:T be (an �-variant of) the de�nition of D. The left-hand onjunt

requires t to have type sheme 8

�

Y:T. The notation Jt : SK was de�ned on

page 114. The right-hand onjunt states that a valid type for pak

D

t is (a

supertype of) D

~

X.

We deal with open

D

as follows. Provided

�

X #

�

Y, we extend the initial envi-

ronment �

0

with the binding open

D

: 8

�

X

�

Y:D

~

X! T. We have simply hoisted the

universal quanti�er outside of the arrow�a valid isomorphism in System F.

The proof of the subjet redution theorem must be extended with the

following new ase:

1.10.14 Theorem [Subjet redution℄: (R-Open-All) � (v). 2

Proof: We have

let �

0

in Jopen

D

(pak

D

v) : T

0

K

� let �

0

in 9Z:(open

D

� Z! T

0

^ Jpak

D

v : ZK) (1)

� let �

0

in 9Z:(9

�

X

0

�

Y

0

:(D

~

X

0

! T

0

� Z! T

0

) ^ 9

�

X:(Jv : 8

�

Y:TK ^ D

~

X � Z)) (2)

� let �

0

in 9

�

X

�

X

0

�

Y

0

:(Jv : 8

�

Y:TK ^ D

~

X � D

~

X

0

^ T

0

� T

0

) (3)

 let �

0

in 9

�

X

�

Y

�

X

0

�

Y

0

:(Jv : 8

�

Y:TK ^ T � T

0

^ T

0

� T

0

) (4)

 let �

0

in 9

�

X

�

Y

�

X

0

�

Y

0

:Jv : T

0

K (5)

� let �

0

in Jv : T

0

K (6)

where (1) is by de�nition of onstraint generation for appliations and for

onstants; Z is fresh; (2) is by de�nition of onstraint generation for pak

D

and open

D

, where D

~

X � 8

�

Y:T and D

~

X

0

� 8

�

Y

0

:T

0

are two �-equivalent instanes

of the de�nition of D;

�

X,

�

Y,

�

X

0

, and

�

Y

0

are fresh and satisfy

�

Y # ftv(T

0

) and

�

Y

0

# ftv(T); (3) is by C-ExAnd, C-Arrow, and C-ExTrans, whih allows

eliminating Z; (4) is by De�nition 1.10.13, Lemma 1.10.1, and C-ExAnd; (5)

is by Lemmas 1.10.11 and 1.6.3; (6) is by C-Ex*. 2

The proof of (R-Context) � (v) must also be extended with a new sub-

ase, orresponding the new prodution E ::= : : : j pak

D

E . If the language

is pure, this is straightforward. In the presene of side e�ets, however, this

subase fails, beause universal and existential quanti�ers in onstraints do

not ommute. The problem is then avoided by restriting pak

D

to values, as

in De�nition 1.7.7.

This approah to extending ML-the-type-system with universal (or

existential�see below) types has been studied in (Läufer and Odersky, 1994;
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Rémy, 1994; Odersky and Läufer, 1996; Shields and Peyton Jones, 2002).

Laüfer and Odersky have suggested ombining universal or existential type

delarations with algebrai data type de�nitions. This allows suppressing the

umbersome pak

D

and open

D

onstruts; instead, one simply uses the stan-

dard syntax for onstruting and deonstruting variants and reords.

Existential types

Existential types (TAPL Chapter 24) are lose ousins of universal types, and

may be introdued into ML-the-type-system in the same manner. Atually,

existential types have been introdued in ML-the-type-system before universal

types. We give a brief desription of this extension, insisting mainly on the

di�erenes with the ase of universal types.

We now allow existential type de�nitions, of the form D

~

X � 9

�

Y:T. The ondi-

tions required of a well-formed de�nition are unhanged, exept the variane

requirement, whih is dual:

1.10.15 Definition: Let D

~

X � 9

�

Y:T and D

~

X

0

� 9

�

Y

0

:T

0

be two �-equivalent instanes

of a single existential type de�nition, suh that

�

Y # ftv(T

0

) and

�

Y

0

# ftv(T).

Then, D

~

X � D

~

X

0

 8

�

Y:9

�

Y

0

:T � T

0

must hold. 2

The e�et of this existential type de�nition is to enrih the programming

language with a new unary onstrutor pak

D

and with a new onstrut:

t ::= : : : j open

D

t t and E ::= : : : j open

D

E t j open

D

v E . Their operational

semantis is as follows:

open

D

(pak

D

v

1

) v

2

�! v

2

v

1

(R-Open-Ex)

In the literature, the seond argument of open

D

is often required to be a

�-abstration �z:t, so the onstrut beomes open

D

t (�z:t), often written

open

D

t as z in t.

Provided

�

X #

�

Y, we extend the initial environment �

0

with the binding

pak

D

: 8

�

X

�

Y:T! D

~

X. The onstraint generation rule for open

D

is as follows:

Jopen

D

t

1

t

2

: T

0

K = 9

�

X:(Jt

1

: D

~

XK ^ Jt

2

: 8

�

Y:T! T

0

K)

The rule impliitly requires that

�

X be fresh for the left-hand side, that

�

Y be

fresh for T

0

, and that D

~

X � 8

�

Y:T be (an �-variant of) the de�nition of D.

The left-hand onjunt simply requires t

1

to have type D

~

X. The right-hand

onjunt states that the funtion t

2

must be prepared to aept an argument

of type T, for any

�

Y, and produe a result of the expeted type T

0

. In other

words, t

2

must be a polymorphi funtion.

The type sheme of existential pak

D

resembles that of universal open

D

,

while the onstraint generation rule for existential open

D

is a lose ousin
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of that for universal pak

D

. Thus, the duality between universal and exis-

tential types is rather strong. The main di�erene lies in the fat that the

existential open

D

onstrut is binary, rather than unary, so as to limit the

sope of the newly introdued type variables

�

Y. The duality may be better

understood by studying the enoding of existential types in terms of universal

types (Reynolds, 1983b).

As expeted, R-Open-Ex preserves types.

1.10.16 Theorem [Subjet redution℄: (R-Open-Ex) � (v). 2

1.10.17 Exerise [FF, 9℄: Prove Theorem 1.10.16. The proof is analogous, al-

though not idential, to that of Theorem 1.10.14. 2

In the presene of side e�ets, the new prodution E ::= : : : j open

D

v E is

problemati. The standard workaround is to restrit the seond argument to

open

D

to be a value.

1.11 Rows

In Setion 1.9, we have shown how to extend ML-the-programming-language

with algebrai data types, that is, variant and reord type de�nitions, whih

we now refer to as simple. This mehanism has a severe limitation: two distint

de�nitions must de�ne inompatible types. As a result, one annot hope to

write ode that uniformly operates over variants or reords of di�erent shapes,

beause the type of suh ode is not even expressible.

For instane, it is impossible to express the type of the polymorphi reord

aess operation, whih retrieves the value stored at a partiular �eld ` inside

a reord, regardless of whih other �elds are present. Indeed, if the label `

appears with type T in the de�nition of the simple reord type D

~

X, then the

assoiated reord aess operation has type 8

�

X:D

~

X ! T. If ` appears with

type T

0

in the de�nition of another simple reord type, say D

0

~

X

0

, then the

assoiated reord aess operation has type 8

�

X

0

:D

0

~

X

0

! T

0

; and so on. The most

preise type sheme that subsumes all of these inomparable type shemes

is 8XY:X ! Y. It is, however, not a sound type sheme for the reord aess

operation. Another powerful operation whose type is urrently not expressible

is polymorphi reord extension, whih opies a reord and stores a value at

�eld ` in the opy, possibly reating the �eld if it did not previously exist, again

regardless of whih other �elds are present. (If ` was known to previously exist,

the operation is known as polymorphi reord update.)

In order to assign types to polymorphi reord operations, we must do away

with reord type de�nitions: we must replae named reord types, suh as D

~

X,

with strutural reord types that provide a diret desription of the reord's
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domain and ontents. (Following the analogy between a reord and a partial

funtion from labels to values, we use the word domain to refer to the set of

�elds that are de�ned in a reord.) For instane, a produt type is strutural:

the type T

1

� T

2

is the (undelared) type of pairs whose �rst omponent has

type T

1

and whose seond omponent has type T

2

. Thus, we wish to design

reord types that behave very muh like produt types. In doing so, we fae two

orthogonal di�ulties. First, as opposed to pairs, reords may have di�erent

domains. Beause the type system must statially ensure that no unde�ned

�eld is aessed, information about a reord's domain must be made part of

its type. Seond, beause we suppress reord type de�nitions, labels must now

be prede�ned. However, for e�ieny and modularity reasons, it is impossible

to expliitly list every label in existene in every reord type.

In what follows, we explain how to address the �rst di�ulty in the sim-

ple setting of a �nite set of labels. Then, we introdue rows, whih allow

dealing with an in�nite set of labels, and address the seond di�ulty. We

de�ne the syntax and logial interpretation of rows, study the new onstraint

equivalene laws that arise in their presene, and extend the �rst-order uni�-

ation algorithm with support for rows. Then, we review several appliations

of rows, inluding polymorphi operations on reords, variants, and objets,

and disuss alternatives to rows.

Reords with �nite arrier

Let us temporarily assume that L is �nite. In fat, for the sake of de�niteness,

let us assume that L is f`

a

; `

b

; `



g.

To begin, let us onsider only full reords, whose domain is exatly L�in

other words, tuples indexed by L. To desribe them, it is natural to introdue

a type onstrutor reord of signature ?
 ?
 ?) ?. The type reord T

a

T

b

T



represents all reords where the �eld `

a

(resp. `

b

, `



) ontains a value of

type T

a

(resp. T

b

, T



). Please note that reord is nothing but a produt type

onstrutor of arity 3. The basi operations on reords, namely reation of

a reord out of a default value, whih is stored into every �eld, update of a

partiular �eld (say, `

b

), and aess to a partiular �eld (say, `

b

), may be

assigned the following type shemes:

f�g : 8X:X! reord X X X

f� with `

b

= �g : 8X

a

X

b

X

0

b

X



:reord X

a

X

b

X



! X

0

b

! reord X

a

X

0

b

X



�:f`

b

g : 8X

a

X

b

X



:reord X

a

X

b

X



! X

b

Here, polymorphism allows updating or aessing a �eld without knowledge of

the types of the other �elds. This �exibility is made possible by the property

that all reord types are formed using a single reord type onstrutor.
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This is �ne, but in general, the domain of a reord is not neessarily L: it

may be a subset of L. How may we deal with this fat, while maintaining the

above key property? A naïve approah onsists in enoding arbitrary reords

in terms of full reords, using the standard algebrai data type option, whose

de�nition is optionX � pre X+ abs: We use pre for present and abs for absent :

indeed, a �eld that is de�ned with value v is enoded as a �eld with value pre v,

while an unde�ned �eld is enoded as a �eld with value abs. Thus, an arbitrary

reord whose �elds, if present, have types T

a

, T

b

, and T



, respetively, may be

enoded as a full reord of type reord (option T

a

) (option T

b

) (option T



). This

naive approah su�ers from a serious drawbak: reord types still ontain no

domain information. As a result, �eld aess must involve a dynami hek,

so as to determine whether the desired �eld is present: in our enoding, this

orresponds to the use of ase

option

.

To avoid this overhead and inrease programming safety, we must move

this hek from runtime to ompile time. In other words, we must make the

type system aware of the di�erene between pre and abs. To do so, we re-

plae the de�nition of option by two separate algebrai data type de�nitions,

namely pre X � pre X and abs � abs. In other words, we introdue a unary

type onstrutor pre, whose only assoiated data onstrutor is pre, and a

nullary type onstrutor abs, whose only assoiated data onstrutor is abs.

Reord types now ontain domain information: for instane, a reord of type

reord abs (pre T

b

) (pre T



) must have domain f`

b

; `



g. Thus, the type of a �eld

tells whether it is de�ned. Sine the type pre has no data onstrutors other

than pre, the aessor pre

�1

, whose type is 8X:pre X ! X, and whih allows

retrieving the value stored in a �eld, annot fail. Thus, the dynami hek has

been eliminated.

To omplete the de�nition of our enoding, we now de�ne operations

on arbitrary reords in terms of operations on full reords. To distinguish

between the two, we write the former with angle braes, instead of urly

braes. The empty reord hi, where all �elds are unde�ned, may be de�ned

as fabsg. Extension at a partiular �eld (say, `

b

) h� with `

b

= �i is de�ned as

�r:�z:fr with `

b

= pre zg. Aess at a partiular �eld (say, `

b

) �:h`

b

i is de�ned

as �z:pre

�1

z:f`

b

g. It is straightforward to hek that these operations have

the following prinipal type shemes:

hi : reord abs abs abs

h� with `

b

= �i : 8X

a

X

b

X

0

b

X



:reord X

a

X

b

X



! X

0

b

! reord X

a

(pre X

0

b

) X



�:h`

b

i : 8X

a

X

b

X



:reord X

a

(pre X

b

) X



! X

b

It is important to notie that the type shemes assoiated with extension

and aess at `

b

are polymorphi in X

a

and X



, whih now means that these

operations are insensitive not only to the type, but also to the presene or
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absene of the �elds `

a

and `



. Furthermore, extension is polymorphi in X

b

,

whih means that it is insensitive to the presene or absene of the �eld `

b

in its argument. The subterm pre X

0

b

in its result type re�ets the fat that

`

b

is de�ned in the extended reord. Conversely, the subterm pre X

b

in the

type of the aess operation re�ets the requirement that `

b

be de�ned in its

argument.

Our enoding of arbitrary reords in terms of full reords was arried out

for pedagogial purposes. In pratie, no suh enoding is neessary: the data

onstrutors pre and abs have no mahine representation, and the ompiler

is free to lay out reords in memory in an e�ient manner. The enoding is

interesting, however, beause it provides a natural way of introduing the type

onstrutors pre and abs, whih play an important role in our treatment of

polymorphi reord operations.

We remark that, in our enoding, the arguments of the type onstrutor

reord are expeted to be either type variables or formed with pre or abs,

while, onversely, the type onstrutors pre and abs are not intended to appear

anywhere else. It is possible to enfore this invariant using kinds. In addition

to ?, let us introdue the kind � of �eld types. Then, let us adopt the following

signatures: pre: ?) �, abs : �, and reord : � 
 �
 � ) ?.

1.11.1 Exerise [F, Reommended, 9℄: Chek that the three type shemes

given above are well-kinded. What is the kind of eah type variable? 2

1.11.2 Exerise [FF, Reommended, 9℄: Our reord types ontain information

about every �eld, regardless of whether it is de�ned: we enode de�nedness

information within the type of eah �eld, using the type onstrutors pre and

abs. A perhaps more natural approah would be to introdue a family of reord

type onstrutors, indexed by the subsets of L, so that the types of reords

with di�erent domains are formed with di�erent onstrutors. For instane,

the empty reord would have type fg; a reord that de�nes the �eld `

a

only

would have a type of the form f`

a

: T

a

g; a reord that de�nes the �elds `

b

and

`



only would have a type of the form f`

b

: T

b

; `



: T



g; and so on. Assuming

that the type disipline is Damas and Milner's (that is, assuming an equality-

only syntati model), would it be possible to assign satisfatory type shemes

to polymorphi reord aess and extension? Would it help to equip reord

types with a nontrivial subtyping relation? 2

Reords with in�nite arrier

Finite reords are insu�ient both from pratial and theoretial points of

view. In pratie, the set of labels ould beome very large, making the type

of every reord as large as the set of labels itself, even if only a few labels are
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atually de�ned. In priniple, the set of labels ould even be in�nite. Atually,

in modular programs the whole set of labels may not be known in advane,

whih amounts in some way to working with an in�nite set of labels. Thus,

reords must be drawn from an in�nite set of labels�whether their domains

are �nite or in�nite. Still, we an restrit our attention to reords that are

almost onstant, that is, reords where only a �nite number of �elds di�er.

With this restrition, full reords (de�ned everywhere) an always be built by

giving expliit de�nitions for a �nite number of �elds and a default value for

all other �elds, as in the �nite ase. For instane, the reord ffffalseg with

` = 1g with `

0

= trueg is the reord equal to true on �eld `

0

, to 1 on �eld `,

and to false on any other �eld.

Types of reords are funtions from labels to types, alled rows. However,

for sake of generality, we use a unary type onstrutor, say �, as an indiretion

between rows and reord types. Moreover, we further restrit our attention

to the ase where rows are also almost onstant. (The fat that the property

holds for reord values does not imply that it also holds for reord types, for

the default value of some reord ould have a polymorphi type, and one ould

wish to see eah �eld with a di�erent instane of this polymorphi type. So this

is a true restrition, but a reasonable one.) Thus, rows an also be represented

by giving expliit types for a �nite number of �elds and a default type for all

other �elds. We write �T the row whose type is T on every �eld, and (` :T ; T

0

)

the row whose type is T on �eld ` and T

0

on other �elds. Formally, � is a unary

type onstrutor and ` is a family of binary type onstrutors, written with

syntati sugar (` : � ; �). For example, �(` : bool ; (`

0

: int ; �bool)) is a

reord type that desribes reords whose �eld ` arries a value of type bool,

�eld `

0

arries a value of type int, and all other �elds arry values of type

bool. In fat, this is a sound type for the reord de�ned above. In fat, the

type �(`

0

:int ; (` :bool ; �bool)) should also be a sound type for this reord,

sine the order in whih �elds are spei�ed should not matter. We atually

treat both types as equivalent. Furthermore, the row (` :bool ; �bool), whih

stands for bool on �eld ` and �bool everywhere else, must also be equivalent

to �bool, whih stands for bool everywhere.

A reord type may also ontain type variables. For instane, the reord

�z:fzg that maps any value v to a reord with the default value v has type

X ! �(�X). Projetions of this reord on any �eld will return a value of the

same type X. By omparison, the funtion that reads some �eld ` of its (reord)

argument has type �(` : X ; Y) ! X: this says that the argument must be a

reord where �eld ` has type X and other �elds may have any type. Variable Y

is alled a row variable, sine it an be instantiated to any row. For instane, Y

an be instantiated to (`

0

:int ; Y

0

) and as a result this funtion an be applied

to the reord above. Conversely, the row �X, whih is equal to (`

0

: X ; X), an
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only be instantiated to rows of the form �T, whih are equal to (`

0

: T ; T),

that is, to onstant rows.

Syntax of row types

Let L be a denumerable olletion of labels. We write `:L for f`g ℄ L, whih

implies ` =2 L. We �rst introdue kinds, so as to distinguish rows suh as

(` : int ; �bool) from basi types, suh as int or int! int.

1.11.3 Definition [Row kinds℄: Let row kinds be omposed of a partiular kind

Type and the olletion of kinds Row(L) where L ranges over �nite subsets

of L. We use letter s to range over row kinds. 2

Intuitively, a row of kind Row(L) is a funtion of domain LnL to types. That

is, L spei�es the set of labels that the row must not de�ne. For instane, the

(basi) type �(` :int ; X) has kind Type , the row (` :int ; X) has kind Row(;)

provided X has kind Row(f`g).

To remain abstrat the de�nition of rows is parameterized by a signature S

0

for building basi types and a signature S

1

for building rows. From those two

signatures, we then de�ne a new signature S that ompletely spei�es the set

of types. However, the signature S must superimposed row kinds on top of the

(basi) kinds of the two input signatures S

0

and S

1

. We use produt signatures

to enlighten this proess. More preisely, we build a produt signature from

two signaturesK ) � andK

0

) �

0

with the following notations: we write �:�

0

for the pair (�; �

0

); K:� for the mapping (d 7! K(d):�)

d2dom(K)

; (K ) �):�

0

for the kind signature K:� ) �:�

0

; and symmetrially, we write �:K

0

and

�:(K

0

) �

0

). The signature S reuses the same input type onstrutors as S

0

and S

1

, but at di�erent row kinds. We use supersripts to provide opies of

type onstrutors at di�erent kinds, and thus avoid overloading of kinds.

1.11.4 Definition [Row extension of a signature℄: Let S

0

and S

1

be signa-

tures where all symbols of S

1

are unary. The row extension of S

0

with S

1

is

the signature S de�ned as follows where � ranges over basi kinds (those used

in S

0

and S

1

) and s ranges over row kinds:

F 2 dom(S) Signature Conditions

G

s

(K ) �):s (G : K ) �) 2 S

0

H K:Row(;)) �:Type (H : K ) �) 2 S

1

�

�;L

�:(Type ) Row(L))

`

�;L

�:(Type 
Row(`:L)) Row(L)) ` =2 L

2

We usually write `

�;L

: t

1

; t

2

instead of `

�;L

t

1

t

2

and let this symbol be

right-assoiative. We often drop the supersripts of type onstrutors sine,
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for any type expression T, supersripts an be unambiguously reovered from

the kind of T.

1.11.5 Example: Let us assume there is a single basi kind ? and that S

1

ontain a

unique type onstrutor � (hene of kind ?) ?). An example of row type is

X

0

! �(`

1

:G ; (Y! �X

0

)). With all supersripts annotations, this type is

X

0

!

?;Type

�(`

1

?;Row(;)

:G

Type

; (Y!

?;Row(f`

1

g)

�

?;Row(f`

1

g)

X

0

)):

Intuitively, this is the type of a funtion that takes a value of type X

0

and

returns a reord where �eld `

1

has type G and all other �elds are funtions

that given a value of an arbitrary type would returns a value of (the same) type

X

0

. An instane of this type is X

0

! �(`

1

:G ; ((`

2

:Y

2

; Y

0

)! (`

2

:X

0

; �X

0

))),

obtained by instantiating row variable Y and by expanding the onstant row

�X

0

. As shown below, this type is atually equivalent to X

0

! �(`

1

: G ;

`

2

: Y

2

! X

0

; (Y

0

! �X

0

)), by distributivity of type onstrutor ! other type

onstrutor `

2

. Please, note again the di�erene between Y, whih is a row

variable that an expand to di�erent type variables on di�erent labels, and

�X, whih is a onstant row that expands to the same type variable X on all

labels. 2

1.11.6 Example [ Ill-kinded expression ℄: Under the assumptions of the previ-

ous example, the expression X ! �(X) is not a row type, sine variable X

annot simultaneously be of row kind Type and Row(;) as required by its two

ourrenes, from left to right respetively. The expression (` :X ; ` :X

0

; X

00

) is

also ill-kinded, for the inner expression (` : X

0

; X

00

) of row kind Row(L) with

` =2 L annot also have row kind Row(f`g), as required by its ourrene in

the whole expression. Indeed, row kinds prohibit multiple de�nitions of the

same label, as well as using rows in plae of basi types and onversely. Notie

that �(�(X)) is also ill-formed, sine type onstrutors of S

1

are not lifted to

row kinds and thus annot appear in rows, exept under the type onstrutor

�, hene as basi types. 2

1.11.7 Exerise [FFF,9℄: Design an algorithm that infers supersripts of type

onstrutors of a type expression from its kind. Can the kind of the expression

be inferred as well? Can you give an algorithm to hek that type expressions

are well-kinded when both the supersripts of type onstrutors and the kinds

of the whole type expressions are omitted? 2

Meaning of rows

As mentioned above, a row of kind Row(L) stands for a funtion from L n L

to types. Atually, it is simpler to represent this funtion expliitly as an
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in�nitely branhing tree in the model. For this purpose, we use a olletion of

onstrutors L of (in�nite but denumerable) arity L n L.

1.11.8 Definition [Row model℄: Let S be the row extension of a signature S

0

with a signature S

1

. Let S

M

be the following signature, where � ranges over

basi kinds and L ranges over �nite subsets of L:

F 2 dom(S

M

) Signature Conditions

G (K ) �):Type (G : K ) �) 2 S

0

H K:Row(;)) �:Type (H : K ) �) 2 S

1

L

�

�:(Type

LnL

) Row(L))

Let M

�

onsist of the regular trees t built over the signature S

M

suh that

t(�) has image kind �. We interpret a type onstrutor F of signatureK ) �:s

as a funtion that maps T 2 M

K

to t 2 M

�:s

de�ned by ases on F and on

the basi kind �.

F 2 S t(�) For d 2 dom(K) and ` 2 L n L; ` 6= `

0

:

G

Type

G t=d = T (d)

H H t=1 = T (1)

G

Row(L)

L

�

t(`) = G ^ t=(` � d) = T (d)=`

�

�;L

L

�

t=` = T (1)

`

�;L

0

L

�

t=`

0

= T (1) ^ t=` = T (2)=`

In the presene of subtyping, we let type onstrutors G and H behave in S

M

as in S

0

and S

1

and type onstrutors L

�

be isolated and ovariant in every

position. Models that de�ne ground types and interpret type onstrutors in

this manner are referred to as row models. 2

Reasoning with row types

In this setion, we assume a subtyping model. All reasoning priniples also

apply to the equality-only model, whih is a subase of the subtyping model.

The meaning of rows has been arefully de�ned so as to be independent

of some syntatial hoies. In partiular, the order in whih the types of

signi�ant �elds have been delared leaves the meaning of rows unhanged.

This is formally stated by the following Lemma.

1.11.9 Lemma: The equations of Figure 1-17 are equivalent to true. 2

Proof: Eah equation an be onsidered independently. It su�es to see that

any ground assignment � sends both sides of the equation to the same element



TOP

2003/5/20

page 127

1.11 Rows 127

(`

1

: T

1

; `

2

: T

2

; T

3

) = (`

2

: T

2

; `

1

: T

1

; T

3

) (C-Row-LL)

�T = (` : T ; �T) (C-Row-DL)

�(G T

1

: : : T

n

) = G �T

1

: : : �T

n

(C-Row-DG)

G (` : T

1

; T

0

1

) : : : (` : T

n

; T

0

n

) = (` :G T

1

: : : T

n

; G T

0

1

: : : T

0

n

) (C-Row-GL)

Figure 1-17: Equational reasoning for row types.

(`

1

: T

1

; T

0

1

) = (`

2

: T

2

; T

0

2

) � 9X:(T

0

1

= (`

2

: T

2

; X) ^ T

0

2

= (`

1

: T

1

; X)) (C-Mute-LL)

if X # ftv(T

1

; T

0

1

; T

2

; T

0

2

) ^ `

1

6= `

2

(` : T ; T

0

) = G T

I

i

� 9(X

i

; X

0

i

)

I

:(T = G X

I

i

^ T

0

= G X

0

I

i

^ T

i

= (` : X

i

; X

0

i

))

if (X

i

; X

i

)

I

# ftv(T; T

0

; T

I

i

) (C-Mute-LG)

�T = G T

I

i

� 9X

I

i

:(T = G X

I

i

^ (T

i

= �X

i

)

I

) (C-Mute-DG)

if X

I

i

# ftv(T; T

I

i

)

�T = (` : T

0

; T

00

) � T = T

0

^ �T = T

00

(C-Mute-DL)

Figure 1-18: Constraint equivalene laws for rows.

in the model, whih follows diretly from the meaning of row types. Notie

that this fat only depends on the semantis of types and not on the semantis

of the subtyping prediate. 2

It follows from those equations that type onstrutors `, �, and G are never

isolated, eah equation exhibiting a pair of ompatible top symbols. Varianes

and inompatible pairs of type onstrutors depend on the signature S

0

℄ S

1

.

However, it is not di�ult to see that type onstrutors � and ` are logially

ovariant in all diretions and that the logial variane of types onstrutors

G of dom(S

0

℄ S

1

) orrespond to their syntati variane, whih, in most

ases, will allow the deomposition of equations with the same top symbols.

Moreover, an equation between two terms whose top symbols form one of

the four ompatible pairs derived from the equations of Figure 1-17 holds

only if immediate subexpressions an be �oniliated� in some way. There is a

transformation quite similar to deomposition, alled mutation, that mimis

the equations for rows (Figure 1-17) and desribed by the rules of Figure 1-18.

For sake of readability and oniseness, we write T

I

i

instead of T

i2I

i

.

1.11.10 Lemma [Mutation℄: All equivalene laws in Figure 1-18 hold. 2

Proof:
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Æ Case C-Mute-LL: Let X # ftv (T

1

; T

0

1

; T

2

; T

0

2

) (1) and `

1

6= `

2

. Let Row(L)

be the row kind of this equation. Let � be a ground assignment that validates

the onstraint (`

1

: T

1

; T

0

1

) = (`

2

: T

2

; T

0

2

). That is, � sends all terms of

the multi-equation to the same ground type t of row kind Row(L). Moreover,

the row-term semantis implies that t satis�es t(�) = L, t=`

1

= �(T

1

) =

�(T

0

2

)=`

1

, t=`

2

= �(T

0

1

)=`

2

= �(T

2

), and t=` = �(T

0

2

)=` = �(T

0

1

)=` for all

` 2 L n `

1

:`

2

:L (2). Let t

0

be the tree de�ned by t

0

(�) = `

1

:`

2

:L and t

0

=` = t=`

for all ` 2 L n `

1

:`

2

:L. By onstrution and (2), �[X 7! t

0

℄ satis�es both

equations T

0

1

= (`

2

: T

2

; X) and T

0

2

= (`

1

: T

1

; X). Thus by CM-Exists and

(1), � satis�es 9X:T

0

1

= (`

2

: T

2

; X)^ T

0

2

= (`

1

: T

1

; X). Conversely, we have the

entailment:

9X:(T

0

1

= (`

2

: T

2

; X) ^ T

0

2

= (`

1

: T

1

; X))

� 9X:((`

1

: T

1

; T

0

1

) = (`

1

: T

1

; `

2

: T

2

; X) ^

(`

2

: T

2

; T

0

2

) = (`

2

: T

2

; `

1

: T

1

; X)) (3)

 9X:(`

1

: T

1

; T

0

1

) = (`

2

: T

2

; T

0

2

) (4)

� (`

1

: T

1

; T

0

1

) = (`

2

: T

2

; T

0

2

) (5)

(3) follows by ovariane of `

1

and `

2

; (4) by C-Row-LL and transitivity of

equivalene; (5) by C-Ex* and (1).

Æ Cases C-Mute-LG, C-Mute-DG, and C-Mute-DL: The reasoning is

similar to the ase C-Mute-LL. 2

Solving row onstraints in an equality model

In this setion, we extend the onstraint solver for the equality-only free tree

model (Figure 1-11), so as to handle rows. We thus assume an equality-only

model.

Mutation is a ommon tehnique to solve equations in a large lass of non-

free algebras that are desribed by syntati theories (Kirhner and Klay,

1990). The equations of Figure 1-17 happen to be a syntati presentation

of an equational theory, from whih a uni�ation algorithm ould be auto-

matially derived (Rémy, 1993). We reover the same transformation rules

diretly, without using results on syntati theories.

The following lemma shows that all pairs of distint type onstrutors for

whih there is no mutation rule are in fat inompatible.

1.11.11 Lemma: All symbols H 2 S

1

are isolated. Furthermore for every pair of

distint type onstrutors G

1

; G

2

2 dom(S

0

℄ S

1

), and every row kind s, we

have G

s

1

./ G

s

2

. 2

Proof: Terms of the form H

~

T are interpreted by ground types with H at

ourrene �, and onversely the only interpretations of types with H at o-

urrene � are terms of the form H

~

T. Hene, no ground assignment an ever
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(`

1

: X

1

; X

0

1

) = (`

2

: T

2

; T

0

2

) = � ! 9Y:(X

0

1

= (`

2

: T

2

; Y) ^ T

0

2

= (`

1

: X

1

; Y))

^ (`

1

: X

1

; X

0

1

) = � (S-Mute-LL)

if Y # ftv(X

1

; X

0

1

; T

2

; T

0

2

) ^ `

1

6= `

2

(` : X ; X

0

) = G T

i2I

i

= � ! 9(Y

i

; Y

0

i

)

i2I

:(X = G Y

i2I

i

^ X

0

= G Y

0

i2I

i

^ T

i

= (` : Y

i

; Y

0

i

))

^ (` : X ; X

0

) = � (S-Mute-LG)

if (Y

i

; Y

0

i

)

i2I

# ftv(X; X

0

; T

i2I

i

)

�X = G T

i2I

i

= � ! 9Y

i2I

i

:(X = G Y

i2I

i

^ (T

i

= �Y

i

)

i2I

)

^ �X = � (S-Mute-DG)

if Y

i2I

i

# ftv(X; T

i2I

i

)

�X = (` : T ; T

0

) = � ! X = T ^ �X = T

0

^ �X = � (S-Mute-DL)

G

~

T = G

0

~

T

0

= � ! false (S-Clash-I)

if F ./ F

0

Figure 1-19: Uni�ation addendum for row types

send H

~

T and F

~

T

0

to the same ground term when F 6= H and, as a result, H

is isolated.

Let G

1

and G

2

be two type onstrutors of S

0

. For s = Type , the interpre-

tations of terms of the form G

s

1

~

T and G

s

2

~

T

0

are ground types with symbols G

1

and G

2

at ourrene �, respetively. Hene they annot be made equal under

any ground assignment. For s = Row(L), the interpretations of terms of the

form G

s

1

~

T and G

s

2

~

T

0

are ground types with onstrutor L at ourrene � and

onstrutors G

1

and G

2

at ourrene 1, respetively. Hene they annot be

made equal under any ground assignment. 2

Any other ombination of type onstrutors forms a ompatible pair, as illus-

trated by equations of Figure 1-17 and an be transformed by mutation rules

of Figure 1-18. The onstraint solver for row-terms is the relation!

y

de�ned

by the rewriting rules of Figure 1-11, exept Rule S-Clash, whih is replaed

by the set of rules of Figure 1-19.

1.11.12 Lemma: The rewriting system !

y

is strongly normalizing. 2

Please, note that the termination of !

y

relies on types being well-kinded.

In partiular, !

y

would not terminate on the ill-kinded system of equations

X = ` : T ; X

0

^ X

0

= `

0

: T ; X.

1.11.13 Lemma: If U !

y

U

0

, then U � U

0

. 2
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Proof: It su�es to hek the property independently for eah rule de�ning

!

y

. The proof for rules of Figure 1-11 but S-Clash remain valid for row terms.

For S-Deompose, it follows by the invariane of all type onstrutors, whih

is preserved for row terms. For rule S-Class-I it follows by Lemma 1.11.11

and for mutation rules, it follows by Lemma 1.11.10. 2

Although redutions ! are not sound for row types, hene ! annot be

used for omputation over row types, it has some interest. In partiular, the

following property shows that normal forms for row types are idential to

normal forms for regular types.

1.11.14 Lemma: A system U in normal form for !

y

is also in normal form for !. 2

Proof: The only rule of ! that is not in !

y

is S-Clash. Thus, it su�es to

observe that if Rule S-Clash would be appliable, then either Rule S-Class-I

or a mutation rule would be appliable as well. 2

As a orollary, Lemma 1.8.6 extends to row types.

Operations on reords

We now illustrate the use of rows for typeheking operations on reords. The

simplest appliation of rows are full reords with in�nite arrier. Reords types

are expressed with rows instead of a simple produt type. The basi operations

are the same as in the �nite ase, that is, reation, polymorphi update, and

polymorphi aess, but labels are now taken from an in�nite set. However,

reation and polymorphi update, whih where destrutors are now taken as

onstrutors and used to represent reords as assoiation lists. The aess of a

reord v at a �eld ` is obtained by linearly searhing v for a de�nition of �eld

` and returning this de�nition, or returning the default value if no de�nition

has been found for `.

1.11.15 Example [Full reords℄: We assume a unique basi kind ? and a unique

ovariant isolated type onstrutor � in S

1

. Let f�g be a unary onstru-

tor, (f� with � = `g)

`2L

a olletion of binary onstrutors, and (`:f�g)

`2L

a

olletion of unary destrutors with the following redution rules:

fvg:f`g

Æ

�! v (rd-Default)

fw with ` = vg:f`g

Æ

�! v (rd-Found)

fw with `

0

= vg:f`g

Æ

�! w:f`g if ` 6= `

0

(rd-Follow)

Let the initial environment �

0

ontain the following bindings

f�g : 8X: X! �(�X)

f� with ` = �g : 8XX

0

Y: �(` : X ; Y)! X

0

! �(` : X

0

; Y)

�:f`g : 8XY: �(` : X ; Y)! X
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2

1.11.16 Exerise [Full reords, FFF, 9℄: Chek that these de�nitions meet

the requirements of De�nition 1.7.6. 2

1.11.17 Exerise [Field Exhange, FF℄: Add an operation to permute two �elds

of a reord: give the redution rules and the typing assumptions and hek

that the requirements of De�nition 1.7.6 are preserved. 2

1.11.18 Exerise [Normal forms for reords, FFF℄: Reord values may on-

tain repetitions. For instane, ffw with ` = vg with ` = v

0

g is a value that is

in fat observationally equivalent to fw with ` = v

0

g. So are the two reord

values ffw with ` = vg with `

0

= v

0

g and ffw with `

0

= v

0

g with ` = vg when

`

0

6= `. Modify the semantis, so that two reord values of the same type have

similar struture and reords do not ontain inaessible values. 2

1.11.19 Exerise [Map Apply, FF℄: Add a binary operation map suh that the

expressions (map v w):f`g and v:f`g w:f`g redue to the same value for every

label `. 2

1.11.20 Exerise [F, 9℄: So far, full reords are almost onstants. This ondition

is not neessary for values, but only for types. As an example, introdue a

primitive reord, that is a nullary reord onstrutor, that maps every label

to a distint integer. Give its typing assumption and review the semantis of

reords. 2

As opposed to full reords, standard reords are partial and their domains

are �nite (but with in�nite arrier) and statially determined from their types.

Standard reords an be built by extending the empty reord on a �nite num-

ber of �elds. We refer to suh reords as reords with polymorphi extension.

Reord with polymorphi extension an be obtained by means of enoding

into full reords, muh as in the �nite ase.

1.11.21 Example [Enoding of polymorphi extension℄: Reusing the two type

de�nitions abs and pre that have introdued for the �nite ase, we let abs

enodes an unde�ned �eld and prev enode a �eld with value v. We use the

following syntati sugar with their meaning and prinipal types:

hi

def

= fabsg

: �(�abs)

h� with ` = �i

def

= �v:�w:fw with ` = pre vg

: 8XX

0

Y: �(` : X ; Y)! X

0

! �(` : pre X

0

; Y)

�:h`i

def

= �v:pre

�1

(v:f`g)

: 8XY: �(` : pre X ; Y)! X
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2

1.11.22 Exerise [Reommended, F℄: Extension may atually override an exist-

ing �eld. Can you de�ne a version polymorphi extension that prevents this

situation from happening? Add an operation that hide some partiular �eld

of a reord. 2

Extensible reords an also be implemented diretly, without enoding into

full reords. In fat, this requires only a tiny variation on full reords.

1.11.23 Example [Reords with polymorphi extension℄: Let ? and � be two

basi kinds. Let the basi signature S

0

ontain (in addition to !) the ovari-

ant isolated type onstrutors pre of kind ? ) � and abs of kind �. In the

presene of subtyping, we may assume pre 6 abs. Let S

1

ontain the unique

ovariant isolated type onstrutor � of kind � ) ?. Let hi be a unary on-

strutor, (f� with � = `g)

`2L

be a binary onstrutor, and (`:f�g)

`2L

be a unary

destrutor with the following redution rules:

hw with ` = vi:h`i

Æ

�! v (er-Found)

hw with `

0

= vi:h`i

Æ

�! w:f`g if ` 6= `

0

(er-Follow)

Let �

0

ontain the following typing assumptions:

hi : �(�abs)

h� with ` = �i : 8XX

0

Y: �(` : X ; Y)! X

0

! �(` : pre X

0

; Y)

�:h`i : 8XY: �(` : pre X ; Y)! X

2

Notie that the typing assumptions obtained from the diret approah are

idential to those obtained via the enoding into full reords in Exam-

ple 1.11.21.

1.11.24 Exerise [FFFF, 9℄: Prove the equivalene between the diret semantis

and the semantis via the enoding into reords with a default. 2

1.11.25 Exerise [Reommended, FF, 9℄: Prove that type soundness for exten-

sible reords hold in both the subtyping model and equality-only models.

2

1.11.26 Exerise [Reommended, F, 9℄: Chek that in the subtyping a reord

with more �elds an be used in plae of reords with fewer �elds. Chek that

this is not the ase in the equality-only model. 2
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1.11.27 Example [Refinement of reord types℄: In an equality-only model,

reords with more �elds annot be used in plae of reords with fewer �elds.

However, this may be partially reovered by a small re�nement of the stru-

ture of types. The presene of �elds an atually be split form their types, thus

enabling some polymorphism over the presene of �elds while type of �elds

themselves remains �xed. Let Æ be a new basi kind. Let type onstrutors

abs and pre be both of kind Æ and let � be a new type onstrutor of kind

Æ 
 ?) �. Let �

0

ontain the following typing assumptions:

hi : 8X:�(�(abs � X))

h� with ` = �i : 8ZXX

0

Y: �(` : X ; Y)! X

0

! �(` : Z � X

0

; Y)

�:h`i : 8XY: �(` : pre � X ; Y)! X

The semantis of reords remain unhanged. The new signature stritly gener-

alizes the previous one (stritly more programs an be typed) while preserving

type soundness. Here is a program that an now be typed and that ould not

be typed before:

(if a then hhhi with `

0

= truei with ` = 1i else hhi with ` = 2i):h`i

Notie however, that when a present �eld is forgotten, the type of the �eld

is not. Therefore two reords de�ning the same �eld but with inompatible

types an still not be mixed, whih is possible in the subtyping model. 2

1.11.28 Example [Refined subtyping℄: The previous re�nement for an equality-

only model is not muh interesting in the ase of a subtyping model.

The subtyping assumption pre 6 abs makes abs play the role of > for �elds.

That is, abs enodes the absene of information and not the information of

absene. In other words, a value whose �eld ` has type abs may either be

unde�ned or de�ned on �eld `; in the latter ase, the fat that �eld ` is

atually de�ned has just been forgotten. Thus, types only provides a lower

approximation of the atual domain of reords. This is a lost of auray by

omparison with the equality-only model, where a reord domain is known

from its type. As a result, some optimizations in the representation of reords

that are only possible when the exat domain of a reord is statially known

are lost.

Fortunately, there is a way to reover suh auray. A onservative solution

ould of ourse to drop the inequality pre 6 abs. Notie that this would still

be more expressive than using an equality model sine, for instane �(` :

pre (T

1

! T

2

) ; T) � �(` : pre > ; T) would still hold, as long as ! � > does

hold. This solution is known as depth-only subtyping for reords, while the

previous one provided both depth and width reord subtyping. Conversely, one

ould also keep width subtyping and disallow depth subtyping, by preserving
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the relation pre 6 abs while requiring pre to be invariant; in this ase, presene

of �elds an be forgotten as a whole, but the types of �elds annot be weakened

as long as �elds remain visible.

Another more interesting solution onsists in introduing another type on-

strutor either of signature � and assuming that pre 6 either and abs 6 either

(but pre 66 abs). Here, either plays the role of > for �elds and means either

present (and forgotten) or absent. while abs really means absent. The auray

of typeheking an be formally stated as the fat that a reord value of type

�(` : abs ; T) annot de�ne �eld `. 2

1.11.29 Example [mixed subtyping℄: It is tempting to mix all variations of Ex-

ample 1.11.28 together. As a �rst attempt, we may assume that the basi

signature S

0

ontains ovariant type onstrutors pre and maybe and invari-

ant type onstrutors pre

=

and maybe

=

, all of kind ? ) � and two type

onstrutors abs and either of kind �, and that the subtype ordering 6 is

de�ned by the following diagram:

either

maybe

pre maybe

=

pre

=

abs

Intuitively, we wish that pre

=

andmaybe

=

be logially invariant, pre andmaybe

be logially ovariant, and the equivalenes pre

=

T � maybe

=

T

0

� T = T

0

and

pre

=

T � pre T

0

� pre T � maybe T

0

� maybe

=

T � maybe T

0

� T � T

0

(1)

simultaneously hold. However, (1) requires, for instane, type onstrutors

pre

=

and pre to have the same diretion, whih is not urrently possible sine

they do not have the same variane. Interestingly, this restrition may be

relaxed by assigning varianes of diretions on a per type onstrutor basis and

de�ne strutural subtyping aordingly (See Exerise 1.11.30). Then, replaing

all ourrenes of pre by pre

=

in �

0

preserves type soundness and allows for

both aurate reord types and �exible subtyping in the same setting. 2

1.11.30 Exerise [Relaxed varianes, FFF, 9℄: Let ; be allowed as a new

variane, let extend the omposition of varianes de�ned in Example 1.3.9

with �; = ;, and let 6

;

stands for the full relation on type onstrutors.

Let eah type onstrutor F of signature K ) � now ome with a map-

ping #(F ) from dom(K) to varianes. Let #(t; t

0

; �) be the variane of two
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ground types t and t

0

at a path � reursively de�ned by #(t; t

0

; d � �) =

�

#(t(�))(d) \ #(t

0

(�))(d)

�

#(t=d; t

0

=d; �) and #(t; t

0

; �) = +. Then de�ne the

interpretation of subtyping as follows: if t; t

0

2M

�

, let t � t

0

hold if and only

if for all path � 2 dom(t) \ dom(t

0

), t(�) 6

#(t;t

0

;�)

t

0

(�) holds.

Chek that the relation � remains a partial ordering. Chek that a type

onstrutor whose diretion d has been syntatially delared ovariant (re-

spetively ontravariant, invariant) is still logially ovariant (respetively on-

travariant, invariant) in d. 2

Reord onatenation

Reord onatenation takes two reords and ombines them into a new reord

whose �elds are taken from whatever argument de�nes them. Of ourse, there

is an ambiguity when the two reords do not have disjoint domains and a

hoie should be made to disambiguate suh ases. Symmetri onatenation

let onatenation be unde�ned in this ase (Harper and Piere, 1991), while

asymmetri onatenation let one-side (usually the right side) always take pri-

ority. Despite a rather simple semantis, reord onatenation remains hard to

type (with either a strit or a priority semantis). Solutions to type inferene

for reord onatenation may be found, for instane, in (Wand, 1989; Rémy,

1992; Pottier, 2000).

Polymorphi variants

Variants an be de�ned via algebrai data-type de�nitions. However, as �elds

for reords, variant tags are taken from a relatively small, �nite olletion

of labels and two variant de�nitions will have inompatible types. Thus, to

remain ompatible, two variants must hose their tag among a larger olletion

that is a superset of all the possible tags of either variant. In general, this

redues the auray of types and fores useless dynami heks for tags that

ould otherwise be known not to our. Extensible variants (page 93) allow to

work with an arbitrary large olletion of tags, but do not improve auray.

Polymorphi variants refers to a more preise typeheking mehanism for

variants, where types more aurately desribes the tags that may atually

our. They allow to build values of sum types out of a large, potentially

in�nite prede�ned set of tags and all polymorphi funtions to explore them.

As for reord, this problem ould be takled by �rst onsidering polymorphi

operations over variants built from a �nite set of tags and total variants with

an in�nite set of tag independently and then by ombining both approahes

together. We propose a diret solution by a simple analogy with reords.

Indeed, type onstrutor pre an be used to distinguish a (�nite) set of tags
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that the variant may atually arry, from other tags that are ertain not to

our and typed with abs. For example, a variant `:v, built from a value v with

a onstrutor tag ` of arity one. may be assigned the prinipal type sheme

8X:�(` : pre T; X) where T is the type of v. The unary type onstrutor � is

used to oere rows to variant types�thus, variant types and reord types

may share the same inner row struture and be simply distinguished by their

top symbol. An instane of this polymorphi type is 8X:�(` :pre T ; abs), whih

tells that the variant must have been built with tag ` and no other tag, thus

retaining exat information about the shape of the value. Another instane

of the variant polymorphi type is �(` : pre T ; `

0

: pre T

0

; abs). Indeed, it is

sound to assume that the value might also have been built with some other

tag `

0

, even if we know that this is not atually the ase. Interestingly, both

values `:v and `

0

:v have this type and an be mixed at this type.

We use �lters to explore variants. A �lter [ ` : v j v

0

℄ is a funtion that

expets a variant argument, thus of the form `

0

:w. It then proeeds with either

v w, if `

0

= `, or v

0

w otherwise. The type of this �lter is �(` : pre T ; T

0

)! T

00

where T is the type of values aepted by v, �(` : T

000

; T

0

) is the type of values

aepted by v

0

, and T

00

is the type of values returned by both v and v

0

. Any

type T

000

would do, inluding, in partiular, abs. Indeed, when w is passed to v

0

,

it is known not to have tag `, so the behavior of v

0

on ` does not matter. The

null �lter [℄ an be used for v

0

. This �lter should atually never be applied,

whih we ensure by assigning [℄ the type 8X:�(�abs)! X, for no variant value

has type �(�abs). For instane, the �lter [ ` : v

`

j [ `

0

: v

`

0

j [℄ ℄ ℄, whih may

be abbreviated as [ ` : v

`

j `

0

: v

`

0

℄ an be applied to either `:v or `

0

:v

0

. The

following example formalizes polymorphi variants.

1.11.31 Example [Polymorphi variants℄: Let ? and � be two basi kinds. Let S

ontain in addition to the arrow type onstrutor the two type onstrutors pre

of kind ?) � and abs of kind �. In the presene of subtyping we may assume

abs 6 pre. Let S

1

ontain the unique ovariant isolated type onstrutor � of

kind � ) ?. Let �

0

be omposed of unary onstrutors (`:�)

`2L

and primitives

[℄ of arity 0 and ([ ` : � j � ℄�)

`2L

of arity 3, given with the following redution

rules:

[ ` : v j v

0

℄ `:w

Æ

�! v w (ev-Found)

[ ` : v j v

0

℄ `

0

:w

Æ

�! v

0

w if ` 6= `

0

(ev-Follow)

and ontain the following typing assumptions:

`:� : 8XY: X! �(` : pre X ; Y)

[℄ : 8X:�(�abs)! X

[ ` : � j � ℄ : 8XX

0

YY

0

: (X! Y)! (�(` : X

0

; Y

0

)! Y)! �(` : pre X ; Y

0

)! Y

2
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1.11.32 Exerise [Soundness for Extensible Variants, FFF,9℄: Prove type

soundness for extensible variants in both equality-only and subtyping models.

2

Other appliations of rows

Polymorphi reords and variants are the most well-known appliations of

rows. Besides the many variations on their presentations�we have only il-

lustrated some of them�there are several other interesting appliations of

rows.

Sine objets an be viewed as reord-of-funtions, at least from a typing

point of view, rows an also be used to type strutural objets (Wand, 1994;

Rémy, 1994; Rémy and Vouillon, 1998) and provide, in partiular, polymor-

phi method invoation. This is the key to typeheking objets in Obje-

tive Caml (Rémy and Vouillon, 1998). First-lass messages (Nishimura, 1998;

Müller and Nishimura, 1998; Pottier, 2000) ombine reords and variants in

an interesting way: while �lters over variant types enfore all branhes to have

the same return type, �rst-lass messages treat �lters as reords of funtions

(also alled objets) rather than funtions from a variant type to a shared

return type. A message is an element of a variant type. The appliation of an

objet to a message, that is of a reord of funtions to a variant type, selets

from the reord the branh labeled with the same tag as the message and

applies it to the ontent of the message, muh as pattern mathing. However,

these appliations are typeheked more aurately by �rst restriting the do-

main of the reord to the set of tags that the message may possibly arry, and

thus other branhes and in partiular their return type are left unonstrained.

Row types may also represent set of properties within types or type re�ne-

ments and be used in type systems for program analysis. Two examples worth

mentioning are their appliation to soft-typing (Cartwright and Fagan, 1991;

Wright and Cartwright, 1994) and typeheking of unaught exeptions (Leroy

and Pessaux, 2000).

The key to rows is to deompose the set of row labels into a lass of �-

nite partitions that is losed by some operations. Here, those partitions are

omposed of singleton labels and o-�nite sets of labels; the operations are

merging (or onversely splitting) a singleton label and a o-�nite set of la-

bels. Other deompositions are possible, for instane, one ould imagine to

onsider labels in a two-dimensional spae. More generally, labels might also

be given internal struture, for instane, one might onsider automatons as

labels. Notie also that reord types are strati�ed, sine rows, that is, expres-

sions of kind Row(L), may not themselves ontain reords �onstrutors of

S

1

are only given the image row kind Type . This restrition an be partially
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relaxed leading to rows of inreasing degrees (Rémy, 1992b) . . . and omplex-

ity! Yet more intriguing are typed-indexed rows where labels are themselves

types (Shields and Meijer, 2001).

Alternatives to rows

The original idea of using rows to desribe types of extensible reords is due

to Wand (Wand, 1987, 1988). A key simpli�ation to row types is to make

them total funtions from labels to types and enode de�niteness expliitly

in the struture of �elds, for instane with pre and abs type onstrutors,

as presented here. This deomposition redues the resolution of uni�ation

onstraints to a simple equational reasoning (Rémy, 1993, 1992a). Other ap-

proahes that do not treat rows as total funtions seem more ad ho and

have often hard-wired restritions (Jategaonkar and Mithell, 1988; Ohori

and Buneman, 1989; Berthomieu, 1993; Ohori, 1999). Among these partial

solutions, (Ohori, 1999) is quite interesting for its overall simpliity in the

ase where polymorphi aess alone is required. Rows and �elds may also

be represented within ad-ho type onstraints rather than terms and equality

(or subtyping) onstraints. For example, quali�ed types use the prediates

(T has ` : T

0

) and (T laks `) to mean that �eld ` of row T is de�ned with

type T

0

or unde�ned, respetively (Jones, 1994b; Odersky, Sulzmann, and

Wehr, 1999b). These onstraints are in fat equivalent in our equality-model

to 9X:T = (` :pre T

0

; X) and 9X:T = (` :abs ; X), respetively. Reord typehek-

ing has also been widely studied in the presene of subtyping. Usually, reord

subtyping is given meaning diretly and not via rows. While these solutions

are quite expressive, thanks to subtyping, they still su�er from their nonstru-

tural treatment of reord types and annot type row extension. Thus, even

in subtyping models the use of rows inreases expressiveness, and is usually a

simpli�ation as well. The subtyping model an then also take advantage of

the possibility of enrihing type onstrutors pre and abs with more struture

and relate them via subtyping (Pottier, 2000). Notie, that even though rows

have been introdued for type inferene, they seem to be bene�ial to expli-

itly typed languages as well sine even other advaned solutions (Cardelli and

Mithell, 1991; Cardelli, 1992) are limited.

Rules of Figure 1-19 are one way of solving row type onstraints. In a

model with subtyping onstraints, a more diret losure-based resolution may

be more appropriate (Pottier, 2003).
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1.2.6 Solution: The de�nition does not behave as expeted, beause if is a de-

strutor, whose arguments�aording to the all-by-value semantis of ML-

the-alulus�are evaluated before R-True or R-False is allowed to �re. As

a result, the semantis of the expression if t

0

then t

1

else t

2

is to evaluate

both t

1

and t

2

before hoosing one of them. Sine these expressions may have

side e�ets (for instane, they may fail to terminate, or update a referene),

this semantis is undesirable. The desired evaluation order an be obtained by

plaing t

1

and t

2

within losures, whih delays their evaluation, then invok-

ing the losure returned by the onditional, foring its body to be evaluated.

In other words, the expression if t

0

then t

1

else t

2

should now be viewed

as syntati sugar for if t

0

(�z:t

1

) (�z:t

2

)

^

0. The hoie of the onstant

^

0 is

arbitrary, sine it is disarded; any value would do.

1.2.21 Solution: Within Damas and Milner's type system, we have:

z

1

: X ` z

1

: X

dm-Var

z

1

: X; z

2

: X ` z

2

: X

dm-Var

z

1

: X ` let z

2

= z

1

in z

2

: X

dm-Let

? ` �z

1

:let z

2

= z

1

in z

2

: X! X

dm-Abs

Please note that, beause X ours free within the environment z

1

: X, it is

impossible to apply dm-Gen to the judgement z

1

: X ` z

1

: X in a nontrivial

way. For this reason, z

2

annot reeive the type sheme 8X:X, and the whole

expression annot reeive type X! Y, where X and Y are distint.

1.2.22 Solution: It is straightforward to prove that the identity funtion has type

int! int:

�

0

; z : int ` z : int

dm-Var

�

0

` �z:z : int! int

dm-Abs

In fat, nothing in this type derivation depends on the hoie of int as the type

of z. Thus, we may just as well use a type variable X instead. Furthermore,

after forming the arrow type X ! X, we may employ dm-Gen to quantify

universally over X, sine it no longer appears in the environment.

�

0

; z : X ` z : X

dm-Var

�

0

` �z:z : X! X

dm-Abs

X 62 ftv(�

0

)

�

0

` �z:z : 8X:X! X

dm-Gen

It is worth noting that, although the type derivation employs an arbitrary

type variable X, the �nal typing judgement has no free type variables. It is
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thus independent of the hoie of X. In the following, we refer to the above

type derivation as �

0

.

Next, we prove that the suessor funtion has type int! int under the

initial environment �

0

. We write �

1

for �

0

; z : int, and make uses of dm-Var

impliit.

�

1

`

^

+ : int! int! int

�

1

` z : int

�

1

`

^

+ z : int! int

dm-App

�

1

`

^

1 : int

�

1

` z

^

+

^

1 : int

dm-App

�

0

` �z:z

^

+

^

1 : int! int

dm-Abs

In the following, we refer to the above type derivation as �

1

. We may now

build a derivation for the third typing judgement. We write �

2

for �

0

; f :

int! int.

�

1

�

2

` f : int! int �

2

`

^

2 : int

�

2

` f

^

2 : int

dm-App

�

0

` let f = �z:z

^

+

^

1 in f

^

2 : int

dm-Let

To derive the fourth typing judgement, we re-use �

0

, whih proves that the

identity funtion has polymorphi type. We write �

3

for �

0

; f : 8X:X! X. By

dm-Var and dm-Inst, we have �

3

` f : (int ! int) ! (int ! int) and

�

3

` f : int! int. Thus, we may build the following derivation:

�

0

�

3

` f : (int! int)! (int! int)

�

3

` f : int! int

�

3

` f f : int! int

dm-App

�

3

`

^

2 : int

�

3

` f f

^

2 : int

dm-App

�

0

` let f = �z:z in f f

^

2 : int

dm-Let

The �rst and third judgements are valid in the simply-typed �-alulus, be-

ause they use neither dm-Gen nor dm-Inst, and use dm-Let only to in-

trodue the monomorphi binding f : int ! int into the environment.

The seond judgement, of ourse, is not: beause it involves a nontrivial

type sheme, it is not even a well-formed judgement in the simply-typed

�-alulus. The fourth judgement is well-formed, but not derivable, in the

simply-typed �-alulus. This is beause f is used at two inompatible types,

namely (int ! int) ! (int ! int) and int ! int, inside the expression

f f

^

2. Both of these types are instanes of 8X:X! X, the type sheme assigned

to f in the environment �

3

.
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By inspetion of dm-Var, dm-Gen, and dm-Inst, it is straightforward to

see that, if �

0

`

^

1 : T is derivable, then T must be int. Sine int is not an

arrow type, the appliation

^

1

^

2 annot be well-typed under �

0

. In fat, beause

this expression is stuk, it annot be well-typed in a sound type system.

The expression �f:(f f) is ill-typed in the simply-typed �-alulus, beause

no type T may oinide with a type of the form T ! T

0

. Indeed, T would

then be a subterm of itself. For the same reason, this expression is ill-typed in

DM as well. Indeed, it is not di�ult to hek that the presene of dm-Gen

and dm-Inst makes no di�erene: dm-Gen annot generalize T as long as the

binding f : T appears in the environment, and dm-Inst an only instantiate

T to T itself. Thus, the self-appliation f f is well-typed in DM only if f

is let-bound, as opposed to �-bound. The argument ruially relies on the

fat that f must be assigned a monotype. Indeed, the expression �f:(f f)

is well-typed in an impliitly-typed variant of System F: one of its types is

(8X:X ! X) ! (8X:X ! X). It also relies on the fat that types are �nite:

indeed, this expression is well-typed in an extension of the simply-typed �-

alulus with reursive types, where the equation T = T! T

0

has a solution.

1.2.23 Solution: It is lear that the e�et of dm-Gen may be obtained by a series

of suessive appliations of dm-Gen'. Conversely, onsider an instane of

dm-Gen', whose premises are � ` t : S (1) and X 62 ftv(�) (2). Let us write

S = 8

�

X:T, where

�

X # ftv(�) (3). Applying dm-Inst to (1) and to the identity

substitution yields � ` t : T (4). Applying dm-Gen to (4), (2) and (3) yields

� ` t : 8X

�

X:T, that is, � ` t : 8X:S. Thus, the e�et of dm-Gen' may be

obtained by dm-Inst and dm-Gen.

It is lear that dm-Inst is a partiular ase of dm-Inst' where

�

Y is empty.

Conversely, onsider an instane of dm-Inst', whose premises are � ` t :

8

�

X:T (1) and

�

Y # ftv(8

�

X:T) (2). Let � be a renaming that exhanges

�

Y with

�

Z, where

�

Z # ftv (8

�

Y:[

~

X 7!

~

T℄T) (3) and

�

Z # ftv(�) (4). Applying dm-Inst to

(1) yields � ` t : [

~

X 7! �

~

T℄T (5). Applying dm-Gen to (5) and (4) yields � `

t : 8

�

Z:[

~

X 7! �

~

T℄T, that is, � ` t : 8�

�

Y:[

~

X 7! �

~

T℄T (6). Now, by (2) and (3), we

have [

~

X 7! �

~

T℄T = �([

~

X 7!

~

T℄T), so (6) may be written � ` t : 8�

�

Y:�([

~

X 7!

~

T℄T),

that is, � ` t : �(8

�

Y:[

~

X 7!

~

T℄T) (7). By (3), this is exatly � ` t : 8

�

Y:[

~

X 7!

~

T℄T.

Thus, the e�et of dm-Inst' may be obtained by dm-Inst and dm-Gen.

1.4.4 Solution: Let us reall that a program t is well-typed if and only if a judge-

ment of the form C;� ` t : �, where C is satis�able, holds. Let us show that

it is in fat possible, without loss of generality, to require � to be a monotype.

Assume C;� ` t : � (1) is derivable within HM(X). Let us write � =

8

�

X[D℄:T, where

�

X # ftv(C) (2). Applying Lemma 1.4.1 to (1) yields C 

9

�

X:D (3). By hm-Inst, (1) implies C ^ D;� ` t : T (4). By (3), we have

C � C ^9

�

X:D � 9

�

X:(C ^D). Beause C is satis�able, this implies that C ^D
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is satis�able as well. Thus, the judgement (4), whih involves the monotype

T, witnesses that t is well-typed.

We have shown that a program t is well-typed if and only if a judgement

of the form C;� ` t : T, where C is satis�able, holds. Thus, by Theorems ??

and ??, well-typedness is the same for both rule sets.

1.4.5 Solution: By Theorem ??, every rule in Figure 1-8 is admissible in HM(X).

Of ourse, so is hm-Gen. So, every judgement that is derivable via the rules

of Figure 1-8 and hm-Gen is a valid HM(X) judgement.

Conversely, assume C;� ` t : � (1) holds in HM(X). We must show that

it is derivable via the rules of Figure 1-8 and hm-Gen. Let us write � =

8

�

X[D℄:T, where

�

X # ftv(C;�) (2). By hm-Inst and (1), the judgement C ^

D;� ` t : T (3) holds in HM(X). This judgement involves a monotype, so, by

Theorem ??, it is derivable via the rules of Figure 1-8. Furthermore, from (3)

and (2), hm-Gen allows deriving C^9�;� ` t : � (4). Applying Lemma 1.4.1

to (1) yields C  9�, so the judgement (4) may be written C;� ` t : �. We

have shown that (1) is derivable via the rules of Figure 1-8 and hm-Gen. In

fat, it is possible to apply hm-Gen only one, at the end of the derivation.

1.5.1 Solution: Within the type system PCB(X), we have

z

1

� Z ` z

1

: Z

Var

z

2

� Y ` z

2

: Y

Var

let z

2

: 8Z[z

1

� Z℄:Z in z

2

� Y ` let z

2

= z

1

in z

2

: Y

Let

let z

1

: X; z

2

: 8Z[z

1

� Z℄:Z in z

2

� Y ` �z

1

:let z

2

= z

1

in z

2

: X! Y

Abs

The type variable Z, whih ours free in the left-hand instane of Var, is

generalized. However, z

2

does not reeive the type sheme 8Z:Z, whih, as

suggested earlier, is unsound; instead, it reeives the onstrained type sheme

8Z[z

1

� Z℄:Z. The latter is more restritive than the former: indeed, the former

laims that z

2

has every type, while the latter only laims that every valid

type for z

1

is also a valid type for z

2

. Let us now examine the onstraint let z

1

:

X; z

2

: 8Z[z

1

� Z℄:Z in z

2

� Y, whih appears at the root of the derivation.

By C-InId and C-In*, it is equivalent to let z

1

: X in 9Z:(z

1

� Z ^ Z � Y)

and to 9Z:(X � Z ^ Z � Y), whih by C-ExTrans is equivalent to X � Y.

Thus, the judgement at the root of the above derivation may be written X �

Y ` �z

1

:let z

2

= z

1

in z

2

: X ! Y. In other words, the expression let z

2

=

z

1

in z

2

has type X! Y only under the assumption that X is a subtype of Y,

whih is sound. Even though Let allows unrestrited generalization of type

variables, it remains sound, beause the type sheme that it produes typially

has free program identi�ers, suh as 8Z[z

1

� Z℄:Z above.
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1.7.10 Solution: Let E = let z = E

1

in t

1

and E

1

[t℄=� v E

1

[t

0

℄=�

0

(1). Then,

let �

0

; refM in JE [t℄=� : T=MK

= let �

0

; refM in ((let z : 8X[JE

1

[t℄ : XK℄:X in Jt

1

: TK) ^ J� :MK) (2)

� let �

0

; refM ; z : 8X[JE

1

[t℄=� : X=MK℄:X in Jt

1

: TK (3)

� let �

0

; refM ; z : 8X[let �

0

; refM in JE

1

[t℄=� : X=MK℄:X in Jt

1

: TK (4)

 let �

0

; refM ; z : 8X

�

Y[let �

0

; refM

0

in JE

1

[t

0

℄=�

0

: X=M

0

K℄:X in Jt

1

: TK (5)

where (2) is by de�nition of onstraint generation, where X 62 ftv(T;M) (6); (3)

is by (6), C-LetAnd, and by de�nition of onstraint generation; (4) is by (6)

and C-LetDup; (5) follows from (1) and C-LetEx, for some

�

Y and M

0

suh

that

�

Y # ftv(X;M) (7) and ftv(M

0

) �

�

Y[ftv (M) (8) and dom(M

0

) = dom(�

0

)

and M

0

extends M . Note that (6), (7) and (8) imply X 62 ftv(M

0

) (9).

At this point, the type variables

�

Y, whih determine the types of the newly

alloated store ells, are universally quanti�ed in the type sheme assigned

to z, whih is undesirable. We are stuk, beause we annot in general apply

C-LetAll to hoist 9

�

Y out of the let onstraint. Let us now assume that, by

some external means, we are guaranteed

�

Y = ? (10). Then, we may proeed

as follows:

� let �

0

; refM

0

; z : 8X[let �

0

; refM

0

in JE

1

[t

0

℄=�

0

: X=M

0

K℄:X in Jt

1

: TK (11)

� let �

0

; refM

0

in JE [t

0

℄=�

0

: T=M

0

K (12)

where (11) follows from the fat the the memory loations that appear free in

Jt

1

: TK are members of dom(�), thus are not members of dom(M

0

)ndom(M);

(12) is obtained by performing the steps that lead to (4) in reverse.

The requirement that

�

Y be empty, that is, ftv(M) = ftv(M

0

), is las-

si (Tofte, 1988). How is it enfored? Assume that the left-hand side of every

let onstrut is required to be a non-expansive expression. By assumptions

(ii) and (iii), this invariant is preserved by redution. So, E

1

[t℄ must be non-

expansive, whih, by assumption (i), guarantees that the redution step does

not alloate new memory ells. Then, �

0

is �, so M

0

is M .

1.9.1 Solution: We must �rst ensure that R-Add respets v (De�nition 1.7.5).

Sine the rule is pure, it is su�ient to establish that let �

0

in J

^

k

1

^

+

^

k

2

: TK

entails let �

0

in J

\

k

1

+ k

2

: TK. In fat, we have

let �

0

in J

^

k

1

^

+

^

k

2

: TK

� let �

0

in 9XY:(

^

+ � X! Y! T ^

^

k

1

� X ^

^

k

2

� Y) (1)

� 9XY:(int! int! int � X! Y! T ^ int � X ^ int � Y) (2)

� 9XY:(X = int ^ Y = int ^ int � T) (3)

� int � T (4)

� let �

0

in J

\

k

1

+ k

2

: TK (5)
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where (1) is by de�nition of onstraint generation; (2) is by de�nition of �

0

, by

C-InId and C-In*; (3) is by C-Arrow and by antisymmetry of subtyping;

(4) is by C-ExAnd and C-Name; (5) is again by de�nition of �

0

, by C-InId

and C-In*, and by de�nition of onstraint generation.

Seond, we must hek that if the on�guration  v

1

: : : v

k

=� (where k � 0)

is well-typed, then either it is reduible, or  v

1

: : : v

k

is a value.

We begin by heking that every value that is well-typed with type int is

of the form

^

k. Indeed, suppose that let �

0

; refM in Jv : intK is satis�able.

Then, v annot be a program variable, for a well-typed value must be losed.

v annot be a memory loation m, for otherwise refM(m) � int would be

satis�able�but the type onstrutors ref and int are inompatible. v annot

be

^

+ or

^

+ v

0

, for otherwise int ! int ! int � int or int ! int � int

would be satis�able�but the type onstrutors! and int are inompatible.

Similarly, v annot be a �-abstration. Thus, v must be of the form

^

k, for it

is the only ase left.

Next, we note that, aording to the onstraint generation rules, if the

on�guration  v

1

: : : v

k

=� is well-typed, then a onstraint of the form

let �

0

; refM in ( � X

1

! : : : ! X

k

! T ^ Jv

1

: X

1

K ^ : : : ^ Jv

k

: X

k

K) is

satis�able. We now reason by ases on .

Æ Case  is

^

k. Then, �

0

() is int. Beause the type onstrutors int and!

are inompatible with eah other, this implies k = 0. Sine

^

k is a onstrutor,

the expression is a value.

Æ Case  is

^

+. We may assume k � 2, beause otherwise the expression

is a value. Then, �

0

() is int ! int ! int, so, by C-Arrow, the above

onstraint entails let �

0

; refM in (X

1

� int^ X

2

� int^ Jv

1

: X

1

K ^ Jv

2

: X

2

K),

whih, by Lemma 1.6.3, entails let �

0

; refM in (Jv

1

: intK ^ Jv

2

: intK). Thus,

v

1

and v

2

are well-typed with type int. By the remark above, they must

be integer literals

^

k

1

and

^

k

2

. As a result, the on�guration is reduible by

R-Add.

1.9.5 Solution: We must �rst ensure that R-Ref, R-Deref and R-Assign re-

spet v (De�nition 1.7.5).

Æ Case R-Ref. The redution is ref v=? �! m=(m 7! v), where m 62

fpi(v) (1). Let T be an arbitrary type. Aording to De�nition 1.7.5, the goal

is to show that there exist a set of type variables

�

Y and a store type M

0

suh

that

�

Y # ftv(T) and ftv(M

0

) �

�

Y and dom(M

0

) = fmg and let �

0

in Jref v : TK
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entails 9

�

Y:let �

0

; refM

0

in Jm=(m 7! v) : T=M

0

K. Now, we have

let �

0

in Jref v : TK

� let �

0

in 9XY:(Y! ref Y � X! T ^ Jv : XK) (2)

� 9Y:let �

0

in (ref Y � T ^ Jv : YK) (3)

� 9Y:let �

0

; refM

0

in (m � T ^ Jv :M

0

(m)K) (4)

� 9Y:let �

0

; refM

0

in Jm=(m 7! v) : T=M

0

K (5)

where (2) is by de�nition of onstraint generation and by de�nition of �

0

(ref);

(3) is by C-Arrow, Lemma 1.6.4, and C-InEx; (4) assumesM

0

is de�ned as

m 7! Y, and follows from (1), C-InId and C-In*; and (5) is by de�nition of

onstraint generation.

Subase R-Deref. The redution is !m=(m 7! v) �! v=(m 7! v). Let T be

an arbitrary type and let M be a store type of domain fmg. We have

let �

0

; refM in J!m=(m 7! v) : T=MK

� let �

0

; refM in 9XY:(ref Y! Y � X! T ^m � X ^ Jv :M(m)K) (1)

� let �

0

; refM in 9XY:(refM(m) � X � ref Y ^ Y � T ^ Jv :M(m)K) (2)

� let �

0

; refM in 9Y:(M(m) = Y ^ Y � T ^ Jv :M(m)K) (3)

� let �

0

; refM in (M(m) � T ^ Jv : M(m)K) (4)

 let �

0

; refM in (Jv : TK ^ Jv :M(m)K) (5)

� let �

0

; refM in Jv=(m 7! v) : T=MK (6)

where (1) is by de�nition of onstraint generation and by de�nition of �

0

(!);

(2) is by C-Arrow and C-InId; (3) follows from C-ExTrans and from

the fat that ref is an invariant type onstrutor; (4) is by C-NameEq; (5)

is by Lemma 1.6.3 and C-Dup; and (6) is again by de�nition of onstraint

generation.

Æ Case R-Assign. The redution is m := v=(m 7! v

0

) �! v=(m 7! v). Let

T be an arbitrary type and let M be a store type of domain fmg. We have

let �

0

; refM in Jm := v=(m 7! v

0

) : T=MK

 let �

0

; refM in Jm := v : TK (1)

� let �

0

; refM in 9XYZ:(ref Z! Z! Z � X! Y! T ^m � X ^ Jv : YK) (2)

� let �

0

; refM in 9XYZ:(refM(m) � X � ref Z ^ Z � T ^ Jv : YK ^ Y � Z) (3)

� let �

0

; refM in 9Z:(M(m) = Z ^ Z � T ^ Jv : ZK) (4)

� let �

0

; refM in (M(m) � T ^ Jv :M(m)K) (5)

 let �

0

; refM in Jv=(m 7! v) : T=MK (6)

where (1) and (2) are by de�nition of onstraint generation; (3) is by C-

Arrow and C-InId; (4) is by C-ExTrans, Lemma 1.6.4, and from the fat

that ref is an invariant type onstrutor; (5) is by C-NameEq; and (6) is

obtained as in the previous ase.



TOP

2003/5/20

page 495

B Solutions to Seleted Exerises 495

Seond, we must hek that if the on�guration  v

1

: : : v

k

=� (where k � 0)

is well-typed, then either it is reduible, or  v

1

: : : v

k

is a value. We only give

a sketh of this proof; see the solution to Exerise 1.9.1 for details of a similar

proof.

We begin by heking that every value that is well-typed with a type of the

form ref T is a memory loation. This assertion relies on the fat that the type

onstrutor ref is isolated.

Next, we note that, aording to the onstraint generation rules, if the

on�guration  v

1

: : : v

k

=� is well-typed, then a onstraint of the form

let �

0

; refM in ( � X

1

! : : : ! X

k

! T ^ Jv

1

: X

1

K ^ : : : ^ Jv

k

: X

k

K) is

satis�able. We now reason by ases on .

Æ Case  is ref. If k = 0, then the expression is a value; otherwise, it is

reduible by R-Ref.

Æ Case  is !. We may assume k � 1, beause otherwise the expres-

sion is a value. Then, by de�nition of �

0

(!), the above onstraint entails

let �

0

; refM in 9Y:(ref Y ! Y � X

1

! : : : ! X

k

! T ^ Jv

1

: X

1

K), whih, by

C-Arrow, Lemma 1.6.3, and C-InEx, entails 9Y:let �

0

; refM in Jv

1

: ref YK.

Thus, v

1

is well-typed with a type of the form ref Y. By the remark above, v

1

must be a memory loationm. Furthermore, beause every well-typed on�gu-

ration is losed,m must be a member of dom(�). As a result, the on�guration

ref v

1

: : : v

k

=� is reduible by R-Deref.

Æ Case  is :=. We may assume k � 2, beause otherwise the expression is a

value. As above, we hek that v

1

must be a memory loation and a member

of dom(�). Thus, the on�guration is reduible by R-Assign.

1.9.6 Solution: We must �rst ensure that R-Fix respets v (De�nition 1.7.5).

Sine the rule is pure, it is su�ient to establish that let �

0

in Jfix v

1

v

2

: TK

entails let �

0

in Jv

1

(fix v

1

) v

2

: TK. Let C stand for the onstraint fix �

((X! Y) ! (X! Y)) ! X! Y ^ Y � T ^ Jv

1

: (X! Y) ! (X! Y)K ^ Jv

2

: XK.

We have

let �

0

in Jfix v

1

v

2

: TK

� let �

0

in 9X

1

X

2

:(fix � X

1

! X

2

! T ^ Jv

1

: X

1

K ^ Jv

2

: X

2

K) (1)

� let �

0

in 9X

1

X

2

XY:(((X! Y)! (X! Y))! X! Y � X

1

! X

2

! T

^Jv

1

: X

1

K ^ Jv

2

: X

2

K) (2)

� let �

0

in 9XY:(Y � T ^ Jv

1

: (X! Y)! (X! Y)K ^ Jv

2

: XK) (3)

� let �

0

in 9XY:C (4)

where (1) is by de�nition of onstraint generation; (2) is by de�nition of

�

0

(fix); (3) is by C-Arrow and Lemma 1.6.4; (4) is by de�nition of �

0

(fix).

By Theorem 1.6.2 and Weaken, the judgements C ` v

1

: (X! Y) !
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(X! Y) and C ` v

2

: X hold. By Var, Weaken, App, and Sub, it fol-

lows that C ` v

1

(fix v

1

) v

2

: T holds. By Theorem 1.6.6, this implies

C  Jv

1

(fix v

1

) v

2

: TK. By ongruene of entailment and by C-Ex*, (4)

entails let �

0

in Jv

1

(fix v

1

) v

2

: TK.

Seond, we must hek that if the on�guration fix v

1

: : : v

k

=� (where

k � 0) is well-typed, then either it is reduible, or fix v

1

: : : v

k

is a value.

This is immediate, for it is a value when k < 2, and it is reduible by R-Fix

when k � 2.

We now reall that the onstrut letre f = �z:t

1

in t

2

provided by

ML-the-programming-language may be viewed as syntati sugar for let f =

fix (�f:�z:t

1

) in t

2

, and set forth to disover the onstraint generation rule

that arises out of suh a de�nition. We have

let �

0

in Jfix (�f:�z:t

1

) : TK

� let �

0

in 9Z:(fix � Z! T ^ J�f:�z:t

1

: ZK) (1)

� let �

0

in 9XY:(X! Y � T ^ J�f:�z:t

1

: (X! Y)! (X! Y)K) (2)

� let �

0

in 9XY:(X! Y � T ^ let f : X! Y; z : X in Jt

1

: YK) (3)

where (1) is by de�nition of onstraint generation; (2) is by de�nition

of �

0

(fix), by C-Arrow, and by Lemma 1.6.4; and (3) follows from

Lemma 1.6.5. This allows us to write

let �

0

in Jlet f = fix (�f:�z:t

1

) in t

2

: TK

� let �

0

; f : 8Z[Jfix (�f:�z:t

1

) : ZK℄:Z in Jt

2

: TK (4)

� let �

0

; f : 8Z[9XY:(X! Y � Z ^ let f : X! Y; z : X in Jt

1

: YK)℄:Z in Jt

2

: TK (5)

� let �

0

; f : 8XY[let f : X! Y; z : X in Jt

1

: YK℄:X! Y in Jt

2

: TK (6)

where (4) is by de�nition of onstraint generation; (5) follows fromC-LetDup

and from the previous series of equivalenes; (6) is by C-LetEx, C-ExTrans

and Lemma 1.3.22.

1.9.21 Solution: We have

Jmath t

1

with z : t

2

: TK

� let 8XX

0

[Jt

1

: XK ^ let z : X

0

in JX : zK℄:(z : X

0

) in Jt

2

: TK (1)

� let z : 8X

0

[9X:(Jt

1

: XK ^ X � X

0

)℄:X

0

in Jt

2

: TK (2)

� let z : 8X

0

[Jt

1

: X

0

K℄:X

0

in Jt

2

: TK (3)

� Jlet z = t

1

in t

2

: TK (4)

where (1) is by de�nition of onstraint generation for math; (2) is by de�nition

of onstraint generation for patterns, by C-InId, C-In*, and C-LetEx; (3)

is by Lemma 1.6.4; (4) is by de�nition of onstraint generation for let.

1.9.26 Solution: The type sheme 8

�

X:T ! T may be written 8

�

X:[X 7! T℄(X! X).

Furthermore,

�

X # 8X:X! X holds. Thus, 8

�

X:T! T is an instane of 8X:X! X
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in the sense of dm-Inst'. Sine dm-Inst' is an admissible rule for the type

system DM, and sine it is lear that the identity funtion �z:z has type

8X:X ! X, it must also have type 8

�

X:T ! T. (A more diret proof of this

fat would not be di�ult.) So, the destrutor (� : 9

�

X:T) has not only identity

semantis, but also an identity type. This shows that our de�nitions are sound.

Let us now hek requirement (i) of De�nition 1.7.6. Sine R-Annotation

is pure, it su�es to show that let �

0

in J(v : 9

�

X:T) : T

0

K entails let �

0

in Jv : T

0

K.

Now, we have

let �

0

in J(v : 9

�

X:T) : T

0

K

� let �

0

in 9X

�

X:(T! T � X! T

0

^ Jv : XK) (1)

� let �

0

in 9X

�

X:(X � T � T

0

^ Jv : XK) (2)

 let �

0

in Jv : T

0

K (3)

where (1) is by de�nition of onstraint generation and by de�nition of �

0

((� :

9

�

X:T)); (2) is by C-Arrow; and (3) follows from Lemma 1.6.3 and C-Ex*.

1.10.5 Solution: We have

let �

0

in 9Z:J(�z:z

^

+

^

1 : 8X:X! X) : ZK

� let �

0

in 9Z:(8X:J�z:z

^

+

^

1 : X! XK ^ 9X:(X! X � Z)) (1)

� let �

0

in 8X:let z : X in Jz

^

+

^

1 : XK (2)

� 8X:(int! int! int � X! int! X) (3)

� 8X:(X = int) (4)

� false (5)

where (1) is by de�nition of onstraint generation for universal type annota-

tions; (2) is obtained by restriting the sope of 9Z to the seond onjunt,

then dropping the latter altogether, sine it is equivalent to true, and by

Lemma 1.6.5; (3) is obtained by de�nition of onstraint generation, by de�ni-

tion of �

0

(

^

+) and of �

0

(

^

1), and by a few simple equivalene laws; (4) follows

from C-Arrow and antisymmetry of subtyping; (5) follows from the fat

that int and (say) int ! int have distint interpretations, sine the type

onstrutors int and ! are inompatible. On the other hand, we have

let �

0

in 9Z:J(�z:z : 8X:X! X) : ZK

� let �

0

in 8X:let z : X in Jz : XK (1)

� 8X:(X � X) (2)

� true (3)

where (1) is obtained as above; (2) by de�nition of onstraint generation,

C-InId and C-In*; (3) is by re�exivity of subtyping.
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1.10.6 Solution: Under the naïve onstraint generation rule for universal type vari-

able introdution, the onstraint J8X:(�z:z : X ! X) : ZK is equivalent to

8X:(J�z:z : X ! XK ^ X ! X � Z). Sine the �rst onjunt is a tautology, this

is in turn equivalent to 8X:(X ! X � Z). In a nondegenerate free term model

where subtyping is interpreted as equality, this onstraint is unsatis�able. In

a non-strutural subtyping model equipped with a least type ? and a greatest

type >, it is equivalent to ? ! > � Z. This is a pretty restritive onstraint:

sine no value has type ?, a funtion whose type is (a supertype of) ? ! >

annot ever be invoked at runtime. This situation is learly unsatisfatory.

Cheking that 8X:J�z:z : X ! XK holds was indeed part of our intent, but

onstraining Z to be a supertype of X! X for every X was not.

1.10.7 Solution: Let

�

X � ftv(T) (1) and

�

X # ftv(t) (2). We may assume, w.l.o.g.,

�

X # ftv(T

0

) (3). By (1), (2), (3), and by de�nition of onstraint generation

for loal universal type annotations, J(t : 8

�

X:T) : T

0

K is well-de�ned and is

8

�

X:Jt : TK ^ 9

�

X:(T � T

0

) (4). By (3) and by de�nition of onstraint generation

for introdution of universal type variables and for general type annotations,

J8

�

X:(t : T) : T

0

K is 8

�

X:9Z:(Jt : TK^T � Z)^9

�

X:(Jt : TK^T � T

0

), where Z is fresh,

whih we may immediately simplify to 8

�

X:Jt : TK ^ 9

�

X:(Jt : TK ^ T � T

0

) (5).

Using C-ExAnd and Lemma 1.10.1, it is straightforward to hek that (4)

and (5) are equivalent.

1.10.9 Solution: We have

9Z:J�z:8X:(z : X) : ZK

 9Z

1

Z

2

:let z : Z

1

in J8X:(z : X) : Z

2

K (1)

 9Z

1

:8X:(Z

1

� X) (2)

where (1) is by de�nition of onstraint generation for �-abstrations, drop-

ping the onstraint that relates Z, Z

1

, and Z

2

; (2) is by de�nition of onstraint

generation for universal type variable introdution, this time dropping infor-

mation about Z

2

. Now, in a nondegenerate equality model, the onstraint (2)

is equivalent to false. In fat, for (2) to be satis�able, the interpretation of

subtyping must admit a least element ?. We now see that J�z:8X:(z : X) : ZK

is a very restritive onstraint. Indeed, it requires z to have every type at

one. Beause z is �-bound�hene monomorphi�it must in fat have type

?. On the other hand, we have

9Z:J8X:�z:(z : X) : ZK

� 8X:9Z:J�z:(z : X) : ZK (1)

� 8X:9ZZ

1

Z

2

:(Z

1

� X ^ X � Z

2

^ Z

1

! Z

2

� Z) (2)

� true (3)
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where (1) is by de�nition of onstraint generation for universal type variable

introdution, dropping the seond onjunt, whih is entailed by the �rst; (2)

is by Lemma 1.6.5, by de�nition of onstraint generation for general type an-

notations, and by a few simple equivalene laws; (3) follows from C-NameEq

and the witness substitution [Z

1

7! X; Z

2

7! X; Z 7! (X! X)℄.

1.10.10 Solution: We have

Jletre f : S = �z:t

1

in t

2

: TK

� let f : 8X[Jfix f : S:�z:t

1

: XK℄:X in Jt

2

: TK (1)

� let f : 8X[let f : S in J�z:t

1

: SK ^ S � X℄:X in Jt

2

: TK (2)

� let f : S in J�z:t

1

: SK ^ let f : 8X[S � X℄:X in Jt

2

: TK (3)

� let f : S in (J�z:t

1

: SK ^ Jt

2

: TK) (4)

where (1) is by de�nition of the letre syntati sugar and by the de�nition

of onstraint generation for let onstruts; we have X 62 ftv(S; t

1

); (2) is by

de�nition of onstraint generation for fix; (3) is by C-LetAnd; (4) follows

from the equivalene between the type shemes 8X[S � X℄:X and S�whih

itself is a diret onsequene of C-ExTrans�and from C-InAnd.

1.11.16 Solution: We reason simultaneously in both the subtyping model or the

equal-only model, that is, we only rely on properties that are valid in both

models.

We must �rst ensure that rules rd-Default, rd-Found, and rd-Follow

respet (De�nition 1.7.5).

Æ Case rd-Default. The redution is fvg:f`g

Æ

�! v, whih is pure.

Therefore, it is su�ient to establish that let �

0

in Jfvg:f`g : TK entails

let �

0

in Jv : TK. In fat, we have:

let �

0

in Jfvg:f`g : TK

� let �

0

in 9XY:(�:f`g � X! T ^ f�g � Y! X ^ Jv : YK) (1)

� let �

0

in 9XY:(9X

1

X

2

:(�(` : X

1

; X

2

)! X

1

� X! T)

^9Y

1

:(Y

1

! �(�Y

1

) � Y! X) ^ Jv : YK)

(2)

 let �

0

in 9X

2

Y:(�Y � (` : X

1

; X

2

) ^ X

1

� T ^ Jv : YK) (3)

 let �

0

in 9Y:(Y � X

1

^ X

1

� T ^ Jv : YK) (4)

 let �

0

in Jv : TK (5)

where (1) is by de�nition of onstraint generation; (2) is by de�nition of �

0

,

C-InId; (3) by varianes of �, `, and !, C-And, C-Ex*, C-ExAnd; (4) by

C-Row-DL and ovariane of `; (5) by Lemma 1.6.3.

Æ Case rd-Found: The redution is fw with ` = vg:f`g

Æ

�! v. It su�es to

establish let �

0

in Jfw with ` = vg:f`g : TK entails let �

0

in Jv : TK. In fat, we
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have:

let �

0

in Jfw with ` = vg:f`g : TK

� let �

0

in 9XYY

0

:(�:f`g � X! T ^ f� with ` = �g � Y! Y

0

! X ^

^ Jw : YK ^ Jv : Y

0

K) (1)

� let �

0

in 9XYY

0

:(9X

1

X

2

:(�(` : X

1

; X

2

)! X

1

� X! T)

^ 9Y

1

Y

2

Y

3

:(�(` : Y

1

; Y

3

)! Y

2

! �(` : Y

2

; Y

3

) � Y! Y

0

! X)

^ Jw : YK ^ Jv : Y

0

K) (2)

 let �

0

in 9Y

0

X

1

Y

2

:(Y

0

� Y

2

^ Y

2

� X

1

^ X

1

� T ^ Jv : Y

0

K) (3)

 let �

0

in Jv : TK (4)

where (1) is by de�nition of onstraint generation; (2) is by de�nition of �

0

,

C-InId; (3) by varianes of �, `, and !, C-And, C-Ex*, C-ExAnd; (4) by

Lemma 1.6.3.

Æ Case rd-Follow The proof is similar to the previous ase.

We must now hek that if the on�guration F v

1

: : : v

k

=� is is well-typed,

then either it is reduible, or it is a value.

We begin by heking that every value that is well-typed with type � T is

a reord value, that is, either of the form fv

0

g or fv

00

with `

0

= v

0

g. Indeed,

suppose that let �

0

in Jv : � TK is satis�able. Then, v annot be a program

variable, for a well-typed value must be losed; v annot be a memory loa-

tion m, for otherwise refM(m) � � T would be satis�able�but the top type

onstrutors ref and � are inompatible (sine � is isolated); v annot be a

partial appliation of a onstrutor or a primitive, nor a �-abstration, sine

otherwise T

0

! T

00

� � T would be satis�able but the top type onstrutors

! and � are inompatible (sine they are both isolated); thus v must either

be of the form fvg or fw with ` = vg, for these are the only left ases.

Next, we note that, aording to the onstraint generation rules, if the

on�guration  v

1

: : : v

k

=� is well-typed, then a onstraint of the form

let �

0

; refM in ( � X

1

! : : : ! X

k

! T ^ Jv

1

: X

1

K ^ : : : ^ Jv

k

: X

k

K) is

satis�able. We now reason by ases on .

Æ Case  is f�g. We may asume k � 2, sine otherwise, the expression is a

value. Then �

0

() is 8XY:X! �(�X), so by C-InId and C-arrow the above

onstraint entails 9X:(�(�X) � X

2

! : : : ! T), whih by C-Class-I entails

false sine ! and � are imompatible. Thus, this ase annot our.

Æ Case  is f� with ` = �g. Similar to the previous ase.

Æ Case  is �:f`g. We may asume k � 1, sine otherwise, the expression is

a value. Then �

0

() is 8XY:�(` : X ; Y)! X, so by C-InId and C-arrow the

above onstraint entails let �

0

; refM in (9XY:(X

1

� �(` : X ; Y)) ^ Jv

1

: X

1

K),

whih by lemma 1.6.3 entails let �

0

; refM in 9XY:Jv

1

: �(` :X ; Y)K. Thus v

1

is a

reord value, that is, either of the form fv

0

g and the on�guration is reduible
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to v

0

or of the form fv

00

with `

0

= v

0

g and the on�guration is reduible to

either v

0

or v

00

:f`g.

1.11.17 Solution: We add a olletion of destrutors �[`

1

$`

2

℄ of arity 1 for all pairs

of distint labels, with the following semantis:

fvg[`

1

$`

2

℄

Æ

�! v

fw with ` = vg[`

1

$`

2

℄

Æ

�! fw[`

1

$`

2

℄ with ` = vg if ` =2 f`

1

; `

2

g

fw with ` = vg[`

1

$`

2

℄

Æ

�! fw[`

1

$`

2

℄ with

�

` = vg if f`;

�

`g = f`

1

; `

2

g

The initial environment �

0

must be extended with the following typing asump-

tion:

�[`

1

$`

2

℄ : 8X

1

X

2

Y: �(`

1

: X

1

; `

2

: X

2

; Y)! �(`

1

: X

2

; `

2

: X

1

; Y)

We must then hek subjetion redution for the new primitive. Sine we only

added a onstrutor, it su�ies to hek progress for the new primitive, that is,

that well-typed expressions of the form [`

1

$`

2

℄v

1

: : : v

n

are either value or

an be further redued. Both parts are easy and similar to the orresponding

parts in Exerie 1.11.16.

1.11.18 Solution: There are several solutions. One of them is to asume a �xed total

ordering on row-labels, and to retain as onstrutors only `

�;L

suh that ` < L,

that is ` < `

0

for all `

0

2 L; other onstants `

�;L

suh that ` 6< L are moved

from onstrutors to the status of destrutors with the following olletion of

redution rules:

ffw with `

0

= v

0

g with ` = vg

Æ

�!
ffw with ` = vg with `

0

= v

0

g

(rd-Transpose)

for all labels ` and `

0

suh that `

0

< ` and

ffw with ` = v

0

g with ` = vg

Æ

�!
fw with ` = vg

(rd-Disard)

for all labels `. It is now obvious that values are in normal forms, in the sense

that expliit �elds are never repeated and are always listed in order. Typing

rules need not be hanged, so requirement (i) of De�nition 1.7.6 still holds.

Requirement (ii) need to be hek, in partiular, for the new primitives `

L

,

whih we leave to the reader (the proof for �:f`g should hold unhanged).

1.11.19 Solution: Let map have type �(X! Y)! �(X) ! �(Y), and the following

redution rules in the semantis with normal forms:

map fv

0

with ` = vg w

Æ

�! fmap v

0

w with ` = v (w:f`g)g

map v fw

0

with ` = wg

Æ

�! fmap v w

0

with ` = (v:f`g) wg

map fvg fwg

Æ

�! fv wg
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1.11.22 Solution:To ensure that the �eld is not present in the argument of extension,

it su�ies to restrit its the typing asumptions as follows:

h� with ` = �i : 8XX

0

Y: �(` : abs ; Y)! X

0

! �(` : pre X

0

; Y):

To remove an existing �eld, we an use the following syntati sugar:

� n `

def

= �v:fv with ` = absg

: 8XY: �(` : X ; Y)! �(` : abs ; Y)

The following weaker typing asumption ould also be used to ensure that the

�eld is always present before removal:

8XY: �(` : pre X ; Y)! �(` : abs ; Y)

1.11.25 Solution: The proof is similar to 1.11.16 but slightly more omplex beause

we must also hek that labels are de�ned when aessed, and with subtyping.

We reason simultaneously in both the subtyping model or the equal-only

model, that is, we only rely on properties that are valid in both models.

We must �rst ensure that rules re-Found and re-Follow respet (De�-

nition 1.7.5).

Æ Case re-Found: See Exerie ??. In line ??, �eld ` is pre X

1

instead of

X

1

and pre Y

2

instead of Y

2

and step ?? also uses ovariane of pre.

Æ Case re-Follow The proof is similar.

We must then hek that if the on�guration F v

1

: : : v

k

=� is is well-typed,

then either it is reduible, or it is a value.

We begin by heking that every value that is well-typed with type � T

is a reord value, that is, either of the form hi or hv

00

with `

0

= v

0

i. See

Exerie 1.11.16.

Next, we note that, aording to the onstraint generation rules, if the

on�guration  v

1

: : : v

k

=� is well-typed, then a onstraint of the form

let �

0

; refM in ( � X

1

! : : : ! X

k

! T ^ Jv

1

: X

1

K ^ : : : ^ Jv

k

: X

k

K) is

satis�able. We now reason by ases on .

Æ Case  is hi or h� with ` = �i. See Exerie 1.11.16.

Æ Case  is �:h`i. We may asume k � 1, sine otherwise, the expression is a

value. Then �

0

() is 8XY:�(` :pre X ; Y)! X, so by C-InId and C-arrow the

above onstraint entails let �

0

; refM in (9XY:(X

1

� �(` :pre X ; Y))^Jv

1

: X

1

K),

whih by lemma 1.6.3 entails let �

0

; refM in 9XY:Jv

1

: �(` : pre X ; Y)K. Thus

v

1

is a reord value, that is, either of the form hi or hv

00

with ` = v

0

i. In fat,

the former ase annot our, sine let �

0

; refM in 9XY:Jhi : �(` : pre X ; Y)K

entails 9XY�(�abs) � �(` : pre X ; Y) by C-InId and C-In*, whih in turns
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entails 9X:abs � pre X by C-Row-DL and ovariane of � and `. However,

this onstraint is equivalent to false, beause �(abs) � �(pre X) does not hold

in any ground assignment �. Thus v

1

is hv

00

with `

0

= v

0

i and the on�guration

is reduible to v

0

if `

0

is ` or v

00

otherwise.
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