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Prologue: why mechanization?

Why formalize programming languages?

To obtain mathematically-precise definitions of languages.
(Dynamic semantics, type systems, . . . )

To obtain mathematical evidence of soundness for tools such as

type systems (well-typed programs do not go wrong)

type checkers and type inference

static analyzers (e.g. abstract interpreters)

program logics (e.g. Hoare logic, separation logic)

deductive program provers (e.g. verification condition generators)

interpreters

compilers.
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Prologue: why mechanization?

Challenge 1: scaling up

From calculi (λ, π) and toy languages (IMP, MiniML) to real-world
languages (in all their ugliness), e.g. Java, C, JavaScript.

From abstract machines to optimizing, multi-pass compilers producing
code for real processors.

From textbook abstract interpreters to scalable and precise static analyzers
such as Astrée.
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Prologue: why mechanization?

Challenge 2: trusting the maths

Authors struggle with huge LaTeX documents.

Reviewers give up on checking huge but rather boring proofs.

Proofs written by computer scientists are boring:
they read as if the author is programming the reader.

(John C. Mitchell)

Few opportunities for reuse and incremental extension of earlier work.
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Prologue: why mechanization?

Opportunity: machine-assisted proofs

Mechanized theorem proving has made great progress in the last 20 years.
(Cf. the monumental theorems of Gonthier et al: 4 colors,
Feit-Thompson.)

Emergence of engineering principles for large mechanized proofs.

The kind of proofs used in programming language theory are a good
match for theorem provers:

large definitions, many cases

mostly syntactic techniques, no deep mathematics concepts.
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Prologue: why mechanization?

The POPLmark challenge

In 2005, Aydemir et al challenged the POPL community:

How close are we to a world where every paper on programming
languages is accompanied by an electronic appendix with
machine-checked proofs?

12 years later, about 20% of the papers at recent POPL conferences come
with such an electronic appendix.
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Prologue: why mechanization?

Proof assistants

1 A formal specification language to write definitions and state
theorems.

2 Commands to build proofs, often in interaction with the user + some
proof automation.

3 Often, an independent, automatic checker for the proofs thus built.

Popular proof assistants in programming language research:
Coq, HOL4, Isabelle/HOL.
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Examples of mechanization

Examples of Coq mechanization

See the commented Coq development on the course Web site.

Module Contents From lecture

Sequences Library on sequences of transitions

Semantics Small-step and big-step semantics;
equivalence proofs

Leroy’s lecture #1

Typing Simply-typed λ-calculus and type
soundness proof

Rémy’s lecture #1

Compiler Compilation to Modern SECD and
correctness proof

Leroy’s lecture #2

CPS CPS conversion and correctness proof Leroy’s lecture #3

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016-2017 9 / 58



Examples of mechanization

Coq in a nutshell, 1: Computations and functions

A pure functional language in the style of ML, with recursive functions
defined by pattern-matching.

Fixpoint factorial (n: nat) :=

match n with

| O => 1

| S p => n * factorial p

end.

Fixpoint concat (A: Type) (l1 l2: list A) :=

match l1 with

| nil => l2

| h :: t => h :: concat t l2

end.

Note: all functions must terminate.
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Examples of mechanization

Coq in a nutshell, 2: mathematical logic

The usual logical connectors and quantifiers.

Definition divides (a b: N) := exists n: N, b = n * a.

Theorem factorial_divisors:

forall n i, 1 <= i <= n -> divides i (factorial n).

Definition prime (p: N) :=

p > 1 /\ (forall d, divides d p -> d = 1 \/ d = p).

Theorem Euclid:

forall n, exists p, p >= n /\ prime p.
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Examples of mechanization

Coq in a nutshell, 3: inductive types

Like Generalized Abstract Data Types in OCaml and Haskell.

Inductive nat: Type :=

| O: nat

| S: nat -> nat.

Inductive list: Type -> Type :=

| nil: forall A, list A

| cons: forall A, A -> list A -> list A.
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Examples of mechanization

Coq in a nutshell, 4: inductive predicates

Similar to definitions by axioms and inference rules.

Inductive even: nat -> Prop :=

| even_zero:

even O

| even_plus_2:

forall n, even n -> even (S (S n)).

Compare with the inference rules:

even O
even n

even (S(S(n)))

Technically: even is the GADT that describes derivations of even n
statements.
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Examples of mechanization

Lessons learned

Definitions and statements of theorems are close to what we did on paper.

Proof scripts are ugly but no one has to read them.

Ratio specs : proof scripts is roughly 1 : 1.

No alpha-conversion? (much more on this later).

Good reuse potential, for small extensions (e.g. primitive let, booleans,
etc) and not so small ones (e.g. subtyping).
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Bound variables and alpha-conversion

Bound variables and alpha-conversion

Most programming languages provide constructs that bind variables:

Function abstractions λx .a

Definitions let x = a in b

Pattern-matching match a with (x , y)→ b

Quantifiers (in types) ∀α. α→ α

It is customary to identify terms up to alpha-conversion, that is, renaming
of bound variables:

λx . x + 1 ≡α λy . y + 1 ∀α. α list ≡α ∀β. β list
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Bound variables and alpha-conversion

Substitutions, capture, and alpha-conversion

In the presence of binders, textual substitution a{x ← b} must avoid
capturing a free variable of b by a binder in a:

(λy . x + y){x ← 2× z} = λy . 2× z + y 4

(λy . x + y){x ← 2× y} = λy . 2× y + y 8

In the second case, the free y is captured by λy .

A major reason for considering terms up to alpha-conversion is that
capture can always be avoided by renaming bound variables on the fly
during substitution:

(λy . x + y){x ← 2× y} = (λz . x + z){x ← 2× y} = λz . 2× y + z 4

This is called capture-avoiding substitution.
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Bound variables and alpha-conversion

An oddity: no alpha-conversion ?!?

The Coq development uses names for free and bound variables, but terms
are not identified up to renaming of bound variables.

Fun(x, Var x) 6= Fun(y, Var y) if x 6= y

Likewise, substitution is not capture-avoiding:

(Fun(y , a)){x ← b} = Fun(y , a{x ← b}) if x 6= y

Correct only if b is closed.

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016-2017 18 / 58



Bound variables and alpha-conversion

To alpha-convert or not to alpha-convert?

α-conversion not needed α-conversion required

For semantics

Weak reductions of
closed programs

Strong reductions
Symbolic evaluation

For type systems

Simply-typed
Hindley-Milner (barely)

Polymorphism in general (∀, ∃)
System F and above.
Dependent types.

For program transformations

Compilation to abstract mach.
Naive CPS conversion (barely)
Naive monadic conversion

Compile-time reductions
One-pass CPS conversion
Administrative reductions
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Bound variables and alpha-conversion

What is so hard with alpha-conversion?

Working with a quotient set:

λx .a ≡α λy . a{x ← y} if y not free in a

Need to ensure that every definition and statement is compatible with this
equivalence relation.

Example: the free variables of a term are defined by recursion on a
representative of an equivalence class:

FV (x) = x

FV (λx .a) = FV (a) \ {x}
FV (a b) = FV (a) ∪ FV (b)

Must prove compatibility: FV (a) = FV (b) if a ≡α b.
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Bound variables and alpha-conversion

What is so hard with alpha-conversion?

Need to define appropriate induction principles:

To prove a property P of a term by induction on the term, in the case
P(λx .a), what can I assume as induction hypothesis?

just that P(a) holds?

or that P(a{x ← y}) also holds for any y such that
λx .a ≡α λy .a{x ← y}?
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Bound variables and alpha-conversion

What is so hard with alpha-conversion?

Just defining capture-avoiding substitution:

(λy .a){x ← b} = λz . (a{y ← z}) {x ← b} with z fresh

Need to define what “z fresh” means, e.g.
z is the smallest variable not free in a nor in b.

Then, we get a recursion that is not structural (a{y ← z} is not a
syntactic subterm of λy .a) and therefore not directly accepted by Coq.

Must use a different style of recursion, e.g. on the size of the term rather
than on its structure.
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Bound variables and alpha-conversion

Mechanizing alpha-conversion

Several approaches to the handling of binders and alpha-conversion using
interactive theorem provers. Described next:

1 de Bruijn indices

2 higher-order abstract syntax

3 nominal logics

4 locally nameless.

The “POPLmark challenge” compare these approaches (and more) on a
challenge problem (type soundness for F<:).

15 solutions in 5 proof assistants. No consensus.
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Bound variables and alpha-conversion de Bruijn indices
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Bound variables and alpha-conversion de Bruijn indices

de Bruijn indices
(Nicolaas de Bruijn, the Automath prover, 1967)

a ::= n variable (n ∈ N)
| λ.a abstraction, binds variable 0
| a1 a2 application

Represent every variable by its distance to its binder.

λx .λy . x y ≡ λ.λ. 1 0 ≡ λz .λw . z w

A canonical representation: α-convertible terms are equal.

Used in many early mechanizations (e.g. G. Huet, Residual Theory in
lambda-Calculus: A Formal Development, J. Funct. Program. 4(3), 1994;
B. Barras and B. Werner, Coq in Coq, 1997).

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016-2017 25 / 58



Bound variables and alpha-conversion de Bruijn indices

Substitution with de Bruijn indices
The definition of substitution is not obvious:

x{n← a} =


x if x < n

a if x = n

x − 1 if x > n

(λ.b){n← a} = λ. b{n + 1←⇑0 a}
(b c){n← a} = b{n← a} c{n← a}

For abstractions, the indices of free variables in a must be incremented by
one to avoid capturing variable 0 bound by the λ. This is achieved by the
lifting operator ⇑n, which increments all variables ≥ n.

⇑n x =

{
x if x < n

x + 1 if x ≥ n

⇑n λ.a = λ. ⇑n+1 a

⇑n (a b) = (⇑n a) (⇑n b)
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Bound variables and alpha-conversion de Bruijn indices

Properties of substitution and lifting

Some technical commutation lemmas: if p ≥ n,

(⇑n a){n← b} = a

⇑n (a{p ← b}) = (⇑n a){p + 1←⇑n b}
⇑p (a{n← b}) = (⇑p+1 a){n←⇑p b}

a{n← b}{p ← c} = a{p + 1←⇑n c}{n← b{p ← c}}

Pro: systematic proofs, easy to automate.
Cons: not intuitive, unclear what indices really mean.
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Bound variables and alpha-conversion de Bruijn indices

Issues with de Bruijn indices

Statements of theorems are polluted by adjustments of indices for free
variables and don’t look quite like what we’re used to.

For example, in textbook, named notation, the weakening lemma is:

Weakening : E1,E2 ` a : τ =⇒ E1, x : τ ′,E2 ` a : τ

with the same a in hypothesis and conclusion. (Plus: implicit hypothesis
that x is not bound in E1 or E2.)

With de Bruijn indices, the second a is lifted by an amount that is equal to
the number of binders after that of x, namely, the length of the E1

environment:

Weakening : E1,E2 ` a : τ =⇒ E1, τ
′,E2 `⇑|E1| a : τ
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Bound variables and alpha-conversion de Bruijn indices

Issues with de Bruijn indices

Likewise, for stability of typing by substitution, the top-level statement is
quite readable:

τ ′,E ` a : τ ∧ E ` b : τ ′ =⇒ E ` a{0← b} : τ

but the statement that can be proved by induction is less intuitive:

E1, τ
′,E2 ` a : τ ∧ E1,E2 ` b : τ ′ =⇒ E1,E2 ` a{|E1| ← b} : τ
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Bound variables and alpha-conversion de Bruijn indices

Summary

de Bruijn indices make it possible to mechanize the theory of many
languages, including difficult features such as

multiple kinds of variables (e.g. type variables and term variables in
System F)

binders that bind multiple variables (e.g. ML pattern-matching).

The statements of theorems look somewhat different from what we do on
paper using names, and take time getting used to.

Some “boilerplate” (definitions and properties of substitutions and lifting)
is necessary, but can be automated to some extent. See for instance
F. Pottier’s DBlib library, https://github.com/fpottier/dblib.
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Bound variables and alpha-conversion Higher-Order Abstract Syntax
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Bound variables and alpha-conversion Higher-Order Abstract Syntax

Higher-Order Abstract Syntax (HOAS)
(Pfenning, Elliott, Miller, Nadathur, 1987–1988; the Twelf logical framework)

Leverage the power of your logic: it has α-conversion built-in!

Represent binding in terms using functions of your logic/language.

type term = ---> type term =

| Var of name

| Lam of name * term | Lam of term -> term

| App of term * term | App of term * term

λx .λy . x y is represented as Lam(fun x -> Lam(fun y -> App(x,y))).

Substitution is just function application!

let betared (Lam f) arg = f arg
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Bound variables and alpha-conversion Higher-Order Abstract Syntax

Higher-Order Abstract Syntax (HOAS)

How to reason about non-closed terms? Using logical implications and
hypothetical judgments!

Example: typing rules for simply-typed λ-calculus

assm(x , τ)

` x : τ

∀x , (assm(x , τ1)⇒ ` f x : τ2)

` Lam f : τ1 → τ2

The typing environment is encoded as the set of logical assumptions
assm(x , τ) available in the logical environment.
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Bound variables and alpha-conversion Higher-Order Abstract Syntax

Why no HOAS in Coq?

Problem 1: “exotic” function terms.

In Coq or Caml, the type term -> term contains more functions than just
HOAS encodings of λ-terms. The latter are parametric in their arguments,
while Coq/Caml functions can also discriminate over their arguments, e.g.

f = fun x -> match x with App(_,_) -> x | Lam _ -> App(x,x)

These “exotic” functions invalidate some expected properties of
substitutions. For example, we expect

a{x ← b} = a{x ← c} =⇒ b = c or ∀b, a{x ← b} = a

However, this property fails with the “exotic” function f above,

f (Lam g) = App(Lam g, Lam g) = f (App (Lam g, Lam g))
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Bound variables and alpha-conversion Higher-Order Abstract Syntax

Why no HOAS in Coq?

Problem 2: contravariant inductive definitions are not allowed in Coq.

Inductive term := Lam : (term -> term) -> term 8

It would make it possible to define nonterminating computations:

Definition delta (t: term): term :=

match t with Lam f => f t end.

Definition omega : term := delta (Lam delta).

Likewise, inductive predicates with contravariant (negative) occurrences
lead to logical inconsistency:

Inductive bot : Prop := Bot : (bot -> False) -> bot. 8

By inversion, bot implies bot -> False and therefore False.
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Bound variables and alpha-conversion Higher-Order Abstract Syntax

The Twelf system
(F, Pfenning, C. Schurmann et al; http://twelf.plparty.org/)

A logical framework that supports defining and reasoning upon languages
and logics using Higher-Order Abstract Syntax:

Terms of the language are encoded in LF using HOAS for binders
(cf. lecture #3 of Y. Régis-Gianas).

Properties of terms (such as well-typedness) and meta-properties
(such as soundness of typing) are specified as inference rules in
λ-Prolog.

The Coq difficulties with HOAS (exotic functions, nontermination) are
avoided by restricting the expressiveness of the functional language (LF):
it has no destructors (no pattern-matching), hence can only express
functions that are “parametric” in their arguments.
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Bound variables and alpha-conversion Higher-Order Abstract Syntax

Parametric HOAS
(Adam Chlipala, 2008)

A form of HOAS that is compatible with Coq and similar proof assistants.

Idea 1: break the contravariant recursion term = Lam of term -> term

by introducing a type V standing for variables:

Inductive term (V: Type): Type :=

| Var: V -> term V

| Fun: (V -> term V) -> term V

| App: term V -> term V -> term V.

Example: the identity function λx .x is represented by

Fun (fun (x: V) -> Var x)

for any type V of your choice.
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Bound variables and alpha-conversion Higher-Order Abstract Syntax

Parametric HOAS
For a fixed type V (say, nat), term V still contains exotic functions:

Fun (fun n => match n with O => Var nat 1 | _ => Var nat n end)

Idea 2: rule out exotic functions by quantifying over all possible types V.
Thus, the type of closed terms is

Definition term0 := forall V, term V.

and the type of terms having one free variable is

Definition term1 := forall V, V -> term V.

We can then define constructors for closed terms:

Definition APP (a b: term0) : term0 :=

fun (V: Type) => App (a V) (b V).

Definition FUN (a: term1) : term0 :=

fun (V: Type) => Fun (a V).

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016-2017 38 / 58



Bound variables and alpha-conversion Higher-Order Abstract Syntax

Substitution in parametric HOAS

Substitution is almost function application:

Definition subst (f: term1) (a: term0) : term0 :=

fun (V: Type) => squash (f (term V) (a V))

squash is the canonical injection from term (term V) into term V

obtained by erasing the Var constructors:

Fixpoint squash (V: Type) (a: term (term V)) : term V :=

match a with

| Var x => x

| Fun f => Fun (fun v => f (Var v))

| App b c => App (squash b) (squash c)

end.
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Bound variables and alpha-conversion Higher-Order Abstract Syntax

For more information

Chapter 17 of Certified Programming with Dependent Types, A. Chlipala.

The Lambda Tamer library http://ltamer.sourceforge.net/
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Bound variables and alpha-conversion Nominal approaches
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Bound variables and alpha-conversion Nominal approaches

Nominal approaches

Nominal logic (A. Pitts, 2001):
A first-order logic that internalizes the notions of names, binding, and
equivariance (invariance under α-conversion).

The Nominal package for Isabelle/HOL (Ch. Urban et al, 2006):
A library for the Isabelle/HOL proof assistant that implements the main
notions of nominal logic and automates the definition of data types with
binders (e.g. AST for programming languages) modulo α-conversion.

Example 1 (Nominal Isabelle definition)

atom_decl name

nominal_datatype lam = Var "name"

| App "lam × lam"

| Lam "�name� lam"

Automatically defines the correct equality-modulo-α over type lam, as well
as an appropriate induction principle.
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Bound variables and alpha-conversion Nominal approaches

Names and swaps

α-equivalence is defined not in terms of renamings {x ← y} but in terms
of swaps (permutations of two names)(

x

y

)
= {x ← y ; y ← x}

Unlike renamings, swaps are bijective (self-inverse) and can be applied
uniformly both to free and bound variables, with no risk of capture:(

x

y

)
(λz .a) = λ

(
x

y

)
(z).

(
x

y

)
(a)
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Bound variables and alpha-conversion Nominal approaches

Nominal types

A nominal type is a type equipped with a swap operation satisfying
common-sense properties such as(

x

y

)(
x

y

)
t = t

((x
y

)
u(x

y

)
v

)
t =

(
u

v

)(
x

y

)(
u

v

)
t

Many types are nominal: the type of names; numbers and other constants;
and the product, sum or list of nominal types.
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Bound variables and alpha-conversion Nominal approaches

Support and freshness

For any nominal type, we can define generic notions of

Occurrence (a name is mentioned in a term)

x ∈ t ⇔
(
x

y

)
t 6= t for infinitely many y

Support (all names mentioned in a term)

supp(t) = {x | x ∈ t}

Freshness (a name is not mentioned in a term)

x#t ⇔ x /∈ supp(t)⇔
(
x

y

)
t = t for infinitely many y
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Bound variables and alpha-conversion Nominal approaches

Binders

[x ].t represents the term t in which name x is bound (e.g. λx .t or ∀x .t).

It is characterized by:

[x ].t = [x ′].t ′ iff (x = x ′ ∧ t = t ′) ∨ (x 6= x ′ ∧ t =

(
x

x ′

)
t ′ ∧ x#t ′)

y#[x ].t iff y 6= x ∧ y#t

Binders [x ].t can be constructed as partial functions from names to t’s:

[x ].t = λy . if x = y then Some(t)
else if y#t then Some(

(x
y

)
t)

else None

X. Leroy (INRIA) Functional programming languages MPRI 2-4, 2016-2017 46 / 58



Bound variables and alpha-conversion Nominal approaches

The freshness quantifier

If φ(x , ~y) is a formula of nominal logic involving a (morally fresh) name x
and (morally free) names ~y , then

Nx . φ(x , ~y)
def
= ∀x#~y . φ(x , ~y) ⇔ ∃x#~y . φ(x , ~y)

Proof: in Pitt’s nominal logic, all formulas are invariant by swaps. Assume
φ(x , ~y) for one x#~y . Then, for every x ′#~y ,(

x

x ′

)
φ(x , ~y) = φ(x ′, ~y) holds

In Nominal Isabelle/HOL, not all formulas are invariant by swaps, but this
∀-∃ equivalence is built in the induction principles generated.
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Bound variables and alpha-conversion Nominal approaches

The freshness quantifier

Example of use: the typing rule for λ-abstraction.

Nx . E + {x : τ1} : a : τ2

E ` λx .a : τ1 → τ2

To conclude E ` λx .a : τ1 → τ2, it suffices to exhibit one sufficiently fresh
x that satisfies E + {x : τ1} : a : τ2.

When we know that E ` λx .a : τ1 → τ2, we can assume
E + {x : τ1} : a : τ2 for any sufficiently fresh x .
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The locally nameless representation
(R. Pollack, circa 2004; A. Charguéraud et al, 2008)

A concrete representation where bound variables and free variables are
syntactically distinct:

Inductive term :=

| BVar: nat -> term (* bound variable *)

| FVar: name -> term (* free variable *)

| Fun: term -> term

| App: term -> term -> term.

Bound variables = de Bruijn indices.
Free variables = names.

Example: λx . xy is Fun (App (BVar 0) (FVar "y")).

Invariant: terms are locally closed (no free de Bruijn indices).
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The locally nameless representation

Two substitution operations:
of a term for a name {x ← a}
of a term for a de Bruijn index [n← a].

(λ.a){x ← b} = λ. a{x ← b} (λ.a)[n← b] = λ. a[n + 1← b]

No variable capture can occur:
in [n← b] because b is locally closed
in {x ← b} because λ does not bind any name.

Some commutation properties must be proved, but fewer and simpler than
for de Bruijn indices.
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Working with binders

How to descend within a term λ.a ?

Bad: recurse on a (not locally closed!)

Good: recurse on ax = a[0← x ] for a fresh name x .

Example: the typing rule for λ-abstractions:

x /∈ FV (E ) ∪ FV (a) E + {x : τ1} ` ax : τ2

E ` λ.a : τ1 → τ2
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How to quantify freshness

∀x , x /∈ FV (E ) ∪ FV (a)⇒ E + {x : τ1} ` ax : τ2
(universal)

E ` λ.a : τ1 → τ2

∃x , x /∈ FV (E ) ∪ FV (a) ∧ E + {x : τ1} ` ax : τ2
(existential)

E ` λ.a : τ1 → τ2

Universal quantification: the premise must hold for all fresh names.

Maximally strong for elimination and induction: knowing
E ` λ.a : τ1 → τ2, we get infinitely many possible choices for x that
represents the parameter in the premise.

Inconvenient for introduction: to prove E ` λ.a : τ1 → τ2 we must
show the premise for all fresh x .
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How to quantify freshness

∀x , x /∈ FV (E ) ∪ FV (a)⇒ E + {x : τ1} ` ax : τ2
(universal)

E ` λ.a : τ1 → τ2

∃x , x /∈ FV (E ) ∪ FV (a) ∧ E + {x : τ1} ` ax : τ2
(existential)

E ` λ.a : τ1 → τ2

Existential quantification: the premise must hold for one fresh name.

Very convenient for introduction: to prove E ` λ.a : τ1 → τ2 it
suffices to show the premise for one x .

Weak for elimination and induction: knowing E ` λ.a : τ1 → τ2, we
get the premise for only one x that we cannot choose and may not
satisfy other freshness conditions coming from other parts of the
proof.
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Equivalence between the two quantifications

As in nominal logic, the two rules (universal) and (existential) are
equivalent if the judgement E ` a : τ is equivariant, that is, stable under
swaps of names:

E ` a : τ =⇒
(
x

y

)
E `

(
x

y

)
a :

(
x

y

)
τ
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Equivalence between the two quantifications
R. Pollack and others take the (universal) rule as the definition (thus
obtaining a strong induction principle), then show the (existential) rule as
a theorem:

Inductive hastype: env -> term -> type -> Prop :=

...

| hastyp_abstr: forall E a t1 t2,

(forall x, ~In x (FV E) -> ~In x (FV a) ->

hastype ((x, t1) :: E) (open x a) t2) ->

hastype E (Lam a) (Arrow t1 t2).

Lemma hastyp_abstr_weak:

forall E a t1 t2 x,

~In x (FV E) -> ~In x (FV a) ->

hastype ((x, t1) :: E) (open x a) t2 ->

hastype E (Lam a) (Arrow t1 t2).

Problem: must prove equivariance for all definitions.
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Cofinite quantification

In their LN library http://www.chargueraud.org/softs/ln/,
A. Charguéraud et al use a form of freshness quantification itermediate
between the (universal) and (existential) forms: cofinite quantification.

∃L, ∀x , x /∈ L⇒ E + {x : τ1} ` ax : τ2
(cofinite)

E ` λ.a : τ1 → τ2

L is a finite set of names that must be “avoided”. It typically includes
FV (E ) ∪ FV (a) but can be larger than that.

For elimination and induction, we still have that the premise holds for
infinitely many x .

For introduction, we can choose L large enough to exclude all choices
of x that might make it difficult to prove the premise.

Advantage: no need to prove equivariance for definitions.
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Locally nameless at work

See the beautiful examples of use for the LN library,
http://www.chargueraud.org/softs/ln/
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Some representative mechanized verifications
Authors Topic Prover α?

Type systems

Barras & Werner Coq in Coq Coq dB

Crary & Harper Standard ML (intermediate language) Twelf HOAS

Charguéraud Type soundness for F<:, mini-ML, CoC Coq LN

Dubois & Menissier Algorithm W Coq none

Nipkow Algorithm W Isabelle none

Nipkow & Urban Algorithm W Isabelle nominal

Pottier & Balabonski The Mezzo language Coq dB

Compilers

Leroy et al CompCert C → PowerPC/ARM/x86 Coq none

Chlipala mini-ML + exns + refs → asm Coq PHOAS

Dargaye mini-ML → Cminor Coq dB

Klein & Nipkow mini-Java → JVM + bytecode verif. Isabelle none

Myreen et al Cake ML → VM → x86-64 HOL none
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