
MPRI course 2-4

“Functional programming languages”

Exercises

Xavier Leroy

October 13, 2016

Part I: Interpreters and operational semantics

Exercise I.1 (**) Prove theorem 2 (the unique decomposition theorem). Hint: use the fact that
a value cannot reduce.

Exercise I.2 (*) Check that the reduction rules for derived forms (let, if/then/else, fst,
snd) are valid.

Exercise I.3 (*) Consider a = 1 2. Does there exist a value v such that a⇒ v? Same question
for a′ = (λx. x x) (λx. x x). Do you see a difference between these two examples?

Exercise I.4 (**) As claimed in the proof of theorem 4, show that if a → b and b ⇒ v, then
a⇒ v. Hint: proceed by induction on the derivation of a→ b in SOS and by case analysis on the
last rule used to derive b⇒ v.

Programming exercise I.5 (**) Implement a naive interpreter that follows exactly the Wright-
Felleisen presentation of CBV semantics. The core function to implement is decomp, taking a term
a as argument and returning a pair of a reduction context E and a subterm a′ such that a = E[a′]
and a reduces iff a′ reduces at head. How will you represent contexts? Compare the efficiency
of this interpreter with that of the naive interpreter based on the SOS presentation shown in the
course.

Exercise I.6 (*) We relax the (app-r) reduction rule as follows:

b→ b′
(app-r’)

a b→ a b′

That is, we allow reductions to take place on the right of an application, even if the left part of the
application is not yet reduced to a value.

1. Show by way of an example that the reduction relation is no longer deterministic: give three
terms a, a1, a2 such that a→ a1 and a→ a2 and a1 6= a2.

1

2. Check that theorems 3 and 4 (a ⇒ v if and only if a
∗→ v) still hold for this relaxed, non-

deterministic reduction relation. Conclude that the left-to-right evaluation order makes no
difference for terminating terms.

3. Give an example of a term that evaluates differently under the two reduction strategies (left-
to-right and non-deterministic).

2

Part II: Abstract machines

Exercise II.1 (**) A Krivine machine is hidden in the ZAM. Can you find it? More precisely,
define a compilation scheme N from λ-terms to ZAM instructions that implements call-by-name
evaluation of the source term.

Exercise II.2 (*) The C compilation schema for the ZAM is not mathematically precise: in the
application case, it is not 100% clear what the k in PUSHRETADDR(k) is, exactly. Reformulate the
compilation schema more precisely as a 2-argument function C(a, k), which should prepend to the
code k the instructions that evaluate the expression a and deposit its value on the top of the stack.

Exercise II.3 (**/***) How would you extend the ZAM and its compilation scheme to handle
if/then/else conditional expressions?

Exercise II.4 (**) Prove lemma 8 (the Final states lemma for Krivine’s machine).

Exercise II.5 (***) State and prove the analogues of the Simulation, Initial state and Final state
lemmas (lemmas 6, 7, 8 in the case of Krivine’s machine) for the HP calculator. Use the notion
of decompilation defined in the lecture notes and the following reduction semantics for arithmetic
expressions:

N1 +N2 → N (if N = N1 +N2) N1 −N2 → N (if N = N1 −N2)

a→ a′

a op b→ a′ op b

b→ b′

N op b→ N op b′

Exercise II.6 (**) Complete the proof of theorem 14 (if a⇒∞ then a reduces infinitely).

Exercise II.7 (***) Consider the following function En(a), defined by recursion over n, that
evaluates a term a up to recursion depth n:

E0(a) = ⊥
En+1(x) = err

En+1(N) = N

En+1(λx.a) = λx.a

En+1(a b) = case En(a) of ⊥ → ⊥ | err→ err | v →
case En(b) of ⊥ → ⊥ | err→ err | v′ →

case v of N → err | λx.c→ En(c[x← v′])

The result of En(a) is either a value v (denoting termination), the constant err (denoting an
erroneous evaluation), or the constant ⊥ (denoting an evaluation that cannot terminate at recursion
depth n).

We define a partial order ≤ on evaluation results by r ≤ r and ⊥ ≤ r for all results r. Note
that distinct values, as well as err and a value, are not comparable by ≤.

3

1. Show that En(a) is increasing in n, that is En(a) ≤ En+1(a). Conclude that limn→∞ En(a)
exists for all terms a. What is the relationship between this limit and the behavior of the
Caml function eval defined in part I?

2. Show that a⇒ v if and only if ∃n, En(a) = v.

3. Show that a⇒∞ if and only if ∀n, En(a) = ⊥. (The “if” part requires a proof by coinduction;
do not attempt it if you are not familiar with the coinduction principle.)

4

Part III: Program transformations

Exercise III.1 (*) How would you modify closure conversion so that it builds full closures rather
than minimal closures?

Exercise III.2 (***) Consider again closure conversion targetting a class-based object-oriented
language such as Java. (Slide 14.) How would you extend this transformation to efficiently handle
curried applications to 2 arguments? Hint: each closure becomes an object with 2 methods, apply
and apply2, performing applications to 1 and 2 arguments respectively.

Exercise III.3 (*) OCaml version 4.02 introduces support for the following construct

match a with x→ a | exception y → c

that behaves not at all like try (let x = a in b) with y → c, but as follows:

(match v with x→ a | exception y → c)
ε→ b[x← v]

(match (raise v) with x→ a | exception y → c)
ε→ c[y ← v]

In other words, the exception handler with y → c catches exceptions arising during the evaluation
of a, but not those arising during evaluation of b. Extend the exception-returning conversion to
deal with this match-and-try construct.

Exercise III.4 (**) Give a natural semantics for references. Hint: the evaluation predicate has
the form a/s ⇒ v/s′ where s is the initial store at the beginning of evaluation and s′ is the final
store at the end of evaluation.

Exercise III.5 (**) What function is computed by the following expression?

let fact = ref (λn. 0) in

fact := (λn. if n = 0 then 1 else n * (!fact) (n-1));

!fact

Define a translation scheme from a functional language with recursive functions µf.λx.a to a func-
tional language with only plain functions λx.a and references. Hint: a fixpoint combinator would
do the job, but please use references instead.

Programming exercise III.6 (***) Write an OCaml implementation of the polymorphic
store operations from slide 48 of lecture III. The implementation must be statically type-safe (no
Obj.magic).

Exercise III.7 (*) Define the CPS conversion of arithmetic operations a op b, constructor ap-
plications C(a1, . . . , an) and pattern-matchings match a with p1 | . . . | pn.

Exercise III.8 (***) Define a translation from exceptions to references + continuations. Hint:
use an imperative stack containing continuations corresponding to the with part of active try. . . with
constructs.

5

Exercise III.9 (*) Prove the first case of Theorem 5: if a ⇒ v and k is a value, then [[a]] k
+→

k [[v]]v.

Exercise III.10 (**) — the “double-barreled” CPS transformation Define a CPS trans-
lation for a source language that includes mini-ML and exceptions (raise, try. . . with). Each
source term a becomes a term [[a]] = λk1.λk2 . . . that expects not one, but two continuations. The
continuation k1 is to be called on the value of a if a terminates normally. The continuation k2 is
to be called on an exception value if a terminates early by raising this exception.

Programming exercise III.11 (*) Using Danvy’s et al’s technique, derive a tail-recursive func-
tion equivalent to the familiar map function over lists:

let rec map f l =

match l with [] -> [] | hd :: tl -> f hd :: map f tl

Exercise III.12 (**) Consider the CPS transformation for call-by-name given in the lecture.
What is its effect on types? In other words, if a is a closed term of type τ , what is the type of its
call-by-name CPS translation [[a]]?

6

Part IV: Monads

Exercise IV.1 (**) Complete the proof of theorem 3 for a source language that includes ex-
ceptions (raise and try. . . with). To this end, you should prove that if a ⇒ raise v, then
[[a]] ≈ raise [[v]]v. (The first raise corresponds to an exception result in the natural semantics
for exception; the second raise is the corresponding operation of the exception monad.) What
additional hypotheses do you need on the ≈ relation? Are they satisfied?

Exercise IV.2 (*) Define a Diagnostics monad that, like the Logging monad, allow the program-
mer to log debug messages, but in addition provides an abort operation that stops the program
when invoked. Make sure that the log is not erased when abort is called!

Exercise IV.3 (*) When implementing program transformations or other instances of symbolic
processing, it is often necessary to generate fresh identifiers. Define a NameSupply monad that
offers an operation gensym of type string mon. Every time gensym is used, it returns the next
name from the sequence a, . . . , z, a1, . . . , z1, a2, . . .

Exercise IV.4 (**) Implement (without using monad transformers) a monad that combines ex-
ceptions and continuations. Use the “double-barreled” approach from exercise III.9: computations
should be represented as

type α mon = (α→ answer)→ (exn→ answer)→ answer

(***) An alternate approach is to use monad transformers:

module EC = ExceptionTransf(Cont)

(* Exception transformer applied to Contination monad *)

module CE = ContTransf(Exception)

(* Continuation transformer applied to Exception monad *)

How do these alternate approaches compare with the “double-barreled” CPS transformation?

Exercise IV.5 (**) We saw that every monad is an applicative structure. Is this true for any
comonad? How to define “comonadic application” for an arbitrary comonad? (Hint: use the lazy
evaluation comonad as an example.)

Exercise IV.6 (****) Define an extended Concur monad transformer that features synchronous
communications over channels, in the style of CCS. For simplicity, channels will be identified by
strings and the values exchanged over channels will be integers. The additional operations over
channels are

type channel = string

send: channel -> int -> unit mon

receive: channel -> int mon

A process doing send c n blocks until another process executes receive c for the same channel c.
Then, both processes restart; the send returns () while the receive returns the integer n coming
from the send.

7

