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Compiler optimizations

Automatically transform the code written the programmer in
equivalent code that

• Runs faster
• Eliminate useless or redundant computations
• Use cheaper operations
• Increase parallelism (instruction-level, threads).

• Is more compact
• Uses less energy
• Resists attacks better

Dozens of optimizations are known, each targeting a specific kind
of ine�ciency.
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Some classic optimizations

Constant propagation:

a = 1; a = 1;

b = 2; --> b = 2;

c = a + b; c = 3;

d = x - a; d = x + (-1);

Dead code elimination:

a = 1; skip;

b = 2; --> b = 2;

c = 3; c = 3;

(if a is unused later)
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Some classic optimizations

Common subexpression elimination:

c = a; c = a;

d = a + b; --> d = a + b;

e = c + b; e = d;

Copy propagation:

e = d; skip;

f = d + 1; --> f = d + 1;

g = e * 2; g = d * 2;
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Some loop optimizations

Lifting loop-invariant computations:

for i = 1 to N do c = a + b;

c = a + b; --> for i = 1 to N do

x = x + c * A[i]; x = x + c * A[i];

done done

Induction variable elimination:

a = p;

for i = 1 to N do for i = 1 to N do

a = p + i * 4; --> skip;

... ...

a = a + 4;

done done
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A cache optimization

To improve spatial locality of memory accesses.

Loop tiling (also called loop blocking):

for i = 0 to N-1 do for i = 0 to N-1 step K do

for j = 0 to N-1 do for j = 0 to N-1 step K do

a[i][j] = b[j][i] for i2 = i to i+K-1 do

done for j2 = j to j+K-1 do

done --> a[i2][j2] = b[j2][i2]

done

done

done

done
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Optimizations and static analyses

Some optimizations are unconditionally valid, such as

x ∗ 2 → x + x

x ∗ 4 → x << 2

Other optimizations apply only when certain conditions hold:

x / 4 → x >> 2 only if x ≥ 0
x + 1 → 1 only if x = 0

if x < y then c1 else c2 → c1 only if x < y

x := y + 1 → skip only if x
is unused later

We need a static analysis of the code before we can apply these
optimizations.
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Static analysis

Determine in advance (“statically”) properties that hold for all
possible executions of a program.

Often, these are properties of the values of variables at a given
program point, such as

x = n x ∈ [n,m] x = expr a.x+ b.y ≤ n

(x, y: program variables;
n, m, a, b constants determined by the static analysis.)

We’re not talking about executing the program a few times!

• Program inputs are unknown.
• The analysis must terminate always.
• The analysis must take reasonable time and space.
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Uses for static analysis

1960–2000: to improve performance.

• Determine when an optimization applies.
• Guide code generation heuristics.

Since 2000: to improve safety.

• Guarantee the absence of certain run-time errors
(for instance, out-of-bound array accesses).

• More modestly: warn about plausible programming errors.
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The control flow / data flow approach

At the level of the control-flow graph, connect variable
definitions with their uses.

x := 1 + 3

if

y := x + 1A: x := 0

z := x + 1B:

Use point A, only one possible definition of x: x = 4.
Use point B, two incompatible definitions are possible:
x = 4 and x = 0.
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Dataflow analysis

To each node n of the control-flow graph, associate a set of facts
(such as “variable = constant”), connected by dataflow equations:

in(n) =
⋂
{out(p) | p predecessor de n}

out(n) = gen(n) ∪ (in(n) \ kill(n))

in(n): facts true “before” executing n
out(n): facts true “after” executing n
kill(n): facts invalidated by the execution of n

(for example x := a invalidates “x = N” for all N)
gen(n): facts established by the execution of n

(for example x := 1 + 2 establishes “x = 3”)
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Dataflow analysis

in(n) =
⋂
{out(p) | p predecessor de n}

out(n) = gen(n) ∪ (in(n) \ kill(n))

Solve these equations by fixed-point iteration.
(≈ Recompute out(n) whenever one of the out(p) changes.)

Extends from sets of facts to lattices (of finite height).

G. Kildall, A unified approach to global program optimization, POPL 1973.

J. B. Kam et J. D. Ullman, Monotone data flow analysis frameworks, Acta
Informatica 1977.
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Example: dead-code elimination via liveness analysis

Eliminate assignments x := a, replacing them by skip, if x is
never used later in the program execution.

Example
x := 1; y := y + 1; x := 2

The assignment x := 1 can be removed since x is not used
before being redefined by x := 2.

This optimization builds on a static analysis called liveness
analysis. It’s a backward dataflow analysis.
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Liveness analysis



Liveness analysis

A variable is dead at a program point if its value is never used
later in the program execution:

• the variable is not mentioned until the end of its scope;
• or it is redefined before every use.

A variable is live if it is not dead.

Easy to determine for straight-line code:

(def x)
x := . . .

(use x)
. . . x . . .

(def x)
x := . . .

(use x)
. . . x . . .

(use x)
. . . x . . .

x dead

x live
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Liveness of a variable

def x

if

use x def x

use x

For branches, we over-approximate liveness by assuming that if
conditions can be true or false, and that while loops are
executed 0 or several times.
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Dataflow equations for liveness

Let L be the set of variables live “after” command c.
We define live c L, the set of variables live “before” c.

live SKIP L = L

live (x := a) L =

(L \ {x}) ∪ FV(a) si x ∈ L;

L si x /∈ L.

live (c1; c2) L = live c1 (live c2 L)

live (if b then c1 else c2) L = FV(b) ∪ live c1 L ∪ live c2 L

live (while b do c) L = X such that X = L ∪ FV(b) ∪ live c X
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Liveness analysis for a loop

test b

c

test b

c

... loop exit

loop entry
X

live(c, X)

L

X

live(c, X)

L

X

X must satisfy:
• FV(b) ⊆ X

(to evaluate b safely)
• L ⊆ X

(if b is false)
• live(c, X) ⊆ X

(if b is true and c is run)
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Fixed points

Consider F = λX. L ∪ FV(b) ∪ live(c, X).

To analyze the loop while b do c, we would like to compute a
smallest fixed point de F, that is, a minimal X such that F(X) = X.

This is what makes the analysis maximally precise. For semantic
correctness, it su�ces to compute a post-fixed point of F, that is,
any X such that F(X) ⊆ X.
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Fixed points for a monotonically increasing function

X

F(X)

pre-fixed point post-fixed point pre post
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The mathematician’s approach

Theorem (Knaster-Tarski)

Let A,≤ be a partially ordered type, and F : A→ A.

The sequence ⊥, F(⊥), F(F(⊥)), . . . , Fn(⊥), . . .

converges to the smallest fixed point of F, provided that

• F is increasing: x ≤ y ⇒ F(x) ≤ F(y).

• ⊥ is the smallest element of A.

• There are no infinite strictly-increasing sequences
x0 < x1 < · · · < xn < · · ·
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Problems with the Knaster-Tarski approach

The condition about infinite strictly-increasing sequences is

1. di�cult to mechanize and to use
(well-founded orders + Noetherian induction);

2. often false! In the case of liveness analysis, the ⊂ order has
infinite strictly-increasing sequences:
∅ ⊂ {x1} ⊂ {x1, x2} ⊂ · · ·

Time for an alternate approach. . .
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The engineer’s approach

F = λX. L ∪ FV(b) ∪ live(c, X)

A bounded iteration:

• Compute F(∅), F(F(∅)), . . . , FN(∅) up to a fixed N.
• Stop as soon as a post-fixed point is found (Fi+1(∅) ⊆ Fi(∅)).
• Otherwise, return an over-approximation that is guaranteed

to be a post-fixed point
(in our example, L ∪ FV(while b do c done)).

A compromise between analysis time and analysis precision.
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Dead code elimination

The program transformation removes assignments to dead
variables:

x := a becomes SKIP if x not live “after” the assignment

Implemented as a function

dce : com→ IdentSet.t→ com

taking as second argument the set of variables live “after” the
command, and updates this set during recursive calls.

(Implementation & examples in the Coq module Optim.)
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Semantic interpretation of liveness

How can we characterize semantically that a variable x is live at a
program point?

Hmmm. . .

How can we characterize semantically that a variable x is dead at
a program point?

By the fact that the precise value of x at this point makes no
di�erence to the program execution!
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Liveness as an “hyper-property” of two executions

Consider two executions of the same command c in di�erent
initial stores:

c/s1 ⇓ s′1 c/s2 ⇓ s′2

Assume that the two initial stores agree on the variables live c L
that are live “before” c:

∀x ∈ live c L, s1(x) = s2(x)

Then, both executions terminate on final stores that agree on the
variables L live “after” c:

∀x ∈ L, s′1(x) = s′2(x)
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The agree relation and its properties

Definition agree (L: IdentSet.t) (s1 s2: store) : Prop :=

forall x, IdentSet.In x L -> s1 x = s2 x.

The relation is decreasing with respect to the set L:

Lemma agree_mon:

forall L L’ s1 s2,

agree L’ s1 s2 -> IdentSet.Subset L L’ -> agree L s1 s2.

An expression evaluates to the same value in two stores that
agree on the free variables of the expression:

Lemma aeval_agree:

forall a s1 s2, agree (fv_aexp a) s1 s2 -> aeval a s1 = aeval a s2.

Lemma beval_agree:

forall b s1 s2, agree (fv_bexp b) s1 s2 -> beval b s1 = beval b s2.
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The agree relation and its properties

The relation is preserved by parallel assignment to a variable:

Lemma agree_update_live:

forall s1 s2 L x v,

agree (IdentSet.remove x L) s1 s2 ->

agree L (update x v s1) (update x v s2).

The relation is preserved by unilateral assignment to a dead
variable:

Lemma agree_update_dead:

forall s1 s2 L x v,

agree L s1 s2 -> ~IdentSet.In x L ->

agree L (update x v s1) s2.
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Semantic preservation

We prove that the execution of dce c L simulates the execution
of c while preserving the agree relation between the stores.

s

s′

s1

s′1

agree (live c L)

cexec c cexec (dce c L)
agree L

Theorem dce_correct_terminating:

forall s c s’, cexec s c s’ ->

forall L s1,

agree (live c L) s s1 ->

exists s1’, cexec s1 (dce c L) s1’ /\ agree L s’ s1’.
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Semantic preservation

This result extends to diverging programs by proving a simulation
diagram using the IMP reduction semantics. (Exercise.)

c/s dce c L/s1

c′/s′ dce c′ L/s′2

agree (live c L) s s1

agree (live c′ L) s′ s′1

1 ou (0 et |c′| < |c|)
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Advanced topic:
Register allocation



Register allocation

Placing the variables used by the program (in unbounded
numbers) in

• either processor registers
(very fast access; small number of available registers)

• or memory locations (generally in the call stack)
(available in great numbers; slower access).

Try to maximize the use of processor registers.

A crucial step for producing e�cient machine code.
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Two approaches to register allocation

Naive approach: (one-to-one placement)

• Place the N most used variables in the N available registers.
• Place the remaining variables in memory.

Optimized approach (many-to-one placement)

• Place several variables in the same register, provided that
these variables are never live at the same time.
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Exemple de partage de registre

(def x)
x := . . .

(use x)
. . . x . . .

(def y)
y := . . .

(use y)
. . . y . . .

(use y)
. . . y . . .

x dead

x live

y dead

y live

(def R)
R := . . .

(use R)
. . .R . . .

(def R)
R := . . .

(use R)
. . .R . . .

(use R)
. . .R . . .
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A register allocation for IMP

Simplified presentation: a transformation IMP→ IMP that tries to
minimize the number of di�erent variables used.

The (non-injective) renaming of variables can be seen as a
placement of variables in registers or stack locations.
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The program transformation

Assume given a variable placement f : ident→ ident.

The program transformation consists in:

• Rename variables: x becomes f x.
• Eliminate dead code:

x := a −→ SKIP if x is dead “after”
• Eliminate redundant assignments:

x := y −→ SKIP if f x = f y
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Correctness conditions on variable placements

Not all placements f preserve semantics!

Example

Assume f x = f y = f z = R

x := 1; R := 1;

y := 2; ----> R := 2;

z := x + y; R := R + R;

The transformed code puts 4 in R instead of 3. . .

What are su�cient conditions over f to preserve semantics?

We can discover them by reworking our proof of dead code
elimination.
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Revisiting the agree relation

Definition agree’ (L: IdentSet.t) (s1 s2: store) : Prop :=

forall x, IdentSet.In x L -> s1 x = s2 (f x).

An expression and its renaming evaluate to the same value in
related memory stores:

Lemma aeval_agree’:

forall a s1 s2,

agree’ (fv_aexp a) s1 s2 -> aeval a s1 = aeval (rename_aexp a) s2.

Lemma beval_agree’:

forall b s1 s2,

agree’ (fv_bexp b) s1 s2 -> beval b s1 = beval (rename_bexp b) s2.
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Revisiting the agree relation

Like before, the relation is preserved by unilateral assignment to
a dead variable:

Lemma agree’_update_dead:

forall s1 s2 L x v,

agree’ L s1 s2 -> ~IdentSet.In x L ->

agree’ L (update x v s1) s2.
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Revisiting the agree relation

The relation is preserved by parallel assignments to a variable x
and its renaming f x, provided f enjoys a non-interference
condition (in red below).

Lemma agree’_update_live:

forall s1 s2 L x v,

agree’ (IdentSet.remove x L) s1 s2 ->

(forall z, IdentSet.In z L -> z <> x -> f z <> f x) ->

agree’ L (update x v s1) (update (f x) v s2).
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A special case for variable copy

In the case of a variable copy x := y, the value assigned to x is
not arbitrary: we know it is the value of y. This makes it possible
to weaken the non-interference condition.

Lemma agree’_update_move:

forall s1 s2 L x y,

agree’ (IdentSet.union (IdentSet.remove x L) (IdentSet.singleton y))

s1 s2 ->

(forall z, IdentSet.In z L -> z <> x -> z <> y -> f z <> f x) ->

agree’ L (update x (s1 y) s1) (update (f x) (s2 (f y)) s2).

This makes it possible to place x and y in the same register, even
if x and y are simultaneously live.
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The interference graph

The non-interference constraints f x 6= f y can be materialized as
an interference graph:

• Vertices = program variables.
• Non-oriented edge between x and y =

x and y must not be placed in the same location.

Constructing the interference graph (Chaitin’s algorithm):

• For each copy x := y, add an edge between x and every
variable z live “after”, other than x and y.

• For each assignment x := a, add an edge between x and
every variable z live “after”, other than x.
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Example of interference graph

r := a;

q := 0;

while b <= r do

r := r - b;

q := q + 1

done

a

b

q

r
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Register allocation by graph coloring

(G. Chaitin et al, Register allocation via coloring, 1981.)
(P. Briggs, Register allocation via graph coloring, 1992.)
(L. George et A. W. Appel, Iterated register coalescing, 1996.)

Color the vertices of the interference graph, using colors that are
either registers or memory locations,

under the constraint that the two endpoints of an edge have
di�erent colors,

while maximizing the number of vertices colored with a register.

(A NP-complete problem in general, but good linear-time
heuristics are known.)
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Example of coloring

a

b

q

r
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Example of coloring

a

b

q

r

a

b

q

r

yellow := yellow;

green := 0;

while red <= yellow do

yellow := yellow - red;

green := green + 1

done
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What needs to be verified in Coq

Direct compiler verification:
formalize and verify a good graph coloring heuristics.

George and Appel’s IRC algorithm ≈ 6 000 lines of Coq.
(Blazy, Robillard, Appel, ESOP 2010)

Validation a posteriori:
compute a placement using non-verified code;
validate that the placement satisfies the non-interference
constraints, using a formally-verified validator;
abort compilation if the validator fails.
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Validating a placement

It’s easy to write a Boolean-valued Coq function

correct_allocation:

(ident -> ident) -> com -> IdentSet.t -> bool

that returns true if and only if the expected non-interference
properties are satisfied.

(Or, in other words, if and only if the ident -> ident function is
a correct coloring of the interference graph.)
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Semantic preservation

The semantic preservation proofs for dead code elimination
extend easily, with the extra hypothesis that
correct_allocation returns true:

Theorem regalloc_correct_terminating:

forall s c s’, cexec s c s’ ->

forall L s1,

agree’ (live c L) s s1 ->

correct_allocation c L = true ->

exists s1’, cexec s1 (regalloc c L) s1’ ∧ agree’ L s’ s1’.
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Back to fixed points



Back to the mathematician’s approach

Theorem (Knaster-Tarski)

Let A,≤ be a partially ordered type, and F : A→ A.

The sequence ⊥, F(⊥), F(F(⊥)), . . . , Fn(⊥), . . .

converges to the smallest fixed point of F, provided that

• F is increasing: x ≤ y ⇒ F(x) ≤ F(y).

• ⊥ is the smallest element of A.

• There are no infinite strictly-increasing sequences
x0 < x1 < · · · < xn < · · ·

This theorem provides us with an e�ective algorithm to compute
fixed points!
(See the Coq file Fixpoints).
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Well-founded orders

A constructive reformulation of the condition “there are no
infinite strictly-increasing sequences”:

All strictly-increasing sequences are finite.

In other words: the > order is well founded.

In other words: ∀x : A, Acc x
where Acc is the accessibility predicate

Inductive Acc: A -> Prop :=

| Acc_intro : (forall y:A, y > x -> Acc y) -> Acc x.
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Noetherian induction and recursion

Proof by Noetherian induction:
to show P(x), we can assume P(y) true for all y > x.

(≈ structural induction on the derivation of Acc x.)

Programming by Noetherian recursion:
F(x) can call F(y) for one or several y > x.

Application: an algorithm to compute the smallest fixed point!
(See module Fixpoints.)
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Application to liveness analysis

(See module Optim, section 3.4.)

1. To ensure ⊂ is a well-founded order, we must restrict it to
subsets of a finite universe U.
Definition finset := { x: IdentSet.t | IdentSet.Subset x U }.

2. We then get a fixed-point operation:
finset_fixpoint:

forall (F: finset -> finset), finset_monotone F -> finset

3. To be able to use it during liveness analysis, we need to
simultaneously define the analysis function and prove that it
is monotonically increasing.
Program Fixpoint live’

(c: com) (CONT: IdentSet.Subset (fv_com c) U)

: { f: finset -> finset | monotone f } := ...
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Summary

Static analyses:

• In this lecture: the dataflow approach.
• A variant: sparse analyses on the SSA intermediate form.
• In lecture #5: the abstract interpretation approach.

A crucial need: computing post-fixed points e�ciently.

• In this lecture: bounded local iteration
(one per loop).

• Classically, in compilers: global iteration on a control-flow
graph.

• In lecture #5: widening to accelerate local iteration.
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