
Mechanized semantics, first lecture

Of expressions and commands:
the semantics of an imperative language

Xavier Leroy
2019-11-28

Collège de France, chair of software sciences

Warming up:
arithmetic expressions

Arithmetic expressions

A language of expressions comprising

• Integer constants 0, 1, -5, . . . , N
• Variables x, y, z, . . .
• Operations “plus” and “minus”: e1 + e2 et e1 − e2

where e1 and e2 are sub-expressions.

2

Concrete syntax

The familiar algebraic notation, described by a BNF grammar:

expr ::= term | expr + term | expr - term
term ::= const | var | (expr)
const ::= -? [0− 9]+

var ::= [a− z A− Z]+

Note: this grammar is not ambiguous: A+B-C is correctly read as
(A+B)-C and not as A+(B-C).

3

Abstract syntax trees

−

+ y

x 2

x + 2− y
(x + 2)− y
x + 2− (y)

At leaves: constants and variables.

At nodes: operators +, −

4

Abstract syntax in research papers

A kind of grammar for abstract syntax trees:

Arithmetic expressions:
a ::= x variables
| N integer constants
| a1 + a2 sum of two expressions
| a1 − a2 di�erence of two expressions

(No parentheses, no mention of precedence and associativity.)

5

Abstract syntax trees as inductive types

The natural representation of abstract syntax trees in functional
languages and proof assistants is an inductive type.

In OCaml: In Coq:

type aexp = Inductive aexp : Type :=

| CONST of int | CONST (n: Z)

| VAR of string | VAR (x: ident)

| PLUS of aexp * aexp | PLUS (a1: aexp) (a2: aexp)

| MINUS of aexp * aexp | MINUS (a1: aexp) (a2: aexp).

6

Abstract syntax trees as inductive types

Inductive aexp : Type :=

| CONST (n: Z)

| VAR (x: ident)

| PLUS (a1: aexp) (a2: aexp)

| MINUS (a1: aexp) (a2: aexp).

Defines 4 functions to construct values of type aexp:

CONST: Z -> aexp

VAR: ident -> aexp

PLUS: aexp -> aexp -> aexp

MINUS: aexp -> aexp -> aexp

7

Abstract syntax trees as inductive types

Inductive aexp : Type :=

| CONST (n: Z)

| VAR (x: ident)

| PLUS (a1: aexp) (a2: aexp)

| MINUS (a1: aexp) (a2: aexp).

Every value of type aexp is finitely generated by these 4 functions
⇒ case analysis + structural recursion

Fixpoint F (a: aexp) :=

match a with

| CONST n => ...

| VAR x => ...

| PLUS a1 a2 => ... F a1 ... F a2 ...

| MINUS a1 a2 => ... F a1 ... F a2 ...

end. 7

Denotational semantics of expressions

An arithmetic expression denotes a function
values of variables→ value of the expression.

The values of variables are given by a store (memory state)
s : variable name→ variable value.

On paper, the denotational semantics is presented as a set of
equations:

[[x]] s = s(x)

[[N]] s = N

[[a1 + a2]] s = [[a1]] s+ [[a2]] s

[[a1 - a2]] s = [[a1]] s− [[a2]] s

(Note: + and − have di�erent meanings on the left and on the right.)

8

Mechanizing this denotational semantics

On machine, this denotational semantics is presented as a
recursive function defined by case analysis on the shape of the
expression.

Definition store : Type := ident -> Z.

Fixpoint aeval (a: aexp) (s: store) : Z :=

match a with

| CONST n => n

| VAR x => s x

| PLUS a1 a2 => aeval a1 s + aeval a2 s

| MINUS a1 a2 => aeval a1 s - aeval a2 s

end.

9

Using this denotational semantics

As a pocket calculator (an interpreter for our language):
If x is 10, then 2 + x - 1 is 19.

To simplify expressions:
[[x + (10 − 1)]] s = s(x) + 9

To prove algebraic properties of expressions:
[[x + 1]] s > [[x]] s for all s

To prove “meta” properties of the semantics:
If s(x) = s′(x) for every x free in a, then [[a]] s = [[a]] s′.

10

Extensions and variants

Extending the language of expressions:

• with derived forms (e.g. −x def
= 0− x)

• with primitive forms (e.g. multiplication).

Modifying the semantics:

• Machine integers instead of mathematical integers Z.
• Reporting errors:

overflows, division by 0, undefined variable, . . .

11

Modularizing denotational semantics using monads

(Eugenio Moggi, Notions of computations and monads, 1989, 1991)

[[N]] = inj(N)

[[x]] = get(x)

[[e1 + e2]] = bind [[e1]] (λv1. bind [[e2]] (λv2. v1 ⊕ v2))

[[e1 − e2]] = bind [[e1]] (λv1. bind [[e2]] (λv2. v1 	 v2))

Parameterized by a reader monad M and an interpretation V of
integer values:

ret : ∀α. α→ M α inj : Z→ M V

bind : ∀α, β. M α→ (α→ M β)→ M β · ⊕ · : V → V → M V

get : ident→ M V · 	 · : V → V → M V

12

Modularizing denotational semantics using monads

Possible choices for V:
V = Z exact arithmetic
V = [−263, 263[64-bit signed machine arithmetic

Possible choices for M:
M α = (ident→ V)→ α reader monad
M α = (ident→ option V)→ option α reader and error monad

(See also the 2018-2019 lecture “Can we change the world?
Imperative programming, monadic e�ects, algebraic e�ects”.)

13

The IMP language
and its reduction semantics

The language IMP

A minimalistic imperative language with structured control.

Arithmetic expressions:
a ::= n | x | a1 + a2 | a1 − a2

Boolean expressions:
b ::= true | false | a1 = a2 | a1 ≤ a2 | not b | b1 and b2

Commands (statements):
c ::= skip (do nothing)
| x := a (assignment)
| c1; c2 (sequence)
| if b then c1 else c2 (conditional)
| while b do c (loop)

14

An IMP program

Euclidean division by repeated subtractions.

// entry: dividend in a, divisor in b

r := a;

q := 0;

while b <= r do

r := r - b;

q := q + 1

done

// exit: quotient in q, remainder in r

15

Denotational semantics of Boolean expressions

A routine denotational semantics, presented as a bool-valued
function.

beval : bexp→ store→ bool

Many useful derived forms:

a1 6= a2 a1 < a2 a1 ≥ a2 a1 > a2 a1 or a2

16

Denotational semantics of commands

Let’s attempt the naive denotational approach: the semantics of
a command is a function store “before” 7→ store “after”.

[[skip]] s = s

[[x := a]] s = s{x← [[a]] s}
[[c1; c2]] s = [[c2]] ([[c1]] s)

[[if b then c1 else c2]] s =

[[c1]] s if [[b]] s = true

[[c2]] s if [[b]] s = false

[[while b do c]] s =

s if [[b]] s = false

[[while b do c]] ([[c]] s) if [[b]] s = true

17

Denotational semantics of commands

[[while b do c]] s = [[while b do c]] ([[c]] s) if [[b]] s = true

This equation is circular and fails to define the store “after” the
execution of a while loop.

Besides, this store “after” is undefined if the loop doesn’t
terminate! (as in while true do skip)

The corresponding Coq function is rejected as not structurally
recursive.

18

Denotational semantics of commands

Could we change the type of the denotation function to
com→ store→ option store, so that

[[c]] s = Some s′ means c terminates with store s′

[[c]] s = None means c diverges?

In classical logic: yes.

In type theory (Coq, Agda, etc): no, because

• all definable functions are computable;
• the denotation function would decide the halting problem

for IMP;
• IMP is Turing-complet.

19

Reduction semantics of commands

Plan B: an operational semantics using sequences of reductions,
in the style of lambda-calcul and its beta-reduction.

We reduce configurations c/s comprising a command c and the
current store s:

c/s → c′/s′

c: command one step of c′: residual command
s: initial store computation s′: updated store

20

Reduction rules

Assignments:

(x := a)/s→ skip/s{x← [[a]] s}

Sequences:

(c1; c2)/s→ (c′1; c2)/s′ si c1/s→ c′1/s′

(skip; c2)/s→ c2/s

Example:

(x := 1; y := 2)/s→ (skip; y := 2)/s′ → (y := 2)/s′ → skip/s′′

where s′ = s{x← 1} and s′′ = s′{y ← 2}.

21

Reduction rules

Conditional:

(if b then c1 else c2)/s→ c1/s if [[b]] s = true

(if b then c1 else c2)/s→ c2/s if [[b]] s = false

Loops:

(while b do c)/s→ skip/s if [[b]] s = false

(while b do c)/s→ (c; while b do c)/s if [[s]] b = true

22

Reduction semantics as inference rules

(x := a)/s→ skip/s[x← [[a]] s])

c1/s→ c′1/s′

(c1; c2)/s→ (c′1; c2)/s′
(skip; c)/s→ c/s

(if b then c1 else c2)/s→

c1/s if [[b]] s = true

c2/s if [[b]] s = false

[[b]] s = true

(while b do c)/s→ (c; while b do c)/s

[[b]] s = false

(while b do c)/s→ skip/s

23

Writing inference rules in Coq

Step 1: write every rule as a standard logical formula.

x := a/s→ skip/s[x← [[a]] s])
c1/s→ c′1/s′

(c1; c2)/s→ (c′1; c2)/s′

forall x a s,

red (ASSIGN x a, s) (SKIP, update x (aeval s a) s)

forall c1 c2 s c1’ s’,

red (c1, s) (c1’, s’) ->

red (SEQ c1 c2, s) (SEQ c1’ c2, s’)

Step 2: give a name to each rule and turn it into a case of an
inductive predicate.

24

Inductive red: com * store -> com * store -> Prop :=

| red_assign: forall x a s,

red (ASSIGN x a, s) (SKIP, update x (aeval s a) s)

| red_seq_done: forall c s,

red (SEQ SKIP c, s) (c, s)

| red_seq_step: forall c1 c s1 c2 s2,

red (c1, s1) (c2, s2) ->

red (SEQ c1 c, s1) (SEQ c2 c, s2)

| red_ifthenelse: forall b c1 c2 s,

red (IFTHENELSE b c1 c2, s)

((if beval s b then c1 else c2), s)

| red_while_done: forall b c s,

beval s b = false ->

red (WHILE b c, s) (SKIP, s)

| red_while_loop: forall b c s,

beval s b = true ->

red (WHILE b c, s) (SEQ c (WHILE b c), s).

25

Using an inductive predicate

Each case of the definition is a theorem allowing us to conclude
red (c, s) (c′, s′) for some choices of c, s, c′, s′.

Moreover, the proposition red (c, s) (c′, s′) holds only if it was
proved by applying these theorems a finite number of times.

⇒ reasoning principles: by induction on the derivation and case
analysis on the last rule used.

(To better understand the foundations of this approach, see the
2018-2019 lecture “Weapons of mass construction: inductive
types, inductive predicates”.)

26

Reduction sequences

The behavior of a command c is obtained by forming sequences
of reductions starting with c/s.

• Termination with final state s′: finite sequence of reductions
vers skip/s′.

c/s→ c1/s1 → · · · → skip/s′

• Divergence: infinite sequence of reductions

c/s→ c1/s1 → · · · → cn/sn → · · ·

• Run-time error: finite sequence of reduction to an
irreducible state other than skip (never happens in IMP)

c/s→ c1/s1 → · · · → c′/s′ 6→ c′ 6= skip

27

Other kinds of operational
semantics: natural semantics,
definitional interpreters

Natural semantics

Another style of operational semantics, intermediate between
reduction semantics and evaluation function.

Often called big-step semantics, as opposed to small-step
semantics, which is another name for reduction semantics.

28

Intuitions of natural semantics

If the command c; c′ terminates, its reduction sequence has a
very specific shape:

(c; c′)/s→ (c1; c′)/s1 → · · · → (skip; c′)/s2

→ c′/s2 → · · · → skip/s3

This sequence shows that c terminates from s on an intermediate
store s2, and that c′ terminates from s2 on s3

c/s→ c1/s1 → · · · → skip/s2

c′/s2 → · · · → skip/s3

29

Intuitions of natural semantics

Idea: define a predicate c/s ⇓ s′ meaning
“from initial store s, command c terminates on final store s′”,
using inference rules
that capture this structure of terminating executions.

Example: we saw that (c; c′) started in s terminates in s′ i� c
started in s terminates in s2 and c′ started in s2 terminates in s′,
for an intermediate store s2. Hence the rule

c1/s ⇓ s2 c2/s2 ⇓ s′

c1; c2/s ⇓ s′

30

Rules for the natural semantics of IMP

skip/s ⇓ s x := a/s ⇓ s[x← [[a]] s]

c1/s ⇓ s′ c2/s′ ⇓ s′′

c1; c2/s ⇓ s′′

c1/s ⇓ s′ if [[b]] s = true

c2/s ⇓ s′ if [[b]] s = false

if b then c1 else c2/s ⇓ s′

[[b]] s = false

while b do c/s ⇓ s

[[b]] s = true c/s ⇓ s′ while b do c/s′ ⇓ s′′

while b do c/s ⇓ s′′

31

Equivalence with reduction semantics

A nice result:

c/s ⇓ s′ if and only if c/s ∗→ skip/s′

We can therefore use one semantics or the other to reason over
terminating execution, whichever is most convenient.

Natural semantics provides an induction principle (on
derivations of c/s ⇓ s′) that is very convenient for compiler
verification proofs (3rd lecture) and soundness proofs for
program logics (5th lecture).

32

A definitional interpreter

We were unable to define the semantics of a command as a
function store “before” 7→ store “after”
because this function would be partial (non-termination).

We can, however, define an approximation of this function by
bounding a priori the recursion depth using a fuel parameter of
type nat.

Fixpoint cexec_f (fuel: nat) (s: store) (c: com)

: option store :=

match fuel with

| O => None

| S fuel’ => ... cexec_f fuel’ s’ c’ ...

end.

33

A definitional interpreter

Fixpoint cexec_f (fuel: nat) (s: store) (c: com)

: option store :=

...

A result Some s’ means c terminates on s’ definitely.

A result None is not conclusive: either c diverges, either we need
more fuel to finish the execution of c.

Very useful to test the semantics on sample programs.

34

Summary

Summary so far

The IMP language = expressions + imperative commands.

Semantics: naive denotational, operational
(by reductions, or natural, or by bounded interpreter).

Coq formalization: inductive types, recursive functions, inductive
predicates.

First proofs: equivalences between various semantics.

35

	Warming up: arithmetic expressions
	The IMP language and its reduction semantics
	Other kinds of operational semantics: natural semantics, definitional interpreters
	Summary

