
Eole des Mines de ParisThèse en vue de l'obtention du dipl�me de doteur en informatique

Typage modulaire des multi-méthodesModular typing for multi-methodsDaniel Bonniot

Cette thèse a été soutenue le 18 novembre 2005Le jury était onstitué deFrançois BourdonlePierre CointeRoberto Di CosmoJaques Garrigue (rapporteur)Didier Rémy (direteur)Manuel Serrano (rapporteur)

2

RésuméCette thèse présente un système de typage statique pour les langages à multi-méthodes ave la partiularitéde pouvoir être e�etué modulairement, sans néessiter la onnaissane du programme entier. Nous montronségalement omment onilier les multi-méthodes ave un langage noyau à la ML ave sous-typage, tout enpréservant l'inférene de types pour le langage noyau, seul le type des méthodes devant être délaré.Notre présentation est elle aussi modulaire. Nous posons tout d'abord un système de types algébrique,qui omprend un langage noyau ave onstantes et des types entièrement abstraits. Un langage peut êtreonstruit par hoix des onstantes et du langage des types ainsi que de leur relation d'ordre. Nous pouvonsdès lors identi�er des onditions sous lesquelles le langage résultant est statiquement sûr. Cela nous permetd'étudier plus failement des extensions dans deux diretions di�érentes: pour l'expressivité des onstrutionsdu langage et pour la rihesse du langage de type, tout en partageant une partie de la preuve de sûreté.Dans la première diretion, nous formalisons nos multi-méthodes omme une façon de dé�nir des on-stantes du langage. Dans la seonde, nous présentons un ra�nement du système de types ML≤ en rajoutantdes ontraintes de kinding, qui permettent d'exprimer de type de méthodes �partiellement polymorphes�,'est à dire dont le type à une préision intermédiaire entre un elle d'un type monomorphe et elle d'untype polymorphe ontraint lassique, d'une manière modulaire.En�n, nous étudions le dé� lassique du �problème des expressions� pour valider la pertinene de nospropositions et les omparer aux solutions existantes. Nous donnons également un aperçu de la mise enoeuvre de l'ensemble de es idées par la oneption et l'implémentation d'un langage omplet, Nie.

3

4

SummaryThis thesis presents a stati type system for languages with multi-methods. Typing an be performedmodularly, with the knowledge of the whole program. We also show how to mix multi-methods with a orelanguage a la ML with subtyping, while preserving type inferene for the ore language: only method typeshave to be delared.Our presentation is modular as well. We �rst de�ne an algebrai type system that inludes a ore languagewith onstants and fully abstrat types. A language an be built by hosing onstants and a language oftypes with an ordering. We identify onditions that guarantee the resulting language is statially safe. Thispresentation makes it possible to study more easily extensions in two di�erent diretions: for the expressivityof the language onstruts and for the preiseness of the type language, while sharing a part of the safetyproof.In the �rst diretion, we formalize our multi-methods as a way to de�ne onstants for the ore language.In the seond one, we present an evolution of the ML≤ type system by adding kinding onstraints that allowto express the type of �partially polymorphi� methods, that is, whose type's preision lies between that ofa monomorphi type and that of a bounded polymorphi type, in a modular fashion.Finally, we study the lassial hallenge of the �expression problem� to validate the interest of our propo-sitions and ompare them to existing ones. We also give an overview of the pratial aspet of all those ideaswith the design and implementation of a omplete language, Nie.

5

6

RemeriementsJe remerie Didier Rémy pour son enadrement lors de ette thèse. Sa vaste onnaissane du domaine etsa rigueur sienti�que m'ont été indispensables pour réaliser e travail.Je suis très reonnaissant à François Bourdonle de m'avoir fait déouvrir le domaine de reherhe dessystèmes de types pour les langage à multi-méthodes. Par sa vision, il a su me ommuniquer l'enthousiasmequi a rendu ette reherhe passionnante.Je remerie vivement Jaques Garrigue et Manuel Serrano qui ont bien voulu être rapporteurs deette thèse. Je leur suis très reonnaissant pour les enouragements et les remarques préises qu'ils ont pufaire sur e travail.Je remerie également Pierre Cointe et Roberto Di Cosmo qui ont eu la gentillesse de partiiper àmon jury.Je suis grandement redevable de toute l'équipe Cristal de l'INRIA Roquenourt, qui m'a aueilli,soutenu, et o�ert de nombreuses oasions d'élargir mes onnaissanes du domaines et d'a�ner mes propo-sitions.Je remerie tout partiulièrement François Pottier qui, à de multiples reprises, a bien voulu relire mesartiles, et dont les remarques élairantes ont eu une grande in�uene sur mon travail.

7

8

ContentsI Fondations 211 Algebrai type system 231.1 Type algebra . 231.1.1 Sub-algebras . 251.1.2 Example . 251.2 Core language . 261.2.1 Interpretation . 301.2.2 Progress . 311.3 Instantiating the algebrai type system . 322 Type algebras 332.1 The Hindley-Milner type system . 332.1.1 Instantiation of the framework . 332.1.2 Simpli�ation . 392.1.3 Example . 392.1.4 Beyond Core-ML . 402.2 ML≤ . 402.2.1 Type struture . 412.2.2 Constraints . 412.2.3 Constrained types . 442.2.4 Instantiation of the framework . 44II Objet-orientation 513 Classes 533.1 Objet instantiation . 543.2 Field aess in lasses . 554 Generi funtions 574.1 Example . 574.2 Syntax . 584.3 Semantis . 584.4 Type-heking . 595 Super 635.1 Super in lass-based languages . 635.2 Super in multi-method languages . 635.2.1 Dylan . 635.2.2 Ceil . 655.3 Formalization . 659

5.3.1 Typing . 665.4 Example . 666 Kinds 696.1 Introdution . 696.2 Typing homogeneous operations . 706.3 Partially polymorphi funtions . 736.4 Using kinds to type partially polymorphi funtions . 756.5 Closed-world formalization . 75III Modularity 777 Modular type algebras 797.1 ML≤ . 797.1.1 Variants of ML≤ . 797.1.2 Original ML≤ . 808 Open generi funtions 838.1 Syntax and semantis . 848.2 Modular type-heking . 858.3 Early detetion of errors . 868.4 Type inferene for open generi funtions . 878.5 ML≤ . 888.6 ML≤ multi-methods . 888.6.1 Syntax . 888.6.2 Type-heking . 898.6.3 Examples . 908.6.4 Semantis . 919 Super in a modular setting 939.1 Formalization . 939.2 Consequenes of the preoity rule . 9410 Modular kinds 9710.1 The open world problem . 9710.2 Open-world formalization . 9810.3 Language . 10210.4 Conlusion . 103IV Pratie 10511 Code generation 10711.1 Monomorphi byteode language . 10711.1.1 Type heking . 10911.2 Monomorphi instanes of polytypes . 11011.2.1 Type Construtors . 11011.2.2 Constrained polymorphi types . 11111.3 Compilation . 11211.3.1 Types . 11211.3.2 Programs . 11310

12 Typing kinds 12112.1 Constraint deomposition . 12112.2 Core ML≤ . 12112.3 Adding kinds . 12213 The Nie language 12513.1 Syntax . 12513.1.1 Classes . 12513.1.2 Methods . 12513.1.3 Kinds . 12613.2 Type heking . 12713.2.1 Option types . 12713.3 Code generation . 12814 The expression problem 12914.1 Base . 13014.2 Data extension . 13014.2.1 Linear extension . 13014.2.2 Combining independent extensions . 13114.3 Operations extensions . 13114.3.1 Linear extensions . 13114.3.2 Tree transformer extensions . 13214.3.3 Combining independent extensions . 13214.3.4 Binary methods . 13214.4 Disussion . 13414.5 Comparison with polymorphi variants . 13415 Related work 13715.1 Core . 13715.2 Modular multi-methods . 13815.3 Kinds . 13916 Conlusion 141

11

12

IntrodutionOn peut dé�nir la programmation omme l'ativité humaine onsistant à produire un programme à partird'une spéi�ation. Dans ette dé�nition, un programme est une desription formelle d'une tâhe exéutablepar un ordinateur. Une spéi�ation est une desription de plus haut niveau qui spéi�e une tâhe. Lesspéi�ations peuvent être plus ou moins formelles, depuis une desription vague omme �un programmepour lire des ourriers életroniques� jusqu'à une desription omplète du omportement du programme.Nous insistons sur le fait que la programmation est réalisée par des êtres humains. Ont pourrait en e�etêtre tenté d'appeler spéi�ation une desription formelle mais de haut niveau qui peut être exéutée parun ordinateur, par exemple quand un programme peut en être extrait automatiquement. Cependant, onpeut dans e as voir la spéi�ation elle-même omme un programme. Elle a été érite sur la base d'undesription préexistante de plus haut niveau, qui est e que nous appellerons la spéi�ation. Le fait queles programmes soient érits par des humains est important ar ela onditionne les ritères à utiliser pourévaluer la oneption des langages de programmation.Il est bien onnu que tous les langages de programmation généralistes sont équivalents, dans le sens oùpour tout programme érit dans l'un de es langages et e�etuant une ertaine tâhe, et pour tout autrelangage, il existe un programme dans e langage qui e�etue la même tâhe. Cependant, ela ne rendpas aduque l'idée d'améliorer les langage existants, ou d'en réer de nouveaux. Simplement, on doit sefoaliser sur la oneption de langage qui rendent plus faile la programmation pour les programmeurs.Nous identi�ons quatre ritères qui vont dans e sens.1. Les programmes doivent satisfaire leur spéi�ation. En partiulier, l'exéution d'un programme nedevrait jamais atteindre un état invalide où il �plante� ou doit être interrompu avant d'avoir ahevé satâhe. Un langage qui a la propriété de sûreté statique permet de garantir qu'un ertain programmene va jamais onduire à une telle situation. De plus, un langage dont les programmes peuvent êtreannotés de propriétés véri�ables statiquement (types, assertions logiques, ...) permet plus failementde véri�er que le programme satisfait la spéi�ation, éventuellement dans une forme a�aiblie. Pluses propriétés sont rihes, plus elles peuvent �dèlement exprimer la spéi�ation.2. Il doit être �simple� d'érire des programmes. La simpliité étant di�ile à formaliser, e ritère estdi�ile à évaluer. Typiquement, la possibilité d'érire des programmes de façon onise (en pouvantomettre les opérations de bas niveau) et la failité pour d'autres programmeurs de omprendre lesprogrammes sont des signes de simpliité du langage. Quand une spéi�ation formelle existe, lasimpliité peut être aratérisée par un faible éart entre elle-i et le programme.3. Puisque les grands programmes sont érits par des équipes de programmeurs, il doit être possible deles érire modulairement. Cela veut dire que la tâhe prinipale doit être déomposable en tâhesplus petites, implémentés dans des parties de programme appelées modules. Chaque module doit êtreimplémentable ave une onnaissane minimale des autres modules dont il dépend.4. Pour éviter du travail inutile, il doit être possible de partager des modules d'utilité générale entredi�érents programmes [26℄. Ce ritère déoule du préédent mais le dépasse de deux façons. D'unepart, la réutilisation est souvent di�ile ar haque programme peut avoir besoin d'un omportementdi�érent de e que le module partagé propose, ou enore le programme ontient des as additionnels à13

eux traités par le module partagé. D'autre part, puisque e module partagé est développé indépen-damment des programmes lient, on ne peut pas supposer qu'il est possible de modi�er le module pourles besoins spéi�ques du programme. Le langage doit don o�rir des méanismes pour adapter etétendre les modules importés.Notre objetif général dans ette thèse est d'identi�er des situations où es ritères ne sont pas bienrespetés par les langage de programmation atuels, de proposer des méanismes permettant de traiter essituations, de prouver que es méanismes ont des bonnes propriétés et d'illustrer omment ils peuvent êtreutilisés en pratique.Dans le domaine de la reherhe en langages de programmation, la base la plus généralement aeptéeest le Meta-Langage (ML) de Robin Milner. La théorie de e langage est bien maîtrisée, e qui en faitune base idéale pour proposer des extensions. De plus, il a de bonne propriétés, omme la possibilitéd'inférer les types et de manipuler les fontions omme des valeurs de première lasse. En onséquene, denombreux langages de reherhe atuels sont des extensions de ML. Toutefois, ette reherhe a un impatréel mais limité sur les langages de programmation les plus utilisés dans l'industrie informatique. Baséstraditionnellement sur le paradigme impératif, ils ont dans es dernières années été étendus pour inlurele paradigme de l'orientation objet. Cette extension a été motivée par le besoin de mieux permettre laoneption de systèmes à grande éhelle et de fournir plus de rihesse d'expression. Ces objetifs auraientpu être atteints en utilisant le paradigme fontionnel de ML, quoique d'une manière di�érente. Cela n'aprobablement pas eu lieu ar l'orientation objet pouvait plus failement être présentée omme une extensionde la programmation impérative (le premier langage orienté objets très largement répandu, C++, est uneextension pure du langage C). Il est de toutes façons intéressant de omparer omment les approhes orientéesobjets et fontionnelles propose de résoudre les même problèmes, et omment elles répondent à nos quatreritères. Cela peut en e�et inspirer la réation de nouveaux langages ou de nouveaux paradigmes quirépondent mieux à es ritères.Multi-méthodesIl est reonnue que la programmation omporte deux aspets: la dé�nition d'opérations et la dé�nition destrutures de données [19℄. Un paradigme de programmation doit don omporter des façons d'exprimer esdeux aspets. Le paradigme fontionnel utilise prinipalement les types sommes (unions) et produits ommestrutures de données, et les fontions dé�nies par pattern-mathing pour les opérations. Le paradigmeorienté objets o�re les lasses omme moyen de struturer les données, et les méthodes pour opérer sur elles-i. Toutefois, es deux paradigmes introduisent une asymétrie entre es deux aspets. Dans un programmede style fontionnel, les strutures de données peuvent être dé�nies indépendamment des fontions, alorsque l'ériture des fontions par pattern mathing requiert la onnaissane de tous les as du type de donnéeonerné. À l'inverse, dans le paradigme orienté objets, les méthodes sont dé�nies loalement à une lasseindépendamment des autres dé�nitions de lasses, alors que les lasses doivent inlure la liste de toutes leursméthodes.Cette asymétrie est problématique lorsque l'on onsidère nos deux derniers ritères de modularité etd'extensibilité. Pour poursuivre le dualisme i-dessus, nous devons don à la fois pouvoir dé�nir de nouvellesopérations sur des strutures de données existantes et dé�nir de nouvelles strutures rentrant dans le hampdes opérations existantes. Dans le paradigme fontionnel, la dé�nition de nouvelles fontions est triviale.Néanmoins, l'extension des types sommes n'est pas possible puisque ela rendrait invalide les fontionsexistantes dé�nies par pattern mathing sur es types: elles n'auraient pas de branhe pour les nouveauxas. À l'inverse, en programmation orientée objets, l'extension des strutures de données revient à érire denouvelles lasses, e qui est au oeur du paradigme, alors que la dé�nition de nouvelles méthodes pour leslasses existantes n'est pas autorisée.Le fait que haun de es paradigmes privilégie un aspet di�érent explique pourquoi ils sont vus ommeantagonistes. Toutefois, omme le montre la question de la modularité, les deux hoix ont des inonvénients.Il est don intéressant de herher à résoudre e on�it. Cela suppose de faire en même temps des opérationset des dé�nitions de strutures de données des onepts de première lasse, dé�nissables indépendamment14

l'un de l'autre. Cela néessite l'introdution d'un troisième onept: l'implémentation d'une opération pourun ertain type de données. Ce nouveau paradigme est apparu initialement dans le langage CLOS, avel'usage d'une terminologie orientée objets (méthodes et lasses). De telles méthodes sont alors appeléesmulti-méthodes. Par rapport à l'orientation objet traditionnelle, elle nouvelle approhe ajoute un aspetde la programmation fontionnelle: la possibilité d'ajouter de nouvelles opérations dé�nies par �pattern-mathing� sur plusieurs arguments. Toutefois, ette approhe n'avait jusqu'ii jamais été présentée dans unontexte inluant d'autres aspets de la programmation fontionnelle, omme le polymorphisme génériqueet l'inférene de types. De plus, un dé� additionnel est d'e�etuer la véri�ation de types de programmesave multi-méthodes d'une façon modulaire. C'est l'un des objetifs prinipaux de ette thèse.KindsUn autre aspet de notre travail est de montrer l'intérêt et de formaliser une extension de systèmes detypes dans le but de mieux respeter notre premier ritère de typage statique fort. Nous présentons deuxsituations qui se présentent dans la pratique ave l'interation du polymorphisme et du sous-typage, etnous proposons une solution unique pour traiter es deux as. Le premier as, déjà mentionné par [32℄,est le typage des méthodes homogènes, 'est à dire, des méthodes qui aeptent plusieurs types (mais pastous) omme arguments, tout en n'aeptant de les mélanger dans le même appel. Un exemple typique estl'opérateur de omparaison less, qui peut être appliqué à deux haînes de aratères, deux nombres entiers,deux dates, et, mais pas à deux valeurs de di�érents types, non plus qu'aux valeurs de types n'ayant pasd'ordre naturel, omme le omposants graphiques. Le seond as, introduit dans ette thèse, est apparuau ours de notre pratique de langages ave multi-méthodes et basés sur le système de types polymorphesontraints ML≤ [6℄. Nous avons remarqué que de nombreuses méthodes sont partiellement polymorphiques:leurs types ont une préision intermédiaire entre un type monomorphe et un type polymorphe ontraint.Nous proposons de traiter es deux situation en introduisant une notion de kind, 'est à dire, une propriétéque ertains types possèdent. Un avantage supplémentaire de notre solution est qu'elle est modulaire dansle sens où il est possible d'ajouter dans une hiérarhie de lasses existantes de nouvelles lasses possédant unertain kind sans hanger le type des opérations qui onernent e kind.Présentation modulairePour formaliser nos réponses à es dé�s, nous devons dé�nir un langage omplet les inorpore de façonohérente, et prouver ses propriétés. Nous attahons une attention spéiale à la manière de présenter etteformalisation. Puisque le paradigme fontionnel est mieux ompris théoriquement que le paradigme orientéobjets, notre approhe est essentiellement de partir d'un noyau fontionnel et d'ajouter l'orientation objet,'est à dire les dé�nitions de lasses et de multi-méthodes. Toutefois, nous ne nous basons pas diretementsur Core-ML. Une raison pour ei est que le système de types de Hindley et Milner ne ontient pas lesous-typage atomique, qui est néessaire à notre approhe de l'orientation objet. De plus, la ombinaisondu polymorphisme paramétrique et du sous-typage atomique donne lieu à de nouveaux dé�s de typage.Ceux-i peuvent être relevés en enrihissant enore le système de types. Il est probable que de nouvellesextensions deviennent néessaires par la suite. Ces extensions peuvent prendre la forme soit de nouvellesopérations dans la sémantique du langage, de nouveaux types, ou des deux en même temps. En onséquene,une présentation monolithique direte aurait deux inonvénients. D'une part à ause de sa taille: elle seraitdi�ile à omprendre. Mais surtout, la oneption d'extensions deviendrait de plus en plus omplexe puisquehaune néessiterait une nouvelle présentation du système entier et une nouvelle preuve de orretion.Au ontraire, nous hoisissons de reherher une présentation aussi modulaire que possible. Ainsi, dansla première partie (hapitre 1), nous présentons un système de types algébriques. Il omprend un langagenoyau ave onstantes, et es types sont purement abstraits. Ce noyau permet de onstruire un langageomplet en hoisissant les types onrets et les onstants d'expressions, qui doivent véri�er ertaines propriétésgarantissant la orretion du langage. Celle onstrution nous permet d'étudier plus tard indépendammentnos propositions de systèmes de types (en partiulier ave les kinds) et eux onernant les méanismes de15

langage (orientation objet, multi-méthodes et leur typage modulaire). Dans le hapitre 2, nous montrons enpartiulier que deux systèmes de types existants, elui de Hindley et Milner d'une part et ML≤ d'autre part,peuvent être exprimés omme des instanes de notre système de types algébriques.Dans la seonde partie, nous présentons les onepts orientés objets dans e adre: les lasses dans lehapitre 3, les multi-méthodes dans le hapitre 4, et les appels aux implémentation préédentes de méthodes(�super�) dans le hapitre 5. Dans le hapitre 6, nous montrons l'intérêt d'une extension originale des types
ML≤ pour typer plus préisément ertaines méthodes grâe à l'ajout de kinds.La troisième partie onerne la modularité. Dans le hapitre 8, nous montrons omment les délarationsde méthodes peuvent être faites dans un adre modulaire, et omment les typer, indépendamment de l'algèbrede types. Nous appliquons ensuite ette approhe dans le as de l'algèbre de types ML≤. Le hapitre 9 traitede l'interation entre appel aux méthodes antérieures et modules. Le hapitre 10 formalise notre système dekinds dans un adre modulaire.Mise en pratique: le langage NieEn marge de ette présentation théorique, j'ai implémenté un langage généraliste omplet fondé sur leprinipes présents dans ette thèse. Dans la quatrième partie, nous explorons ertains aspets révélés parette mise en pratique. Le hapitre 11 dérit une ompilation de notre langage vers un langage de bas niveau,ave typage monomorphe, semblable au byteode Java. Nous prouvons la orretion de ette ompilation. Lehapitre 12 dérit omment notre système de type ave kinds peut être implémenté. Le hapitre 13 présentele langage Nie, en détaillant les di�érenes entre la syntaxe utilisée dans ette thèse et elle implémentéeonrètement. Dans le hapitre 14, nous étudions le as lassique du �problème des expressions�. Nous yproposons une solution utilisant notre système ave multi-méthodes modulaires, et nous la omparons aved'autres solutions. En�n, nous omparons di�érents aspets de notre travail ave dans travaux antérieursdans le hapitre 15.

16

IntrodutionWe may de�ne programming as the human ativity onsisting in turning a spei�ation into a program. Inthis ontext, a program is a formal desription of a task that an be exeuted automatially by a omputer.A spei�ation is a higher-level desription that spei�es a task. Spei�ations an vary in formality, froma vague desription like �a program to read emails� to a omplete desription of the program's behavior.For the sake of larity, we insist the programming is performed by humans. One ould be tempted to alsoall spei�ation a formal but high-level desription that an be exeuted by a omputer, for instane ifa program an be automatially derived from it. However, we an then view suh a spei�ation itself asa program. It must have been written from a preeding, higher-level desription of the task, whih is theone we will all the spei�ation. The fat that programs are written by humans is important beause itonditions the riteria that should be used to evaluate the impat of programming languages design.It is a well-known fat that all general purpose programming languages are equivalent, in the sense thatfor any program written in one of those languages and performing a ertain task, and for any other language,there exists a program in that language that performs the same task. However, this does not mean thatthe idea of improving existing programming languages � or to reate new ones � is pointless. Rather,programming languages should be designed to failitate programming. We an identify four riteria.1. Programs need to orretly implement the spei�ation. In partiular, the exeution of a programshould not reah an invalid state where it �rashes� or needs to be stopped before having �nished itstask. A language that has the property of stati safety makes it possible to guarantee that a ertainprogram will never run into this situation. Moreover, a language whose programs an be equippedwith statially enforeable properties (types, logial assertions, ...) makes it easier to automatiallyhek that the program onforms with (a possibly weakened form of) the spei�ation. The riherthose properties are, the more losely they an express the spei�ation.2. It should be possible to write programs in a �simple� way. Sine simpliity is di�ult to formalize, thisriteria is di�ult to evaluate. Typially, oniseness (by not needing to speify low-level operations)and the ease with whih programs an be understood by other programmers are indiators of simpliity.When a formal spei�ation exists, simpliity an be haraterized by a small gap from the spei�ationto the program.3. Sine large programs need to be written by teams of programmers, it should be possible to writeprograms modularly. That is, the main task should be deomposable into smaller ones that anbe implemented as program parts alled modules. Eah module should be implementable with onlyminimal knowledge about the other modules it depends on.4. To save e�orts, one should be able to share generally useful modules between di�erent programs [26℄.This riteria builds on the previous one but goes beyond it for two reasons. First, reuse is oftendi�ult beause eah program might need a slightly di�erent behavior in a ertain ase than what thethe shared module o�ers, or the program inludes spei� ases in addition to those present in thegeneral module. Seond, sine the reused module was developed independently of the lient programs,one annot assume that it is possible to modify the shared module to aommodate for the spei�needs of the program. Therefore, the language should o�er mehanisms to ustomize and extend animported module. 17

Our general motivation in this thesis is to identify situations where these riteria are not met by urrentprogramming languages, to propose language features to handle those situations, to prove that these featureshave good properties and to illustrate how they an be used in pratie.In the domain of programming language researh, the most widely aepted basis is Robin Milner'sMeta-Language (ML). The theory of this language is well-understood, whih makes it an ideal basis to buildextensions upon. Furthermore, it has appealing properties, like the ability to infer types and to manipulatefuntions as �rst lass values. Therefore, many urrent researh languages are extensions of ML. However,this researh had a real but limited impat on the mainstream programming languages. Traditionally basedon the imperative paradigm, those have in the reent years been extended to handle the objet-orientedparadigm. This extension was motivated by the need to better support the design of large systems andto provide more expressiveness. These goals ould also have been met by using the funtion paradigm ofML, although in a di�erent way. It probably did not happen that way beause objet-orientation ouldbe more easily presented as an extension of imperative programming (the �rst mainstream objet-orientedprogramming language, C++, was bakward ompatible with C). In any ase, it is interesting to omparehow objet-orientation and funtional programming propose to solve similar problems, and how they meetour four riteria. Ultimately, this an help devising new languages or paradigms that better meet thoseriteria.Multi-methodsIt has already been reognized that the ativity of programming has two main faets: de�ning operations andde�ning data strutures [19℄. Therefore, a programming paradigm must provide ways to express these twoaspets. The funtional paradigm mainly uses sum and produt types as its data strutures, and funtionsde�ned by pattern-mathing on data-types as its operations. The objet-oriented paradigm provides lassesto struture data, and methods to operate on it. However, both paradigms introdue an asymmetry betweenthe two aspets. In a funtional program, data-types an be de�ned independently of funtions, whilefuntions need knowledge about the data-type onstrutors. Conversely, in the objet-oriented paradigm,methods are de�ned loally to a lass, while lasses inlude the list of all their methods.This asymmetry is problemati when it omes to our last two riteria, modularity and extensibility.Following the above dualism, we need both to de�ne new operations on existing data strutures and tode�ne new data strutures to be handled by existing operations. In the funtional paradigm, de�ning newfuntions is straightforward. On the other hand, extending existing data-types is not possible sine it wouldbreak existing funtions de�ned by pattern mathing on this type: they would miss the new ases. Conversely,extending data strutures amounts to writing new lasses, whih is preisely the objet-oriented paradigm,while de�ning new methods on existing lasses is not allowed.The fat that eah paradigm privileges a di�erent aspet explains why they are viewed as the two majorompetitors. However, as the modularity issue shows, both hoies arry inonvenienes. Therefore it isinteresting to see how the on�it an be resolved. It involves making both operation and data de�nitions�rst-lass, toplevel operations. This reates the need for a third onept: the implementation of an operationfor a ertain data type. This new paradigm initially appeared in CLOS, using objet-oriented terms likemethods and lasses. Suh methods are alled multi-methods. Compared to traditional objet-orientation,this new approah adds one aspets of funtional programming: the possibility to add a new operation,de�ned by �pattern-mathing� on multiple arguments. However, this approah had not yet been presentedin a setting that inludes more aspets of funtional programming, like generi polymorphism and typeinferene. Furthermore, an additional hallenge is to perform the type-heking of programs with multi-methods in a modular fashion. This is one of the main goals of this thesis.KindsAnother aspet of our work is to motivate and formalize a type-system extension to improve on the �rstriteria of stronger stati heking. We present two typing hallenges that arise in pratie from the interplay18

of polymorphism and subtyping, and we propose a single solution to solve them both. The �rst hallenge,whih has already been pointed out [32℄, is the typing of homogeneous methods, that is, methods that aeptseveral (but not all) types for their arguments, while these types annot be intermixed. A typial example isthe omparison operator less, whih an be applied to two strings, two integers, two dates, et, but not to twovalues of di�erent types, and neither to types that have no anonial ordering like graphial widgets. Theseond hallenge, introdued in this thesis, has arisen from our experiene with programming in languageswith multi-methods and based on the polymorphi onstrained type system ML≤ [6℄. We found out thatmany useful methods are partially polymorphi: their types lie in preision in between a monomorphi anda bounded polymorphi type. We propose to handle those two situations by introduing the notion of kind,that is, a property that some types possess. An extra bene�t of our solution is to be modular in the sensethat new lasses with a ertain kind an be added to an existing lass hierarhy without hanging the typeof the operations that at on types of that kind.Modular presentationTo formalize our solutions to these hallenges, we need to de�ne a omplete language that inorporates themin a oherent way and to prove its properties. We take speial are in the way we expose this formalization.Sine funtional programming is better understood theoretially than objet orientation, our approah is inessene to start from there, and to add objet-oriented features, that is, lass de�nitions and multi-methods.However, we will not base our work on Core-ML. One reason is that Hindley and Milner's type systemdoes not inlude atomi subtyping, whih is neessary for our approah of objet-orientation. Furthermore,the ombination of generi polymorphism and objet-oriented subtyping gives rise to new typing hallenges.Those an be solved by enrihing the type system further. The need for other extensions is likely to arise.These extensions ould take the form of either new operations in the semantis of the language, di�erenttypes, or both at the same time. Therefore, a diret presentation would have two drawbaks. First beauseof its size: it would be very hard to omprehend. Seond and probably more important, the task of designingthe extensions would beome inreasingly omplex, as eah one would essentially need a new presentation ofthe whole system and a new proof of its orretness.Instead, we hose to experiment with a presentation that is as modular as possible. Therefore, in the�rst part (Chapter 1), we present an algebrai type system. It inludes a ore language with onstants,and its types are fully abstrat. This ore allows a real language to be built by hoosing both onretetypes and expression onstants, whih must verify some properties that guarantee the soundness of the fulllanguage. This onstrution allows us to study independently later on our proposals onerning type systems(in partiular kinds) and those onerning language features (objet-orientation, multi-methods and theirmodular typing). In Chapter 2, we show in partiular that two existing type systems, Hindley and Milner'sand ML≤, an be expressed as instanes of our ore type system.In the seond part, we present objet-oriented features in this framework: lasses in Chapter 3, multi-methods in Chapter 4, and alls to previous method implementations (super alls) in Chapter 5. In Chapter 6,we motivate an original extension of ML≤ types to type more methods, with the addition of kinds.In the third part, we fous on modularity. In Chapter 8, we show how to delare methods in a modularsetting, and how to typehek them, independently of the type algebra. We also instantiate this feature in thease of the ML≤ type algebra. Chapter 9 disusses the interation of super alls with modules. Chapter 10formalizes our system of kinds in a modular setting.Theory into pratie: the Nie languageIn parallel, I have implemented a full general-purpose programming language founded on the theory exposedin this dissertation. In the fourth part, we explore some of the aspets involved in this e�ort of putting thistheory into pratie. Chapter 11 desribes a possible ompilation of our language to a monorphially typed,lowlevel byteode language similar to the Java byteode, and proves the orretness of this ompilation.Chapter 12 desribes how the type system with kinds an be implemented. Chapter 13 introdues the19

Nie language, detailing the di�erenes between the syntax used in this doument and the onrete syntaximplemented. In Chapter 14, we study the lassial expression problem. We propose a solution using oursystem with multi-methods, and we ompare it with other solutions. Finally, we ompare the di�erentaspets of our work with related work in Chapter 15.

20

Part IFondations

21

Chapter 1Algebrai type systemWe present type-heking, type inferene and soundness proofs for a ore funtional language. Insteadof exposing the syntax and struture of types, we treat them as an abstrat struture with three visibleoperations, following the struture of expressions: the onstrution of funtional types, the appliation ofone type to another, and the let binding of a type variable in a type. Note that this appliation is not theappliation of a type onstrutor to a type. It is a meta-operator that, given the type of a funtion f andthe type of an argument v, returns the type of the expression f v. For instane, assume f and v have types
int→ bool and int respetively. We shall give the expression f v the type (int→ bool) int. That is tosay that (int→ bool) int is the type of the results of a funtion of type int→ bool applied to a value oftype int.Sine we want to reason about the onstrution of types, we shall distinguish the algebrai types, whihare provided by the instantiation of the framework, and the syntati types, whih are onstruted by ourtype system on top of the algebrai types. The instantiation of the system must provide an interpretation ofthese syntati types by providing a subtyping relation. Following up on the above example, we may assumefor instane that algebrai types are ground types built over the onstants int and bool and the arrowtype onstrutor. That is int, bool, int→ bool are algebrai types1. Conversely, (int→ bool) int is asyntati type that is equivalent to bool, while (int→ bool) bool is equivalent to the error syntati type.1.1 Type algebraThe algebrai type system is parameterized by a type algebra. To de�ne it, we �rst introdue the notion ofsyntati types. Syntati type τ ::=Algebrai type aType variable | tFuntional type | λt.τAppliation type | τ τLet type | let t be τ in τError type | EFigure 1.1: Syntati types1They happen to be also syntati types, whih ontain all algebrai types, see Figure 1.1.23

De�nition 1 (Syntati types) Given an arbitrary set A, whose elements are denoted by a and alledalgebrai types, and given an in�nite set of type variables denoted by t, the set of syntati types over A,written S(A), is de�ned by the grammar for syntati types τ of Figure 1.1.Informally, S(A) ontains the expressions τ of a small alulus (similar to Core-ML) built over an in�niteset of type variables t and over onstants a of A. Additionally, an error type E is distinguished. Note thatsyntati types are really a piee of syntax. In partiular, there is no β-redution on syntati types. However,we will see in Setion 1.2.1 that a parallel an be drawn between syntati types and lambda-expressions.In the following, we use �type� as a shorthand for syntati type.In the type λt.τ , λ ats as a binder of variable t with sope τ . In the type let t be τ1 in τ2, letats as a binder of variable t with sope τ2. The set of free variables of a type τ (De�nition 2), written
FV (τ), and the apture-free substitution of type τ for type variable t in type τ0 (De�nition 3), written
τ0 [t← τ], are de�ned as usual. Syntati types are equal up to α-onversion. That is, we do not distinguishbetween λt1.τ and λt2.τ [t1 ← t2] when t2 does not belong to FV (τ). Similarly, let t1 be τ1 in τ2 andlet t2 be τ1 in τ2 [t1 ← t2] are the same type when t2 does not belong to FV (τ2).De�nition 2 (Free variables of a syntati type) The set of the free variables of a syntati type isde�ned indutively by:

FV (a) = ∅

FV (t) = {t}

FV (λt.τ) = FV (τ) \ {t}

FV (τ1 τ2) = FV (τ1) ∪ FV (τ2)

FV (let t be τ1 in τ2) = FV (τ1) ∪
(

FV (τ2) \ {t}
)

FV (E) = ∅De�nition 3 (Substitution) The substitution of type τ for type variable t in type τ0, written τ0 [t ← τ],is de�ned indutively by:
a [t← τ] = a

t [t← τ] = τ

t′ [t← τ] = t′ (t′ 6= t)

(λt1.τ1) [t← τ] = λt1.(τ1 [t← τ]) (t1 6= t, t1 6∈ FV (τ))

(τ1 τ2) [t← τ] = (τ1 [t← τ]) (τ2 [t← τ])

(let t1 be τ1 in τ2) [t← τ] = let t1 be (τ1 [t← τ]) in (τ2 [t← τ]) (t1 6= t, t1 6∈ FV (τ))

E [t← τ] = EFor funtional and let types, the side ondition an always be satis�ed by renaming the bound variable.It is easy to hek that De�nition 3 and De�nition 2 are valid, sine they do not depend on the namehosen for the bound variable of funtional and let types. Furthermore, the substitution an be extended toa total funtion by renaming of the bound variables whenever the side onditions are not satis�ed.The interest of syntati types lies in representing the possible ways in whih the types of expressionsof a programming language an be ombined to form the type of a larger expression. Syntati types needto be interpreted, so as to provide information about the orresponding expressions. This interpretation isprovided by a type algebra.De�nition 4 (Type algebra) A type algebra A is a ouple (A,≤), where A is a set of algebrai types,and the relation ≤ is a pre-order on S(A) suh that the following four axioms are satis�ed:i. (Error) The type E is a maximal element. That is, for all type τ , τ ≤ E holds. Moreover, for all type
τ and type variable t, E ≤ E τ , E ≤ τ E and E ≤ let t be E in τ hold.24

ii. (Covariane) Syntati types are ovariant. That is, for all types τ , τ ′, τ0, and type variable t, if τ ′ ≤ τholds, then τ0 [t← τ ′] ≤ τ0 [t← τ] holds.iii. (Redution) For all types τ , τ ′ and type variable t, τ [t← τ ′] ≤ (λt.τ) τ ′iv. (Let) For all types τ , τ ′ and type variable t, τ ′ [t← τ] ≤ let t be τ in τ ′We disuss the interpretation of these axioms in the next setion, where an expression language is intro-dued. In partiular, the maximality of E is motivated before De�nition 8, and a parallel is drawn betweenthese axioms and the redution rules for the expression language in Setion 1.2.1.When τ1 ≤ τ2 holds, we will say that τ1 is a subtype of τ2. Two syntati types τ1 and τ2 are equivalentif both τ1 ≤ τ2 and τ2 ≤ τ1 hold, in whih ase we write τ1 ≡ τ2. When τ1 ≡ τ2 does not hold, we will write
τ1 6≡ τ2. The relation ≥ is the symmetri relation of ≤. The prediate τ1 < τ2 holds when τ1 ≤ τ2 holds but
τ1 ≥ τ2 does not hold. Similarly, τ1 > τ2 holds when τ1 ≥ τ2 holds but τ1 ≤ τ2 does not hold.Note that while we don't spei�ally require a subtyping relation for the algebrai types, they an beompared by the restrition of ≤ to the set of algebrai types A. When there is ambiguity about the typealgebra in whih syntati types are ompared, we write A |= τ1 ≤ τ2 instead of τ1 ≤ τ2.1.1.1 Sub-algebrasWe show that a subset of a type algebra is also a type algebra.Theorem 5 (Sub-algebra) Let (A,≤) be a type algebra, and A′ be a subset of A. Then (A′,≤) is a typealgebra.Proof of theorem 5First, by De�nition 1, sine A′ is a subset of A, S(A′) is a subset of S(A). Therefore ≤, whih is a pre-orderon S(A), is also a pre-order on S(A′). Finally, all four onditions on ≤ in De�nition 4 hold for all types in
S(A), so they do hold in partiular for those in S(A′).1.1.2 ExampleLet us build a type algebra, based on the following simple monomorphi type system with atomi subtypingand funtion types. The algebrai types A are de�ned by the grammar a ::= int | float | a → a. Thesetypes are ordered as usual, by the smallest relation ≺ that veri�es:

int ≺ float
a2 ≺ a′

2 a′
1 ≺ a2

a′
2 → a′

1 ≺ a2 → a1We must provide a pre-order on S(A) that veri�es the axioms of De�nition 4. To this end, we introduean auxiliary de�nition. We de�ne a translation 〈·〉 of the elements of S(A) to sets of algebrai types, whihmaps syntati types to the set of types they denote.
〈a〉 = {a′ | a ≺ a′}

〈t〉 = A

〈E〉 = ∅

〈τ1 τ2〉 = {a1 | ∃a2 ∈ 〈τ2〉, a2 → a1 ∈ 〈τ1〉}

〈λt.τ〉 = { a2 → a1 | a2 ∈ A, a1 ∈ 〈τ [t← a2]〉}

〈let t be τ1 in τ2〉 = {a2 | ∃a1 ∈ 〈τ1〉, a2 ∈ 〈τ2 [t← a1]〉}For instane, 〈int〉 = {int, float} and 〈λt.t〉 = { a→ a | a ∈ A}. Therefore, the translation of (λt.t) intis {int, float}.The order on syntati types is de�ned in the following way: τ1 ≤ τ2 holds if and only if 〈τ1〉 ⊇ 〈τ2〉.We an now show that (A,≤) is indeed a type algebra. The relation ≤ is a pre-order on S(A) sine ⊇ isre�exive and transitive. Moreover, it satis�es the axioms of De�nition 4:25

1. 〈E〉 = ∅. Therefore, for all t and τ , 〈τ〉 ⊇ 〈E〉, and 〈E τ〉 = 〈τ E〉 = 〈let t be E in τ〉 = ∅. That is,
τ ≤ E, E ≤ E τ , E ≤ τ E and E ≤ let t be E in τ hold.2. Covariane is proved by indution on the strutural size of τ0. We need to prove that τ0 [t ← τ ′] ≤
τ0 [t ← τ], provided that τ ′ ≤ τ . For the ase τ0 = λt1.τ1, we an assume w.l.o.g that t1 is di�erentfrom t and not free in τ nor in τ ′. Therefore (λt1.τ1) [t ← τ] = λt1.(τ1 [t ← τ]) and (λt1.τ1) [t ←
τ ′] = λt1.(τ1 [t ← τ ′]). For a2 → a1 in 〈λt1.τ1 [t ← τ]〉, by de�nition of the translation, a1 ∈ 〈τ1 [t ←
τ] [t1 ← a2]〉. Sine t1 6= t and t1 is not free in τ , τ1 [t ← τ] [t1 ← a2] = τ1 [t1 ← a2] [t ← τ]. Sine
τ1 [t1 ← a2] has a smaller size than λt1.τ1, we an apply the indution hypothesis, and 〈τ1 [t1 ←
a2] [t ← τ]〉 ⊆ 〈τ1 [t1 ← a2] [t ← τ ′]〉. Again, τ1 [t1 ← a2] [t ← τ ′] = τ1 [t ← τ ′] [t1 ← a2]. Therefore
a1 ∈ 〈τ1 [t← τ ′] [t1 ← a2]〉. That is, a2 → a1 ∈ 〈λt1.τ1 [t← τ ′]〉. Thus, λt1.τ1 [t← τ ′] ≤ λt1.τ1 [t← τ].The ase of let types is similar, and the other ases are straightforward.3. We now prove an auxiliary property: the translation sets are upward-losed. That is, for all algebraitypes a and a′, and syntati type τ , if a ∈ 〈τ〉 and a ≺ a′, then a′ ∈ 〈τ〉. The proof is by indutionon τ . All ases are immediate exept for funtional types. For all a in 〈λt.τ〉, by de�nition of thetranslation, a is of the form a2 → a1 where a1 ∈ 〈τ [t ← a2]〉. By hypothesis a ≺ a′ and by de�nitionof ≺, a′ is of the form a′

2 → a′
1 with a′

2 ≺ a2 (1) and a1 ≺ a′
1 (2). By (2) and the indutionhypothesis, a′

1 ∈ 〈τ [t ← a2]〉 (3). Furthermore, it follows from (1) that a′
2 ≤ a2 holds. Therefore,by the ovariane axiom proved above, τ [t ← a′

2] ≤ τ [t ← a2]. That is, by de�nition of subtyping,
〈τ [t ← a′

2]〉 ⊇ 〈τ [t← a2]〉. Therefore, (3) implies a′
1 ∈ 〈τ [t← a′

2]〉. That is, a′ ∈ 〈λt.τ〉, whih provesthe property. This property implies in partiular that for all algebrai type a and syntati type τ , if
a ∈ 〈τ〉, then a ≥ τ (4).We may now prove the redution axiom: for all types τ , τ ′ and type variable t, (λt.τ) τ ′ ≥ τ [t← τ ′].Let a1 be in 〈(λt.τ) τ ′〉. Then there exists a2 in 〈τ ′〉 suh that a2 → a1 ∈ 〈λt.τ〉. That is, a1 ∈ 〈τ [t←
a2]〉. Sine a2 ∈ 〈τ ′〉, by (4) we have that a2 ≥ τ ′. So by ovariane, τ [t ← a2] ≥ τ [t ← τ ′]. That is,
〈τ [t← a2]〉 ⊆ 〈τ [t← τ ′]〉. Therefore, a1 is in 〈τ [t← τ ′]〉, whih shows the property.4. For all types τ , τ ′ and type variable t, let t be τ in τ ′ ≥ τ ′ [t ← τ]. Let a2 be an element of
〈let t be τ in τ ′〉. Then by de�nition, there exists a1 in 〈τ1〉 suh that a2 ∈ 〈τ2 [t ← a1]〉. By (4),
a1 ≥ τ1. So by ovariane, τ2 [t ← a1] ≥ τ2 [t ← τ1]. That is, 〈τ2 [t ← a1]〉 ⊆ 〈τ2 [t ← τ1]〉. Therefore,
a2 is in 〈τ2 [t← τ1]〉, whih shows the property.It is interesting to see in this algebra the meaning of Covariane (De�nition 4.ii). In partiular, typeappliation is ovariant on both arguments. This is not in ontradition with the ontra-variane of the →algebrai type onstrutor on its �rst argument. For instane, float → int ≤ int → float. Therefore,it is required by Covariane (De�nition 4.ii) that (float → int) int ≤ (int → float) int. This indeedholds, sine in the translation, 〈(float→ int) int〉 is {int, float} and 〈(int→ float) int〉 is {float}.1.2 Core languageExpression e ::= x | λx.e | e e | let x be e in e | cConstant c ::= C | fValue v ::= λx.e

| C v1 ... vn (n ≤ arity(C))
| f v1 ... vn (n < arity(f))Figure 1.2: Language syntaxWe onsider the set of Core-ML expressions, realled in Figure 1.2. Lambda abstrations λx.e and letexpressions let x be e1 in e bind they argument x in their body e, and are onsidered equal modulo26

renaming of x. These expressions are parameterized by a set of onstants c. Eah onstant omes withan algebrai type written constant-type(c), and with a positive integer arity written arity(c). Constants areeither data onstrutors C or operators f . A onstant c applied to n arguments is a value when n is lessthan arity(c), or c is a data onstrutor and n is arity(c). Thus, an operator f applied to exatly arity(f)arguments is not a value (and therefore it must be redued).The semantis of expressions is de�ned in Figure 1.3. This notion of redution enompasses both all-by-value and all-by-name. A deterministi restrition is presented in Setion 1.2.2. The β and β-let redutionrules are standard. The (possibly non-deterministi) redutions of an operator f are de�ned by the set of
(arity(f)+1)-tuples R(f) used by Rule Op. Rule Ctxt allows redutions to our inside expressions, exeptin the body of a let-expression or in the body of a funtion. Note that it does not hange semantis whetherontexts have depth one as de�ned here or an arbitrary depth; it is always possible to apply Ctxt severaltimes to obtain redutions at an arbitrary depth inside an expression.Evaluation ontext E ::= [] e | e [] | let x be [] in e

β

(λx.e) e′ −→ e [x← e′]
β-Letlet x1 be e1 in e2 −→ e2 [x1 ← e1]Op

f e1 ... en −→ e
(e1, ..., en, e) ∈ R(f)

Ctxt
e −→ e′

E [e] −→ E [e′]Figure 1.3: General semantisVar type(x) = txCst type(c) = constant-type(c)Lam type(λx.e) = λtx.type(e)App type(e1 e2) = type(e1) type(e2)Let type(let x1 be e1 in e2) = let tx1
be type(e1) in type(e2)Figure 1.4: The typing funtionWe de�ne a funtion omputing the syntati type of any expression. Instead of using a type environment,we assoiate to eah free variable x of the expression a distint free type variable tx. This typing funtion isde�ned reursively in Figure 1.4. Expression variables are mapped to their assoiated type variables (RuleVar). Rule Cst gives Constants their delared type. Note that it is valid to use constant-type(c) as asyntati type, sine the grammar of Figure 1.1 implies that algebrai types are also syntati types. Thetype of a lambda abstration λx.e is the syntati funtional type λtx.τ , where τ is the type of e (rule Lam).Sine syntati types are equal modulo α-onversion, we show in Proposition 7 that the type of a lambdaabstration does not depend on the hoie of its parameter name. The type of an appliation e1 e2 is thesyntati appliation of the types of e1 and e2 (rule App). Finally, in Rule Let, the type of a let-expressionlet x1 be e1 in e2 is the type that binds tx1

to type(e1) in type(e2). Again, this type does not depend onthe hoie of the name x1 by alpha-onversion of let types.We prove a substitution lemma that desribes the properties of the typing funtion. It says that substi-tution ommutes with the typing funtion. An interpretation of this result is that the type of an expressionis a funtion of the type of all its parts. Moreover, beause of the ovariane of type algebras (De�nition4.ii), that funtion is ovariant in all its arguments. 27

Lemma 6 (Substitution)For all variable x and for all expressions e and e′,
type(e [x← e′]) = type(e) [tx ← type(e′)]Proof of lemma 6 (Substitution)The proof is by indution on e.ase e = xBy de�nition of the typing funtion, type(x) is tx. Therefore, type(x) [tx ← type(e′)] is tx [tx ← type(e′)],whih by De�nition 3 is equal to type(e′).By de�nition of substitution, x [x← e′] = e′. Therefore type(x [x← e′]) is also equal to type(e′), whihproves the property.ase e = x′ with x′ 6= xBy de�nition of substitution, x′ [x ← e′] = x′. Therefore type(x′ [x ← e′]) = type(x′) = tx′ . Sine

x′ is di�erent from x, this implies tx′ 6= tx and therefore tx′ is in turn equal by De�nition 3 to
tx′ [tx ← type(e′)].ase e = cThis ase is similar to the ase e = x′.ase e = λx1.e1By α-onversion on e, we an assume without loss of generality that x1 6= x (1) and that x1 6∈
FV (e′) (2).Let T be type((λx1.e1) [x ← e′]). By de�nition of substitution, (1) and (2), we have (λx1.e1) [x ←
e′] = λx1.(e1 [x ← e′]). Therefore, T is equal to type(λx1.(e1 [x ← e′])), whih by Rule Lam is equalto λtx1

.type(e1 [x← e′]).By indution hypothesis, type(e1 [x ← e′]) is equal to type(e1) [tx ← type(e′)]. Therefore,
λtx1

.type(e1 [x ← e′]) is equal to λtx1
.(type(e1) [tx ← type(e′)]), whih by De�nition 3 with (1) isequal to (λtx1

.type(e1)) [tx ← type(e′)]. Sine by Rule Lam, type(λx1.e1) = λtx1
.type(e1), and we�nally have T = type(λx1.e1) [tx ← type(e′)], whih �nishes the proof of this ase.ase e = e1 e2By de�nition of substitution, (e1 e2) [x← e′] = e1 [x← e′] e2 [x← e′].This ase is then a mere appliation of the indution hypothesis type(ei [x ← e′]) = type(ei) [tx ←

type(e′)] (1) for i = 1, 2, ombined with the de�nition of the typing funtion for appliation types.
type((e1 [x← e′]) (e2 [x← e′]))

= type(e1 [x← e′]) type(e1 [x← e′]) (App)
= (type(e1) [tx ← type(e′)]) (type(e2) [tx ← type(e′)]) (1)
= (type(e1) type(e2)) [tx ← type(e′)] (De�nition 3)
= type(e1 e2) [tx ← type(e′)] (App)ase e = let x1 be e1 in e2By α-onversion, we an assume without loss of generality that x1 6= x (1) and x1 6∈ FV (e′) (2).Therefore, by de�nition of the substitution, (let x1 be e1 in e2) [x ← e′] = let x1 be e1 [x ←

e′] in e2 [x← e′].
type(let x1 be e1 [x← e′] in e2 [x← e′])

= let tx1
be type(e1 [x← e′]) in type(e2 [x← e′]) (Let)

= let tx1
be type(e1) [tx ← type(e′)] in type(e2) [tx ← type(e′)] (Ind. Hyp.)

= (let tx1
be type(e1) in type(e2)) [tx ← type(e′)] (De�nition 3 with (1))

= type(let x1 be e1 in e2) [tx ← type(e′)] (Let)28

Proposition 7 Let x and x′ be distint variables and e an expression suh that x′ is not in FV (E). Then
type(λx.e) = type(λx′.e [x← x′]).Proof of proposition 7By the de�nition in Figure 1.4, type(λx.e) = λtx.type(e) and type(λx′.e [x← x′]) = λtx′ .type(e [x← x′]). ByLemma 6 (Substitution), type(e [x ← x′]) is equal to type(e) [tx ← tx′]. Therefore, type(λx′.e [x ← x′]) isequal to λtx′ .(type(e) [tx ← tx′]). Sine x′ is not free in e by hypothesis, tx′ is not free in type(e). Therefore,by alpha-onversion, λtx′ .(type(e) [tx ← tx′]) is equal to λtx.type(e), whih proves the property.Sine typing is done by a funtion, it assoiates exatly one type to every expression. Therefore, thereis no notion of generalization or instantiation. Instead, in a type algebra with polymorphi types, typesare always generalized as muh as possible, and the syntati types bound to by let types orrespond topolymorphi types. In partiular, this allows a let-bound value to be used polymorphially.In most type systems, an expression is well-typed when it an be assigned some type aording to thetyping rules, and ill-typed expressions are those that an be assigned no type. In our framework, the typingfuntion is independent of the onrete type system, that is the type algebra. Therefore, the typing funtionis more naturally de�ned as a total funtion that assigns a syntati type to every expression. Ill-typedexpressions are haraterized by the fat that their type is equivalent to the error type. This onvention is inagreement with the intuition that smaller types are inhabited by more values than greater types. A naturalextension is to introdue an error type that is maximal (as required by De�nition 4.i) and inhabited by novalue. Therefore, ill-typed expressions are those whose type is inhabited by no values, that is, whose type isequivalent to the error type.De�nition 8 (Well-typed expression)An expression e is well-typed if and only if type(e) 6≡ E.To ensure type soundness, we assume that the following requirements on onstants are satis�ed:Requirement 9 (Constants) Let n be arity(f).i. If f v1 ... vn is well-typed then there exists an expression e′ suh that (v1, ..., vn, e′) belongs to R(f).ii. If (e1, ..., en, e′) belongs to R(f), then type(f e1 ... en) ≥ type(e′)iii. An expression of the form C v1 ... vp is never well-typed if p > arity(C)The �rst requirement guarantees that an operator has enough redutions to over all of its legal arguments.The seond one requires that all operator redutions lead to expressions with smaller types. Finally, a dataonstrutor must not be appliable to more values than its arity, sine no rule would guarantee that suh anexpression redues to a value.The type system veri�es subjet redution with respet to the semantis of Figure 1.3. That is, alongthe paths of redution, the type of expressions always get smaller.Theorem 10 (Subjet redution)For all expressions e and e′,

e −→ e′

type(e) ≥ type(e′)Although this theorem is standard, its proof is not. It an be done by using the typing funtions and thetwo requirements on type algebras. This is mere alulation on types, as opposed to the reative reasoningusually required. This simpli�ation is possible beause we have a alulus of type expressions and beausea part of the proof is abstrated away in Redution (De�nition 4.iii). The proof is thus short and easy tohek step by step. It should furthermore ease automati proof heking.Proof of theorem 10 (Subjet redution)The proof is by indution on the derivation proof of the redution.29

ase OpThis ase is exatly overed by Requirement 9 (Constants).ase β

type((λx.e) e′)
= type(λx.e) type(e′) (App)
= λtx.type(e) type(e′) (Lam)
≥ type(e) [tx ← type(e′)] (De�nition 4.iii)
= type(e [x← e′]) (Lemma 6)ase β-Let

type(let x1 be e1 in e2)
= let tx1

be type(e1) in type(e2) (Let)
≥ type(e2) [tx1

← type(e1)] (De�nition 4.iv)
= type(e2 [x1 ← e1]) (Lemma 6)ase CtxtIn this ase, e = E [e1] with e1 −→ e′1. So, by indution hypothesis, type(e′1) ≤ type(e1) (1). We thenreason by ase on the form of E .ase E = [] e2

type(e′1 e2)
= type(e′1) type(e2) (App)
≤ type(e1) type(e2) (De�nition 4.ii with (1))
= type(e1 e2) (App)ase E = e2 []This ase is similar to E = [] e2.ase E = let x1 be [] in e2

type(let x1 be e′1 in e2)
= let tx1

be type(e′1) in type(e2) (Let)
≤ let tx1

be type(e1) in type(e2) (De�nition 4.ii with (1))
= type(let x1 be e1 in e2) (Let)1.2.1 InterpretationIn most type systems, expressions are diretly assigned a type. In our system, they are instead assigned asyntati type, whih is then interpreted in a type algebra. In this setion, we present an intuition aboutthe signi�ane of these syntati types.One an note that there is a strong orrespondene in struture between the syntati types τ and theexpressions e of the ore language:

τ ::= t | a | λt.τ | τ τ | let t be τ in τ
e ::= x | c | λx.e | e e | let x be e in eIntuitively, the typing funtion returns a syntati type that re�ets the struture of the program. Itonly approximates onstants to their de�ned types. This parallel is natural if one onsiders types as an30

abstration of expressions, where the type of an expression provides partial knowledge about this expression.Thus, the typing funtion that maps an expression to its (prinipal) type is an abstration funtion.Beause of this parallel, the subjet redution theorem an be proved after imposing properties on typesthat follow the redution of expressions. Thus, the property iii of De�nition 4 (Redution) at the level oftypes orresponds to the β-redution rule for expressions:
(λt.τ) τ ′ ≥ τ [t← τ ′]
(λx.e) e′ −→ e [x← e′]Similarly, property ii of De�nition 4 (Covariane) orrespond to the redutions Ctxt, and property ivof De�nition 4 (Let) orresponds to the β-let redution rule:let t be τ in τ ′ ≥ τ [t← τ ′]let x be e in e′ −→ e [t← e′]However, one should not think that this presentation is merely postponing all the proof requirementsto the type algebra. Important parts of the proof are done in the framework, as shown by Lemma 6(Substitution) and Theorem 10 (Subjet redution). Furthermore, the remaining proofs in the typealgebra are done at a higher level of abstration, sine they do not need to refer to expressions anymore.1.2.2 ProgressWe hose so far to present semantis with a notion of redution that enompasses both all-by-value andall-by-name. Our framework an therefore be easily adapted to use these two semantis while preservingTheorem 10 (Subjet redution), sine it is easy to see that they have fewer redutions than the redutionde�ned in Figure 1.3. Furthermore, it is straightforward to impose a deterministi evaluation order byrestriting the set of evaluation ontexts E . In this setion, we present a all-by-value semantis with left-to-right evaluation order. It is de�ned in Figure 1.5.Evaluation ontext ECBV [] ::= [] e | v [] | let x be [] in e

β

(λx.e) v −→CBV e [x← v]
β-Letlet x1 be v1 in e2 −→CBV e2 [x1 ← v1]Op

f v1 ... vn −→CBV e
(v1, ..., vn, e) ∈ R(f)

Ctxt
e −→CBV e′

ECBV[e] −→ ECBV[e′]Figure 1.5: Call-by-value semantisTheorem 11 (Progress) If an expression e is losed and well-typed then either e is a value, or there existsan expression e′ suh that e −→CBV e′.ProofThe proof is by indution on e.ase e = xThis ase is impossible beause x is not losed.ase e = cThen by de�nition e is a value. 31

ase e = λx.e′Then e is a value.ase e = let x1 be e1 in e2By property i of De�nition 4 (Error), the expression e1 must be well-typed, otherwise e would not bewell-typed. Therefore, by indution hypothesis, either e1 is a value, in whih ase e redues by Ctxt,or e1 redues, in whih ase e redues by β-Let.ase e = e1 e2By App, e1 and e2 are well-typed. By indution hypothesis on e1, there are two ases. If e1 −→CBV e′1,then by Ctxt, e −→CBV e′1 e2, whih proves the desired property. Otherwise, e1 is a value v1. In thisase we apply the indution hypothesis to e2. If e2 −→CBV e′2, then by Ctxt e −→CBV v1 e′2, whihproves the property. Otherwise, e2 is a value v2. We now proeed by ase on v1. By Figure 1.2, thereare three ases:ase v1 = λx1.e
′
1Then e redues by β.ase v1 = C v′1 ... v′n with n ≤ arity(C)By hypothesis, e = C v′1 ... v′n v2 is well-typed. So by Requirement 9 (Constants), n + 1 ≤

arity(C). Hene e is also a value.ase v1 = f v′1 ... v′n with n < arity(f)If n + 1 = arity(f), then sine e = f v′1 ... v′n−1 v2, Requirement 9 (Constants) imposes thatthere exists an e′ suh that e −→CBV e′. Otherwise, n + 1 < arity(f), so e is a value.We an therefore present a type soundness result, whih is a trivial onsequene of Theorem 10 (Subjetredution) and Theorem 11 (Progress):Theorem 12 (Soundness)Let e be a well-typed expression. Either all redutions of e are in�nite, or there exists a value v suh that
e −→CBV ... −→CBV v and v is well-typed. Furthermore, type(e) ≥ type(v).Proof of theorem 12 (Soundness)Let's assume that there exists a �nite redution of e, that is e −→∗

CBV
e′ and e′ 6−→CBV. Theorem 10 (Subjetredution) shows that type(e) ≥ type(e′). Furthermore, sine e′ 6−→CBV, Theorem 11 (Progress) showsthat e′ is a value.1.3 Instantiating the algebrai type systemThe algebrai type system ontains two degrees of freedom, that an be used to build type systems forvarious programming languages.First, a domain A for (algebrai) types must be provided together with a pre-order ≤ on S(A) suh that

(A,≤) is a type algebra. Given an expression e, our framework omputes the syntati type type(e). Typa-bility and type-heking are deidable if ≤ is deidable, by applying the following de�nitions, respetively:the expression e is well typed if type(e) < E and it has algebrai type a if type(e) ≤ a. Regarding typeinferene, the syntati type type(e) an not be onsidered as a satisfatory type for an expression e, sine itis roughly as large as e. On the other hand, it is often possible to provide a partial funtion that simpli�essyntati types into another set (for instane algebrai types). In that ase, the omposition of the typingfuntion and that translation funtion performs type inferene. We present in the next setion two detailedinstantiations: the Hindley-Milner type system and the ML≤ type system. Both instantiations support typeinferene. This shows that our system is general enough to express omplex and various type systems, whilefatoring out a substantial part of the soundness proofs.The seond parameter of our framework is the set of operators, whih an be used to model a ompletelanguage by providing data onstrutors and operators that satisfy Requirement 9 (Constants). In Part II,we use this faility to model a realisti objet-oriented language with lasses and multi-methods.32

Chapter 2Type algebras2.1 The Hindley-Milner type systemAs an example, we show here that Hindley-Milner type shemes form a type algebra. Our framework anthus be used to present the type system of ML with a novel and onise proof of its orretness.The syntax for Hindley-Milner types is realled in Figure 2.1. Type variables are denoted by α as usual inML, while types are denoted by θ (rather than τ so as to avoid onfusion with syntati types). Type shemesare onsidered equal modulo renaming of bound type variables and removal of quanti�ed type variables thatdo not our in the type, and reordering of quanti�ed type variables.Base type ι ::= int | bool | ...Type θ ::= ι | θ → θ | αType sheme σ ::= ∀α.θFigure 2.1: Type syntax2.1.1 Instantiation of the frameworkTo instantiate the framework, we �rst de�ne the set of algebrai types HM as the set of type shemes. Wethen provide a pre-order on S(HM) � the set of syntati types built on HM � that veri�es the requirementsof De�nition 4. As in the example of Setion 1.1.2, we do so in two steps. First, we translate syntati typesinto a suitable form in whih they an be ompared and seond we provide the ordering on the translatedform. However, it would not be su�ient to translate syntati types to type shemes, sine that wouldinur a loss of information. For instane, onsider the syntati type (int→ bool) t. Its natural translationwould be the type bool. However, we also need to keep trak of the information that the syntati typevariable t is onstrained to be equal to int. Therefore, we de�ne onstrained type shemes in De�nition 13as triples ∀α|C.θ where C is a set of equalities of the form θ1 = θ2. We all HMC the set of onstrained typeshemes. The translation of type (int→ bool) t an then be de�ned as ∀|t = int.bool, whih retains thedesired information on t.Therefore, we will form a type algebra based on HMC . Sine HM an be seen as a subset of HMC byusing empty onstraints, this will indue by Theorem 5 (Sub-algebra) a type algebra on HM .De�nition 13 (Constrained type shemes) A onstrained type sheme is a triple written ∀α|C.θ where
∀α.θ is a type sheme, and C is a set of equalities of the form θ1 = θ2.De�nition 14 (Translation of Hindley-Milner types) Given a syntati types τ in S(HMC), its trans-lation 〈τ〉 into a onstrained type sheme is de�ned by indution in Figure 2.2.33

〈∀α|C.θ〉 = ∀α|C.θ 〈t〉 = ∀∅|∅.αt 〈E〉 = ∀α|int = bool.α

〈τ〉 = ∀α|C.θ

〈λt.τ〉 = ∀ααt|C. αt → θ

〈τ1〉 = ∀α1|C1.θ1 〈τ2〉 = ∀α2|C2.θ2

〈τ1 τ2〉 = ∀α1α2α|C1 ∪ C2 ∪ {θ1 = θ2 → α}.α
α 6∈ α1, α2, C1, C2, θ1, θ2

〈τ1〉 = ∀α1|C1.θ1 〈τ2〉 = ∀α2|C2.θ2

〈let t be τ1 in τ2〉 = ∀α1α2|C1 ∪ C2.θ2
t 6∈ FV (τ2)

〈let t be τ1 in τ2〉 = 〈τ2 [t← 〈τ1〉]〉
t ∈ FV (τ2)Figure 2.2: Translation for Hindley-MilnerThe hoie of the names of bound type variables does not matter, sine onstrained type shemes, likesyntati types, are equal up to α-onversion. The translation of the error type is a onstrained type shemewith an unsatis�able onstraint, whih we arbitrarily hose to be int = bool. The translation of λt.τ isbasially 〈t〉 → 〈τ〉, exept that generalization on t is done immediately.It should not be surprising that uni�ation ours during type appliation. In partiular this fat makesexpliit that in the usual ML rule

Γ ⊢ e1 : τ → τ ′ Γ ⊢ e2 : τ

Γ ⊢ e1 e2 : τ ′the two ourrenes of τ in the premises amount to an equality onstraint between two a priori di�erenttypes.The translation funtion distinguishes let types depending on whether the bound type variable ours inthe body. In let t be τ1 in τ2, if t does not appear free in τ2, we need to make sure that the onstraintsgenerated by the translation of τ1 is opied in the resulting translation. Otherwise, it ould miss the fatthat τ1 and τ2 impose inompatible onstraints on a free type variable. This is for instane the ase inlet t be (int→ int) t0 in (boolean→ boolean) t0 (whih orrespond to the expression let x be 1 +
x0 in not x0).We are now able to de�ne the order on S(HMC) in the following way. We shall denote ground substi-tutions by ρ, and write ρ(C) if for eah θ1 = θ2 in C, ρ(θ1) is syntatially equal to ρ(θ2). For two groundsubstitutions ρ1 and ρ2, and a set of type variables α, we will say that ρ1 and ρ2 are equal on α, whih wewrite ρ1

α
= ρ2, if for all type variable α in α, ρ1(α) = ρ2(α).De�nition 15 (Ordering of onstrained type shemes)Let ∀α1|C1.θ1 and ∀α2|C2.θ2 be two onstrained type shemes. Let α be FV (∀α1|C1.θ1) ∪ FV (∀α2|C2.θ2).By α-onversion, we assume that α1 and α2 are disjoint from α.The relation ∀α1|C1.θ1 ≤ ∀α2|C2.θ2 holds if and only if for all ground substitution ρ2 with domain α∪α2suh that ρ2(C2) holds, there exists a substitution ρ1 with domain α ∪ α1 suh that ρ1

α
= ρ2, ρ1(C1) holds,and ρ1(θ1) = ρ2(θ2).We will say that two onstrained type shemes are equivalent if eah one is smaller than the other.De�nition 16 (Order on S(HMC)) Let τ1 and τ2 be two syntati types of S(HMC). The relation

τ1 ≤HMC τ2 holds if and only if 〈τ1〉 ≤ 〈τ2〉 holds.In this setion, we shall use ≤ to denote ≤HMC when that does not lead to ambiguities.It is worth noting that the relation τ1 ≤HMC τ2 always holds if the onstraint in the translation of τ2 isnot satis�able. Sine the error type is maximal, this means that syntati types that generate unsatis�able34

onstraints are equivalent to the error type. Therefore, values of these types are not well-typed. Forinstane, the translation of the syntati type (int→ int) bool is ∀∅|bool ≤ int.int. Sine the onstraint
bool ≤ int is not satis�able, we have (int→ int) bool ≡ E.We an now assert that we have formed a type algebra in the sense of Setion 1.1.Theorem 17 (HMC) The ouple (HMC ,≤HMC) is a type algebra.By Theorem 5 (Sub-algebra), this implies that Hindley-Milner type shemes also form a type algebra.Corollary 18 (HM) The ouple (HM ,≤HM) is a type algebra, where, for any type ∀α1.θ1 and ∀α2.θ2 in
S(HM), ∀α1.θ1 ≤ ∀α2.θ2 i� ∀α1|θ1.∅ ≤HMC ∀α2|θ2.∅.The proof is given below. It only needs to deal with tehnial properties of the pre-order we introdued.This fat shows that we indeed ahieved to fatorize substantial parts of the soundness proof.We de�ne a size funtion on syntati types, designed so that the size of a type is smaller than thesize of its omponents and so that size(let t1 be τ1 in τ2) > size(τ2 [t1 ← τ1]). Note that for all type τ ,
size(τ) ≥ 1.De�nition 19 (Size of a syntati type) Given a syntati type τ , and a funtion f from type variablesto integer numbers, we de�ne sizef (τ) by strutural indution on τ , with:

sizef (a) = 1

sizef (t) = 1

sizef (λt.τ) = 1 + sizef+t7→1(τ)

sizef (τ1 τ2) = sizef (τ1) + sizef (τ2)

sizef (let t1 be τ1 in τ2) = sizef (τ1) + sizef+t1 7→sizef (τ1)(τ2)

sizef (E) = 1Given a syntati type τ , we de�ne size(τ) as size1(τ), where 1 is the onstant funtion mapping all typevariables to 1.Proof of theorem 17 (HMC)Let us �rst prove property i of De�nition 4 (Error). Sine the onstraint of 〈E〉 is unsatis�able, τ ≤ Ealways holds by De�nition 15. Furthermore, the onstraint in the translation of τ E and E τ inludes theonstraint of 〈E〉, so it is also unsatis�able, and these two types are indeed greater than E. It is also thease of let t be E in τ : when t does not appear in τ , the unsatis�able onstraint in 〈E〉 is diretly opiedinto the onstraint set of 〈let t be E in τ〉; when t appears in τ , a straightforward indution show thatthe unsatis�able onstraint appears in 〈τ [t← E]〉.
• We now prove property ii of De�nition 4 (Covariane). We therefore assume τ1 ≤ τ2 . We prove that

τ [t← τ1] ≤ τ [t← τ2] by indution on τ .ase τ = tWe need to prove τ1 ≤ τ2, whih is the hypothesis.ase τ = E or τ = a or τ = t′ with t′ 6= tThe result is immediate sine by De�nition 3, both τ [t← τ1] and τ [t← τ2] are equal to τ .ase τ = τ0 τ ′
0By De�nition 3, for i = 1, 2, τ [t ← τi] = (τ0 [t ← τi]) (τ ′

0 [t ← τi]). For i = 1, 2, let ∀αi|Ci.θibe 〈τ0 [t ← τi]〉, βi be FV (∀αi|Ci.θi) and β be β1 ∪ β2. Let also ∀α′
i|C

′
i.θ

′
i be 〈τ ′

0 [t ← τi]〉,
β
′

i be FV (∀α′
i|C

′
i.θ

′
i) and, β

′ be β
′

1 ∪ β
′

2. We an assume w.l.o.g. that the αi and α′
i are allpair-wise disjoint (3) and disjoint with β ∪ β

′. Then, by De�nition 14, 〈(τ0 [t ← τi]) (τ ′
0 [t ←

τi])〉 = ∀αiα
′
iα|Ci ∪ C′

i ∪ {θi = θ′i → α}.α, where α is fresh, that is α /∈ αiα
′
i (4). Note that35

we are able to hoose to share the same α in both translations by α-onversion on onstrainedtype shemes. Let ρ2 be a substitution suh that ρ2(C2 ∪ C′
2 ∪ {θ2 = θ′2 → α}) holds (5). Sine

ρ2(C2) holds by onstrution, by the indution hypothesis τ0 [t ← τ1] ≤ τ0 [t ← τ2] (that is
∀α1|C1.θ1 ≤ ∀α2|C2.θ2) and De�nition 15, there exists ρ1 suh that ρ1

β
= ρ2 (6), ρ1(C1) holds (7)and ρ1(θ1) = ρ2(θ2) (8). Similarly, ρ2(C

′
2) holds, so there exists ρ′1 suh that ρ′1

β
′

= ρ2 (9), ρ′1(C
′
1)holds (10) and ρ′1(θ

′
1) = ρ2(θ

′
2) (11). Sine α1 and α′

1 are disjoint by (3), we de�ne the substitution
ρ with:

ρ :

γ ∈ α1 7→ ρ1(γ) (12)
γ ∈ α′

1 7→ ρ′1(γ) (13)
γ ∈ β ∪ β

′
7→ ρ2(γ) (14)

α 7→ ρ2(α) (15)This substitution veri�es ρ
ββ

′

= ρ2 by (14). In partiular, ρ(α) = ρ2(α). By (14), (6) and (9), ρagrees with all of ρ1, ρ′1 and ρ2 on variables in β∪β
′ (16). Furthermore, ρ(C1) holds sine ρ1(C1)holds by (7) and ρ

α1β1

= ρ1 by (12) and (16). Similarly, ρ(C2) holds by (10), (13) and (16). Finally,
ρ(θ1) = ρ1(θ1) by (12) and (16), and ρ1(θ1) = ρ2(θ2) by (8). By (5), ρ2(θ2) = ρ2(θ′2 → α), whihis by de�nition ρ2(θ

′
2) → ρ2(α). By (11) ρ2(θ

′
2) = ρ′1(θ

′
1) and by (13) and (16) ρ′1(θ

′
1) = ρ(θ′1).By (15) ρ2(α) = ρ(α). Therefore, ρ2(θ

′
2) → ρ2(α) is equal to ρ(θ′1) → ρ(α). This shows that ρsatis�es θ1 = θ′1 → α. Therefore, by De�nition 15, (τ0 τ ′

0) [t← τ1] ≤ (τ0 τ ′
0) [t← τ2].ase τ = λt0.τ0We an assume w.l.o.g. that t0 is di�erent from t, and not free in τ1 nor τ2. For i = 1, 2,let ∀αi|Ci.θi be 〈τ0 [t ← τi]〉, βi be FV (∀αi|Ci.θi) and β be β1 ∪ β2. Then by De�nition 14

〈λt0.τ0 [t ← τi]〉 = ∀αiαt0 |Ci. αt0 → θi. Let ρ2 be suh that ρ2(C2) holds. By the indutionhypothesis τ0 [t ← τ1] ≤ τ0 [t ← τ2], there exists ρ1 suh that ρ1
β
= ρ2 (1), ρ1(C1) holds (2) and

ρ1(θ1) = ρ2(θ2) (3). First, (1) implies in partiular that ρ1 is equal to ρ2 on β \ {αt0}. Seond,
ρ1(C1) holds by (2). Third,

ρ1(αt0 → θ1)
= ρ1(αt0)→ ρ1(θ1)
= ρ2(αt0)→ ρ1(θ1) (1)
= ρ2(αt0)→ ρ2(θ2) (3)
= ρ2(αt0 → θ2)Therefore λt0.τ0 [t← τ1] ≤ λt0.τ0 [t← τ2].ase τ = let t0 be τ0 in τ ′

0 with t0 ∈ FV (τ ′
0)We an assume w.l.o.g. that t0 is di�erent from t (1) and not free in τ1 (2) nor in τ2 (3). Therefore,

(let t0 be τ0 in τ ′
0) [t← τ1]

= let t0 be τ0 [t← τ1] in τ ′
0 [t← τ1] (De�nition 3)

≡ τ ′
0 [t← τ1] [t0 ← 〈τ0 [t← τ1]〉] (De�nition 14 and 16)

= τ ′
0 [t0 ← 〈τ0 [t← τ1]〉] [t← τ1] ((1) and (2) and t 6∈ 〈τ0 [t← τ1]〉)By indution hypothesis on τ0, τ0 [t ← τ1] is smaller than τ0 [t ← τ2]. That is, by De�nition 16,

〈τ0 [t← τ1]〉 is smaller than 〈τ0 [t← τ2]〉.Therefore, by indution hypothesis on τ ′
0, τ ′

0 [t0 ← 〈τ0 [t ← τ1]〉] is smaller than τ ′
0 [t0 ← 〈τ0 [t ←

τ2]〉].The type τ ′
0 [t0 ← 〈τ0 [t ← τ2]〉] has a smaller size than τ sine 〈τ0 [t ← τ2]〉, being an algebraitype, has size 1 by De�nition 19. Therefore, we an apply the indution hypothesis, whih impliesthat τ ′

0 [t0 ← 〈τ0 [t← τ2]〉] [t← τ1] is smaller than τ ′
0 [t0 ← 〈τ0 [t← τ2]〉] [t← τ2]. Furthermore,36

τ ′
0 [t0 ← 〈τ0 [t← τ2]〉] [t← τ2]

= τ ′
0 [t← τ2] [t0 ← 〈τ0 [t← τ2]〉] ((1) and (3) and t 6∈ 〈τ0 [t← τ2]〉)

≡ let t0 be τ0 [t← τ2] in τ ′
0 [t← τ2] (De�nition 14)

= (let t0 be τ0 in τ ′
0) [t← τ2] (De�nition 3)ase τ = let t0 be τ0 in τ ′

0 with t0 6∈ FV (τ ′
0)We an assume w.l.o.g. that t0 is di�erent from t and not free in τ1 nor in τ2. By De�nition 3,

τ [t← τ1] = let t0 be τ0 [t← τ1] in τ ′
0 [t← τ1].For i = 1, 2, let ∀αi|Ci.θi be 〈τ0 [t← τi]〉, βi be FV (∀αi|Ci.θi) and β be β1∪β2. Let also ∀α′

i|C
′
i.θ

′
ibe 〈τ ′

0 [t← τi]〉, β
′

i be FV (∀α′
i|C

′
i.θ

′
i) and, β

′ be β
′

1 ∪ β
′

2. We an assume w.l.o.g. that the αi and
α′

i are all pair-wise disjoint (1) and disjoint with β ∪ β
′.Then, by De�nition 14, 〈let t0 be τ0 [t ← τi] in τ ′

0 [t ← τi]〉 = ∀αiα
′
i|Ci ∪ C′

i.θ
′
i. For any sub-stitution ρ2 suh that ρ2(C2 ∪C′

2) holds, by onstrution, ρ2(C2) holds. By indution hypothesis,
τ0 [t ← τ1] is smaller than τ0 [t ← τ2] That is, by De�nition 16, 〈τ0 [t ← τ1]〉 is smaller than
〈τ0 [t← τ2]〉. Therefore, by De�nition 15, there exists ρ1 suh that ρ1

β
= ρ2 (2), ρ1(C1) holds (3)and ρ1(θ1) = ρ2(θ2). Similarly, ρ2(C

′
2) holds, so there exists ρ′1 suh that ρ′1

β
′

= ρ2 (4), ρ′1(C
′
1)holds (5) and ρ′1(θ

′
1) = ρ2(θ

′
2) (6). By (1), we an de�ne the substitution ρ that agrees with ρ1 on

α1 (7), with ρ′1 on α′
1 (8), and with all of ρ1, ρ′1 and ρ2 on other variables (9), whih is possible by(2) and (4). Therefore, ρ

β
1
β
′

= ρ2. Furthermore, ρ(C1) holds by (3), (7) and (9), and ρ(C′
1) holdsby (5), (8) and (9). Finally, ρ(θ′1) = ρ′1(θ

′
1) by (8) and (9), and ρ′1(θ

′
1) = ρ2(θ

′
2) by (6). Therefore,by De�nition 15, (let t0 be τ0 in τ ′

0) [t← τ1] ≤ (let t0 be τ0 in τ ′
0) [t← τ2].

• We now prove property iii of De�nition 4 (Redution): for all types τ , τ ′ and type variable t, (λt.τ) τ ′ ≥
τ [t← τ ′]. The proof is by indution on the size of τ as de�ned in De�nition 19.ase τ = λt0.τ0We an assume w.l.o.g. that t0 is di�erent from t and not free in τ ′. Therefore, by De�nition 3,

(λt0.τ0) [t ← τ ′] = λt0.(τ0 [t ← τ ′]). Sine size(τ0) < size(λt0.τ0), we an apply the indutionhypothesis, whih shows that τ0 [t ← τ ′] ≤ (λt.τ0) τ ′ (1). Sine property ii of De�nition 4(Covariane) is already proved, we an apply it to (1) and to the type λt0.t1 where t1 is a freshtype variable. This shows that λt0.(τ0 [t ← τ ′]) ≤ λt0.((λt.τ0) τ ′) holds. Thus, it only remainsto show that λt0.((λt.τ0) τ ′) ≤ (λt.λt0.τ0) τ ′ holds. Let ∀α0|C0.θ0 be 〈τ0〉 and ∀α′|C′.θ′ be 〈τ ′〉.Then by De�nition 14, 〈(λt.λt0.τ0) τ ′〉 = ∀αα′αtαt0α0|C
′ ∪ C0 ∪ {αt → (αt0 → θ0) = θ′ →

α}.α and 〈λt0.((λt.τ0) τ ′)〉 = ∀α′α′αtαt0α0|C′ ∪ C0 ∪ {αt → θ0 = θ′ → α′}. αt0 → α′. Weneed to show that the latter is smaller than the former. For any substitution ρ2 that satis�es
C′ ∪ C0 ∪ {αt → (αt0 → θ0) = θ′ → α} (2), let ρ1 be ρ2 + {α′ 7→ ρ2(θ0)} (3). Then by (3),
ρ1(αt0 → α′) = ρ2(αt0 → θ0) and ρ2(αt0 → θ0) = ρ2(α) by (2). Furthermore, ρ1 satis�es C′∪C0by (2) and (3). Finally, ρ1 satis�es αt → θ0 = θ′ → α′ sine ρ2(αt) = ρ2(θ

′) by (2) and sine
ρ1(θ0) = ρ2(θ0) = ρ1(α

′) by (3).ase τ = let t1 be τ1 in τ2 where t1 ∈ FV (τ2) (1)We an assume w.l.o.g that t1 is di�erent from t (2), and does not belong to FV (τ ′) (3).By De�nition 14, 〈τ〉 = 〈τ2 [t1 ← 〈τ1〉]〉. That is, τ ≡ τ2 [t1 ← 〈τ1〉]. By De�nition 14, 〈〈τ1〉〉 =
〈τ1〉, so by De�nition 16, 〈τ1〉 ≡ τ1. So, by property ii of De�nition 4 (Covariane) whih wehave already proved, τ2 [t1 ← 〈τ1〉] ≡ τ2 [t1 ← τ1]. Therefore, again by property ii of De�nition 4(Covariane), (λt.τ) τ ′ ≡ (λt.τ2 [t1 ← τ1]) τ ′. By De�nition 19, τ2 [t1 ← τ1] has a smaller size thanlet t1 be τ1 in τ2. Therefore, we an apply the indution hypothesis, and (λt.τ2 [t1 ← τ1]) τ ′ isgreater than τ2 [t1 ← τ1] [t← τ ′], whih by (2) and (3) is equal to τ2 [t← τ ′] [t1 ← τ1 [t← τ ′]]. Byproperty ii of De�nition 4 (Covariane), this type is equivalent to τ2 [t ← τ ′] [t1 ← 〈τ1 [t ← τ ′]〉].Sine t1 belongs to FV (τ2) by (1), this type is by De�nition 14 and De�nition 16 equivalent to37

let t1 be τ1 [t← τ ′] in τ2 [t← τ ′]. This shows the property, sine by De�nition 3, this type isequal to (let t1 be τ1 in τ2) [t← τ ′].ase τ = let t1 be τ1 in τ2 where t1 6∈ FV (τ2)We an assume w.l.o.g that t1 is di�erent from t (1), and does not belong to FV (τ ′) (2).By De�nition 3 with (1) and (2), τ [t ← τ ′] = let t1 be τ1 [t ← τ ′] in τ2 [t ←
τ ′]. By applying the indution hypothesis to τ1 and τ2, and by property ii ofDe�nition 4 (Covariane), let t1 be τ1 [t ← τ ′] in τ2 [t ← τ ′] is smaller thanlet t1 be (λt.τ1) τ ′ in (λt.τ2) τ ′. It remains to show that let t1 be (λt.τ1) τ ′ in (λt.τ2) τ ′is smaller than (λt.let t1 be τ1 in τ2) τ ′. To this end, we ompute their translations. Let
∀α1|C1.θ1 be 〈τ1〉, ∀α2|C2.θ2 be 〈τ2〉 and ∀α′|C′.θ′ be 〈τ ′〉. Sine τ ′ appears several times, we alsode�ne ∀α′′|C′′.θ′′ as an α-onverted opy of 〈τ ′〉. That is, there exists a substitution ρ′ renamingthe variables α′′ suh that ρ′(α′′) = α′, ρ′(θ′′) = θ′, and ρ′(C′′) = C′. Then by De�nition 14,
〈let t1 be (λt.τ1) τ ′ in (λt.τ2) τ ′〉 = ∀α1α2αtαt′α

′α′′α0α
′
0|C1 ∪ C2 ∪C′ ∪ C′′∪

{αt → θ1 = θ′ → α0, αt′ → θ2 = θ′′ → α′
0}.α

′
0

〈(λt.let t1 be τ1 in τ2) τ ′〉 = ∀α1α2αtα
′α0|C1 ∪ C2 ∪C′ ∪ {αt → θ2 = θ′ → α0}.α0For every substitution ρ2 that satis�es C1 ∪ C2 ∪ C′ ∪ {αt → θ2 = θ′ → α0} (3), let ρ1 be

(ρ2 ◦ ρ′) + {α0 7→ ρ2(θ1), α
′
0 7→ ρ2(θ2), αt′ 7→ (ρ2 ◦ ρ′)(θ′)}. Then by de�nition of ρ1 and (3),

ρ1(C1 ∪ C2 ∪ C′ ∪ C′′ ∪ {αt → θ1 = θ′ → α0, αt′ → θ2 = θ′′ → α′
0}) holds, and ρ1(α

′
0) is equalto ρ2(θ2), whih is equal to ρ2(α0) sine ρ2 satis�es αt → θ2 = θ′ → α0. So by De�nition 16,let t1 be (λt.τ1) τ ′ in (λt.τ2) τ ′ is smaller than (λt.let t1 be τ1 in τ2) τ ′.ase τ = τ1 τ2Similarly, it follows from indution hypothesis applied to τ1 and τ2 and from De�nition 4.ii that

((λt.τ1) τ ′) ((λt.τ2) τ ′) ≥ (τ1 τ2) [t ← τ ′]. It remains to show that ((λt.τ1) τ ′) ((λt.τ2) τ ′) issmaller than (λt.(τ1 τ2)) τ ′. Let ∀α1|C1.θ1 be 〈τ1〉, ∀α2|C2.θ2 be 〈τ2〉 and ∀α′|C′.θ′ be 〈τ ′〉.Sine τ ′ appears several times, we also de�ne ∀α′′|C′′.θ′′ as an α-onverted opy of 〈τ ′〉. That is,there exists a substitution ρ′ renaming the variables α′′ suh that ρ′(α′′) = α′, ρ′(θ′′) = θ′, and
ρ′(C′′) = C′. Then by De�nition 14,
〈((λt.τ1) τ ′) ((λt.τ2) τ ′)〉 =

∀α1α2αtαt′α
′α′′β′β′′β|C1 ∪ C′ ∪ C2 ∪ C′′∪

{αt → θ1 = θ′ → β1, αt′ → θ2 = θ′′ → β2, β1 = β2 → β}.β

〈(λt.(τ1 τ2)) τ ′〉 =
∀α1α2αtα

′α0β|C1 ∪C2 ∪ C′∪
{αt → β = θ′ → α0, θ1 = θ2 → β}.α0For every substitution ρ2 that satis�es C1 ∪ C2 ∪ C′ ∪ {αt → β = θ′ → α0, θ1 = θ2 → β} (1),let ρ1 be (ρ2 ◦ ρ′) + {β1 7→ ρ2(θ1), β2 7→ ρ2(θ2), αt′ 7→ ρ2(θ

′)}. Then by de�nition of ρ1 and (1),
ρ1(C1 ∪ C′ ∪ C2 ∪ C′′ ∪ {αt → θ1 = θ′ → β1, αt′ → θ2 = θ′′ → β2, β1 = β2 → β}) holds and
ρ1(β) is equal to ρ2(β), whih is equal to ρ2(α0) sine by (1) ρ2 satis�es αt → β = θ′ → α0. Soby De�nition 16, ((λt.τ1) τ ′) ((λt.τ2) τ ′) is smaller than (λt.(τ1 τ2)) τ ′.ase τ = tLet ∀α′|C′.θ′ be 〈τ ′〉. Sine τ = t, τ [t← τ ′] is equal to τ ′ by De�nition 3. Therefore,

〈t [t← τ ′]〉
= 〈τ ′〉
= ∀α′|C′.θ′

= ∀α′αt|C′ ∪ {αt = θ′}.αt

= 〈(λt.t) τ ′〉ase τ = E or τ = σ or τ = t′ 6= tLet ∀α|C.θ be 〈τ〉 and ∀α′|C′.θ′ be 〈τ ′〉. Sine FV (τ) is empty, τ [t← τ ′] is by De�nition 3 equal38

to τ . Therefore, 〈τ [t ← τ ′]〉 = 〈τ〉 = ∀α|C.θ. Furthermore, 〈(λt.τ) τ ′〉 = ∀αα′αt|C ∪ C′ ∪ {αt =
θ′}.θ.The inequality ∀α|C.θ ≤ ∀αα′αt|C∪C′∪{αt = θ′}.θ is trivial: for all ρ2 suh that ρ2(C∪C′∪{αt =
θ′}), take ρ1 = ρ2 sine then ρ1(C) and ρ1(θ) = ρ2(θ). Note that the reverse inequality does nothold as soon as C′ is not trivial.

• Finally, for property iv of De�nition 4 (Let), we need to show that for all types τ , τ ′ and type variable
t, τ ′ [t← τ] ≤ let t be τ in τ ′.If t belongs to FV (τ2), then by De�nition 14, let t be τ1 in τ2 ≡ τ2 [t ← 〈τ1〉]. Furthermore,
〈τ1〉 ≡ τ1 by De�nition 16 sine trad[〈τ〉] = 〈τ〉. Therefore, by property ii of De�nition 4 (Covariane),
τ2 [t ← 〈τ1〉] is equal to τ2 [t ← τ1], whih proves the property. If t does not belong to FV (τ2),let ∀α1|C1.θ1 be 〈τ1〉 and ∀α2|C2.θ2 be 〈τ2〉. Then 〈τ2 [t ← τ1]〉 = 〈τ2〉 = ∀α2|C2.θ2. Furthermore,
〈let t be τ1 in τ2〉 = ∀α1α2|C1 ∪ C2.θ2. For any substitution ρ2 suh that ρ2(C1 ∪ C2) holds, take
ρ1 = ρ2. Then ρ1(C1) holds, and ρ1(θ2) = ρ2(θ2), so let t be τ1 in τ2 ≥ τ2 [t← t1] holds.2.1.2 Simpli�ationBy de�nition, τ1 ≡ τ2 if τ1 ≤ τ2 and τ2 ≤ τ1. This provides an opportunity for type simpli�ation. Let uswrite mgu(C) a most general uni�er of a onstraint C. That is, mgu(C) is a substitution that satis�es C,and suh that for all substitution ρ that satis�es C, there exists a substitution ρ′ suh that ρ = ρ′ ◦mgu(C).Lemma 20 (Simpli�ation) Let ∀α|C.θ be a onstrained type sheme. Let θ′ be mgu(C)(θ), α′ = α ∩

FV (θ′) and C′ the set of onstraints {mgu(C)(θ1) = mgu(C)(θ2)} for all {θ1 = θ2} in C suh that mgu(C)(θ1)is di�erent from mgu(C)(θ2). Then ∀α|C.θ is equivalent to ∀α′|C′.θ′ProofFirst we prove that ∀α|C.θ is smaller than ∀α′|C′.θ′. For all ρ2 that satis�es C′, take ρ1 = ρ2 ◦mgu(C). Forall θ1 = θ2 in C, there are two ases. If mgu(C)(θ1) is equal to mgu(C)(θ2), then ρ2 ◦mgu(C)(θ1) is equal to
ρ2 ◦mgu(C)(θ2). Otherwise, mgu(C)(θ1) = mgu(C)(θ2) belongs to C′ by de�nition of simpli�ation. Sine
ρ2 satis�es C′ by hypothesis, ρ2 ◦mgu(C)(θ1) is equal to ρ2 ◦mgu(C)(θ2). That is, ρ1 satis�es θ1 = θ2.Seond, we prove that ∀α|C.θ is greater than ∀α′|C′.θ′. For all ρ2 that satis�es C, sine mgu(C) is a mostgeneral uni�er of C, there exists ρ1 suh that ρ2 = ρ1 ◦mgu(C). For eah onstraint of C′, it is by de�nitionof simpli�ation of the form mgu(C)(θ1) = mgu(C)(θ2) where θ1 = θ2 belongs to C. Therefore it is satis�edby ρ1, sine by hypothesis on ρ2 that it satis�es θ1 = θ2, ρ1 ◦mgu(C)(θ1) is equal to ρ1 ◦mgu(C)(θ2).Using this simpli�ation, we an infer the type of expressions.Corollary 21 (Prinipal type for Hindley-Milner) Let e be a losed expression. Then the prinipaltype of e is ∀α′.θ′, where 〈type(e)〉 = ∀α|C.θ, θ′ = mgu(C)(θ) and α′ = α ∩ FV (θ′).2.1.3 ExampleAs a �rst example, let us onsider the typing of (λx.x) 1. By the rules of the algebrai type system, thisexpression has syntati type:

type((λx.x) 1)
= type(λx.x) type(1)
= (λtx.type(x)) int
= (λtx.tx) intThis type an now be translated to a onstrained type sheme. We �rst translate eah side of theappliation: 〈λtx.tx〉 = ∀αtx

|∅. αtx
→ αtx

and 〈int〉 = int, ∅. The system of onstraints generated by the39

appliation is therefore αtx
→ αtx

= int → α, and the onsidered expression has the onstrained typesheme ∀αtx
α|{αtx

→ αtx
= int→ α}.α. By Lemma 20 (Simplifiation) this type simpli�es to int, ∅.As a seond example, let us now onsider the expression let id be λx.x in λyz.z (id 1) (id false).

type(let id be λx.x in λyz.z (id 1) (id false))
= let tid be λtx.tx in λtytz.tz (tid int) (tid bool)By De�nition 14, its translation is:

〈let tid be λtx.tx in λtytz .tz (tid int) (tid bool)〉
= 〈λtytz.tz (tid int) (tid bool) [tid ← ∀αtx

|∅.αtx
]〉

= 〈λtytz.tz ((∀αtx
|∅.αtx

) int) ((∀αtx′ |∅.αtx′) bool)〉
= ∀α1α2α3α4αty

αtz
αtx

αtx′ |
{αtx

→ αtx
= int→ α1, αtx′ → αtx′ = bool→ α2, αty

→ (αtz
→ αtz

) = α1 → α3, α3 = α2 → α4}.α4The most general uni�er of that onstraint maps α1, αty
and αtx

to int, α2, α4, αtz
and αtx′ to booland α3 to bool → bool. Therefore, by Lemma 20 (Simplifiation), this translated type is equivalent to

bool, whih is onsequently the type of the expression, as expeted.2.1.4 Beyond Core-MLSo far, we have only onsidered features of Core-ML. A real language usually has more features. Data-types and pattern mathing an be added easily as in ML. Eah data-type delaration an be onsideredas syntati sugar for the introdution of a new base type name, onstrutors for the di�erent ases and amathing operator. Pattern-mathing an then be seen as syntati sugar for the appliation of the mathingoperator, inluding mathing arbitrarily deep strutures, default ases and textual ordering of the branhes.Exeptions and referenes ould also be added to the ore language. However, referenes are not a simpleinstane of the framework, but require an extension to the framework. As for ML, one ould augmentthe semantis with a global store, and provide referenes via primitives; this would also require restritionof polymorphism to values. This restrition an be handled in the type algebra, through the translationfuntion de�ned in this setion to instantiate the framework. That is, given the primitive operator ref oftype ∀α. α→ ref α, we an modify our translation funtion so that type variables that appear inside a reftype onstrutor are not present in the quanti�ers. Therefore the typing part of the framework an be leftuntouhed. It would atually be interesting to study how ould the semantis itself be made a parameter ofour system, so that features requiring spei� semantis ould be added without modifying the frameworkat all.2.2 ML≤

ML≤ [5, 6℄ is a rank-1 polymorphi onstrained type system. It has been developed to type an extensionof ML with multi-methods and objet-orientation. The ML≤ type system is espeially adapted to type anobjet-oriented language beause:
• onstraints allow to model atomi subtyping, whih an express the �sub-lass� relationships;
• (parametri) polymorphism allows to de�ne generi lasses and operations;
• its open-world properties �t well with separate ompilation of program modules that an de�ne newtypes.However, the whole ML≤ system requires type annotations on lambda-expressions and thus laks typeinferene. Furthermore, the presentation in [5, 6℄ is ad-ho and rather unusual, making it di�ult to study.40

Therefore, in this setion, we fous on the type system itself. We observe that ML≤ types form a typealgebra that an be used with the algebrai type system of Setion 1. We shall use this instane in Setion 8.6to model multi-methods as a onrete instantiation of the generi funtions of Chapter 8.We �rst reall the de�nition of the ML≤ type system. The, we show in Setion 2.2.4 how it an beonsidered as an instane of the algebrai type system.2.2.1 Type strutureType-heking in ML≤ is done with respet to a type struture T . The syntax for type strutures is given inFigure 2.3. A type struture is a partially ordered set C of type onstrutor onstants cV . Type onstrutorsan be in sub-typing relation, written T ⊢ cV ≤ c′V . Type onstrutors are annotated by their variane
V . A variane is a tuple over {⊕,⊖,⊗}, whih stand for o-, ontra-, and non-variant type parametersrespetively. Only type onstrutors of the same variane an be in sub-typing relation. That is, cV1

≤ c′V2implies V1 = V2. Type struture T ::= (C,≤)Single variane v ::= ⊕ | ⊖ | ⊗Variane V ::= vType onstrutor onstant cV ∈ CGround monotype θg ::= cV [θ
g
]Figure 2.3: Type struture syntaxA ground monotype θg is built by the appliation of a type onstrutor cV to a list of ground monotypes

θg, and is written cV [θg]. In partiular, if cV is a nullary type onstrutor, then cV [] is a ground monotype.In that ase, we will omit the brakets and denote this monotype by cV . We require that monotypes builton type onstrutors respet the arity of their variane: in cV [θg], the number of elements in θg must maththe arity of variane V .We will omit the annotation on type onstrutors when it is obvious from the ontext. We assumethe existene an arrow type onstrutor →(⊖,⊕) used to represent funtional types. As usual the arrow isontra-variant on its domain and o-variant on its odomain.De�nition 22 (Variant subtyping) The notation (θ1, ..., θn) ≤(v1,...,vn) (θ′1, ..., θ
′
n) stands for the set

(θ1 ≤v1
θ′1) ∪ ... ∪ (θn ≤vn

θ′n), where:
θ1 ≤⊕ θ2 = {θ1 ≤ θ2}

θ1 ≤⊖ θ2 = {θ2 ≤ θ1}

θ1 ≤⊗ θ2 = {θ1 ≤ θ2, θ2 ≤ θ1}De�nition 23 (Ground subtyping) We write T ⊢ θg ≤ θ′g the subtyping on ground monotypes. Therelation T ⊢ cV [θg] ≤ c′V [θ′g] holds if and only if T ⊢ cV ≤ c′V and for all θ ≤ θ′ in θg ≤V θ′g, T ⊢ θ ≤ θ′.For instane, the ML≤ type struture orresponding to the example of Setion 1.1.2 is T =
({int(), float(), →(⊖,⊕)}, {int ≤ float}). It then follows from De�nition 23 that, for instane, T ⊢
float→ int ≤ int→ float.2.2.2 ConstraintsThe syntax for onstraints and monotypes is given in Figure 2.4. Monotypes are similar to the groundmonotypes de�ned in Setion 2.2.1, with the addition of type onstrutor variables and monotype variables.41

Type onstrutor variables an stand for type onstrutor onstants while monotype variables an stand forarbitrary monotypes. It is possible to quantify over these two �avors of variables. For instane, assuminga ovariant list type onstrutor, a syntatially valid onstraint impliation is ∀t⊕, u. t⊕ ≤ list ∧ u ≤
int |= t⊕[u] ≤ list[int].Type onstrutor φV ::=Type onstrutor onstant cVType onstrutor variable | tVMonotype θ ::=Monotype variable tConstruted monotype | φV [θ]Constraint κ ::= θ ≤ θ | φV ≤ φVVariable list ϑ ::= t | tVConstraint impliation ∀ϑ. κ1 |= κ2Figure 2.4: Constraint syntaxFor onveniene, we will freely onsider onstraint sets as onjunts of onstraints, by writing true for theempty set of onstraints, κ1 ∧κ2 instead of κ1 ∪κ2, and allow κ to denote a set of onstraints. Therefore, wehave in partiular that κ1 ∧ κ1 is idential to κ1, that κ1 ∧ κ2 is idential to κ2 ∧ κ1, and that κ1 ∧ (κ2 ∧ κ3)is idential to (κ1 ∧ κ2) ∧ κ3.We now de�ne the notion of onstraint impliation with the prediate T ⊢ ∀ϑ. κ1 |= κ2, whih reads�in type struture T , for all ϑ, onstraint κ1 implies onstraint κ2�. For the intuition, it is important tonote that the universal quanti�ation over ϑ applies to both κ1 and κ2. This prediate is de�ned as theleast prediate verifying the axioms of Figure 2.5. This de�nition is equivalent to the original presentationof ML≤ [5℄.Often, the type struture an be left impliit and we will simply write ∀ϑ. κ1 |= κ2.Intuitively, the relation ∀ϑ. κ1 |= κ2 holds if, for every valuation of the variables in ϑ suh that κ1 issatis�ed, there exists a valuation of the other variables suh that κ2 is satis�ed. However, it would not bedesirable to have that property in a losed-world setting. For instane, in a type struture with a single typeonstrutor A, the relation ∀t. t ≤ A |= A ≤ t should not hold, although the only known valuation for t is A.Otherwise, it would beome impossible to de�ne a sublass of A in a di�erent module. In Chapter 7, wewill formally onsider modular type-heking, whih involves extending type strutures while preserving thesoundness of some previously type-heked ode. In partiular, De�nition 55 is a semanti interpretation ofthis onstraint impliation. We will also haraterize how the onstraint language an be extended to makethe type system more expressive, and list the properties that must hold for suh extensions to be valid.Trans states that onstraint impliation is transitive. Triv states that a onstraint implies any subsetof itself. VarIntro states that a given onstraint κ is implied by any onstraint obtained by instantiation ofvariables of κ not in the quanti�ed set ϑ. Intuitively, this is orret sine for every valuation of the variablesin ϑ suh that σ(κ) is satis�ed, κ an indeed be satis�ed by instantiating its variables using σ. The nextfour rules deal with monotypes, as emphasized by the pre�x M in their names. MRef and MTrans statethe re�exivity and transitivity of monotype subtyping. MIntro and MElim express the relation betweensubtyping of onstruted monotypes and subtyping of their omponents, as in De�nition 23. The next threerules state the properties of type onstrutors: the ordering of type onstrutors is re�exive and transitive,and ordering of ground type onstrutors an be used when it is present in the ontext T . Finally, VElimstates that the onstraints are strutural: if a type variable is omparable to a onstruted monotype, thenit must have the same shape. That is, it is built on a type onstrutor of the same variane.As an illustration, let us prove that the onstraint impliation ∀t. int → int ≤ t |= u → u ≤ t ∧ u ≤
float holds in the example type struture de�ned above.By CStrut we have ∀t. int → int ≤ t |= int → int ≤ t ∧ int ≤ float. Furthermore, applyingVarIntro with σ being the substitution that maps u to int and leaves all other variables unhanged, we42

Trans
∀ϑ. κ1 |= κ2 ∀ϑ. κ2 |= κ3

∀ϑ. κ1 |= κ3

Triv
κ′ ⊆ κ

∀ϑ. κ |= κ′

VarIntro
∀t ∈ ϑ σ(t) = t

∀ϑ. σ(κ) |= κ

MRef
∀ϑ. κ |= κ ∧ θ ≤ θMTrans

θ ≤ θ′ ∈ κ θ′ ≤ θ′′ ∈ κ

∀ϑ. κ |= κ ∧ θ ≤ θ′′

MIntro
φV ≤ φ′

V ∈ κ θ ≤V θ′ ⊂ κ

∀ϑ. κ |= κ ∧ φV [θ] ≤ φ′
V [θ′]

MElim
φV [θ] ≤ φ′

V [θ′] ∈ κ

∀ϑ. κ |= κ ∧ φV ≤ φ′
V ∧ θ ≤V θ′CRef

∀ϑ. κ |= κ ∧ φV ≤ φV

CTrans
φV ≤ φ′

V ∈ κ φ′
V ≤ φ′′

V ∈ κ

∀ϑ. κ |= κ ∧ φV ≤ φ′′
V

CStrut
cV ≤ c′V ∈ T

∀ϑ. κ |= κ ∧ cV ≤ c′VVElim
t ≤ φV [θ] ∈ κ or t ≥ φV [θ] ∈ κ φ′

V fresh t′ fresh
∀ϑ. κ |= κ ∧ t = φ′

V [t′]Figure 2.5: Axioms of onstraint impliationhave ∀t. int→ int ≤ t ∧ int ≤ float |= u→ u ≤ t ∧ u ≤ float. Finally, we an apply Trans to get thedesired impliation.Sine many proofs will inlude hains of impliations linked by the transitivity rule, we will often writethem in a more ondensed form by leaving the use of transitivity impliit. For instane, the above proof analso be written as:
∀t.

int→ int ≤ t
|= int→ int ≤ t ∧ int ≤ float (CStrut)
|= u→ u ≤ t ∧ u ≤ float (VarIntro with σ = id + {u 7→ int})We will use the following three properties, whih are proved in [5℄.The �rst one shows that it is always possible to make the set of quanti�ed variables of a onstraintimpliation smaller:Lemma 24 (∀E)

∀ϑ. κ |= κ′ ϑ′ ⊂ ϑ

∀ϑ′. κ |= κ′Proof of lemma 24The only rules in whih quanti�ed variables sets play a role are VarIntro and VElim. For VarIntro,the ondition ∀t ∈ ϑ σ(t) = t trivially implies ∀t ∈ ϑ′ σ(t) = t when ϑ′ is a subset of ϑ. Therefore
∀ϑ. σ(κ) |= κ holds when ∀ϑ′. σ(κ) |= κ holds. Similarly, for VElim, the freshness ondition on φ′

V and t′is only weakened by using a smaller quali�ed set of variables. A strutural indution for the ase Trans�nishes the proof.Conversely, one an add quanti�ed variables that do not appear on the right hand side of the impliation:Lemma 25 (∀ I)
∀ϑ. κ |= κ′ FV (κ′) ∩ ϑ′ = ∅

∀ϑ, ϑ′. κ |= κ′Lemma 25 an be proved by noting that sine κ′ has no free variable in ϑ′, it is possible to modify theproof of ∀ϑ. κ |= κ′ so that it does not introdue any variable in ϑ′, after a renaming of κ. Therefore, thereis also a proof of ∀ϑ, ϑ′. κ |= κ′. 43

It is possible to ombine two impliations by onjuntion, provided that all the ommon variables of theright hand sides are quanti�ed over:Lemma 26 (Conjuntion)
∀ϑ. κ1 |= κ′

1 ∀ϑ. κ2 |= κ′
2

∀ϑ. κ1 ∧ κ2 |= κ′
1 ∧ κ′

2

FV (κ′

1) ∩ FV (κ′

2) ⊂ ϑThe sketh of the proof is the following. First, if κ1 and κ2 share variables not in ϑ, these an berenamed in κ2. This ensures together with the hypothesis FV (κ′
1) ∩ FV (κ′

2) ⊂ ϑ that we an now assumethe derivations of ∀ϑ. κ1 |= κ′
1 and ∀ϑ. κ2 |= κ′

2 only share variables in ϑ (1). Then we hek that for everystep of the proof of ∀ϑ. κ1 |= κ′
1, we an add κ2 to both sides of the impliation. This is only non-trivial inthe ase of an appliation of VarIntro. In that ase, we want to prove ∀ϑ. σ(κ) ∧ κ2 |= κ ∧ κ2. But sinewe ould suppose (1), σ must leave κ2 invariant. So this is equivalent to ∀ϑ. σ(κ ∧ κ2) |= κ ∧ κ2, whihis another instane of VarIntro. We have thus proved ∀ϑ. κ1 ∧ κ2 |= κ′

1 ∧ κ2. Similarly, we an prove
∀ϑ. κ′

1 ∧ κ2 |= κ′
1 ∧ κ′

2, whih �nishes the proof.2.2.3 Constrained typesA ML≤ type is a onstrained monotype, as de�ned in Figure 2.6. The ML≤ type ∀ϑ. κ ⇒ θ is well-formedif and only if ∀∅. true |= κ holds, that is, if the onstraint κ is satis�able.Type τ ::= ∀ϑ. κ⇒ θFigure 2.6: Constrained typesWe an now de�ne a partial order on ML≤ types.De�nition 27 (Subtyping in ML≤)Let τ1 be ∀ϑ1. κ1 ⇒ θ1 and τ2 be ∀ϑ2. κ2 ⇒ θ2. , then T ⊢ τ1 ≤ML≤
τ2 holds. T ⊢ τ1 ≤ML≤

τ2 holds if andonly if the onstraint impliation
T ⊢ ∀FV (τ1), FV (τ2), t. κ2 ∧ θ2 ≤ t |= κ1 ∧ θ1 ≤ tholds for a fresh variable t.Informally, this de�nition an be interpreted as follows: given an arbitrary value for the type variables inthe ontext (orresponding to ∀FV (τ1), FV (τ2)), for any monotype t, if there is a ground instane of type

τ2 that is a subtype of t (that is κ2 ∧ θ2 ≤ t), then there is a ground instane of type τ1 that is a subtype of
t. Therefore, τ1 is a more preise type than τ2, that is to say that τ1 ≤ τ2.For instane, in the example type struture de�ned page 41, it is true that ∀u. u ≤ float ⇒ u → u ≤
int→ int. This amounts to the onstraint impliation ∀t. int→ int ≤ t |= u ≤ float∧ u→ u ≤ t, whihwas proved to hold in Setion 2.2.2.Subtyping and well-formedness have been proved deidable in [5℄.2.2.4 Instantiation of the frameworkWe now show that ML≤ types form a type algebra. The set of algebrai of types MLS is the set of ML≤ typesdenoted by τ . We have to de�ne the pre-order on S(MLS). Sine ML≤ types already inlude onstraints,they are powerful enough to represent all syntati types. Formally, we de�ne a translation funtion from
S(MLS) to MLS and use it to lift the subtyping relation to S(MLS).44

〈∀ϑ. κ⇒ θ〉 = ∀ϑ. κ⇒ θ 〈t〉 = ∀∅. true ⇒ t 〈E〉 = ∀t. t ≤ t→ t⇒ t
〈τ〉 = ∀ϑ. κ⇒ θ

〈λt.τ〉 = ∀ϑ, t. κ⇒ t→ θ

〈τ1〉 = ∀ϑ1. κ1 ⇒ θ1 〈τ2〉 = ∀ϑ2. κ2 ⇒ θ2

〈τ1 τ2〉 = ∀ϑ1, ϑ2, t. κ1 ∧ κ2 ∧ θ1 ≤ (θ2 → t)⇒ t
t 6∈ ϑ1, ϑ2, FV (κ1), FV (κ2), FV (θ1), FV (θ2)

〈let t1 be τ1 in τ2〉 = 〈τ2 [t1 ← τ1]〉
t1 ∈ FV (τ2)

〈τ1〉 = ∀ϑ1. κ1 ⇒ θ1 〈τ2〉 = ∀ϑ2. κ2 ⇒ θ2

〈let t1 be τ1 in τ2〉 = ∀ϑ1, ϑ2. κ1 ∧ κ2 ⇒ θ2

t1 6∈ FV (τ2)Figure 2.7: Translation for ML≤De�nition 28 (Translation of ML≤ types) The translation funtion 〈·〉 from S(MLS) to MLS is de�nedby ases in Figure 2.7.Algebrai types translate to themselves. The translation of a type variable is an unonstrained type,whose monotype omponent is the type variable. The translation of E is an arbitrary ill-formed ML≤ type.By De�nition 27, any type whose translation is ill-formed is equivalent to E. The translation of a lambdatype is generalized over the type of the argument. Sine ML≤ types are equal up to α-onversion, thede�nition is independent of the hoie of a name for the bound type variable, whih must not appear in
ϑ. The translation of an appliation type is done by onstraining the monotype of the funtion to be asubtype of an arrow type whose domain is the monotype of the argument. By α-onversion, we assumethat ϑ1 and ϑ2 are disjoint and we hoose a t that does not appear in any of them. We translate let typesdi�erently whether the bound type variable appears free in the body of the type or not, for the same reasonas in the translation for Hindley-Milner in Setion 2.1. In the ase where it does appear free, we de�ne thetranslation of let t1 be τ1 in τ2 as the translation of τ2 [t1 ← τ1]. This de�nition is well founded thanksto De�nition 19. Moreover, we show in Lemma 32 that we an equivalently de�ne it as the translation of
τ2 [t1 ← 〈τ1〉].De�nition 29 (Order on S(MLS)) Given a type struture T , for all syntati types τ1 and τ2 in S(MLS),
T ⊢ τ1 ≤ τ2 holds if and only if T ⊢ 〈τ1〉 ≤ML≤

〈τ2〉 holds.This de�nition allows to identify syntati types τ to their algebrai translation 〈τ〉 and to use themeta-variable τ for both.Given a type struture T , we an now built a anonial type algebra based on T . We will write A(T)for the ouple (S(MLS), T ⊢ · ≤ ·). Our main result in this setion is that A(T) is indeed a type algebra.Theorem 30 (ML-Sub) For all type struture T , A(T) is a type algebra.Before proving this theorem, we �rst haraterize the ML≤ types that are the result of the translation ofa syntati type.Lemma 31 (Translation) Let τ be a syntati type, in whih t possibly appears free, and 〈τ〉 be ∀ϑ. κ⇒ θ.Let ϑ′ be a variable list, κ′ be a ML≤ onstraint and θ′ be a ML≤ monotype. Then ∀ϑ, t, ϑ′. κ∧κ′∧θ′ ≤ t⇒ θis greater or equal to ∀ϑ, ϑ′. κ [t← θ′] ∧ κ′ ⇒ θ [t← θ′].Informally, this lemma states that the translation of syntati type variables always ours ovariantlyin the ML≤ translated type. 45

Proof of lemma 31 (Translation)Let ϑ0 be FV (∀ϑ, t, ϑ′. κ∧ κ′ ∧ θ′ ≤ t⇒ θ) ∪ FV (∀ϑ, ϑ′. κ [t← θ′]∧ κ′ ⇒ θ [t← θ′]. Then the proposition isby De�nition 29 and De�nition 27 equivalent to: ∀uϑ0. κ∧κ′∧θ′ ≤ t∧θ ≤ u |= κ [t← θ′]∧κ′∧θ [t← θ′] ≤ ufor a fresh u. We prove a generalization of this impliation quanti�ed by uϑ′
0 for an arbitrary superset ϑ′

0 of
ϑ0, by indution on the size of τ :ase τ = a or τ = t′ or τ = EThe type variable t is not free in τ , so it does not appear in κ nor in θ. Therefore this is a simpleappliation of the Triv axiom.ase τ = tThat is to say that θ = t and κ = true. We have to prove ∀uϑ′

0. κ′ ∧ θ′ ≤ t∧ t ≤ u |= κ′ ∧ θ′ ≤ u, whihis an instane of MTrans.ase τ = λt1.τ1Let 〈τ1〉 be ∀ϑ1. κ1 ⇒ θ1. Then by De�nition 28, 〈λt1.τ1〉 = ∀ϑ1, t1. κ1 ⇒ t1 → θ1. By indutionhypothesis, ∀u′ϑ′
0. κ1 ∧ κ′ ∧ θ′ ≤ t ∧ θ1 ≤ u′ |= κ1 [t← θ′] ∧ κ′ ∧ θ1 [t← θ′] ≤ u′, so by Lemma 25 thisalso holds ∀u′ϑ′

0u
′′u. By Lemma 26 with u = u′′ → u′ we get ∀u′ϑ′

0u
′′u. κ1 ∧ κ′ ∧ θ′ ≤ t ∧ u = u′′ →

u′ ∧ θ1 ≤ u′ |= κ1 [t← θ′] ∧ κ′ ∧ u = u′′ → u′ ∧ θ1 [t← θ′] ≤ u′ (1). Therefore,
∀uϑ′

0u
′′u.

κ1 ∧ κ′ ∧ θ′ ≤ t ∧ t1 → θ1 ≤ u
|= κ1 ∧ κ′ ∧ θ′ ≤ t ∧ u = u′′ → u′ ∧ u′′ ≤ t1 ∧ θ1 ≤ u′ (VElim,MElim)
|= κ1 [t← θ′] ∧ κ′ ∧ u = u′′ → u′ ∧ u′′ ≤ t1 ∧ θ′ [t← θ′] ≤ u′ (1)
|= κ1 [t← θ′] ∧ κ′ ∧ t1 → θ1 [t← θ′] ≤ u′′ → u′ = u (MIntro)We onlude by applying Lemma 24.ase τ = τ1 τ2Let 〈τ1〉 be ∀ϑ1. κ1 ⇒ θ1 and 〈τ2〉 be ∀ϑ2. κ2 ⇒ θ2. Then by De�nition 28, 〈τ〉 = ∀ϑ1, ϑ2, v. κ1∧κ2∧θ1 ≤
(θ2 → v) ⇒ v. By indution hypothesis on τ1 and τ2, for i = 1, 2, ∀uiϑ

′
i. κi ∧ κ′

i ∧ θ′ ≤ t ∧ θi ≤ ui |=
κi [t ← θ′] ∧ κ′ ∧ θi [t ← θ′] ≤ ui for arbitrary ϑ′

i and κ′
i. In partiular, we apply this hypothesis with

i = 1, ϑ′
1 = uϑ′

0 and κ′
1 = κ2 [t← θ′]∧κ′∧u1 = θ2 [t← θ′]→ t1∧ t1 ≤ u and remove the quanti�ationon u1 by Lemma 24 (RQ) (1) and with i = 2, ϑ′

2 = uϑ′
0 and κ′

2 = κ′∧θ′ ≤ t∧θ1 = u2 → u1∧κ1∧u1 ≤
t1 ∧ t1 ≤ u and remove the quanti�ation on u2 by Lemma 24 (RQ) (2). Therefore,
∀uϑ′

0.
κ1 ∧ κ2 ∧ κ′ ∧ θ′ ≤ t ∧ θ1 ≤ θ2 → t1 ∧ t1 ≤ u

|=

{

κ2 ∧ κ′ ∧ θ′ ≤ t ∧ θ′ ≤ t ∧ θ2 ≤ u2

∧ θ1 = u2 → u1 ∧ κ1 ∧ u1 ≤ t1 ∧ t1 ≤ u
(VElim, MElim)

|=

{

κ2 [t← θ′] ∧ κ′ ∧ θ′ ≤ t ∧ θ2 [t← θ′] ≤ u2

∧ θ1 = u2 → u1 ∧ κ1 ∧ u1 ≤ t1 ∧ t1 ≤ u
(2)

|=

{

κ2 [t← θ′] ∧ κ′ ∧ θ′ ≤ t ∧ θ1 ≤ (θ2 [t← θ′]→ t1)
∧κ1 ∧ t1 ≤ u

(MIntro)

|=

{

κ2 [t← θ′] ∧ κ′ ∧ θ′ ≤ t ∧ θ1 ≤ v
∧ v = (θ2 [t← θ′]→ t1) ∧ κ1 ∧ t1 ≤ u

(VarIntro with v 7→ θ2 [t← θ′]→ t1)

|=

{

κ2 [t← θ′] ∧ κ′ ∧ κ1 [t← θ′]
∧ θ1 [t← θ′] ≤ v = (θ2 [t← θ′]→ t1) ∧ t1 ≤ u

(1)
|= (κ1 ∧ κ2 ∧ θ1 ≤ θ2 → t1) [t← θ′] ∧ κ′ ∧ t1 ≤ u (MTrans)ase τ = let t1 be τ1 in τ2 where t1 6∈ FV (τ2)Let 〈τ1〉 be ∀ϑ1. κ1 ⇒ θ1 and 〈τ2〉 be ∀ϑ2. κ2 ⇒ θ2. Then by De�nition 28, 〈τ〉 = ∀ϑ1, ϑ2. κ1 ∧κ2 ⇒ θ2.Let u1 and u2 be fresh variables. By indution hypothesis on τ1 and τ2, for i = 1, 2, ∀uiϑ

′
0. κi∧κ′

i∧θ′ ≤46

t ∧ θi ≤ ui |= κi [t← θ′] ∧ κ′ ∧ θi [t← θ′] ≤ ui for an arbitrary κ′
i. By MRef on θ1 and VarIntro on

u1, ∀u2ϑ
′
0. κ1 ∧ κ2 ∧ κ′ ∧ θ′ ≤ t ∧ θ2 ≤ u |= κ1 ∧ κ2 ∧ κ′ ∧ θ′ ≤ t ∧ θ2 ≤ u ∧ θ1 ≤ u1By indution hypothesis on τ1, removing the quanti�ation on u1 by Lemma 24,

∀u2ϑ
′
0.
κ1 ∧ κ2 ∧ κ′ ∧ θ′ ≤ t ∧ θ2 ≤ u2 ∧ θ1 ≤ u1

|= κ1 [t← θ′] ∧ κ2 ∧ κ′ ∧ θ′ ≤ t ∧ θ2 ≤ u2 ∧ θ1 [t← θ′] ≤ u1

|= κ1 [t← θ′] ∧ κ2 ∧ κ′ ∧ θ′ ≤ t ∧ θ2 ≤ u2 (Triv)
|= κ1 [t← θ′] ∧ κ2 [t← θ′] ∧ κ′ ∧ θ2 [t← θ′] ≤ u2 (Ind. Hyp. 2)
|= (κ1 ∧ κ2) [t← θ′] ∧ κ′ ∧ θ2 [t← θ′] ≤ u2ase τ = let t1 be τ1 in τ2 where t1 ∈ FV (τ2)Then by De�nition 28, 〈τ〉 = 〈τ2 [t← τ1]〉, so the property is true by indution hypothesis.Proof of theorem 30 (ML-Sub)
• We �rst prove property ii of De�nition 4 (Covariane). We therefore assume τ1 ≤ τ2 and we provethat τ [t← τ1] ≤ τ [t← τ2]. The proof is by indution on the size of τ , using the axioms of onstraintimpliation. The ases of algebrai types, type variables and the error type are trivial.ase τ = λt0.τ0We an assume w.l.o.g. that t0 is di�erent from t (1) and not free in τ (2) nor in τ ′ (3).Therefore, by De�nition 3, (λt0.τ0) [t ← τ] = λt0.(τ0 [t ← τ]) and (λt0.τ0) [t ← τ ′] = λt0.(τ0 [t ←

τ ′]). By indution hypothesis, we have τ0 [t ← τ ′] ≤ τ0 [t ← τ] (1). Let ∀ϑ1. κ1 ⇒ θ1 be
〈τ0 [t← τ]〉 and ∀ϑ′

1. κ
′
1 ⇒ θ′1 be 〈τ0 [t ← τ ′]〉. (1) is therefore by De�nition 29 and De�nition 27

∀F, u1. κ1 ∧ θ1 ≤ u1 |= κ′
1 ∧ θ′1 ≤ u1, where F is FV (τ0 [t← τ]) ∪ FV (τ0 [t← τ ′]). By Lemma 25applied to fresh variables u and u0, we have ∀F, u, u0, u1. κ1 ∧ θ1 ≤ u1 |= κ′

1 ∧ θ′1 ≤ u1. Thenby Lemma 26 with the trivial impliation ∀F, u, u0, u1. u = u0 → u1 |= u = u0 → u1, we have
∀F, u, u0, u1. κ1 ∧ θ1 ≤ u1 ∧ u = u0 → u1 |= κ′

1 ∧ θ′1 ≤ u1 ∧ u = u0 → u1. Finally, we applyLemma 24 to get ∀F \ {t0}, u. κ1 ∧ θ1 ≤ u1 ∧ u = u0 → u1 |= κ′
1 ∧ θ′1 ≤ u1 ∧ u = u0 → u1 (4).We an now prove the desired property: λt0.τ0 [t ← τ ′] ≤ λt0.τ0 [t ← τ]. By De�nition 29 andDe�nition 27, this amounts to:

∀F \ {t0}, u.
κ1 ∧ t0 → θ1 ≤ u

|= κ1 ∧ t0 ≥ u0 ∧ θ1 ≤ u1 ∧ u = u0 → u1 (VElim,MElim)
|= κ′

1 ∧ t0 ≥ u0 ∧ θ′1 ≤ u1 ∧ u = u0 → u1 (4)
|= κ′

1 ∧ t0 → θ′1 ≤ u (MIntro)ase τ = τ1 τ2By De�nition 3, (τ1 τ2) [t ← τ] = (τ1 [t ← τ]) (τ2 [t ← τ]) and (τ1 τ2) [t ← τ ′] = (τ1 [t ←
τ]) (τ2 [t ← τ ′]). Let ∀ϑ1. κ1 ⇒ θ1 be 〈τ1 [t ← τ]〉, ∀ϑ′

1. κ
′
1 ⇒ θ′1 be 〈τ ′

1 [t ← τ]〉, ∀ϑ2. κ2 ⇒ θ2 be
〈τ2 [t ← τ]〉, and ∀ϑ′

2. κ
′
2 ⇒ θ′2 be 〈τ ′

2 [t ← τ]〉, and let F1, F ′
1, F2 and F ′

2 be the free variables of
τ1 [t ← τ], τ1 [t ← τ ′], τ2 [t ← τ], and τ2 [t ← τ ′] respetively. We an assume w.l.o.g that thebound variables ϑ1, ϑ′

1, ϑ2 and ϑ′
2 are all disjoint from eah other and from F1 ∪ F ′

1 ∪ F2 ∪ F ′
2(1). We need to prove (τ1 [t ← τ ′]) (τ2 [t ← τ ′]) ≤ (τ1 [t ← τ]) (τ2 [t ← τ]). By De�nition 29 andDe�nition 27, this amounts to ∀F1, F2, F

′
1, F

′
2, u. κ1 ∧ κ2 ∧ θ1 ≤ θ2 → t ∧ t ≤ v |= κ′

1 ∧ κ′
2 ∧ θ′1 ≤

θ′2 → t ∧ t ≤ v.
∀F1, F2, F

′
1, F

′
2, v.

κ1 ∧ κ2 ∧ θ1 ≤ θ2 → t ∧ t ≤ v
|= κ1 ∧ κ2 ∧ θ1 ≤ θ1 ∧ θ1 ≤ θ2 → t ∧ t ≤ v (MRef)
|= κ1 ∧ κ2 ∧ θ1 ≤ u1 ∧ u1 ≤ θ2 → t ∧ t ≤ v (VarIntro with u1 7→ θ1)
|= κ1 ∧ κ2 ∧ θ1 ≤ u1 ∧ u1 = u2 → u′

2 ∧ θ2 ≤ u2 ∧ u′
2 ≤ t ≤ v (VElim,MElim)47

We referene this impliation as (2). We now use the indution hypothesis, whih is τ1 [t← τ] ≤
τ1 [t ← τ ′] and τ2 [t ← τ] ≤ τ2 [t ← τ ′]. By De�nition 29 and De�nition 27, this amounts tothe onstraint impliations ∀F1, F

′
1, u1. κ1 ∧ θ1 ≤ u1 |= κ′

1 ∧ θ′1 ≤ u1, and ∀F2, F
′
2, u2. κ2 ∧ θ2 ≤

u2 |= κ′
2 ∧ θ′2 ≤ u2. In the �rst impliation, the variables appearing in the right hand side areeither the free variables F ′

1 of ∀ϑ′
1. κ

′
1 ⇒ θ′1, whih are already quanti�ed over, or the boundvariables ϑ′

1, whih are disjoint from ϑ′
2, F2 and F ′

2 by (1). The same argument applies the seondimpliation. Therefore, we an extend both impliations to ∀F1, F2, F
′
1, F

′
2, u1, u2, u by Lemma 25.Furthermore, we an apply Lemma 26, whih shows that ∀F1, F2, F

′
1, F

′
2, u1, u2, u. κ1 ∧ κ2 ∧ θ1 ≤

u1 ∧ θ2 ≤ u2 |= κ′
1 ∧ κ′

2 ∧ θ′1 ≤ u′
1 ∧ θ′2 ≤ u′

2 holds. We apply one again Lemma 26 with theimpliation ∀F1, F2, F
′
1, F

′
2, u1, u2, u. u1 = u2 → u′

2 ∧ u′
2 ≤ t ∧ t ≤ u |= u1 = u2 → u′

2 ∧ u′
2 ≤

t∧ t ≤ u, whih is an instane of Triv. Using Lemma 24, this gives us the next step in our mainproof, namely:
∀F1, F2, F

′
1, F

′
2, u.

κ1 ∧ κ2 ∧ θ1 ≤ u1 ∧ u1 = u2 → u′
2 ∧ θ2 ≤ u2 ∧ u′

2 ≤ t ∧ t ≤ v
|= κ′

1 ∧ κ′
2 ∧ θ′1 ≤ u1 ∧ u1 = u2 → u′

2 ∧ θ′2 ≤ u2 ∧ u′
2 ≤ t ∧ t ≤ v

|= κ′
1 ∧ κ′

2 ∧ θ′1 ≤ u1 ∧ u1 = θ′2 → t ∧ t ≤ v (MIntro)
|= κ′

1 ∧ κ′
2 ∧ θ′1 ≤ θ′2 → t ∧ t ≤ v (MTrans)By transitivity with (2), this shows the desired property.ase τ = let t0 be τ0 in τ ′

0 with t0 ∈ FV (τ ′
0)We an assume w.l.o.g. that t0 is di�erent from t (1) and not free in τ ′ (2) nor in τ (3). Therefore,

(let t0 be τ0 in τ ′
0) [t← τ ′]

= let t0 be τ0 [t← τ ′] in τ ′
0 [t← τ ′] (De�nition 3)

≡ τ ′
0 [t← τ ′] [t0 ← τ0 [t← τ ′]] (De�nition 28)

= τ ′
0 [t0 ← τ0] [t← τ ′] ((1) and (2))

≤ τ ′
0 [t0 ← τ0] [t← τ] (Indution hypothesis)

= τ ′
0 [t← τ ′] [t0 ← τ0 [t← τ]] ((1) and (3))

≡ let t0 be τ0 [t← τ] in τ ′
0 [t← τ] (De�nition 28)

= (let t0 be τ0 in τ ′
0) [t← τ] (De�nition 3)Note that we an apply the indution hypothesis on τ ′

0 [t0 ← τ0] sine by De�nition 19 it has asmaller size than τ .ase τ = let t0 be τ0 in τ ′
0 with t0 6∈ FV (τ ′

0)We an assume w.l.o.g. that t0 is di�erent from t (1) and not free in τ1 (2) nor in τ2(3). We suppose that τ1 ≤ τ2, and we must prove that (let t0 be τ0 in τ ′
0) [t ← τ1] ≤

(let t0 be τ0 in τ ′
0) [t ← τ2]. By De�nition 3 with (1), (2) and (3), for i = 1, 2, τ [t ←

τi] = let t0 be τ0 [t ← τi] in τ ′
0 [t ← τi]. Let, for i = 1, 2, ∀ϑi. κi ⇒ θi be 〈τ0 [t ← τi]〉and ∀ϑ′

i. κ
′
i ⇒ θ′i be 〈τ ′

0 [t← τi]〉. We an assume w.l.o.g. that the ϑi and ϑ′
i are all pair-wise dis-joint (4). Let ϑ be FV (τ0 [t← τ1])∪FV (τ0 [t← τ2]) and ϑ′ be FV (τ ′

0 [t← τ1])∪FV (τ ′
0 [t← τ2]).Then by De�nition 28, 〈let t0 be τ0 [t ← τi] in τ ′

0 [t ← τi]〉 = ∀ϑiϑ
′
i. κi ∧ κ′

i ⇒ θ′i. By theindution hypothesis τ0 [t ← τ1] ≤ τ0 [t ← τ2], ∀uϑ. κ2 ∧ θ2 ≤ u |= κ1 ∧ θ1 ≤ u. By Lemma 24,
∀ϑ. κ2 ∧ θ2 ≤ u |= κ1 ∧ θ1 ≤ u. So by VarIntro and Triv, ∀ϑ. κ2 |= κ1. Furthermore,by the indution hypothesis τ ′

0 [t ← τ1] ≤ τ ′
0 [t ← τ2], ∀u′ϑ′. κ′

2 ∧ θ′2 ≤ u′ |= κ′
1 ∧ θ′1 ≤ u′.For every variable in ϑ′ that does not belong to ϑ, it does not appear in κ1 sine ϑ inludesthe free variables present in κ1, and the bound variables are di�erent by (4). Furthermore, thesame reasoning is valid for variables in ϑ that do not belong to ϑ′, and u′ is fresh. So, byLemma 25, ∀u′(ϑ ∪ ϑ′). κ2 |= κ1 and ∀u′(ϑ ∪ ϑ′). κ′

2 ∧ θ′2 ≤ u′ |= κ′
1 ∧ θ′1 ≤ u′. Therefore,by Lemma 26 (Conjuntion), ∀u′(ϑ ∪ ϑ′). κ2 ∧ κ′

2 ∧ θ′2 ≤ u′ |= κ1 ∧ κ′
1 ∧ θ′1 ≤ u′. That is,

(let t0 be τ0 in τ ′
0) [t← τ1] ≤ (let t0 be τ0 in τ ′

0) [t← τ2].
• Let us prove property iii of De�nition 4 (Redution): (λt.τ) τ ′ ≥ τ [t← τ ′]. Let ∀ϑ. κ⇒ θ be 〈τ〉 and48

∀ϑ′. κ′ ⇒ θ′ be 〈τ ′〉. If t appears in τ , then 〈τ [t← τ ′]〉 is ∀ϑ, ϑ′. κ [t← θ′] ∧ κ′ ⇒ θ [t← θ′], otherwise
〈τ [t← τ ′]〉 is ∀ϑ. κ⇒ θ.

〈(λt.τ) τ ′〉
= ∀ϑ, t, ϑ′, v. κ ∧ κ′ ∧ t→ θ ≤ θ′ → v ⇒ v (De�nition)
≡ ∀ϑ, t, ϑ′, v. κ ∧ κ′ ∧ θ′ ≤ t ∧ θ ≤ v ⇒ v (MElim for →)
≡ ∀ϑ, t, ϑ′. κ ∧ κ′ ∧ θ′ ≤ t⇒ θBy Lemma 31 (Translation), ∀ϑ, t, ϑ′. κ∧κ′∧θ′ ≤ t⇒ θ is greater or equal to ∀ϑ, ϑ′. κ [t← θ′]∧κ′ ⇒

θ [t← θ′].If t appears in τ , this type is equal to 〈τ [t← τ ′]〉. Otherwise, t does not appear in κ nor θ, so this typeis equal to ∀ϑ, ϑ′. κ∧ κ′ ⇒ θ, whih is by Triv greater or equal to ∀ϑ. κ⇒ θ, whih is 〈τ [t← τ ′]〉. Sothe inequality holds in both ases.
• Finally, property iv of De�nition 4 (Let) is straightforward. If t belongs to FV (τ2), then by Def-inition 28 and De�nition 29, let t be τ1 in τ2 ≡ τ2 [t ← τ1]. Otherwise, let ∀ϑ1. κ1 ⇒ θ1be 〈τ1〉 and ∀ϑ2. κ2 ⇒ θ2 be 〈τ2〉. Then 〈τ2 [t ← t1]〉 = 〈τ2〉 = ∀ϑ2. κ2 ⇒ θ2. Furthermore,
∀t. κ1 ∧ κ2 ∧ θ2 ≤ t |= κ2 ∧ θ2 ≤ t is a diret instane of Triv, so let t be τ1 in τ2 ≥ τ2 [t ← τ1]holds by De�nition 29.In pratie, the de�nition in De�nition 28 of the translation of let t1 be τ1 in τ2 where t1 is free in

τ2 as the translation of τ2 [t1 ← τ1] is problemati, beause it implies that τ1 must be translated multipletimes, for eah ourene of t1 in τ2. We now show that this an be avoided.Lemma 32 (E�ient translation of let types) Let t1 be a type variable, and τ1 and τ2 two syntatitypes of S(MLS). Then the ML≤ types 〈τ2 [t1 ← τ1]〉 and 〈τ2 [t1 ← 〈τ1〉]〉 are equivalent.Consequently, using 〈τ2 [t1 ← 〈τ1〉]〉 in the translation leads to an idential type algebra.Proof of lemma 32 (E�ient translation of let types)By De�nition 28, 〈〈τ1〉〉 = 〈τ1〉. So by De�nition 29, 〈τ1〉 ≡ τ1. Therefore, by Theorem 30 (ML-Sub) andproperty ii of De�nition 4 (Covariane), 〈τ2 [t1 ← τ1]〉 ≡ 〈τ2 [t1 ← 〈τ1〉]〉 holds.

49

50

Part IIObjet-orientation

51

Chapter 3ClassesIn this hapter we present an extension language for the delaration of lasses. Our lasses are taggedextensible reords of �elds. They do not ontain methods, sine methods an be delared independently, asformalized in Chapter 4. This removes the need to distinguish subtyping from sublassing, even in preseneof ovariant speialization of methods [11℄. Therefore, we only desribe how lass delarations delare objetreation and �eld aess operators. Most of the original aspet of the work lies in the typing of multi-methodsdesribed in Setion 8.6. However, it should be possible to �t other approahes to objet-orientation in ourframework.We takle the general ase of multiple inheritane, whih inludes single inheritane as a subase. Classesan be parameterized by types. Therefore, eah lass does not de�ne a type, but a type onstrutor with thesame name. Classes ome with a signature that desribes its number of type parameters and the variane ofeah of them: respetively ⊕, ⊖ and ⊗ for o-, ontra- and non-variant type parameters. A lass an onlyinherit from lasses with the same variane. We shall thus often leave the variane annotations impliit. Forinstane, a lass list⊕[t] de�nes a type onstrutor with one ovariant type parameter.Class delarations list the set of �elds of the delared lass. We use integers to label �elds for the ease ofthe presentation, but using names instead would raise no problem. The onrete syntax for the delarationof a lass C of variane V is:lass CV [t] extends C1, ..., Cm {1 : F1(t), ..., p : Fp(t)}where eah Fi is a funtion mapping the type parameters t to monotypes. If a value has type CV [Θ] (andtherefore is an instane of lass CV by Requirement 38), then Fi(Θ) is the type of its ith �eld.For instane, lists an be de�ned by an abstrat lass list and two sublasses, the empty list nil andthe non-empty list cons: lass list⊕[t] { }lass nil⊕[t] extends list { }lass cons⊕[t] extends list { 1 : t, 2 : list[t] }Field types are monomorphi: they an only depend on the type parameters of the lass. This restritionarises from the fat that we want �eld aess operators to have a rank-1 polymorphi type, that is, with allquanti�ers at the front of the type. Otherwise, if we ould de�ne lass C[t] { 1:∀u. u→ t } , then the typeof the �eld aess operator would be ∀t. C[t] → (∀u. u → t), of rank 2. Note that, unlike in the enodingof lasses as extensible reords of �elds and methods, this restrition does not prevent methods from beingpolymorphi, sine methods are not lass members (see Setion 4).A lass delaration an be interpreted as a partial de�nition for an ML≤ type struture, as introduedin Setion 2.2. It introdues a new type onstrutor for the lass, as well as subtyping between this newonstrutor and the type onstrutors orresponding to its super-lasses.De�nition 33 (Partial type struture) The partial type struture indued by a lass delaration, noted
TS(lass CV [t] extends C1, ..., Cm ...), is the ouple ({CV }, {CV ≤ C1, ..., CV ≤ Cm}).53

In a program, whih typially inludes several lass delarations, the type struture is the union of allpartial lass strutures. We formalize the notion of program in Chapter 4.De�nition 34 (Type struture) Given a set of lass delarations C1, ..., Cn, let (ci, oi) be TS(Ci). Theindued type struture TS(C1, ..., Cn) is (
⋃n

i=1 ci, (
⋃n

i=1 oi)
∗), where ∗ is the re�etive and transitive losureof relations.For instane, the type struture de�ned by the list hierarhy is

({list, nil, cons}, {nil ≤ list, cons ≤ list})For a lass delaration to be valid, its �eld types must respet the variane of the lass. For instane,sine cons⊕[t] has variane ⊕, it an have a �eld with type t, but not with a type of the form t → θ forsome monotype θ, sine t appears ontra-variantly in that type. Without this restrition, we ould de�ne alass lass bad⊕[t] { 1: t → bool } . By ovariane, a value of type bad[int] ould be used in a ontext avalue of type bad[float] is expeted. However, this ontext ould feth the �eld, and expet it to be of type
float→ bool, while the value might only be of type int→ bool, whih is not a subtype of float→ boolby the ontra-variane of →. Similarly, if we formalized mutability, a lass with a ovariant type parameterould not have a mutable �eld of that type. The general ondition is formalized in the following requirement:Requirement 35 (Fields) Let C be a lass delared by lass CV [t] extends C1, ..., Cm {1 : F1(t), ..., p :
Fp(t)}. Then, the following ML≤ impliation must hold for all i in 1..p:

∀t t
′
. t ≤V t

′
|= Fi(t) ≤ Fi(t

′
)3.1 Objet instantiationWe shall now see how lass delarations impliitly add onstants to the ore language. Eah lass delarationintrodues a new data onstrutor whose arity is equal to the number of �elds of instanes of C, inludingthe �elds de�ned in the super-lasses of C. We an therefore represent an objet as the appliation of a newdata onstrutor to a value for eah �eld in a given, arbitrary order.We use ordered lists to represent the super-lasses and the �elds of lasses. We shall write [x1, x2, ..., xn]for the list of n elements, in order x1, then x2, until xn. We shall write + for list onatenation. That is,

[x1, ..., xn] + [y1, ..., ym] is [x1, ..., xn, y1, ..., ym]. Given two lists L1 and L2, we shall write L1 \L2 for the listthat has all elements of L1 that do not appear in L2. Finally, we write • for the dupliate-free onatenationof lists. That is, L1 • L2 is de�ned as L1 + (L2 \ L1). It follows that • is assoiative: (L1 • L2) • L3 is thesame list as L1 • (L2 • L3), and an therefore be simply written as L1 • L2 • L3.De�nition 36 (Super-lass and �eld lists) Let C be a lass delared bylass CV [t] extends C1, ..., Cm {1 : F1(t), ..., p : Fp(t)}.
sc(C) = sc(C1) • sc(C2) • ... • sc(Cm) • [C]

Fields(C) = [F1, ..., Fp]

AllFields(C) = Fields(D1) + ... + Fields(Dn) where [D1, ..., Dn] = sc(C)The use of • avoids listing a lass twie if it is inherited through two di�erent paths.We will need to ompute the �rst index of the �elds delared by a lass C in the ordered list of all �eldsof a sublass C′ of C. We will ompute this index as shift(sc(C′), C), where shift(C, C) is de�ned indutivelyby ase on the �rst element of the �rst parameter:
shift([C1, C2, ..., Cn], C) = 0 (C1 = C)

shift([C1, C2, ..., Cn], C) =
∣

∣Fields (C1)
∣

∣ + shift([C2, ..., Cn], C) (C1 6= C)The shift meta-operator veri�es the following lemma:54

Lemma 37 (Shift) Let C be an element of sc(C′), [F1, ..., Fp] be Fields (C), and i be an integer in 1..p.Then
AllFields(C′)shift(sc(C′),C)+i = FiThe data onstrutor new C is used to reate objet values by appliation to �eld expressions of theexpeted type. Let [F ′

1, ..., F
′
n] be AllFields(C), then

constant-type(new C) = ∀t. F ′
1(t)→ ...→ F ′

n(t)→ C[t]For instane, the instantiation operators for the list hierarhy have the following types:
constant-type(new nil) = ∀t. nil[t]
constant-type(new cons) = ∀t. t→ list[t]→ cons[t]A lass C an also be delared abstrat in order to assert that no objet is built on this lass. In thisase the operator new C is not introdued.Below, we require that new C is the only data onstrutor that may reate an objet with a typeonstruted on C, as formalized by the following requirement.Requirement 38 (Class type) Let C be a lass of variane V . Let t be a list of fresh type variables oflength arity(V). Let v be a value of type ∀ϑv. κv ⇒ θv. Then if true |= κv ∧ θv ≤ C[t] holds, v is of the formnew C′ v1 ... vn with n = |AllF ields(C′)| and C ∈ sc(C′).The onstraint impliation true |= κv ∧ θv ≤ C[t] holds when there exists monotypes θ and an instaneof the type of v whih is a subtype of C[θ]. In partiular, it follows that the �eld aess operators of lass C,whih we de�ne in the next setion, an be applied to v. Requirement 38 will allow us to state in Lemma 39that this is only possible for objet instanes, reated by new.This requirement does restrit the expressiveness of objets but simply rules out faulty data onstrutorsthat would have an objet type without being an objet of lass C. In turn, this would prevent �eld aessoperators from being total on their domain. Without Requirement 38, one ould for instane de�ne a dataonstrutor null with type ∀t. t. The value null would therefore be usable anywhere any objet is expeted,but there would be no possible meaningful redution for the appliation of �eld aess operator to null.3.2 Field aess in lassesObjet values are built by instantiation of lasses. Symmetrially, it is neessary to be able to de-onstrut these objets by aessing the values of their �elds. To this end, eah lass delarationlass CV [t] extends C1, ..., Cm (1 : F1(t), ..., p : Fp(t)) de�nes p �eld aess operators for eah �eld de-lared in C. The operator that aesses the ith �eld delared in lass C is written C.i. It has the followingtype:

constant-type(C.i) = ∀t. C[t]→ Fi(t)For instane, the �eld aess operators for the example list hierarhy have the following types:
constant-type(cons.1) = ∀t. list[t]→ t
constant-type(cons.2) = ∀t. list[t]→ list[t]Lemma 39 (Field aess) Let C be a lass, C.i be a �eld aess operator of lass C, and v be a value suhthat C.i v is well-typed. Then v is of the form new C′ v1 ... vn with n = |AllF ields(C′)| and C ∈ sc(C′).55

Proof of lemma 39Let ∀ϑ. κ⇒ θ be type(v), let V be the signature of lass C and t be a list of type variable of length arity(V).By De�nition 27 and the hypothesis that C.i v is well-typed, the type ∀t, ϑ. κ ∧ θ ≤ C[t] ⇒ Fi(t) is wellformed. That is, the onstraint impliation true |= κv ∧ θv ≤ C′[t] holds. Therefore, by Requirement 38(Class type), v is of the form new C′ v1 ... vn, where n = |AllF ields(C′)| and C ∈ sc(C′).In order to de�ne the redution rule for the �eld aess operator C.i, we use the shift meta-operatorde�ned in the previous setion.
C.i (new C′ e1 ... en) −→ eshift(sc(C′),C)+iNote that, by Lemma 39, C.i (new C′ e1 ... en) an only be well-typed if C′ is a sublass of C. Thisensures that shift(sc(C′), C) is well-de�ned.Next, we show that the �eld aess operator is soundly de�ned.Theorem 40 (Field aess soundness) Given a type struture and a set of operators suh that Require-ment 35 and Requirement 38 are ful�lled, let C.i be a �eld aess operator. Then the two following propertieshold:

• if C.i v is well-typed, then there exists a value v′ suh that C.i v −→ v′. Furthermore, v is of the formnew C′ v1 ... vn and v′ = vshift(sc(C′),C)+i;
• if

type(C.i (new C′ v1 ... vn)) = τthen there exists τ ′ suh that
type(vshift(sc(C′),C)+i) = τ ′ and τ ′ ≤ τProof of theorem 40 (Field aess soundness)

• By hypothesis, C.i v is well-typed. Therefore, by Lemma 39 (Field aess), v is of the formnew C′ v1 ... vn, where n = |AllF ields(C′)| and C ∈ sc(C′). So by the redution rule for �eldaess, the expression C.i v redues to vshift(sc(C′),C)+i.
• We omit here the annotation by variane V . Let ∀ϑvj

. κvj
⇒ θvj

be type(vj) for j in 1..n and ∀t. F1(t)→
...→ Fn(t)→ C′[t] be type(new C′). Therefore, by App and De�nition 28:

type(new C′ v1 ... vn) = ∀tϑvj
. κvj

∧ θvj
≤ Fj(t)⇒ C′[t]with j ranging from 1 to n. Let t and t

′ be distint fresh monotype variable lists of length arity(V).Then by Figure 1.4 and De�nition 28, type(C.i (new C′ v1 ... vn)) = ∀t t
′
ϑvj

. κvj
∧θvj

≤ Fj(t)∧C′[t] ≤

C[t
′
]⇒ F ′

i (t
′
) (5).Let s be the integer shift(sc(C′), C) + i. We laim that the type ∀ϑes. κs ⇒ θs of vs is a subtype of(5). By De�nition 27 this amounts to:

∀t t t
′
.

κvj
∧ θvj

≤ Fj(t) (j ranging from 1 to n) ∧C′[t] ≤ C[t
′
] ∧ F ′

i (t
′
) ≤ t

|= κvs
∧ θes ≤ Fs(t) ∧ C′[t] ≤ C[t

′
] ∧ F ′

i (t
′
) ≤ t (Triv, keeping only j = s)

|= κvs
∧ θes ≤ F ′

i (t) ∧ C′[t] ≤ C[t
′
] ∧ F ′

i (t
′
) ≤ t (Lemma 37: Fs = F ′

i)

|= κvs
∧ θes ≤ F ′

i (t) ∧ t ≤ t
′
∧ F ′

i (t
′
) ≤ t (MElim)

|= κvs
∧ θes ≤ F ′

i (t) ≤ F ′
i (t

′
) ≤ t (Requirement 35, Lemma 26)

|= κvs
∧ θes ≤ t (MTrans)Restrition to ∀t by Lemma 24 onludes. 56

Chapter 4Generi funtionsMulti-methods are less popular than mono-methods used in single-dispath languages (C++ [41℄, Java [25℄,OCaml [40℄, ...). Nevertheless, they have been studied and used in several programming languages (CLOS[4, 23℄, Dylan [21℄, Ceil [13, 14℄, ...). However, their type-heking in the presene of polymorphi types, ina deidable and modular way that preserves type inferene on ML expressions is still an issue.In this setion, we present a formalization of generi funtions in our framework. Generi funtions areoperations that an selet di�erent behavior depending on the type of their arguments. They apture theessential properties of multi-methods, while being more general, by abstrating over the type algebra usedto typehek them. Thus they are a good framework to formalize type-heking and modularity. In thissetion we only present the type-heking aspet. We handle modularity in Chapter 8.4.1 ExampleFor this example we assume a type algebra that has bounded polymorphi types. As this example is onlymeant to support intuition, we deliberately remain informal. Base types inlude int, float, and num suhthat int ≤ float ≤ num. Type num is abstrat in the sense that it has no diret instane. Conversely, intand float are onrete.In order to motivate the introdution of generi funtions, assume given two monomorphi funtions
opp_float and opp_int that ompute the unary minus funtion on �oats and integers. We would liketo de�ne a funtion that omputes the opposite of any number. The funtion opp_float ould be used,beause an integer an be onsidered as a �oat by subsumption. However, in that ase the result has type
float, while we know statially that it is int. Bounded polymorphism allows to give it the more preise type
∀t ≤ num. t→ t. However, opp_float annot be given this type sine it always returns a �oat. Furthermore,the only funtion with this type that an be written in Core-ML is the identity on num.What we need is a generi funtion onstrut that pattern mathes on the runtime-type of its arguments.In our example: generi opp : ∀t ≤ num. t→ t =

float⇒ opp_float
int⇒ opp_intThe intent is that one of the implementations of the generi funtion will be seleted and applied, atruntime, depending on the runtime type of the argument. Eah implementation branh onsists of a list ofpatterns to delare the types it handles and of an expression that implements the generi funtion in thatase. There must be one pattern for eah argument of the generi funtion. In the example above, thelists of patterns of eah implementation have a single element, respetively float and int, sine the generifuntion has only one parameter. No implementation is needed for num sine it is an abstrat type.57

4.2 SyntaxThe syntax for programs with generi funtions is:Generi funtion G ::= generi g : τ = I1, ...IpImplementation I ::= π ⇒ eClass C ::= lass C extends C { ... }Delaration D ::= G | CProgram P ::= let re D in ewhere π belongs to a language of patterns. A pattern represents the set of types that belong to that pattern,as de�ned by the binary prediate τ ∈ π. Both the set of patterns and this prediate are left abstrat at thisstage. A semantis for programs with generi funtions is �rst de�ned in Setion 4.3; then in Setion 4.4we state type-heking rules and express the property that these abstrat omponents must verify so as toensure type soundness. We provide a onrete instane of generi funtions in Setion 8.6.4.3 SemantisWe need to de�ne the redution rules for generi funtion operators. To this end, we formalize what it meansfor a pattern to math a tuple of types in the following de�nition:De�nition 41 (Pattern mathing) A pattern π mathes (τ1, ..., τn) if for all i in 1..n, τi ∈ πi holds.We also de�ne an ordering on patterns. A pattern is smaller than another one if it mathes more types.De�nition 42 (Pattern ordering) A pattern π1 is smaller or equal to a pattern π2, written π1 ≤ π2, iffor all types (τ1, ..., τn) suh that π2 mathes (τ1, ..., τn), π1 mathes (τ1, ..., τn).A pattern π1 is smaller than a pattern π2, written π1 < π2, if π1 ≤ π2 holds and π2 ≤ π1 does not hold.We order implementations based on the order of their patterns.De�nition 43 (Implementation ordering) An implementation π1 ⇒ e1 is smaller than (respetivelysmaller or equal to) a pattern π2 ⇒ e2 if π1 is smaller than (respetively smaller or equal to) π2.Intuitively, smaller implementations are more preise, beause they are appliable to less types.The delaration generi g : τ = π1 ⇒ e1, ..., πp ⇒ ep introdues an operator g in the language, with
constant-type(g) = τ . The redution rules for this operator are de�ned by:

πi mathes (type(v1), ..., type(vn))

(v1, ..., vn, ei v1 ... vn) ∈ R(g)Hene, we have de�ned an operator that �ts the general framework of Setion 1. In partiular, the derivedrule obtained by ombination with the redution rule for operators Op is then:
πi mathes (type(v1), ..., type(vn))

g v1 ... vn −→ ei v1 ... vnNote that the semantis is possibly non-deterministi sine several implementations might math a giventuple of arguments. For instane, onsider the generi funtiongeneri add : ∀t ≤ num. (t, t)→ t =
float, float⇒ ...
float, int⇒ ...
int, float⇒ ...The addition of two integers ould be handled by the seond and the third implementation, and, by symmetry,there is no reason to hoose one rather than the other. In pratie, it is often desirable to enfore a58

deterministi behavior. This an be ahieved by requiring that generi funtions are not ambiguous. Thisrequires that for eah possible all there exists a most spei� mathing implementation. Redution thenhappens unambiguously by seletion of the most spei� implementation. This aspet is well-known fromthe study of multi-methods [28, 2, 13, 6℄, and is orthogonal to type-soundness.The semantis is typed in the sense that the types of the values are used in the de�nition of the redutionrule. However, this does not mean that expressions have to arry a type at run-time. In opposition todynami values (values arrying runtime types on whih type mathing an be performed, as in [30, 1℄),types involved here are not stati types arried at runtime, but runtime types. In the general ase, redutionan therefore require the omputation of the runtime types, whih an be ostly in term of performane.However, depending on the atual language of patterns that is used, redution might also be performedwithout atually omputing the types of the arguments. For instane, in an objet-oriented language, objetvalues may arry the lass of whih they are an instane. Therefore, if one an deide whether a type mathesa pattern solely onsidering the lass on whih the type is built, redution an be implemented without anyruntime type omputation. This is indeed the ase for multi-methods, as an be seen in Setion 8.6.Note that sine generi funtions are operators, they are made available globally to the whole programby rule Cst. They an therefore appear in generi funtion bodies, so that generi funtions are globallymutually reursive. In partiular, this allows for polymorphi reursion. This does not lead to undeidabilityof typeheking sine types of generi funtions are delared and not inferred.4.4 Type-hekingGiven a program P ontaining the lass delarations C1, ..., Cn, we plae ourselves in the type struture
TS(C1, ..., Cn) as de�ned in De�nition 34.We now present a stati type system to detet errors in programs with generi funtions. Thanks to ourgeneral soundness result, Theorem 12, this redues to proving that generi funtions de�ne operators thatsatisfy Requirement 9 (Constants). Informally, the type of a generi funtion introdues two requirementson its implementations, orresponding to the �subjet-redution� and �progress� parts of the requirement foroperators.Firstly, it an be seen as a spei�ation that every implementation must meet. However, sine the patternsrestrit the domain of the arguments, this type an be speialized, taking into aount the information inthe patterns. Thus, we require a notion of restrition of a type to a list of patterns, and we demand thateah implementation has a subtype of the restrition of the generi type to the implementation's patterns.For instane, the restrition of the type ∀t ≤ num. t → t of opp to pattern float is float → float. Apartiular ase arises when the restrited type is the error type E. Sine E is maximal, the above requirementis trivially satis�ed. However, this situation orresponds to an implementation that would never be used(whih is why no ondition is needed on the type of the implementation to ensure type safety). Therefore, itmakes good sense to additionally require that the restrited type is not E. For instane, an implementationof opp with pattern string would be rejeted, sine string is not a subtype of num.Formally, we assume given a total funtion restrict. The type restrict(τ, π) de�nes the restrition of a type
τ to a list of patterns π. It must satisfy the following requirement:Requirement 44 (Restrition) For all types τ , τi (i = 1..n) and patterns π,

τi ∈ πi (i = 1..n)

restrict(τ, π) τ1 ... τn ≤ τ τ1 ... τnAs an example, we give possible de�nitions for restrict and ∈ in the monomorphi type algebra of Se-tion 1.1.2. Patterns are in this ase simply algebrai types denoted by a. A type belongs to a pattern if itis a subtype of that pattern. That is, a ∈ a′ holds i� a ≺ a′. The restrition of a funtional type to a listof patterns is the funtional type whose domain is the list of patterns and whose odomain is the originalodomain. That is, restrict(a, b1...bn) is b1 → ... → bn → a0 when a is of the form a1 → ... → an → a0 and
bi ≺ ai holds for all i from 1 to n; it is E otherwise. It is easy to hek that Requirement 44 (Restrition)59

is satis�ed by these de�nitions. The rationale for the de�nition of restrict is that when a generi funtion oftype a1 → ... → an → a0 is applied to values of types b1...bn, it needs to be implemented by a funtion oftype b1 → ...→ bn → a0.We an now de�ne the validity of a generi funtion delaration, and of an implementation.De�nition 45 (Valid implementation) An implementation π ⇒ e is valid for type τ if1. restrict(τ, π) 6= E2. type(e) ≤ restrict(τ, π)De�nition 46 (Valid generi funtion) The delaration of a generi funtion generi g : τ =
I1, ..., Ip is valid if for all i, the implementation Ii is valid for type τ .Condition (1) in De�nition 45 prevents from using patterns that are inompatible with the domain of thegeneri funtion and that would therefore never be used. This ondition is not mandatory but makes goodsense. Conversely, ondition (2) is essential to ensure subjet-redution.Now, we onsider the seond requirement on the implementations of a generi funtion, whih is neessaryto ful�ll the Requirement Requirement 9.i, that is the �progress� part. To this end, one an notie that thetype of the generi funtion determines its domain. The implementation branhes, taken together, must overthis domain. Bak to the introdutory example, the generi funtion opp must possess an implementationfor any non-abstrat subtype of num. It is indeed not neessary that an implementation exists for types thathave no runtime values. We therefore de�ne run-time types and overed generi funtions :De�nition 47 (Runtime type) A type τ is a run-time type if there exists a value v suh that type(v) = τ .De�nition 48 (Covered generi) A generi funtion generi g : τ = π1 ⇒ e1, ...πp ⇒ ep is overedif for all run-time types τ1, ..., τn suh that τ τ1 ... τn 6= E, there exists an index i suh that πi mathes
(τ1, ..., τn).Chambers and Leavens present an e�ient algorithm for testing overage (and non-ambiguity, to ensuredeterminism) in [16℄, whih is appliable in our ontext. Therefore, we do not address this point.It is now possible to express a su�ient ondition for programs with generi funtions to be sound.Theorem 49 (Generi funtions) The operators de�ned by valid and overed generi funtions satisfyRequirement 9 (Constants).The �rst part of Requirement 9 (Constants) is diretly implied by De�nition 48 of overed generifuntions together with the redution rules. The seond part is a onsequene of De�nition 45 of a validimplementation, using Requirement 44 (Restrition) on the restrition operator.Proof of theorem 49 (Generi funtions)Sine generi funtions are operators, we need to prove parts i and ii of Requirement 9 (Constants).i. By hypothesis, g v1 ... vn is well-typed, so by De�nition 47 eah type(vi) is a runtime type. So, byDe�nition 48, there exists an implementation π1...πn ⇒ e suh that, for i from 1 to n, type(vi) ∈ πi.Therefore, by de�nition of redution rules, g v1 ... vn −→ e v1 ... vnii. Let I be an implementation π ⇒ e suh that π mathes type(v1)...type(vn), and τg be constant-type(g),the delared type of g. We need to prove that type(e v1 ... vn) is a subtype of type(g v1 ... vn).

type(e v1 ... vn)
= type(e) type(v1) ... type(vn) (App)
≤ restrict(τg, π) type(v1) ... type(vn) (validity of I and Covariane (De�nition 4.ii))
≤ τg type(v1) ... type(vn) (Requirement 44 and Covariane (De�nition 4.ii))
= type(g v1 ... vn) (App)60

A program let re G | C in e is well-typed if every generi funtion G is valid and overed, and if e iswell-typed. The result of the program is the evaluation of e. By Theorem 12 (Soundness) and Theorem 49(Generi funtions), e redues to a value v suh that type(v) ≤ type(e).We formalize type-heking for modular programs with generi funtions in Chapter 8.

61

62

Chapter 5Super5.1 Super in lass-based languagesSuper is a onstrut that allows to reuse an existing implementation of a method inside another implemen-tation of the method in a sub-lass.In the following example written in Java, a method performing side-e�ets (and therefore returning void),starts with performing the possible side-e�ets of the existing implementation.lass A {int x;void print(OutputStream s) {s.print(x);}}lass B extends A {int y;void print(OutputStream s) {super.print(s);s.print(y);}} Here, super.print means the implementation of method print in the super-lass of the urrent lass.In partiular, it is not mandatory to use the same name as the urrent method. It is therefore possible toall another method, implemented in the super-lass. That is, in the body of a method f in lass B, it ispossible to use super.g. This semantis is tightly oupled with single-dispath, in that it relies on the fatthat dispath is only made on the �rst argument only.5.2 Super in multi-method languages5.2.1 DylanThe Dylan language features multi-methods. It allows to all a more general method from a method, withthe next-method keyword. A higher-level desription of its semantis is: next-method alls the methodthat would have been alled if the urrent method had not existed. This all an fail at runtime in ase ofambiguity, for the same reasons as for method alls. Dylan allows suh failures at runtime, whih is probablyunavoidable given the possibility in Dylan to add method implementations at runtime.The following program is the translation in the syntax of Dylan of the example of Setion 5.1.63

define lass <A> (<objet >)slot x;end lass <A>;define lass (<A>)slot y;end lass ;define generi print (a :: <A>);define method print (a :: <A>)format-out("%d\n", a.x);end method print;define method print (b ::)next -method();format-out("%d\n", b.y);end method print;Besides the syntati di�erenes with the ode in the previous setion, the main point to note is that aall to next-method does not speify a method name. One way to interpret this fat is that next-methodis a high-level onstrut speifying how an implementation of a method is related to the implementations itoverrides, while super in the previous setion is a lower-lever onstrut speifying a speial way to performdispath for a ertain method all.Furthermore, the next-method statement does not speify arguments. This is possible sine, by default,next-method is alled with the same arguments as the urrent method. It is possible in Dylan to passother arguments. The spei�ation requires that the new arguments lead to the same sequene of appliablemethods as the original arguments. Otherwise, the semantis is unde�ned. The underlying problem is thatdispath has already been performed. In partiular, by passing arguments with greater types, they mightnot be ompatible with the alled method, even though they are ompatible with the generi funtion. Thisase is illustrated in the following example:define lass <A> (<objet >)slot x, init-value: 0;end lass <A>;define lass (<A>)slot y, init-value: 0;end lass ;define lass <C> ()end lass <C>;define generi print (a :: <A>);define method print (a :: <A>)format-out("%d\n", a.x);end method print;define method print (b ::)next -method();format-out("%d\n", b.y);end method print; 64

define method print (:: <C>)next -method(make(<A>));end method print;In the implementation of print for lass C, next-method is alled with a newly built instane of lass
A. However, the method alled is the implementation of print for lass B. That method an not handle theinstane of lass A that it reeives in this all, whih will provoke an error at runtime.5.2.2 CeilCeil features the resend keyword. While serving the same role as next-method in Dylan, it is betterin two ways. First, it is possible to expliitly resolve ambiguities by direting the all: every argument ofthe urrent method speialized for a lass C an be speialized in the resend to an anestor of lass C. Forinstane, if a lass C has two super-lasses B1 and B2 that are both sublasses of lass A, the implementationof a method for lass C an speify that a resend targets the implementation of that method for either
B1 or B2. Seond, Ceil restrits passing a di�erent argument than the original one to the ase where thatargument is not speialized. This allows to give a safe formal semantis in every ase, unlike in Dylan.The referene manual of Ceil inludes typing rules for resend. However, they do not take into aountpolymorphi types, whih are presented later as an extension. Furthermore, they require the expliit typingof every method implementation. In partiular, the type of resend is the delared return type of theimplementation that it alls.5.3 FormalizationThe syntax of method implementations is extended to allow the following notation:implementation m π ⇒ λx1...xn.e(super)where e(super) is an expression that an ontain one or more ourrenes of the super keyword.This notation is syntati sugar for:implementation m π ⇒ λx1...xn.e(superm,π x1 ... xn)We de�ne the target of super as the most preise implementation of m that is less preise that theurrent implementation, or ⊥ if suh implementation does not exist. The ordering of implementations isde�ned in De�nition 43.De�nition 50 (Target of super) Let m be a method, and π be a list of patterns. Then

target(superm,π) = max {π′ ⇒ e′ ∈ implementations(m) | π′ < π}If there is no implementation of m with patterns less preise than π, or none that is a maximum, the maxis unde�ned, and target(superm,π) is ⊥. In that seond ase, the use of super is ambiguous, and thereforeresults in a typeheking error.One an then de�ne the semantis of super:De�nition 51 (Redution of super) Let m be a method, and π be a list of patterns. If target(superm,π)is π′ ⇒ e′, then superm,π −→ e′.The semantis of super is therefore ompletely spei�ed by the target(·) prediate.65

5.3.1 TypingThe type given to superm,π is the restrition of the type of m to the patterns of the target implementation:De�nition 52 (Type of super) Let m be a method, and π be a list of patterns. Then the type of superm,πis de�ned by:
constant-type(superm,π) =

{

E if target(superm,π) = ⊥
restrict(constant-type(m), π′) if target(superm,π) = π′ ⇒ e′Theorem 53 (Super) For any well typed method m and list of patterns π, the operator superm,π veri�esRequirement 9 (Constants).Proof of theorem 53 (Super)1. Sine superm,π is well-typed by hypothesis, target(superm,π) is well de�ned by De�nition 52. Letthen π′ ⇒ e′ be target(superm,π). By De�nition 51, superm,π −→ e′.2. Let π′ ⇒ e′ be the implementation target(superm,π). The only redution rule for super issuperm,π −→ e′. In this ase, we have by De�nition 52 type(superm,π) = restrict(type(m), π′) (1).Sine m is well typed, the implementation π′ ⇒ e′ must be valid by De�nition 46. That is, by De�ni-tion 45, type(e′) ≤ restrict(type(m), π′). This shows, together with (1) that type(e′) ≤ type(superm,π)holds.5.4 ExampleLet us see how super an be used in pratie, and how the typing rules and the target resolution are applied.We onsider a lass hierarhy that models buttons in a graphial user interfae toolkit:lass Button {String text;// A losure exeuted when the button is pressed.() → void ation;}void draw(Button);draw(Button this) { ... }void liked(Button);liked(Button this) {(this.ation)();}lass ImageButton extends Button {Image image;}draw(ImageButton this) { ... }lass OnOffButton extends Button{ 66

boolean disabled;}liked(OnOffButton this) {if (! this.disabled)super;} The OnOffButton lass adds to the Button lass the ability to deativate the button. The use of superin the liked method on a OnOffButton allows to abstrat over the behavior of the parent lass. If theparent was modi�ed, this modi�ation will also a�et the sub-lasses.The target of super in liked(OnOffButton is liked(Button). Sine the method is monomorphi,the type of super is simply the type of the method.Suppose now that we want to use a button that has both an image, and the ability to be deativated,and that we want to monitor liks, for instane to ount them:lass MyButton extends ImageButton , OnOffButton {int nbCliks;}liked(MyButton this) {this.nbCliks = this.nbCliks + 1;super;} The set of implementations that are less preise than liked(MyButton) ontains bothliked(Button) and liked(OnOffButton). Sine the latter is more preise than the former, the targetof super is liked(OnOffButton).Sublassing is sometimes presented as similar to a textual opy of the implementations of the parentlass that are not rede�ned in the hild lass. Aording to this presentation, one ould be worried that thetarget resolution gives priority to the implementation inherited from OnOffButton over the one inheritedfrom Button through ImageButton. However, the rede�ned implementation has priority beause it indiatesthat the implementation that it replaes is not wanted in the onerned ase. Thus, liked(Button) isnot valid for lass OnOffButton sine it does not take into aount the ativation state. It is thereforenot valid either for the sublass MyButton, and so must not be onsidered in the resolution of the target.This orresponds exatly to the notion of most preise implementation, whih is used for the dispath ofmethod alls. Indeed, the same reasoning about the invalidity of overridden implementations also justi�esthe semantis of dispath.

67

68

Chapter 6Kinds
6.1 IntrodutionThis hapter illustrates how the type system an be extended by augmenting the language of onstraintsof ML≤. We present two typing hallenges that arise in pratie from the interplay of polymorphism andsubtyping, and we propose a single solution to solve them both.The �rst hallenge, whih has already been pointed out [32℄, is the typing of homogeneous methods,that is, methods that aept several (but not all) types for their arguments, while these types annot beintermixed. A typial example is the omparison operator less, whih an be applied to two strings, twointegers, two dates, et, but not to two values of di�erent types, and neither to types that have no anonialordering like graphial widgets.The seond hallenge, introdued in this thesis, has arisen from our experiene with programming inlanguages with multi-methods and based on the polymorphi onstrained type system ML≤ [6℄. We found outthat many useful methods are partially polymorphi: their types lie in preision in between a monomorphiand a bounded polymorphi type. For instane, onsidering the hierarhy Integer ≤ Rational ≤ Float,and the inverse operation x 7→ 1

x
: the type Float→ Float is orret for inverse, but it is too oarse sine itdoes not show that the inverse of a Rational is a Rational; on the other hand, the type ∀T ≤ Float. T→ T,whih would orretly map a Rational to a Rational, is inorret beause the inverse of an integer mightnot be an integer but a rational in general. Our solution is to give inverse the type ∀α. α : Field⇒ α→ α,meaning that for every lass α that an be given the mathematial struture of a �eld, the inverse operationmaps α to an α. Sine integers do not form a �eld, but a mere subset of the �eld of rational numbers, ourtype indeed spei�es that the inverse of an Integer is a Rational. Indeed, the best instantiation for α isthen Rational. In our proposal Field is not a type but a kind, that is, a property that some types possess.An extra bene�t of our solution is to be modular in the sense that new lasses with the kind Field an beadded to an existing lass hierarhy without hanging the type of the inverse operation.In this thesis, we propose an extension of ML≤ with kinds that allows to typehek both homogeneousmethods and partially polymorphi methods.In Setion 6.2 and Setion 6.3, we present several typing hallenges that motivate the introdution of kindsin type systems with subtyping; in Setion 6.5, we propose a simple solution that however fails to ahieveseparate type-heking of modules; In Chapter 10, we will show that kinds interat well with modulartypeheking: new lasses an be added in the domain of an existing method without hanging the type ofthe method. Moreover, our extension of ML≤ also preserves all the essential properties of the system.We start by examining several hallenging type-heking situations of pratial importane. Through-out this hapter, we onsider type systems with nominal subtyping. Spei�ally, our examples use lassdelarations to delare new type names, for whih subtyping is determined by the inheritane hierarhy.69

6.2 Typing homogeneous operationsWe �rst onsider the problem of typing homogeneous operations. Homogeneous operations are a spei� sortof binary (or n-ary) operations, haraterized by the shape of their domain. They aept several types asarguments. However, values of di�erent types annot be mixed in the same all [32℄. For instane, onsiderthe omparison operator less. Its type must express two properties. First, only some types have a naturalordering. Therefore, omparing graphial widgets should not be possible. Seond, even for omparable typeslike strings, integers, or dates, it should be ill-typed to mix any two of these types in a all: deiding whethera string is smaller than an integer does not make sense in general. We shall examine how it is possible (ornot) to express this requirement in several type systems.Monomorphi type systemThe following program is an attempt to type less in a monomorphi type system, using Java syntax.abstrat lass Comparable {boolean less(Comparable other);}lass String extends Comparable {boolean less(Comparable other){ /* ompares a string to a Comparable */ }}lass Date extends Comparable {boolean less(Comparable other) { ... }} A monomorphi type system annot prevent the intermixing of arguments of di�erent types. Conse-quently, it is neessary to handle the ase where a String is ompared with an arbitrary value of type
Comparable. Typially, this is done by runtime type inspetion. In this ase, it would be possible to return
false, but sine the omparison of a String and, say, a Date never makes sense, it is probably better to raisea runtime exeption if values of di�erent �kinds� are ompared. Our aim is preisely to statially rule outthese ases.Monomorphi type system with multi-methodsBeause we are still using an inexpressive type system, we annot express the homogeneity of less. However,a �rst improvement is that the ability to dispath on several arguments allows for the separate de�nition ofomparison on pairs on objets of the same �kind�, while with mono-methods, eah speialized version of lesshad to handle an arbitrary (seond) argument.abstrat lass Comparable {}boolean less(Comparable , Comparable); /* Multi -method */less(Comparable s1, Comparable s2){ throw new Error("Trying to ompare objets of unrelated lasses"); }lass String extends Comparable;less(String s1, String s2) { ... }lass Date extends Comparable;less(Date d1, Date d2) { ... } 70

The delaration of the less multi-method makes any ouple of two sublasses of Comparable valid ar-guments. The default implementation less(Comparable, Comparable) is therefore needed to handle theinvalid ases. In the valid implementations, both arguments are statially known to be instanes of sublassesof the onerned lass.F-bounded polymorphi type systemF-bounded polymorphism [8℄ extends bounded polymorphism by allowing the bound of a variable to referto the type variable being bound. It o�ers the following solution to type homogeneous operations [32℄.abstrat lass Comparable <T> {boolean less(T other);}lass String extends Comparable <String> {boolean less(String other) { ... }}lass Date extends Comparable <Date> {boolean less(Date other) { ... }} The idea is that x.less(y) is well typed only if x has type Comparable<T> for some T, and y has typeT. It is therefore possible to make sure the operation is homogeneous by delaring lass String extendsComparable<String> and lass Date extends Comparable<Date> only, so that, for instane, Date is nota subtype of Comparable<String>.We shall now propose our solution to this typing problem. The omparison of our system with F-boundedpolymorphism will be made in Setion 15.3.Introduing kindsBetween the monomorphi type (Comparable, Comparable)→ boolean for less, whih is too loose, and theF-bounded polymorphi type ∀T ≤ Comparable<T>. (T, T) → boolean, whih is unintuitive, we ould haveonsidered the simpler bounded polymorphi type ∀T ≤ Comparable. (T, T)→ boolean. However, this doesnot work: it is in fat equivalent to the monomorphi type, sine intuitively, T an be instantiated by thetype Comparable.In fat, String and Date share the property of being omparable, without having a ommon super-type. Therefore Comparable should not be a type, but a property possessed by some types. In other words,Comparable is a kind. We shall write Date : Comparable or Date implements Comparable to expressthat Date is a type of kind Comparable. We �rst present our solution informally.kind Comparable;<T : Comparable > boolean less(T, T);lass String implements Comparable {boolean less(String other) { ... }}lass Date implements Comparable {boolean less(Date other) { ... }} Sine T an be instantiated to either String or Date, pairs of strings or pairs of dates an be ompared.Furthermore, no valid instantiation for T is a super-type of both String and Date, whih prevents intermixing.71

The type ∀T : Comparable. (T, T)→ boolean therefore ful�lls the two desired properties for less. In addition,we believe it is less involved than the F-bounded solution.Inheritane without intermixing problemKinds are also appropriate to typehek more omplex ases of homogeneous operations. For instane,Litvinov [32℄ argues that it is sometimes useful to have a lass inherit from another, while not allowinghomogeneous operations to aept intermixing the super and the sublass (typially, Points are ColorPointswhen it does not makes sense to ompare one of eah lass).We present here their solution, whih is to parameterize both lasses and use F-bounded quanti�ation.We use our own syntax when it eases the omparison.lass PointF<Pt extends PointF<Pt>> {int x = 0; int y = 0;int area() = this.x * this.y;eqPoint(PointF<Pt> other);eqPoint(PointF other) = this.x == other.x && this.y == other.y;}lass Point is PointF<Point > {}lass ColorPointF extends PointF {Color olor;eqPoint(ColorPoint other) = super && this.olor == other.olor;}lass ColorPoint is ColorPointF <ColorPoint > {}Sine type parameters are invariant, ColorPointF<ColorPoint> is not a subtype of PointF<Point>.Therefore, mixed alls to eqPoint are not well-typed. On the other hand, the area method an as desiredbe used for both Point and ColorPoint.Our solution, using kinds, is instead to reate a ommon superlass AbstratPoint ontaining the featuresto inherit (the x and y �elds), and two lasses Point and ColorPoint that implement the kind Comparable.Sine AbstractPoint does not implement Comparable, intermixing is prevented.kind Comparable;<T : Comparable > boolean eqPoint(T, T);abstrat lass AbstratPoint{ int x = 0; int y = 0;int area() = this.x * this.y;eqPoint(Point other) = this.x == other.x && this.y == other.y;}lass Point extends AbstratPoint implements Comparable {}lass ColorPoint extends AbstratPoint implements Comparable {int olor = 0;eqPoint(ColorPoint other) = super && this.olor == other.olor;} Both versions solve the problem as expeted: they only allow omparing instanes of the same lass.72

void test() {eqPoint(new Point(), new Point());eqPoint(new ColorPoint(), new ColorPoint());//eqPoint(new ColorPoint(), new Point()); // Type Error} Our approah avoids again the �fake� and umbersome parameterization. Furthermore, the addition ofthe lass AbstratPoint allows to make obvious the fat that a ColorPoint is not a Point. In the F-bounded version, this fat is not immediately apparent: one must atually try to prove the subtyping �andfail� to onlude that it does not hold. We believe that this makes F-bounded quanti�ation too omplexfor a widespread use in programming languages.6.3 Partially polymorphi funtionsSo far, we used kinds to desribe a ommon property of unrelated types. One question immediately follows:how do kinds interat with subtyping? Given a lass A of kind K and a sublass B of A, should then Balways be of kind K? Atually, a funtion of type ∀T : K. T → T an always take an argument whose type
B is a subtype of type A of kind K, sine by subsumption the argument is also of type A. However, usingsubsumption, we an only onlude that the type of the result is A. Conversely, if B itself was of kind K, thenwe ould type the appliation by instantiation of T by B, whih would give the result the more preise type
B. In this setion, we shall show that it is sometimes desired to have the less preise result type: manyfuntions have type that are more preise than A → A, but less preise than ∀T ≤ A. T → T. We all thesefuntions �partially polymorphi�, and now give several examples.Numerial operationsConsider the following numerial hierarhy:lass Float {...}lass Integer extends Float {...}lass Int32 extends Integer {...}lass BigInt extends Integer {...} IntegerInt32 BigInt

Float
What is the type of the addition on numbers? The sum of two �oats is a �oat, the sum of two integers isan integer, the sum of a �oat and an integer is a �oat. More generally, the type of the sum of two numbersis their least upper bound (1).The monomorphi type system and the Hindley-Milner type system do not allow to apture all possibletypes desribed by (1) in a single type expression. This explains why arithmeti operators are usually treatedapart. However, as we shall see below, this situation also ours with user de�ned types, for whih ad hotyping is not possible. With bounded polymorphism, it is possible to type plus with ∀T ≤ Float. (T, T)→ T.This expression orretly aptures all possible types desribed by (1).However, this type is, in a way, too preise: we don't want the sum of two Int32 to be an Int32, but justan Integer, beause this sum an over�ow, in whih ase the result should be a BigInt. Thus, we re�ne (1),by requiring that the type of the sum always be above Integer: the type of the sum of two numbers is theupper bound of Integer and of their least upper bound (2). However, bounded polymorphism an not aptureall types desribed by (2) anymore. Intuitively, (2) onstrains a type variable with both an upper-bound and73

a lower-bound, while bounded polymorphism only allows upper-bounds. Conversely, (2) an be expressed ina onstrained polymorphi type system with the type expression ∀Integer ≤ T ≤ Float.(T, T)→ T.However, this type has the disadvantage that it an only be given one one knows the omplete numerialhierarhy. Suppose we now want to sublass Float with two implementations that di�er with respet tothe number of bits used to store the �oat � Float32 and Float64. Sine the new lasses are not aboveInteger, the previous type given to plus asserts that the sum of two Float32 may be any Float. It seemslegitimate to speify that addition of two �oats does not hange their representation, but this annot beexpressed. Tuning the type using more onstraints to math the requirements needs a omplete knowledgeof the type hierarhy. Therefore, this approah prevents extending the type hierarhy in a �exible way, thatis, a modular development of lasses. Furthermore, even when the omplete hierarhy is known, typing pluswould require disjuntive onstraints, like ∀T. Integer ≤ T ∨ Float32 ≤ T ∨ Float64 ≤ T⇒ (T, T)→ T.We all partially polymorphi the funtions that behave like plus with respet to types: their types isliving somewhere in-between monomorphi types and fully bounded polymorphi types. We believe thatthey our rather frequently. Therefore, it is an important issue to handle them appropriately. Please, notethat the above situation is very similar to the typing of numerial operators in Java [25℄: the sum of two
float is a float, the sum of two int is an int, but the sum of two short (or byte) is an int. Java handlesthis situation by ad ho typing rules. Let us give a few more examples.User de�ned methodsA similar situation ours with the typing of, for instane, the negation operator ¬ on boolean algebras. Thisshows that partial polymorphism ours not only in possibly prede�ned funtions, but also in user de�nedode. Consequently, this rules out ad ho or non-modular solutions that do not solve the general ase.Indeed, what is the type of this negation operator with respet to a hierarhy that inludes both thealgebra of booleans and the algebra of binary deision diagrams (BDD) ?BooleanAlgebraBoolean BDDOne Zero ConditionalThe type BooleanAlgebra→BooleanAlgebra is very impreise. It would lead to a big loss of typinginformation, for instane by having not(x < y) be an expression of type BooleanAlgebra, given two integersx and y. The polymorphi type ∀T ≤ BooleanAlgebra. T→ T is not orret, sine the negation of a onstantBDD instane of lass One is not a One but a Zero; an union type like ∀T. Boolean ≤ T ∨ BDD ≤ T⇒ T→ Tis orret and preise, but disallows the introdution of a new boolean algebra and thus breaks modularity.Furthermore, the introdution of disjuntions in onstraints would signi�antly inrease the omplexity ofthe type-heking.As a last example, onsider a hierarhy representing a soure program tree inside a ompiler or aninterpreter. If the soure language distinguishes between expressions and statements, it makes sense todelare that lass Expression is a sublass of lass Statement beause an expression an be onsidered asa statement that omputes and then forgets a value. Many useful funtions take a statement and possiblyauxiliary arguments, and return a statement: the resolution funtion that replaes identi�ers with a refereneto their de�nition, optimization funtions, a maro-expansion funtion, et. None of these funtions arefully polymorphi: name resolution maps identi�ers, represented by some lass in the hierarhy, to variablede�nitions, whih are of a di�erent lass; maro-expansion replaes maro-alls by their de�nition, whihmay be arbitrary expression. On the other hand, typing these funtions as monomorphi is too oarse: sineonly expressions are aepted at ertain plaes in a syntax tree (for instane, as the right-hand-side of an74

assignment) it is useful to re�et in the type of these funtions that expressions are mapped to expressionsand not to arbitrary statements.6.4 Using kinds to type partially polymorphi funtionsLet us try to �nd a ommon solution for all these situations. Sine the problem of �nding a satisfatory typeto these funtions seems di�ult to solve, it might be that the problem itself is not formulated properly. Letus reonsider the boolean algebra situation. A Conditional is indeed a sublass of BDD, beause any valueof type Conditional is a BDD. However, a value of type BDD is not itself a BooleanAlgebra. It is the setof all BDDs that forms a boolean algebra. Therefore, BooleanAlgebra is not a super-type of BDD, it is aproperty of the type BDD.This situation already ourred in Setion 6.2, and motivated the introdution of kinds. This new exampleadditionally involves the interation of kinding with subtyping. The property of forming a boolean algebrais not true for an arbitrary subset of all BDDs. For example, neither the sets of all Conditional BDDs northe two single-element subsets ontaining respetively One and Zero are boolean algebras. Thus, it is ruialthat kinding is not inherited. All these observations an be summarized as follows: The property of forminga boolean algebra is represented by the kind BooleanAlgebra. Class BDD is of kind BooleanAlgebra. ClassZero is a sublass of BDD, and is not of kind BooleanAlgebra. The operation not, for any lass T of kindBooleanAlgebra, takes a parameter of type T and return a value of type T. This translates naturally to thefollowing delarations:kind BooleanAlgebra;<T : BooleanAlgebra> T not(T);lass BDD implements BooleanAlgebra;lass Zero extends BDD;...lass Boolean implements BooleanAlgebra;Numerial operations an be typed in a similar way. We introdue the kind Num to express the propertyof being a number and give the type ∀T : Num. (T, T)→ T to plus. This type aptures all properties of plusdesribed above. In partiular, all forms of integers equivalently. The type Int32 does not have kind Num.Hene, the �best� solution for T when plus is applied to an Int32 is �T=Integer�. Thus, the only guaranteefor the return type is to be below Integer.Kinds an also be viewed as an open set of lasses with names. This approah allows for new lassesto be added to a kind without having to modify the type of methods operating on the lasses of this kind.One reason that makes this solution more modular than an approah based on disjuntive onstraints is thatwhenever we introdue a new lass in the numerial hierarhy, we are able to determine its behavior relativelyto the kind Num. Additionally, we believe that the types are also shorter to write, easier to understand, andeasier to handle in a type-heking algorithm.This solution also gives an arguably more intuitive type to plus. We believe this is an important issueto ensure that powerful type systems an be used in wide-spread programming languages. Using kinds, thetype an be explained in simple words: �plus has type (T,T)→T for every numerial lass T�. In our view,Int32 is not a numerial lass (that is, a lass of kind Num), but an implementation of a numerial lass.6.5 Closed-world formalizationWe present a �rst attempt to formalize a type system with kinds. In this setion, we will make the losed-world assumption. That is, we will onsider that type-heking is made for whole programs only, so thatthere is no di�erene between the type struture in whih an expression is type-heked and the global type-struture of the running program. This has two purposes. First, it allows the use of simpler typing rules,75

that are useful for an intuitive understanding of types involving kinds. Seond, it serves as a motivation forthe more omplex rules of Chapter 10, where typing will take plae in an open world. Hene, results in thissetions are subsumed by Chapter 10.We extend in Figure 6.1 the ML≤ type algebra of Setion 2.2. Type strutures now also inlude a set
K of kinds, and a new relation denoting kinding (cV : K). Constraints inlude kinding onstraints. In theprevious examples, we used the notations ∀T ≤ θ. θ′ and ∀T : K. θ′ as shorthands for ∀T. T ≤ θ ⇒ θ′ and
∀T. T : K ⇒ θ′ respetively.Type struture T ::= (C,K,≤, :)Constraint κ ::= θ ≤ θ | φV ≤ φV | φV : KFigure 6.1: Extensions to ML≤A type an be interpreted as the upward-losing of the set of its ground instanes that satisfy theonstraint. Given a type, we de�ne its denotation as:

den(∀α. κ⇒ θ) = {θ′, ∃σ. σ(θ) ≤ θ′ and σ(κ) hold}where θ′ ranges over ground types and σ ranges over mappings from type variables to ground types. Eahonstraint in σ(κ) is of the form θ1 ≤ θ2 or θ : K and an be readily interpreted as true or false in the typestruture.For instane, the type of plus in Setion 6.3, ∀T. T : Num⇒ (T, T)→ T is denoted by the upward losingof set { (Float, Float) → Float, (Integer, Integer) → Integer}. In partiular, the losure ontainssuper-types of the above two types that desribe how any pair of two types is mapped to a result type:
(Float, Integer) → Float, (Int32, Int64) → Integer, ... This orresponds to our intuition of the typebehavior of the addition.Given this interpretation of types, it is easy to de�ne sub-typing and type-heking. Type τ1 is a subtype of
τ2 if den(τ2) ⊆ den(τ1). Instantiation and generalization rules ensure that an expression has the polymorphitype τ if and only if it has all the monomorphi types in the denotation of τ .This formalization is only orret and safe in a losed-world. Therefore, it ould be used to type-hekentire programs, but not program modules taken separately. We present in Chapter 10 a variation on thetheory that aommodates with modular type-heking. We provide there a omplete formalization andproofs, and a omparison with related work.

76

Part IIIModularity

77

Chapter 7Modular type algebrasWhen a program is made of modules, it must be possible to typehek eah module independently. Further-more, a module an import another module and add lass delarations, whih modi�es the type struture ofthe type algebra. It must therefore be possible to guarantee that ode typeheked in the original algebra isstill well-typed in the new algebra.To this end, we de�ne the notion of a type algebra extension.De�nition 54 (Type algebra extension) A type algebra (A′,≤′) is an extension of a type algebra (A,≤)if and only if A ⊆ A′ and for all syntati types τ1 and τ2 in S(A) suh that τ1 ≤ τ2 holds, τ1 ≤′ τ2 alsoholds.Note that the ondition that A is ontained in A′ ensures that S(A) is ontained in S(A′), whih in turnmakes the inequality τ1 ≤
′ τ2 well-formed.7.1 ML≤We now give onditions that guarantee that an ML≤ type algebras is an extension of another. Sine wepresent a variant of ML≤ in Chapter 10, we �rst formalize the possibility to reate a variant of ML≤ byextending the onstraint language.7.1.1 Variants of ML≤A variant of ML≤ an extend, ompared to the original version of Setion 2.2,

• the syntax of onstraints;
• the set of axioms de�ning onstraint impliation;
• the notion of type struture T .Furthermore, for enabling modular typing, we assume given a transitive prediate allowing to state thata type struture T ′ is an extension of another type struture T , written T ′ ≥ T .The only ondition required for a variant of ML≤ is that the axiomatization of onstraint impliationbe orret and omplete, as we de�ne below in De�nition 55. Indeed, we already proved in Setion 2.2 that

ML≤ is a type algebra. This proof uses only the axioms of onstraint impliation, whih are also present inthe onsidered variant of ML≤. Therefore, the proof remains valid, and the variant is also a type algebra. Onthe other hand, the axiomatization is extended, and must therefore be proved again orret and omplete.79

De�nition 55 (Corretion and ompleteness) A ML≤ axiomatization |= is orret and omplete if thefollowing property holds: for all type struture T , variable list ϑ and onstraints κ1 and κ2 in T , the onstraintimpliation ∀ϑ. κ1 |= κ2 is provable if and only if for all extension T ′ of T , for all ground substitution σ1suh that T ′ ⊢ σ1(κ1), there exists a ground substitution σ2 suh that σ2
ϑ
= σ1 and T ′ ⊢ σ2(κ2).The notation σ1

ϑ
= σ2 means, as in Setion 2.1, that substitutions σ1 and σ2 are equal for all elements of

ϑ. In orret and omplete axiomatizations, one an o�er an interpretation of subtyping between polytypes.Corollary 56 (Interpretation) Let τ1 and τ2 be two losed types. Then τ1 ≤ τ2 holds in a type struture
T if and only if in every extension T ′ of T , for every ground instane θ2 of τ2 in T ′ there is a groundinstane θ1 of τ1 suh that T ′ ⊢ θ1 ≤ θ2.Proof of orollary 56 (Interpretation)Let ∀ϑ1. κ1 ⇒ θ1 be τ1 and ∀ϑ2. κ2 ⇒ θ2 be τ2. By De�nition 27, τ1 ≤ τ2 is equivalent to the onstraintimpliation ∀t. κ2 ∧ θ2 ≤ t |= κ1 ∧ θ1 ≤ t where t is a fresh variable, that is not free in κ1, κ2, θ1, θ2 (1).By De�nition 55, this onstraint impliation is equivalent to

∀T ′ ≥ T , ∀σ1 | T ′ ⊢ σ1(κ2 ∧ θ2 ≤ t),
∃σ2 | T ′ ⊢ σ2(κ1 ∧ θ1 ≤ t) and σ2(t) = σ1(t)

(7.1)On the other hand, the target proposition is:
∀T ′ ≥ T , ∀σ | T ′ ⊢ σ(κ2),
∃σ′ | T ′ ⊢ σ′(κ1) and T ′ ⊢ σ′(θ1) ≤ σ(θ2)

(7.2)Sine all onstraints are evaluated in the extension struture T ′, we may leave T ′ impliit.Let us prove that 7.1 implies 7.2. For T ′ ≥ T and σ suh that T ′ ⊢ σ(κ2) (2), let σ1 be σ+{t 7→ σ(θ2)} (3).Sine σ(κ2) holds by (2), σ1(θ2) = σ(θ2) by (1) and σ1(t) = σ(θ2) by (3), the premise σ1(κ2 ∧ θ2 ≤ t) of 7.1holds. Therefore, by 7.1, there exists a substitution σ2 suh that σ2(κ1∧θ1 ≤ t) (4) and σ2(t) = σ1(t) = σ(θ2)(5) hold. One an therefore take σ′ = σ2, sine σ2(κ1) holds by (4) and σ2(θ1) ≤ σ2(t) = σ(θ2) holds by (4)and (5).Conversely, for given T ′ ≥ T and σ1 suh that σ1(κ2 ∧ θ2 ≤ t (6), we have in partiular by hypothesis
σ1(κ2). Therefore, by 7.2, there exists σ′ suh that σ′(κ1) holds (7) and σ′(θ1) ≤ σ1(θ2) holds (8). Let σ2be σ′ + {t 7→ σ1(t)} (9). We then have σ2(κ1) by (7) and (1). Furthermore, σ2(θ1 ≤ t) is equivalent by (9)and (1) to σ′(θ1) ≤ σ1(t), whih is true by transitivity on (8) and hypothesis σ1(θ2) ≤ σ1(t) (6).Theorem 57 (Extension of a ML-Sub type algebra) If an ML≤ type struture T ′ is an extension ofa type struture T , then the type algebra A(T ′) is an extension of A(T).Proof of theorem 57 (Extension of a ML-Sub type algebra)By orollary 56 (Interpretation), in every extension T0 of T , for every ground instane θ′ of τ ′ in T0there is a ground instane θ of τ suh that T0 ⊢ θ ≤ θ′. Every extension of T ′ is also an extension of Tsine extension is transitive. Therefore this also holds for every extension of T ′. Therefore by orollary 56(Interpretation) T ′ ⊢ τ ≤ τ ′.7.1.2 Original ML≤In partiular, the original version of ML≤ de�ned in [5℄ has a orret and omplete axiomatization. In thatsetting, the extension of a type struture is de�ned in the following way:De�nition 58 (Extension of a ML-Sub type struture) A type struture T ′ is an extension of T ifall type onstrutors of T are in T ′ and if for all type onstrutors c1 and c2 of T , T ′ ⊢ c1 ≤ c2 if and onlyif T ⊢ c1 ≤ c2. 80

These onditions orrespond to the usual extension of the type struture found in objet oriented systemfor a module importing other modules: the existing types are not modi�ed, but new types an be freelyadded.The proof that the original version of ML≤ veri�es De�nition 55 is done in the ML≤ report [5℄.

81

82

Chapter 8Open generi funtionsIt has already been reognized [19℄ that the ativity of programming has two main sides: de�ning operationsand de�ning data strutures. The funtional paradigm mainly uses sum and produt types as its datastrutures, and funtions de�ned by pattern-mathing on data-types as its operations. The objet-orientedparadigm provides lasses to struture data, and methods to operate on it. However, both paradigmsintrodue an asymmetry between the two onepts. In a funtional program, data-types an be de�nedindependently of funtions, while funtions need knowledge about the data-type onstrutors. Conversely,methods are de�ned loally to a lass, while lasses inlude the list of all their methods.This asymmetry is problemati when it omes to modular programming, that is, programming reusingpre-ompiled libraries, without hanging them [26℄. Following the above dualism, modular programming isthus both de�ning new operations on existing data strutures and de�ning new data strutures to be handledby existing operations. In the funtional paradigm, de�ning new funtions is straightforward. On the otherhand, extending existing datatypes is not possible sine it would break existing funtions de�ned by patternmathing on this datatype, whih would miss the new ases. Conversely, extending data strutures in anobjet-oriented setting amounts to writing new lasses, while de�ning new methods on existing lasses is notallowed.In Chapter 4, all implementations of a generi funtion had to be syntatially present together with thede�nition of the funtion. This is similar to pattern mathing in a funtional language, and thus fails in thesame way to provide support for modular programming. The solution is to open generi funtions, so thatimplementation branhes an be de�ned independently, whih brings bak symmetry. An open generi oppan thus be de�ned as: generi opp : ∀t ≤ num. t→ timplementation opp float⇒ opp_floatimplementation opp int⇒ opp_intIf the new type of omplex numbers, subtype of num, is added in a di�erent module that imports the aboveone, a new implementation of opp an �and must� be provided:implementation opp complex⇒ ...We illustrate the two situations enountered with modular programming by taking the example of a smallprogramming language implementation. The struture of this implementation is presented in Figure 8.1.Modularity is expressed by the fat that delarations are grouped inside modules. Eah module is representedby module NAME {...} and is typially written separately from other modules.83

module CORE {abstrat lass Expression {}lass Apply extends Expression
{ f : Expression, arg : Expression }generi eval : Expression→ Expressiongeneri print : Expression→ Stringimplementation eval Apply⇒ ...implementation print Apply⇒ ...

}module NUMERIC imports CORE {lass IntegerLiteral extends Expression ...implementation eval IntegerLiteral⇒ ...implementation print IntegerLiteral⇒ ...
}module COMPILER imports CORE and NUMERIC {generi compile : Expression→ Codeimplementation compile Apply⇒ ...implementation compile IntegerLiteral⇒ ...
}Figure 8.1: Programming with open generi funtions8.1 Syntax and semantisThe syntax for programs with open generi funtions is:Generi funtion G ::= generi g : τImplementation I ::= implementation g π ⇒ eClass C ::= lass C extends C { ... }Delaration D ::= G | I | CModule M ::= module M imports M ; let re DProgram P ::= M; eval eA modulemoduleM importsM ′; let re D delares a module with name M that imports the moduleswhose names are in the list M ′. A programM0;M1...Mn; eval e onsists of a main moduleM0, additionalmodulesM1...Mn that an be imported byM0, and an expression e whih expresses the desired behaviorof the program.Sine modules an be onsidered independently, they refer to eah other � in their import lists � by name.Therefore, we need a way to map a module name to its de�nition. We will all module repository a funtionfrom module names into modules. We an assoiate a module repository to eah program:De�nition 59 (Module repository) Let P be the program M0;M1...Mn; eval e. For i from 0 to n, let

Mi be the name of module Mi. The module repository for P, written repository(P), is then the funtion
{M0 7→ M0, ..., Mn 7→ Mn}. 84

A natural semantis of a program P is de�ned by translation into the generi funtions of Chapter 4.The generi funtions found in all modules are reonstruted by grouping the implementations with theirrespetive delarations.De�nition 60 (Closure of a modular program) Let P be the modular program M0;M1...Mn; eval eand let R be repository(P). The losure P is the non-modular program let re (classes(M0)) ∪
generics(M0,M0...Mn) in e, written closure(P), where

classes(module M imports M1...Mn; let re G | I | C) = C ∪
⋃n

i=1 classes(R(Mi))

generics(module M imports M1...Mp; let re G | I | C,M0...Mn)
=

{generi g : τ =
⋃n

i=0 implementations(g,Mi) | generi g : τ ∈ G} ∪
⋃p

i=1 generics(R(Mi),M0...Mn)}

declarations(module M imports M ; let re G | I | C) = G

implementations(g,module M imports M ; let re G | I | C)
=

{π ⇒ e | implementation g π ⇒ e ∈ I}The program an then be evaluated as before. The advantage of open generi funtions is that programsan now be deomposed into modules, and that modules an be typeheked separately.8.2 Modular type-hekingA module type-heks if all its implementations are valid aording to De�nition 45. Sine this de�nition isindependent of other implementations, modules an be type-heked separately.Formally, we need to de�ne the aspets of a module that are relevant for type-heking other modules.These an be divided in two: the delarations of lasses, whih a�et the type-algebra in whih type-heking ours, and the implementations of generi funtions, whih are needed to hek the overage andnon-ambiguity of generi funtions.De�nition 61 (Module signature)Let M be the module module M imports M1, ..., Mn; let re D, and let R be a module repository. Thetype signature of M in R is
typesig(M, R) = classes(M) ∪

⋃n

i=1 typesig(R(Mi))The generi funtion signature of M in R is
gensig(M, R) = declarations(M) ∪ {g π | implementation g π ⇒ e ∈ D} ∪

⋃n

i=1 gensig(R(Mi))Finally, the signature of M in R is the union of both:
sig(M, R) = typesig(M, R) ∪ gensig(M, R)Basially, the signature of a module erases the body of method implementations and keeps only topleveldelarations. It is apparent from this de�nition that the imported de�nitions are searhed reursively in thesignature of imported modules.We require a funtion that assoiate to a type signature S a type algebra A(S). Given a moduleM, wethen de�ne the assoiated type algebra A(M) as A(typesig(M)). To guarantee type-safety, we require thatthis algebra is an extension of the algebras of all imported modules.85

Requirement 62 (Module import) Let M be a module that imports modules M1, ...,Mn. Then, forall i from 1 to n, the type algebra A(M) must be an extension of the type algebra A(Mi), as spei�ed byDe�nition 54.De�nition 63 (Type orret module)Let module M imports M1, ..., Mn; let re D be a module M. Module M is type orret if every imple-mentation implementation g π ⇒ e in D is valid for τ (as spei�ed in De�nition 45) in the type algebra
A(M), where τ is the delared type of g in sig(M).The following overage ondition is similar to De�nition 48, exept that it an now be heked using onlythe information ontained in the signature of modules.De�nition 64 (Coverage)A generi signature GS is overed in a type algebra A if for all generi g : τ in GS, for all run-time types
τ1, ..., τn in A suh that τ τ1 ... τn 6= E, there exists an implementation g π in GS suh that π mathes
(τ1, ..., τn).Theorem 65 (Modular type-heking) Let P be the program M0;M1...Mn; eval e and R be
repository(P). The equivalent non-modular program closure(P) is well-typed if
• every module in M0...Mn is type orret;
• e is well typed in A(M0);
• and gensig(M0, R) is overed in A(M0).The proof relies mainly on the fat that the type algebra assoiated with the whole program is anextension of the type algebra of every module, in whih their ode is typeheked.Proof of theorem 65 (Modular type-heking)By Theorem 49 (Generi funtions), we only need to prove that every generi funtion in closure(P) isovered and valid.First, the type algebra A(M0) is the same as that of closure(P) sine by De�nition 60 and De�nition 61they have exatly the same lasses. Let generi g : τ = I1, ...Ip be a generi funtion in closure(P) (1) andlet τ1, ..., τn be run-time types in A(M0) suh that τ τ1 ... τn 6= E (2). By (1) and De�nition 60, there existsa module M transitively imported by M0 suh that generi g : τ belongs to the generi delarations of

M. Therefore, by De�nition 61, generi g : τ belongs to gensig(M0, R). By hypothesis, gensig(M0, R) isovered in A(M0). Therefore, by De�nition 64 and (2), there exists an implementation g π in gensig(M0, R)suh that π mathes (τ1, ..., τn) (3). By De�nition 61, there exists a module M′ transitively imported by
M0 and there exists an expression e suh that implementation g π ⇒ e belongs to the delarations ofM′.Therefore, by De�nition 60, π ⇒ e is an implementation of g in closure(P) that mathes (τ1, ..., τn) by (3).This shows by De�nition 48 that generi funtion g is overed in closure(P).We also need to prove that an implementation of a generi funtion g that is valid in a module M isvalid in a program P that ontains that module. LetM0 be the main module of P . Let the implementationbe π ⇒ e, τ be type(g), τ ′ be restrict(τ, π), and τe be type(e). Sine M is type orret by hypothesis, theimplementation is valid by De�nition 63. Therefore, by De�nition 45, τe ≤ τ ′ holds in A(M). By applyingRequirement 62 (Module import) to the hain of imports from P toM, A(M0) is an extension of A(M).Therefore, by De�nition 54, τ ≤ τ ′ also holds in A(M0), and the implementation is valid for the wholeprogram P .8.3 Early detetion of errorsCheking overage and non-ambiguity must be done for the (whole) program, that is when all the imple-mentations and types are known. It is therefore neessary to postpone these heks until the whole program86

is known. However, this sheme for heking overage is problemati beause it leaves muh freedom aboutthe module in whih to de�ne a ertain implementation. This is arguably a problem from the software-engineering point of view. For example, it would be possible in our ompiler example of Figure 8.1 to omitthe implementation of eval in module NUMERIC. At the point of linking the modules together, the overagetest would fail for eval. Solving this failure would amount to adding the missing implementation. But sineit logially belongs to module NUMERIC, this solution breaks modularity by foring the update of an alreadyompiled module.Therefore, we believe it is a good design to hek overage in every module. This hek is done in thetyping ontext made of all delarations present in this module and all the modules it imports transitively.Thus, apart from errors loal to the module, the overage test an only fail when a module imports a generifuntion, and de�nes new types in its domain without providing the orresponding implementation, or when itimports two modules leading to the same situation. These are indeed the situation where an implementationlogially belong to this module. The error an then be solved loally by inluding this implementation inthe module, without breaking any existing ode. This overage testing sheme also enfores an intuitiveorganization of ode:
• when a module extends an existing data struture, it must de�ne the implementations for all the generifuntions that operate on this data struture;
• when a module de�nes a new generi funtion, it must de�ne its implementations for all the datastrutures in its domain.The list of all generi funtions and data strutures is drawn from the typing ontext de�ned at the beginningof this paragraph. An example of the �rst point is the implementation of eval in module NUMERIC; theimplementations of compile in module COMPILER illustrates the seond point.Additionally, the loation where a method implementation is plaed an be further onstrained even inthe ase where it ould have been omitted. This is done by requiring that the implementation is written asearly as possible, instead of being delayed to lient modules. This requirement is formalized in the followingde�nition. In addition to improving the organization of programs, this rule is important in the presene ofsuper alls, as we illustrate in Chapter 9.De�nition 66 (Preoity rule) An implementation implementation g π ⇒ ... is not valid in a module

M if g and π are visible together in a single module imported by M.Furthermore, it is possible to make the overage test unneessary, at the prie of a loss of generalityfor generi funtions. A well-known ase is mono-methods, used in objet-oriented languages with singledispath. These methods selet an implementation based on the runtime type of a distinguished �reeiver�argument. Furthermore they are always de�ned together with the lass for whih they provide an imple-mentation. The overage test then redues to heking that an implementation is present if none is inheritedfrom the parent lasses�whih ould happen if the parents are abstrat. This hek an therefore be donewith the sole knowledge of the lass de�nition and of its parents. In our presentation, this orrespondsto restrit implementations to only one pattern on the �rst argument. It is then su�ient to hek thatwhenever a new type is de�ned, all neessary implementations are also provided. More elaborate restritionsfor multi-methods are studied in [33℄.8.4 Type inferene for open generi funtionsIt is an open problem to infer types for the generi funtions of Chapter 4. However, we laim here that it doesnot make sense to try to infer types for open generi funtions. In short, the idea is that inferene requires theknowledge of the implementation of the funtion. For open generi funtions, only some implementationsmight be known in a module. The type inferred might then be too preise to apture the intent of thefuntions, whih would either prevent proper implementation in lient modules, or break modularity byrequiring the imported module to be re-type-heked.87

As a degenerate ase, it is perfetly legal to delare an open generi funtion with no implementationat all. This makes sense if the funtion operates on a hierarhy rooted at an abstrat lass, with no knownsublasses. That is to say that the module ould only ontain:generi gHow an we possibly infer a type for g? If we hoose ∀t.t, one will not be able to implement g in a lientmodule. Conversely, we ould pik an arbitrary type for g, but it would in general not math the usage ofthe generi. One possibility would be to infer the type from the usage of g in the urrent module. But itould happen that g is not used either, in whih ase the problem remains. Consequently, we believe that itis natural for users to delare the types of generis, sine they are toplevel de�nitions exported to the lientsof the module and sine their type is therefore the spei�ation of their behavior.8.5 ML≤In this setion, we show that ML≤ is an appropriate type algebra for the modular typeheking of multi-methods. To this end, we need to de�ne the type algebra assoiated to a module, and show that it meetsRequirement 62 (Module import).An ML≤ type-struture is assoiated to eah moduleM with
TM = ({C | lass C ... ∈ typesig(M)}, {C1 ≤ C2 | lass C1 extends ..., C2, ... ∈ typesig(M)})The type algebra A(M) assoiated to moduleM is then simply the ML≤ type algebra based on TM .Lemma 67 (Module import in ML-Sub) If module M imports module M′, then TM is an extensionof TM′ .Proof of lemma 67 (Module import in ML-Sub)By De�nition 61, all type onstrutors (lasses) ofM′ are inM, and the sub-onstrutor relations over typeonstrutors are preserved. Moreover, every new sub-onstrutor delarations onern new type onstrutors.Therefore, by De�nition 54, TM is an extension of TM′ . Theorem 57 (Extension of a ML-Sub typealgebra) then shows that A(M) is an extension of A(M′).The proof of Requirement 62 (Module import) is a diret onsequene of this lemma and Theorem 57(Extension of a ML-Sub type algebra).8.6 ML≤ multi-methodsWe present here multi-methods as a partiular ase of open generi funtions. Multi-methods are generifuntions whose patterns math values depending on the lass these values are an instane of. We thereforede�ne a language of patterns to express suh mathing. Furthermore, we de�ne the restrition prediate

restrict(·, ·) that guarantees the type-orretness of multi-methods in the ase of the ML≤ type algebra.8.6.1 SyntaxThe abstrat syntax for a multi-method delaration is the same as for open generi funtions. However, forlarity, we replae the generi keyword by method:method m : τmMethod implementations are idential to generi funtion implementations, pre�xed by the implementationkeyword. 88

Patterns, the ∈ prediate and the restrition funtion remain to be de�ned. The language of patterns isde�ned by:
π ::= | @C | #CThe intent is that the pattern mathes any expression. The pattern @C mathes any instane of eitherlass C or of one of its sublasses. This means that an implementation with pattern @C an also be usedfor sub-lasses of C, whih is usual in objet-oriented languages. On the other hand, the pattern #C onlymathes instanes of lass C. This pattern is neessary to implement some polymorphi multi-methods, forwhih no implementation an have a preise enough type to be valid for any sublass. We shall illustratethis situation with an example in Setion 8.6.3. De�nitions 68 and 69 formalize this informal presentationof patterns.8.6.2 Type-hekingWe de�ne multi-methods as an instane of open generi funtions by providing the mathing and restritionprediates, and we hek that they meet their requirements.De�nition 68 (Pattern onstraint) For any pattern π and type τ we de�ne the pattern onstraint π(τ)by:

(∀ϑ. κ⇒ θ) = true
@C(∀ϑ. κ⇒ θ) = κ ∧ θ ≤ C[t]
#C(∀ϑ. κ⇒ θ) = κ ∧ θ = C[t]where t are lists of fresh type variables of length arity(C).De�nition 69 (Mathing) The relation τ ∈ π holds if and only if true |= π(τ) holds.De�nition 70 (Restrition) The restrition

restrict(∀ϑ. κ⇒ θ1 → ...→ θn → θ, π1...πn)is equal to
∀ϑt1...tn. κ ∧ ti ≤ θi ∧ πi(ti)⇒ t1 → ...→ tn → θand restrict(τ, π1...πn) is the error type E if τ is not a funtional type of textual arity n.Note that if restrict(τ, π) is not well-formed it is equal to E by De�nition 27 and the fat that E ismaximal.We an then prove that the Requirement 44 (Restrition) holds:Lemma 71 (Restrition)

τ ′
i ∈ πi (i = 1..n)

restrict(τm, π) τ ′
1 ... τ ′

n ≡ τm τ ′
1 ... τ ′

nProof of lemma 71 (Restrition)Let τm be ∀ϑ. κ⇒ θ1 → ...→ θn → θ, and τ ′
i be ∀ϑ′

i. κ
′
i ⇒ θ′i.By De�nition 70 and App:

restrict(τm, πi) τ ′
i = ∀ϑtiϑ

′
i. κ ∧ ti ≤ θi ∧ πi(ti) ∧ κ′

i ∧ θ′i ≤ ti ⇒ θ
τm τ ′

1 ... τ ′
n = ∀ϑϑ′

i. κ ∧ θ′i ≤ θi ∧ κ′
i ⇒ θThe proof of τm τ ′

1 ... τ ′
n ≤ restrict(τm, πi) τ ′

i is straightforward:
∀t.

κ ∧ ti ≤ θi ∧ πi(ti) ∧ κ′
i ∧ θ′i ≤ ti ∧ θ ≤ t

|= κ ∧ θ′i ≤ θi ∧ κ′
i ∧ θ ≤ t (MTrans)89

Conversely, restrict(τm, πi) τ ′
i ≤ τm τ ′

1 ... τ ′
n holds beause:

∀t.
κ ∧ θ′i ≤ θi ∧ κ′

i ∧ θ ≤ t
|= κ ∧ θ′i ≤ θi ∧ κ′

i ∧ πi(θ
′
i) ∧ θ′i ≤ θ′i ∧ θ ≤ t (τ ′

i ∈ πi)
|= κ ∧ ti ≤ θi ∧ κ′

i ∧ πi(ti) ∧ θ′i ≤ ti ∧ θ ≤ t (VarIntro : ti 7→ θ′i)Therefore, we an apply Theorem 49 (Generi funtions), whih shows that valid and overed multi-methods verify Requirement 9 (Constants). Using Theorem 65 (Modular type-heking), the typesoundness of modular programs with valid and overed multi-methods is therefore guaranteed.8.6.3 ExamplesThis setion illustrates the implementation and typing aspets of multi-methods. Firstly, we onsider thede�nition of a generi method equals for strutural equality of values. We assume given a funtion identicalfor testing referene equality, to handle the general ase, and a reord type Point with a omponent x.method equals : ∀t. t→ t→ boolimplementation equals = identicalimplementation equals @Point @Point =
λp.λq. equalsp.x q.xThe �rst implementation is valid sine identical has type ∀t. t → t → bool. The seond implementationis valid sine it has inferred type Point→ Point→ bool and alulation in the ML≤ type algebra showsthat:

restrict(∀t. t→ t→ bool, @Point @Point)
≡ ∀t, t1, t2. t1 ≤ t ∧ t2 ≤ t ∧ t1 ≤ Point∧ t2 ≤ Point⇒ t1 → t2 → bool

≡ ∀t1, t2. t1 ≤ Point ∧ t2 ≤ Point⇒ t1 → t2 → bool

≡ Point→ Point→ boolWe an now implement the opp example of Chapter 4 in the onrete ase of multi-methods with:method opp : ∀t. t ≤ num⇒ t→ timplementation opp #float = opp_floatimplementation opp #int = opp_intThis illustrates that # patterns are useful to implement methods with preise types like opp, whih ouldnot be implemented using @ patterns: if we try to use pattern @float we �nd:
restrict(∀t. t ≤ num⇒ t→ t, @float) ≡ ∀t. t ≤ float⇒ t→ tIt would thus be invalid to use pattern @float with a funtion that returns a float. That would be unsoundindeed, sine this implementation ould be alled with a strit subtype (say rational) of float, in whihase opp's type requires that the result be type rational. On the other hand,

restrict(∀t. t ≤ num⇒ t→ t, #float) ≡ float→ floatThe reason why the implementation with pattern #float is sound is that this pattern does not math thestrit subtypes of float. The overage test will therefore ensure that an implementation exists for any suhsubtype, and eah of these implementations will be required to return a result of the same type.The # patterns are also useful outside base type and operators. Consider the ase of a generi ontainerhierarhy. Container lasses List, Vetor, et, derive from an abstrat Container lass. It is natural to90

de�ne funtional operations on ontainers that return the same kind of ontainer as their argument. Thesean be implemented using # patterns, and not by @ patterns:method map : ∀t, u, c ≤ Container. (c[t], t→ u)→ c[u]implementation map #List = ...new List...implementation map #Vector = ...new Vector...8.6.4 SemantisThe semantis is implied by the mathing relation, as de�ned in Chapter 4. We an now follow up onthe disussion about the fat that this semantis depends on types. With the patterns desribed in thissetion, only the head type onstrutor is needed to speify redutions. In an objet-oriented language, thistagging information is already ommonly present at run-time. It orresponds to the new_C data onstrutorof Chapter 3. Multi-methods an thus be implemented without run-time typing.Furthermore, it is not fundamental to give an eager semantis. The patterns presented in this setiononly require the head type onstrutor to be known in order to hoose the method implementation. Objet�elds ould therefore be omputed lazily. This is muh similar to the semantis of pattern mathing in lazylanguages, whih would make the introdution of suh multi-methods �t well in lazy languages.Algorithms for e�ient redution of multi-method operators (that is, implementation of multiple-dispath) an be found in [17, 15, 20℄.

91

92

Chapter 9Super in a modular settingIn Setion 5, we formalized the semantis of super in a whole program. In partiular, the de�nition of thetarget of a super all uses the set of implementations of a method. As soon as a program has more than onemodule, it is possible that this set is not ompletely known in the urrent module. It is therefore relevantthat the target be resolved in the urrent module. We therefore start by formalizing the semantis of superin a modular setting.9.1 FormalizationThe super keyword de�ned in Setion 5 was annotated by the method it relates to and by the patterns ofthat method's implementation in whih it appears. We now additionally add an annotation for the modulein whih it appears. The de�nitions of its target and its semantis are then modi�ed to speify that the setof implementation of the method is taken from that module's signature, as de�ned in De�nition 61.De�nition 72 (Modular target of super) Let m be a method, π be a list of patterns, M a module and
R a module repository. Then the target of superm,π,M in R is

target(superm,π,M) = max {π′ ⇒ e′ ∈ gensig(m, R) | π′ < π}Again, if there is no implementation of m with patterns less preise than π, or none that is a maximum,the max is unde�ned, and target(superm,π,M) is ⊥. In that seond ase, the use of super is ambiguous,and therefore results in a typeheking error.One an then de�ne the semantis of super:De�nition 73 (Modular redution of super) Let m be a method, π be a list of patterns andM a mod-ule. If target(superm,π,M) is π′ ⇒ e′, then superm,π,M −→ e′.The type given to superm,π,M is the restrition of the type of m to the patterns of the target implemen-tation:De�nition 74 (Modular type of super) Let m be a method, π be a list of patterns, andMbe a module.Then the type of superm,π,M is de�ned by:
constant-type(superm,π,M) =

{

E if target(superm,π,M) = ⊥
restrict(constant-type(m), π′) if target(superm,π,M) = π′ ⇒ e′Theorem 75 (Modular super) For any well typed method m, module M and list of patterns π, the op-erator superm,π,M veri�es Requirement 9 (Constants).93

The proof is mostly idential to the non-modular version. The only di�erene lies in the fat that typinginequality guaranteed by the validity of the method implementation is known in the type algebra assoiatedwith the module delaring the implementation. One has to use the argument that the type algebra of thewhole program is an extension of that type algebra.Proof of theorem 75 (Modular super)1. Sine superm,π,M is well-typed by hypothesis, target(superm,π,M) is well de�ned by De�nition 74.Let then π′ ⇒ e′ be target(superm,π,M). By De�nition 73, superm,π,M −→ e′.2. Let π′ ⇒ e′ be the implementation target(superm,π,M). Let M0 the main module of the program.Let (A0,≤0) be the type algebra A(M0) and (A1,≤1) be the type algebra A(M).The only redution rule for super is superm,π,M −→ e′. In this ase, we have by De�nition 74
type(superm,π,M) = restrict(type(m), π′) (1). Sine m is well typed, the implementation π′ ⇒ e′must be valid by De�nition 46. That is, by De�nition 45, type(e′) ≤1 restrict(type(m), π′). By Re-quirement 62 (Module import), A(M0) is an extension of A(M). Therefore, by De�nition 54,
type(e′) ≤0 restrict(type(m), π′). This shows, together with (1) that type(e′) ≤0 type(superm,π,M)holds.In pratie, the hoie to resolve the target in the signature of the ourring module only is onvenient forthe purpose of separate ompilation, sine the super all an be resolved to the spei� target implementationwhih is known at the time the module is ompiled. This hoie also ensures that no ambiguity error forsuper alls arises when ombining independent modules together, whih ould be the ase if the target ofthe all was resolved taking into onsideration the whole program.9.2 Consequenes of the preoity ruleIt is interesting to note that many ases where the resolution of the target of a super operator would bedi�erent in the non-modular program are in fat ruled out by the preoity rule (De�nition 66). That is,when an implementation is omitted although it ould have been de�ned, but it is present in another module,as in the following example:module M0 {lass A}module M1 imports M0 {method m : A -> voidimplementation m �A = eA;}module M2 import M0 {lass B extends A}module M1' imports M1,M2 {lass C extends Bimplementation m �C = eC; // super in eC refers to m �A}module M2' imports M1,M2 {implementation m �B = eB;}program imports M1',M2' 94

This situation is ruled out by De�nition 66. The implementation of m for lass B is inorret in moduleM2' beause of the preoity rule. Indeed, it ould have been done in module M1', where both m and B arevisible.

95

96

Chapter 10Modular kindsIn Chapter 6, we have motivated the introdution of kinding onstraints, and presented a formalization thatworks in a losed-world setting. In this hapter, we argue that this formalization is not suited to modulartypeheking and we propose a revised solution that supports modular programming.10.1 The open world problemRules of Setion 6.5 were designed with a losed-world assumption. They are indeed sound in a losedworld. However, we now show with a simplisti example that using the same rules in an open-world wouldbe unsound.module M1 {interfaekind Klass A : Kmethod f : <T : K> T->Timplementationf �A = fun x -> (new A)}module M2 imports M1 {interfaelass B : Kvar b : Bimplementationlet b = M1.f (new B)} That is, if we typehek the module M1 in its type struture with a single lass A implementing K andthen typehek M2 in the type struture indued by M1 (sine it is imported by M2) and M2, both modulestypehek suessfully. However, taken as a whole, the program would fail. This shows that new rules haveto be given for typeheking in an open world.Indeed, in module M1, the implementation of f �A must be a subtype of restrict(∀T : K. T → T, @A),whih is by de�nition ∀X, T. X ≤ A, X ≤ T, T : K ⇒ X → T . Its denotation is {A → A} sine the onlylass implementing the kind K is A. The type of fun x -> (new A) is ∀U. U → A, so its denotation inludes
A → A and it is a orret implementation for f �A. In module M2, the type of f whih is known from theinterfae of M1 to be ∀T. T : K ⇒ T → T an now be instantiated to B → B sine B : K. Therefore b has97

indeed type B and the module M2 is well typed. However, M1.f (new B) redues to (fun x -> (new A))(new B), whih redues to (new A), whih is not of type B. Subjet-redution does not hold.The problem obviously omes from the losed-world assumption: in M1 we assumed that the only lassimplementing K is A, however that is not true in the lient module M2. There are at least two possible plaeswhere an error ould have been reported. As a �rst solution, the delaration of lass B in module M2 ouldbe invalid. However, this requires knowledge of the implementation of module M1: if we had written f �A= fun x -> x, lass B would raise no problem. Therefore, this �rst solution is non-modular, and we rule itout. Our solution is instead to take the open-world assumption. The implementation of f in module M1 willthen be delared inorret on the ground that a sublass of A of kind K might be delared later. Formally,this amounts to the fat that ∀U. U → A is not a subtype of ∀X, T. X ≤ A, X ≤ T, T : K ⇒ X → T .Is it still possible to implement method f at all? The identity funtion is a orret implementation.However, it might indeed be the ase that a new objet must be returned. This is possible using our # pattern.Had module M1 implemented f with f #A = fun x -> (new A), this implementation would indeed have asubtype of restrict(∀T : K. T → T, #A), whih is by de�nition ∀X, T. X = A, X ≤ T, T : K ⇒ X → T ,that is ∀T. A ≤ T, T : K ⇒ A → T . This implementation would be sound beause it is only appliable toinstanes of lass A. The overage test would require that an implementation be provided for B. The use of# patterns gives the �exibility of the �rst solution. It retains modularity by using only information from thepatterns of the method implementations ontained in imported modules, whih have to be present in modulesignatures in order to be able to implement the overage test of multi-methods.However, it might be tedious to use # patterns in ertain ases, as it prevents to share the same imple-mentation for several lasses. For instane, it might be known by design that no sublass of A an be of kindK. In that ase, it would be useful to be able to delare this fat, and onsequently allow to implement fhomogeneously for A and all its sublasses, using the �A pattern. To support this situation, we introdue thepossibility to add abstrats annotations: lass C abstrats kind K if no sublass of C is allowed to have kindK. This is espeially useful to reason in an open-world setting, sine it tells us about all possible sublassesof C, even those that might be delared in other, unknown modules. In our previous example, lass BDDabstrats BooleanAlgebra, and lass Integer abstrats Num.Let us onsider how to use this information for typeheking. We reuse module M1 from the previousexample, adding lass A abstrats K so that the implementation of f beomes legal. The restrited typeof f to �A is, by de�nition, ∀X, T. X ≤ A, X ≤ T, T : K ⇒ X → T . We would like its onstraint to imply
A ≤ T . Consequently, ∀U. U → A would be a subtype of the restrited type, and the implementation wouldtypehek. Note that this an be done safely only if we know that no sublass of A will ever have kind K,whih is exatly what the delaration lass A abstrats K ensures. Otherwise, an objet of suh a lassC ould be passed to f, and f() would have stati type C (by instantiating T to C), while this expressionwould redue to new A of type A, thus breaking subjet-redution.For eah kind K, we will de�ne the view of lass C for kind K, and write it viewK(C). The lass viewK(C),if it exists, must a lass to whih type C is mapped when viewed as an instane of kind K. In partiular,
viewK(C) is always a superlass of C and always implements kind K. In that ase, and under the assumptions
X ≤ C, X ≤ T, T : K, we want to be able to onlude that viewK(C) ≤ T . We formally de�ne views inthe next setion, and show that this onlusion is indeed valid. In our example, viewK(A) is A itself and theimplementation of f typeheks.A fruitful way to look at views is that they de�ne, for eah kind, an abstrat view of the lass hierarhy. Forinstane, kind Num de�nes a view of the numerial lasses where Int32 and BigInt are mapped to Integer.This view is more abstrat than the original hierarhy beause it hides the details of the implementationof Integer. Note that viewNum(Float) does not exist, sine Float does not abstrat Num. This leaves thepossibility to extend the hierarhy with a new sublass of Float that implements Num.10.2 Open-world formalizationIn this setion we formally present an extension of ML≤ with kinds. We use the framework introdued inChapter 7 to show that this extension leads to a modular type algebra.98

As in Setion 6.5, type strutures inlude a set of kinds, a partial order on kinds and prediates forimplementation and abstration of kinds by lasses, and onstraints inlude the implementation of a kind bya type onstrutor. Type struture T ::= (C,K,≤, :, ::)Constraint κ ::= θ ≤ θ | φV ≤ φV | φV : KA kind is a name in K that represents a harateristi shared by a set of lasses. In a sense, kinds arethe type of lasses (tehnially speaking, of type onstrutors).When a lass C has the harateristi of a kind K, we will say that it implements this kind, and writeC : K. If a lass C abstrats a kind K, written C :: K, no sublass of C is allowed to implement that kind.While in many ases lasses that abstrat a kind also implement it, there is no tehnial reason to enforethis property.It is also possible to express that a kind K′ extends kind K, written K′ ≤ K. This states that whenevera lass implements K′, it also implements K. If we interpret views as an abstration relation, K′ is thenmore abstrat than K. We assume the existene of a kind alled Top that is a super-kind of all other kinds,implemented by every lass and abstrated by every �nal lass. 1We impose three requirements on type strutures to ensure the oherene of kind annotations:Requirement 76 (Kinds) A type struture (C,K,≤, :, ::) is valid if:i. for all kinds K and K′ suh that K′ ≤ K, for all lass C, if C : K′ then C : K.ii. for all kinds K and K′ suh that K′ ≤ K, for all lass C, if C :: K then C :: K′.iii. for all kind K, for all lasses C and C′ suh that C' ≤ C, if C :: K then C′ :: K.The �rst requirement simply expresses the notion of kind extension. The seond requirement is the dualof the �rst one. Sine no sublass of C an implement K (C :: K), it follows from the �rst requirement that nosublass of C an implement K′. The third requirement saturates the abstrats annotations: sine no sublassof C an implement K (C :: K), this is in partiular true for any sublass C′ of C. Therefore, we might as wellrequire C′ to abstrat K. Note that a onrete programming language would therefore not require abstratsannotations to be repeated on all sublasses, but would infer the annotations automatially.We an now de�ne views.De�nition 77 (View) If a lass C abstrats kind K and if there exists a lass C′ suh that, for all lass C′′below C, C′ is the lowest lass above C′′ implementing K, then the view of lass C for kind K, written viewK(C),is the lass C′. Otherwise, viewK(C) = ⊥.A partiular ase onerns �nal lasses. When C is a �nal lass, then viewK(C) is the least lass aboveit that implements K. The intuition here is that sine C is �nal, it annot have sub-lasses, so there is nodi�ulty to satisfy the downward-losing property of K
−→ . For instane, with a �nal lass NativeFloatbelow Float, we would have NativeFloat Num

−→ Float.De�nition 78 (Type struture extension) A type struture T ′ extends a type struture T if the follow-ing onditions are respeted:1. the onditions of De�nition 582. if cV : K in T , then cV : K in T ′3. if cV :: K in T , then cV :: K in T ′1 Top is speial in the sense that we do not want the user to have to assert the above properties, but is has no speialtreatment in the theory. It an thus been seen as syntati sugar.99

4. if K ≤ K ′ in T , then K ≤ K ′ in T ′5. if viewK(cV) = c′V in T with c′V 6= ⊥, then viewK(cV) = c′V in T ′We now introdue new axioms to deal with kinds.De�nition 79 (Constraint impliation with kinds) The onstraint impliation relation |= is the leastrelation that satis�es the axioms of Figure 10.1 and of Figure 2.5.TrivImp cV : K

∀ϑ. κ |= κ ∧ cV : K
Abs φV ≤ cV ∈ κ φV ≤ φ′

V ∈ κ φ′
V : K ∈ κ

∀ϑ. κ |= κ ∧ viewK(cV) ≤ φ′
V

viewK(cV) 6= ⊥EqImp φV = φ′
V ∈ κ φV : K ∈ κ

∀ϑ. κ |= κ ∧ φ′
V : K

ExtImp φV : K ′ ∈ κ K ′ ≤ K

∀ϑ. κ |= κ ∧ φV : KFigure 10.1: Axioms for kindsThe main axiom, Abs, de�nes how views augment the onstraint impliation relation. When a lass cVhas a view for kind K, and there exists a type onstrutor φV below both cV and a type onstrutor φ′
Vthat implements K, then we an onlude that viewK(cV) is below φ′

V . This axiom is orret beause of theminimality ondition in De�nition 77.Using the framework of Chapter 7, we just need to prove the orretion and ompleteness of this axiom-atization, as de�ned by De�nition 55. By Theorem 57 (Extension of a ML-Sub type algebra), thisensures that extensions of the type struture lead to extensions of the type algebra.Theorem 80 (Corretion and ompleteness of the axiomatization of kinds) For all type struture
T , variable list ϑ and onstraints κ1 and κ2 in T , the onstraint impliation ∀ϑ. κ1 |= κ2 holds if and onlyif for all extension T ′ of T , for all ground substitution σ1 suh that T ′ ⊢ σ1(κ1), there exists a groundsubstitution σ2 suh that σ2

ϑ
= σ1 and T ′ ⊢ σ2(κ2).Proof of theorem 80 (Corretion and ompleteness of the axiomatization of kinds)We �rst onsider soundness, that is, the �if� part of the proposition. The original proof of [5℄ is by aseon the axioms. Sine we only strengthened the requirements on type strutures, the proofs for the existingaxioms arry on unhanged. We thus only need to prove that the newly introdued axioms are also sound.For all axioms, we hoose σ2 = σ1, and we write it σ. By De�nition 78, all the hypotheses on the typestruture T are also valid on T ′.ase TrivImpBy hypothesis, σ(κ) holds in T ′. Furthermore, cV : K in T , and thus also in T ′ by De�nition 78.Therefore, σ(κ ∧ cV : K) holds in T ′.ase AbsSine by hypothesis viewK(cV) 6= ⊥ in T , viewK(cV) has the same value in T ′ as in T ′ by De�nition 78.By hypothesis, lass σ(φ′

V) veri�es σ(φ′
V) ≥ σ(φV), and σ(φV) ≤ cV . By De�nition 77, viewK(cV) isthe least suh lass in T ′. Therefore viewK(cV) ≤ σ(φ′

V).ase EqImpThis is trivial, sine ≤ is a partial order over the type onstrutors of T ′.ase ExtImp
K ′ ≤ K holds in T ′ by De�nition 78. By hypothesis, σ(φV) : K ′. So by Requirement 76.i, σ(φV) : K.100

We now prove ompleteness, that is, the �only if� part of the proposition. As in [5℄, we �rst onsider thease where κ1 is a well-formed onstraint in base form, that is without onstruted monotypes. In that ase,we an onstrut a spei� extension of the type struture T 1, whih assigns a onstant to every variablein ϑ. We shall prove that T 1 extends T and that for all ϑ-losed onstraint κ, the onstraint impliation
∀ϑ. κ1 |= κ holds if and only if κ holds in T 1. This orresponds to lemma 18 in [5℄. The rest of the proof isthen unhanged, from their lemma 19 to 21, whih proves ompleteness.Let us de�ne T 1. Let V 1 be the set of V type onstrutors in T and of V type onstrutors variables in
ϑ. Let T 1 be the set of type variables in ϑ. We de�ne partial orders ≤ and equivalene relations = on T 1and all V 1 by:

t ≤ t′ ⇔ ∀ϑ. κ1 |= t ≤ t′

φV ≤ φ′
V ⇔ ∀ϑ. κ1 |= φV ≤ φ′

V

t = t′ ⇔ t ≤ t′ and t′ ≤ t
φV = φ′

V ⇔ φV ≤ φ′
V and φ′

V ≤ φVWe build the type struture T 1 by adding to T a onstant type onstrutor for eah equivalene lass of
V 1 and T 1. Noting [φV] the lass of φV , we de�ne T 1 with:

[φV] : K in T 1 ⇔ ∀ϑ. κ1 |= φV : K
[φV] :: K in T 1 ⇔ there exists cV in T suh that ∀ϑ. κ1 |= φV ≤ cV and cV :: K hold in T
K ′ ≤ K in T 1 ⇔ K ′ ≤ K in TThese de�nitions do not depend on the hoie of φV in its equivalene lass thanks to axioms EqImp andCTrans.Let us hek that T 1 is a type struture. By de�nition, the relations ≤ are partial orders. For Require-ment 76 (Kinds):i. By hypothesis, K ′ ≤ K and [φV] : K ′ hold in T 1. That is, by de�nition of T 1, K ′ ≤ K and
∀ϑ. κ1 |= φV : K ′ hold in T . Therefore, by ExtImp, ∀ϑ. κ1 |= φV : K hold in T . That is, by de�nitionof T 1, [φV] : K holds in T 1.ii. By hypothesis, K ′ ≤ K and [φV] :: K hold in T 1. That is, by de�nition of T 1, K ′ ≤ K and thereexists a lass cV in [φV] suh that cV :: K hold in T . Sine T is a type struture, by Requirement 76(Kinds), cV :: K ′ holds in T . Therefore, by de�nition of T 1, [φV] :: K ′ holds in T 1.iii. By hypothesis, [φ′

V] ≤ [φV] and [φV] :: K hold in T 1. That is, by de�nition of T 1, ∀ϑ. κ1 |= φ′
V ≤ φVholds in T (1), and there exists a lass cV suh that ∀ϑ. κ1 |= φV ≤ cV (2) and cV :: K hold in T (3).By Lemma 26 (Conjuntion) with (1) and (2), ∀ϑ. κ1 |= φ′

V ≤ φV ∧ φV ≤ cV holds in T . Therefore,by CTrans and Triv, ∀ϑ. κ1 |= φ′
V ≤ cV holds in T . Therefore, by (3) and de�nition of T 1, [φV] :: K ′holds in T 1.Let us now hek that T 1 is an extension of T , up to the [_] quotient, as de�ned in De�nition 78.1. True by CStrut.2. If cV : K in T , then by TrivImp ∀ϑ. κ1 |= cV : K holds in T . Therefore, [cV] : K holds in T 1.3. By de�nition of abstration in T 1, sine cV belongs to [cV]4. By de�nition of T 15. By hypothesis, viewK(cV) exists and is c′V in T . Therefore, by De�nition 77, cV abstrats K. Thatis, [cV] abstrats K in T 1. Moreover, for all [φV] suh that [φV] : K and that there exists [φ′

V]suh that [φ′
V] ≤ [φV] and [φ′

V] ≤ [cV], we have to prove that [c′V] ≤ [φV]. We have by hypothesis
∀ϑ. κ1 |= φ′

V ≤ φV : K ∧ φ′
V ≤ cV . Therefore, by Abs, ∀ϑ. κ1 |= c′V ≤ φV . That is, [c′V] ≤ [φV] in T 1.Therefore, viewK([cV]) is [c′V] in T 1. 101

It now remains to prove that for all ϑ-losed onstraint κ, κ holds in T 1 if and only if ∀ϑ. κ1 |= κ holdsin T . First, suppose ∀ϑ. κ1 |= κ. By onstrution, κ1 holds in in T 1. Furthermore, we have proved that T 1is an extension of T . So we an apply the soundness property, whih proves, sine κ is ϑ-losed, that κ holdsin T 1. For the onverse proof, we proeed by indution on the struture of κ.ase κ = φV ≤ φ′
VBy hypothesis, κ holds in T 1. That is, [φV] ≤ [φ′

V]. Thus by de�nition of ≤ in T 1, ∀ϑ. κ1 |= φV ≤ φ′
V .ase κ = θ ≤ θ′By hypothesis, θ ≤ θ′ in T 1. So by De�nition 23, θ = φV [θ] and θ′ = φ′

V [θ′], with φV ≤ φ′
V and

θ ≤V θ′ holding in T 1. So by de�nition of ≤ in T 1, ∀ϑ. κ1 |= φV ≤ φ′
V , and by indution hypothesisand Lemma 26 (Conjuntion), ∀ϑ. κ1 |= θ ≤V θ′. So, again by Lemma 26 (Conjuntion), ∀ϑ. κ1 |=

φV ≤ φ′
V ∧ θ ≤V θ′. Therefore, by MIntro, ∀ϑ. κ1 |= θ ≤ θ′.ase κ = φV : KBy hypothesis, φV : K holds in T 1. So by de�nition of T 1, ∀ϑ. κ1 |= φV : K.ase κ = κ′

1 ∧ κ′
2By indution hypothesis, ∀ϑ. κ1 |= κ′

1 and ∀ϑ. κ1 |= κ′
2. So by Lemma 26 (Conjuntion), ∀ϑ. κ1 |=

κ′
1 ∧ κ′

2.The extension of ML≤ with kinds has been used as a type system of our programming language Nie.This has been very useful to spot interesting typing situations and hek how they an be solved usingkinds. A note on syntati details is given in Appendix 13 to enable the reader to experiment with ourimplementation. We ould also verify that type-heking an be implemented e�iently.10.3 LanguageIn this setion, we brie�y desribe a omplete programming language that supports kinds. We base ourpresentation on the generi framework of Chapter 1, thus illustrating its interest for fatoring a large partof the presentation and the proofs. This framework is extensible in two diretions. First, an arbitrary typealgebra � a language for types equipped with a subtyping relation � an be used, provided it meets foursimple requirements. Seond, new operators an be de�ned to add features to the language. In partiular,multi-methods an be de�ned as operators.For the type algebra, we take the extended version of ML≤, as de�ned in Setion 10.2. In partiular,type onstraints inlude kinding onstraints. For operators, we an simply reuse the multi-methods de�nedin Chapter 8. Their expressivity is automatially augmented by the possibility to inlude kinding onstraintsin their types. Additionally, the surfae language needs to inlude the possibility to delare new kinds, andto delare that a lass implements an existing kind. These delarations have no evaluation semantis, butreate the type struture in whih subtyping is de�ned. The syntax for programs with multi-methods andkinding onstraints is:Delaration G ::= generi g : τImplementation I ::= implementation g π ⇒ eClass C ::= lass C extends C { ... }Kind K ::= kind KKinding KI ::= lass C implements KModule M ::= module M imports M ; let re G | I | C | K | KIProgram P ::= imports M eval eInterestingly, there is no need to add spei� rules to hek the kind implementation delarations. Theyome as a partiular ase of multi-method typeheking and overage test: if lass C implements K and102

method f has type <T : K> T -> T, then the overage test will hek that there exists an implementationof f that mathes lass C. Additionally, eah implementation will be fored to be type-orret.Sine Theorem 80 (Corretion and ompleteness of the axiomatization of kinds) holds, themodular typeheking sheme of Chapter 8 is sound for these programs.10.4 ConlusionIn Chapter 6, we have identi�ed the need to augment the expressiveness of type systems with polymorphismand nominal subtyping to handle two typing situations that our in pratie. Our solution is to introduekinds that desribe a property that types an delare to possess.In this hapter, we have proposed an extension of the ML≤ type system that implements that solutionwhile preserving the main properties of the system. The resulting system ahieves modularity, sine it allowsmodules to be type-heked independently and new lasses to be added in a hierarhy ontaining partiallypolymorphi methods. We have implemented this type system in the Nie programming language, showingin partiular that type-heking remains tratable.

103

104

Part IVPratie

105

Chapter 11Code generation11.1 Monomorphi byteode languageWe de�ne in this hapter a target language for ompiling our high-level language with lasses and multi-methods. One goal is to show how our language an be ompiled to a low-level stak language that is expliitlytyped and inludes the veri�ation of ode before running it. This is useful, sine suh low-level languagesare beoming ommon, in partiular with Java byteode [31℄ and the Common Language Infrastruture.However, many features of these languages are not neessary for this presentation. For instane, sinetheir dispath is limited to one argument, it will be neessary to express multiple dispath with more primitiveoperations. Therefore, we an ignore single dispath for the sake of simpliity. We hoose to formalize asubset of the Java byteode. This hoie makes the presentation more pratial by allowing ompilation toan existing and widespread arhiteture. Furthermore, it stays valid for similar targets that inlude the samesubset of features that we use.Byteode type T ::=Class name CArray | T []Variable name xMethod name mByteode expression B ::=
load x

| store x in B
| call m
| cast T
| iftrue B else B
| instanceof C
| exactinstanceof C
| true | false
| new C
| field C.iSequene | B; BByteode value V ::= true | false | V ; new CFuntion de�nition F ::= static method m(T x) : T {B; return}Class de�nition D ::= class C extends C′ { Tfield; }Figure 11.1: Byteode107

The syntax of byteode types, byteode expressions and funtion de�nitions is given in Figure 11.1.Sine all methods are stati, only one type of all is used, whih orresponds to invokestatic in the JVM.Therefore, we simply all it all. The fat that store has an expliit sope enables us to express moresimply a redution semantis. This sope orresponds to the lifetime assoiated to loal variables in theJVM.The objets that are instanes of a lass C are represented by a sequene of values for eah �eld followedby the operator new C. This orresponds to pushing the values of the �elds on the stak before alling the
new C operator.The byteode expression exactinstanceofC is not part of the JVM. However, it an be emulated easily,for instane by using the instrutions to retrieve the lass of the value, then to get the name of that lassand to ompare it with the name of lass C. This orresponds to the byteode

call Object.getClass; call Class.getName; nameOfC; call Object.equalswhere nameOfC is the fully quali�ed name of C.We denote by C the types of the byteode language. They orrespond exatly to lass names. They areordered by the subtype ordering, whih is delared by the heritage relation on lasses.
true; iftrue B1 else B2 −→ B1 false; iftrue B1 else B2 −→ B2

m delared with static method m(T1 x1, ..., Tn xn) : T {B; return}

V1; ...; Vn; call m −→ V1; ...Vn; store xn in ... store x1 in B

V ; store x in B −→ B [(load x)← V]
lass C′ extends C

V ; new C′; cast C −→ V ; new C′lass C′ extends C

V ; new C′; instanceof C −→ true

lass C′ does not extend C

V ; new C′; instanceof C −→ false

V ; new C; exactinstanceof C −→ true
C′ 6= C

V ; new C′; exactinstanceof C −→ false

V1; ...; Vn; new C′; field C.i −→ Vshift(sc(C′),C)+i

B1 −→ B′
1

B1; B2 −→ B′
1; B2Figure 11.2: Byteode semantisA redution semantis on these expressions is given in Figure 11.2. We do not try to model side e�ets.The generalization to referenes is indeed orthogonal to our fous, whih is the implementation of multi-methods and the translation of polymorphi ode into veri�able monomorphi ode. Therefore, we do notneed an evaluation environment. Furthermore, we suppose for the sake of simpliity that every expressionvariable has a di�erent name, in order to avoid expliit renamings.The �rst redution expresses that a true value followed by an iftrue operator redues to the �rst branh.A funtion all redues, when arguments are evaluated to values, to the expression storing the values in theformal parameters and evaluating the body of the funtion. Store expressions redue by substituting thevalue for instanes of loads for the orresponding variable in the body of the store expression. A cast Cexpression redues provided that the instane is built on a sublass of C. Sine we are interested in ompilingtype-safe programs to byteode, we are only interested in showing that asts never fail. In that setting, itis su�ient to let the unsuessful ase be stuk, sine we don't model exeptions. The instanceof and

exactinstanceof expressions redue aordingly to the lass upon whih the value is built. The redution108

of �eld aessed requires the omputation of the rank di�erene of the �eld between the delaring super-lassand the lass the value is an instane of. This rank di�erene is de�ned as in Setion 3.2 using the shiftoperator. The list of �elds delared by a lass, Fields(_), as well as the full list of �elds, AllF ields(_), arealso used in this setion. Finally, sequene expressions redue if their pre�x redue.11.1.1 Type hekingThe byteode is submitted to type-heking before being exeuted. Figure 11.4 de�nes the Γ; S ⊢ B : S′relation, whih infers the byteode types S′ on the stak after evaluation of a byteode expression B, givena type environment Γ and the types S on the stak before the evaluation.
C ≤ C

class C extends C′

C ≤ C′

C ≤ C′ C′ ≤ C′′

C ≤ C′′

T ≤ T ′

T [] ≤ T ′[]Figure 11.3: Subtyping
Γ, x : T ; S ⊢ load x : S, T

Γ, x : T ; S ⊢ B : S′

Γ; S, T ⊢ store x in B : S′

m delared with static method m(T1 x1, ..., Tn xn) : T {...} ∀i ∈ 1..n T ′
i ≤ Ti

Γ; S, T ′
1, ..., T

′
n ⊢ call m : S, T

Γ; S, T ′ ⊢ cast T : S, T

Γ; S ⊢ B1 : S, T1 Γ; S ⊢ B2 : S, T2

(T2 ≤ T1 = T) or (T1 ≤ T2 = T)

Γ; S, boolean ⊢ iftrue B1 else B2 : S, T

Γ; S, T ⊢ instanceof C : S, boolean Γ; S, T ⊢ exactinstanceof C : S, boolean

Γ; S ⊢ true : S, boolean Γ; S ⊢ false : S, boolean
AllF ields(C) = T1, ..., Tn ∀i T ′

i ≤ Ti

Γ; S, T ′
1, ..., T

′
n ⊢ new C : S, C

C′ ≤ C Fields(C) = T1, ..., Tn

Γ; S, C′ ⊢ field C.i : S, Ti

Γ; S ⊢ B1 : S′ Γ; S′ ⊢ B2 : S′′

Γ; S ⊢ B1; B2 : S′′Figure 11.4: Type hekingA load expression pushes the type of the loaded expression on the type stak. The expression store

x in B produes the same type stak as the expression B in the ontext where x has the top type of theinoming stak. A funtion all pops the types of the arguments and pushes the return type, provided thatthe argument types are subtypes of the delared parameter types. The expression cast T hanges the toptype to T . An iftrue expression requires the top type to be boolean, and pushes the type produed byeither branh provided it is greater than the one of the other branh. instanceof and exactinstanceofpop an arbitrary type and push the boolean type. true and false push the boolean type. The expression
new C pushes type C provided the types on top of the stak are subtypes of the orresponding �eld types.A �eld aess expression field C.i pops a subtype C′ of C and pushes the type of the ith �eld of lass C.Finally, a sequene B1; B2 produes the same stak as B2 produes with the inoming stak being the oneprodued by B1. 109

11.2 Monomorphi instanes of polytypesThe type system de�ned in the previous setion is very limited ompared to ML≤. In partiular, it does notinlude type onstrutors, funtional types and polymorphi onstrained types. ML≤ types must thereforebe translated into byteode types, in parallel with the translation of high-level expressions into byteodeexpressions. This translation must verify the following onstraints:
• the generated byteode must have the same semantis as the soure program;
• the generated byteode must be well-typed aording to the byteode type system;
• as far as possible, the translation must allow fast exeution of the generated byteode.The seond point is debatable. One ould also hoose not to respet the byteode type system andrely on the possibility of some virtual mahines to swith o� byteode veri�ation. Supposing the soureprogram was well-typed, the �rst point still ensures that no error will our at runtime. However, the user ofa released ompiled program would not have any guarantees that the program is safe. Furthermore, virtualmahines an suppose that the exeuted byteode is veri�able. It is therefore possible that they performsome optimizations that beome inorret on non-veri�able byteode. Therefore, it seems that this approahwould require a modi�ed byteode format, together with a modi�ed virtual mahine to exeute it. In thatase, the format ould as well inlude other features, suh as multiple dispath. While this approah is alsointeresting, we do not explore it here.In this setion, we motivate our hoies for the translation of ML≤ types into byteode types, before for-malizing that translation in Setion 11.3. We �rst onsider types build by the appliation of type onstrutorsto other types, before takling the more di�ult ase of polymorphi onstrained types.11.2.1 Type ConstrutorsParameterized lassesThe translation of a parameterized lass de�nition is done by erasure, as in Pizza [37℄: a non-parameterizedbyteode lass is de�ned, whose �elds have the byteode translation of their type.The translation of a type C[θ] onstruted on a parameterized lass C is simply C.Funtional typesLambda-abstrations are ompiled into objets that ontain the aptured variables of the environment anda �nal method with a anonial name (apply) that represents the funtion. A funtional type is thereforetranslated into a byteode interfae type that delares a method apply with one argument for eah argumentof the lambda-abstration.At �rst sight, one ould want to delare in this interfae type the byteode type of the arguments and thereturn type of the funtion. This would allow the byteode of the lambda-expression and of its alls to usea better approximation of their type, therefore avoiding in some ases to need a ast. However, this wouldmake impossible the diret use of a funtional expression as parameter of a higher order funtion, as soonas the byteode type of this expression is not exatly the one expeted. It would in partiular be the asefor polymorphi funtions and for funtions whose domain is larger, or whose odomain is smaller, than theexpeted type. These ases are valid in ML≤ but would not be in the byteode, sine it has only invarianerules for the type of methods in sublasses. For instane, given types C ≤ B ≤ A, type B → B would betranslated into an interfae ontaining the method B apply(B), and a value of type A→ C would onsist ofan instane of a lass with a method C apply(A). However, that latter lass annot be made to implementthe interfae. Therefore, in the byteode, the value annot be used diretly where type B → B is expeted,even though that is valid in the soure language.One ould onsider adding a ast towards the expeted funtional interfae type. This ast would onlysueed if the lass of the funtional value expliitly delares implementing this interfae. This is impratial:110

for a value of type ∀T. T → T , this would amount to implementing the funtional interfae type of everytype ourring in the program. Besides the sheer number of those, this would pose a problem for separateompilation.Another solution is to insert problemati funtional value inside another one delaring the expetedfuntional interfae type, redireting alls to the original funtion and ast the result to return the expetedtype. This solution has a runtime ost of one losure reation for every funtional value passed as an argumentwith a di�erent type, plus one indiretion and a ast per all of this funtional value.A simpler solution for funtional types is to use only one interfae per arity, every parameter and returntype being Object. The runtime ost is of one ast for eah argument and for the return type per all,exept when used polymorphially. Compared to the previous solution, this one is advantageous if lambda-expressions are often polymorphi and have typially few arguments. Furthermore, it avoids the reationof numerous funtional interfae types, eah one inurring a ost at its �rst use in the virtual mahine.Furthermore, it is ideal in the ase where asts an be deativated when the byteode is trusted, sine typingguarantees that they will not fail.Only this last solution has been implemented. A omparison of the two approahes on onrete exampleswould be neessary to onlusively deide whih one is most e�ient.ArraysArrays are the only parameterized types in Java byteode. They are ovariant, whih imposes a runtimeveri�ation during writes inside arrays, possibly failing with an ArrayStoreException. In Nie, arraysare invariant. Typing is therefore more restritive (although polymorphism allows to express naturallypolymorphi funtions on arrays, provided they respet their types). By translating a ML≤ array type tothe byteode array type whose elements are the translation of the type parameter, the byteode type systemis therefore automatially respeted. Furthermore, generated programs never lead to runtime errors whilewriting arrays elements beause of the type of the element.11.2.2 Constrained polymorphi typesIndeed, those types represent in general a set of monomorphi type instanes that are equivalent to no singlemonomorphi type. The translation is therefore only an approximation. Our goal is to �nd an optimalmonomorphi approximation for any polytype.ExampleLet f be a funtion of type ∀T ≤ A. T → T , where A is a lass that has a sublass B. We need to �nda byteode type for the domain D and the odomain C of f . The hoie of those two types is onstrainedboth by the byteode implementation of the funtion and by the all sites of f .Two requirements have to be met, sine they originate from reasoning on the runtime types of values.Ignoring them would lead to a possible ast error at runtime. Firstly, the values returned by f might beinstanes of both A and B. The byteode odomain must therefore verify C ≥ A (and C ≥ B, but this lastrequirement is weaker than the previous one). Seondly, the argument passed during a all to f an be aninstane of A or B, whih onstraints the domain with D ≥ A.Two other ontexts show what byteode type is expeted, and therefore allow to know what preise valueto hoose for C and D to minimize the number of asts: the ode of f is typed under the hypothesis T ≤ A,and T is the type of the parameter of f . Therefore, all the operations done on this parameter must be validfor T = A. If we hoose D = A, we therefore guarantee that no ast is neessary in the ode generated for
f . On the other hand, the value returned by a all to f an in general be used with type T , instantiatedfor this partiular all, either in A or in B. Sine the hoie of the odomain is onstrained by C ≥ A, weannot avoid a ast for the ase T = B. On the other hand, by hoosing C = A rather than C = Object,we avoid a ast in the ase T = A.This example suggests that the optimal valid translation for a polymorphi funtion is obtained whenhoosing the greatest instane of the type parameters. We shall now formalize and prove this rule.111

11.3 Compilation11.3.1 TypesA losed monotype is translated by erasure into a byteode type. Only array types are parameterized by thetype of their omponents.De�nition 81 (Erasure for monomorphi types) Given a ground monotype θ, its erasure BC(θ) isde�ned by: Array type BC(Array[θ]) = BC(θ)[]Construted monotype BC(cV [m]) = BC(cV) (cV 6= Array)Funtion type BC(θ1 → θ2) = Funwhere cV 7→ BC(cV) is a one-to-one mapping from type onstrutors to byteode lass names, and Fun is alass with a single method Object apply(Object).Lemma 82 (Covariane of the byteode translation) Let θ and θ′ be two ground monotypes suh that
θ ≤ θ′. Then BC(θ) ≤ BC(θ′).Proof of lemma 82 (Covariane of the byteode translation)If either θ or θ′ are funtion types, then both are sine θ ≤ θ′ holds. Therefore, both of their translationsare Fun, and the result holds.Otherwise, let θ be cV [θ] and θ′ be c′V [θ

′
]. By De�nition 23, sine θ ≤ θ′, we have cV ≤ c′V and θ ≤V θ′.ase c′V = ArraySine Array is a �nal lass and sine cV ≤ Array, we also have cV = Array. Furthermore, Arrayhas signature V = (⊗) (that is, it is an invariant type onstrutor), so θ = θ′ = θ0. Thus, BC(θ) =

BC(θ′) = BC(θ0)[].ase c′V is a lass di�erent from ArraySine cV ≤ c′V , cV is also a lass di�erent from Array. Therefore, BC(θ) = cV and BC(θ′) = c′V .Furthermore, the type onstrutors verify cV ≤ c′V , so the byteode lasses also verify BC(cV) ≤
BC(c′V).The translation of polymorphi type is done by instantiation into the most general monotype. For methodtypes, the domain and the odomain are translated independently.De�nition 83 (Erasure for polymorphi types)

BCκ(θ) = mub {BC(σ(θ)) | σ(κ)}

BC(∀t. κ⇒ θ) = BCκ(θ)

domi(∀t. κ⇒ θ1 → ...→ θn → θ) = BCκ(θi)

codom(∀t. κ⇒ θ1 → ...→ θn → θ) = BCκ(θ)where mub is a funtion mapping a set of byteode types to one of their minimal upper bounds.For a set of byteode types, Object is always an upper bound. With multiple inheritane, there an beseveral minimal upper bounds. For our purposes, it does not matter whih one is hosen, sine any upperbound would be orret. The minimality just helps keeping the byteode type as informative as possible,and potentially redues the number of asts needed inside the implementation of methods.This omputation is stable by extension of the set of types, so it is ompatible with separate ompilation.Indeed, the new byteode types are always smaller than the existing ones, sine only sublasses of existinglasses an be added. Thus, by Lemma 82 (Covariane of the byteode translation), they do notmodify the result of the omputation of the minimal upper bound.112

11.3.2 ProgramsThe goal of this setion is to de�ne a translation BC(·) from soure programs of Chapter 4 into byteodethat veri�es the following theorem. We use a all-by-value semantis.Theorem 84 (Compilation) Let p be let re D in e and BC(p) be its byteode translation. If p is well-typed, then BC(p) is a well-formed byteode program. Furthermore, let v be a value suh that e −→ v and
τv = type(v). Then BC(e) −→ BC(v) and the byteode value BC(v) has byteode type BC(τv).De�nition 85 (Byteode translation) Given an expression e, we de�ne its translation BC(e) by aseon e. For a variable x, its translation is load x.Given the expression let x1 be e1 in e2, let ∀ϑ1. κ1 ⇒ θ1 be type(e1) and
∀ϑ2. κ2 ⇒ θ2 be type(let x1 be e1 in e2). Then BC(let x1 be e1 in e2) is de�ned as
BC(e1); cast BCκ2

(θ1); store x1 in BC(e2).A lambda-abstration λx.e is translated into an objet with a single method:
new Fun(){ Object apply(Object x) { BC(e) }}.For an appliation of the form c e1 ... en, where c is an operator of arity n, its translation is
BC(ei); cast domi(type(c)); BCCall(c), where

BCCall(m) = call m

BCCall(new C) = new C

BCCall(C.i) = field C.iFuntional onstants that are not diretly applied to all of their arguments are ompiled in their eta-expansed form. Let n be arity(c) and p be a number, with 0 ≤ p < n. Then BC(c e1 ... ep) is equal to
BC(λxp+1...xn.c e1...ep, xp+1...xn).An appliation e1 e2 where e1 is not a onstant is translated into
BC(e1); cast Fun; BC(e2); call Fun.apply.Finally, BC(true) is true and BC(false) is false.For a method de�nition method m : τ (πi,1, ..., πi,n)⇒ λx1...xn.ei, its byteode translation is

static method m(dom1(τ) x1, ..., domn(τ) xn) : codom(τ)
{

BCπ1,1
(load x1); BCπ1,2

(load x2); and; ...; BCπ1,n
(load xn); and; iftrue BC(e1)

else ...
else BCπp−1,1

(load x1); BCπp−1,2
(load x2); and; ...; BCπp−1,n

(load xn); and; iftrue BC(ep−1)
else BC(ep);
cast codom(τ); return

}where
BC@C(B) = B; instanceof C

BC#C(B) = B; exactinstanceof C

BC@_(B) = trueFor a lass delaration class C[t] extends C1, ..., Cm {f1 : F1(t), ..., fp : Fp(t)}, its byteode translationis
class C extends C1, ..., Cm { BCtrue(F1(t)) f1; ..., BCtrue(Fp(t)) fp; }For ompiling methods, we suppose that the implementations are ordered with respet to the spei�ityof patterns. That is, suh that for all numbers i and j, i < j =⇒ πj 6≤ πi. This is always possible, sine thesoure program is well-typed, while two equal patterns would lead to an ambiguity error.113

For let expressions, we ast the bound value to be of type BCκ2
(θ1). It would be orret to ast it to beof type BCκ1

(θ1) instead. However, sine κ2 is the onstraint for the whole expression, it is a superset of κ1,as an be heked in De�nition 28. Therefore, BCκ1
(θ1) is a more preise (that is, smaller) byteode type,whih takes into aount the way the bound variable is used in the body of the let expression. By giving amore preise byteode type to x1, this potentially redues the number of asts needed in the translated body.At the same time, this initial ast is guaranteed to sueed sine the whole soure expression is well-typed,as we show in the proof of Theorem 84 (Compilation).We an observe that many asts an be erased, as soon as the byteode typing ensures that the expressionon the stak has a subtype of the desired type. This happens often in pratie1, both in fully monomorphiode and in fully polymorphi ode. Casts are only neessary at the border between these two kinds of ode,that is, when a value with a known monomorphi type is passed to a polymorphi funtion and the result ofthe all is used with its statially known monomorphi type.In our translation, asts are performed before method alls and before storing the value of a let-boundvariable. It would be possible to plae them di�erently. For instane, one ould ast the result of methodalls and of loads, whih would guarantee that the types on the stak are always as preise as they an be.The translation we hose has two advantages. Firstly, it easily guarantees that byteode is well-typed, sine aast is inserted if neessary before eah heked instrution, that is method alls and �eld aesses. Seondly,this translation redues the number of asts that are needed. For instane, if the result of a method all isnot used, no ast is performed. On the other hand, if this result is bound by a let to be used several times,the ast is made before the binding, to avoid a possible ast at eah use.We assign methods a return type whih is the monomorphi approximation of their odomain. Thisrequires in general a ast before the return instrution sine the implementation of the method an usepolymorphially typed funtions, whih entails a loss of typing information. Alternatively, one ould give allmethods a return type of Object (and thus avoid the ast) and rely on the other asts to be performed asneeded. This would redue the number of asts when the result is not used with a spei� type, but wouldinrease it if the ast inside the method was redundant and the approximation was su�ient for the waythe result was used. Furthermore, our solution has the advantage of giving methods a more intuitive type,whih is useful when looking at the generated ode or using it in a all from a di�erent language using thesame byteode.For lasses, the translation of �eld types is, given De�nition 83, a minimal upper bound of the translationof all possible instantiations for the lass type parameters. This implies that the type parameters, if theyappear at all in the translated type, are translated to the byteode type Object.Lemma 86 (Byteode pattern test) Let v be a well-typed value and π be a pattern. Then v ∈ π holds ifand only if BCπ(BC(v)) −→∗ true holds.Proof of lemma 86 (Byteode pattern test)The proof is by ase on π. Let type(v) be ∀ϑ. κ⇒ θ.ase π = @CThen v ∈ π amounts to true |= κ ∧ θ ≤ C[t]. Therefore, by Requirement 38 (Class type), v =new C′ v1 ... vn, where C′ is a sublass of C (1). Thus, BC(v) is BC(v1); ...; BC(vn); new C′. Thus,

BCπ(BC(v)) is BC(v1); ...; BC(vn); new C′; instanceof C. So, by the semantis of Figure 11.2 and(1), BCπ(BC(v)) −→ true.Conversely, if BC(v); instanceofC −→ true, then by Figure 11.2BC(v) = V1; ...; Vn; new C′ where C′is a sublass of C. Therefore v is of the form new C′ v1 ... vn. By de�nition, constant-type(new C′) =
∀t. F ′

1(t) → ... → F ′
n(t) → C′[t] where [F ′

1, ..., F
′
n] = AllFields(C′). So by App, θ is of the form C′[t′].Let V be the variane of C and C′ and t be a list of arity(V) fresh type variables. Then,1In the soure ode of the ompiler for Nie, from 90 to 95% of the asts theoretially needed are unneessary for this reason.114

true
|= κ (v is well-typed)
|= κ ∧C′ ≤ C (C′ sublass of C)
|= κ ∧C′ ≤ C ∧ t′ ≤V t′ (MRef)
|= κ ∧C′ ≤ C ∧ t′ ≤V t (VarIntro with σ(t) = t′)
|= κ ∧C′[t′] ≤ C[t] (MIntro)That is to say that v ∈ @C holds.ase π = #CThen v ∈ π amounts to true |= κ ∧ θ = C[t], and therefore in partiular true |= κ ∧ θ ≤ C[t].So by Requirement 38 (Class type), v = new C′ v1 ... vn, where C′ is a sublass of C. Sinetrue |= κ ∧ θ = C[t], C′ is atually equal to C. So BC(v) is equal to BC(v1); ...; BC(vn); new C.Furthermore, BCπ(BC(v)) = BC(v1); ...; BC(vn); new C; exactinstanceof C. So, by the semantisof Figure 11.2, BCπ(BC(v)) −→ true.Conversely, if BC(v); exactinstanceofC −→ true, then by Figure 11.2BC(v) = V1; ...; Vn; new C. So
v is of the form new C v1 ... vn. By de�nition, constant-type(new C) = ∀t. F1(t)→ ...→ Fn(t)→ C[t]where [F1, ..., Fn] = AllFields(C). So by App, θ is of the form C[t]. Let V be the variane of C and t′be a list of arity(V) fresh type variables. Then,true
|= κ (v is well-typed)
|= κ ∧C = C (CRef)
|= κ ∧C = C ∧ t =V t (Ref)
|= κ ∧C = C ∧ t =V t′ (VarIntro with σ(t′) = t)
|= κ ∧C[t] = C[t′] (MIntro)That is to say that v ∈ #C holds.ase π = _Then by de�nition BCπ(BC(v)) = true.Conversely, true |= true, therefore v ∈ _.We prove speial properties about values. Firstly, we show that the type of a value is speial in that thebyteode translation of all its instanes are the same byteode type.Lemma 87 (Value types) Let v be a value of type τv = ∀ϑv. κv ⇒ θv. Then for all ground substitution σ,

BC(σ(θv)) is equal to BC(τv).Proof of lemma 87 (Value types)It is su�ient to show that the type BC(σ(θv)) does not depend on σ. By De�nition 83, this will show thatthat type is BC(τv). The proof is by ase on v.ase v = true, v = falseThen τv is Boolean. Therefore, for all substitution σ, BC(σ(θv)) is Boolean.ase v = new C v1 ... vnThen τv is ∀t1, ..., tn. κ1 ∧ θ1 ≤ t1, ..., κn ∧ θn ≤ tn ⇒ C[t1, ..., tn]. Therefore, for all substitution σ,
BC(σ(θv)) is BC(C). 115

ase v = λx.eBy De�nition 28, for any σ, σ(θv) is a funtional type. Therefore, by De�nition 81 and De�nition 83,
BC(σ(θv)) is the byteode type Fun.We now show that in a well-typed appliation of a funtion to values, the byteode translation of the typeof the values is a subtype of the translated domain of the funtion. This implies that no ast will be neededto translate the appliation itself, whih will be used to show in Lemma 89 (Values) that the translation ofa value is a byteode value.Lemma 88 (Byteode appliation) Let e v1 ... vn be a well-typed expression. Let τ by the type of e and,for all i from 1 to n, τvi

be the type of vi. Then, for all i from 1 to n, BC(τvi
) is a subtype of domi(τ)Proof of lemma 88 (Byteode appliation)Let ∀ϑ. κ⇒ θ1 → ...→ θn → θ′ be τ , and ∀ϑv. κvi

⇒ θvi
be τvi

. Sine e v1 ... vn is well-typed, the onstraint
κ∧κvi

∧ θvi
≤ θi is satis�able. Let therefore σ0 be a ground substitution suh that σ0(κ∧κvi

∧ θvi
≤ θi) holds(2). By Lemma 87 and (2), BC(τvi

) is equal to BC(σ0(θvi
)). Furthermore, by (2), σ0(θvi

) ≤ σ0(θi) holds.Therefore, by Lemma 82 (Covariane of the byteode translation), BC(σ0(θvi
)) ≤ BC(σ0(θi))holds. By De�nition 83 and sine σ0 satis�es κ by (2), BC(σ0(θi)) must be smaller than the upper bound

BCκ(θi), whih is also domi(τ). That is, by transitivity, BC(τvi
) is a subtype of domi(τ).We now show two further properties of values. Firstly, the translation of a soure value is a byteodevalue. Seondly, subtyping on polytypes must be preserved by translation, if the smaller type an be the typeof a value. This property is required so that a polymorphi value an be used diretly as an expression of aless general type. This orresponds in partiular to the observation made in Setion 11.2.1 about funtionaltypes. For instane, this property would be violated if ∀T. T → T was translated into objet with a methodof type Object → Object and String → String was translated into an objet with a method of type

String→ String.Lemma 89 (Values) Let v be a well-typed value of type τv. Then BC(v) is a byteode value whose byteodetype is BC(τv).Furthermore, for all type τ suh that τv ≤ τ , BC(τv) is smaller than BC(τ).Proof of lemma 89 (Values)The proof is by indution and ase on v.ase v = true, v = falseThen type(v) = Boolean, and BC(v) is by de�nition a byteode value of type boolean = BC(Boolean).Furthermore, let τ suh that Boolean ≤ τ . By orollary 56 (Interpretation), every instane θ of τveri�es Boolean ≤ θ, so by Lemma 82, BC(Boolean) ≤ BC(θ). Therefore, BC(Boolean) ≤ BC(τ).ase v = new C v1 ... vnBy indution hypothesis, eahBC(vi) has byteode type BC(type(vi)). Sine v is well-typed, Lemma 88(Byteode appliation) shows that BC(type(vi)) is a subtype of domi(τ). Therefore, in De�ni-tion 85 for BC(v), the asts are redundant, and BC(v) is equal to BC(v1); ...; BC(vn); new C, whihis a byteode value of byteode type C.By de�nition, constant-type(new C) = ∀t. F1(t) → ... → Fn(t) → C[t] where [F1, ..., Fn] =
AllFields(C). Let type(vi) be ∀ϑvi

. κvi
⇒ θvi

. Then by App, τv = type(new C v1 ... vn) =

∀tϑvi
. κvi

∧ θvi
≤ Fi(t)⇒ C[t]. Therefore, by De�nition 81 and De�nition 83, BC(τv) = C.Let τ0 = ∀ϑ0. κ0 ⇒ θ0 be a type suh that τv ≤ τ0. Let κ′ be κvi

∧ θvi
≤ Fi(t). By orollary 56(Interpretation), for every ground substitution σ suh that σ(κ0), there exists σ′ suh that σ′(κ′)and σ′(C[t]) ≤ σ(θ0). So by Lemma 82, BC(σ′(C[t])) ≤ BC(σ(θ0)). Furthermore, BC(σ′(C[t])) isalways equal to C by De�nition 81. So C ≤ BC(σ(θ0)) holds for all σ. Thus, by De�nition 83,

BC(τv) = C ≤ BC(τ0). 116

ase v = λx.eBy De�nition 28, De�nition 81 and De�nition 83, BC(τv) is Fun. By De�nition 85, BC(v) has byteodetype Fun as well.Furthermore, for all type τ suh that τv ≤ τ , τ is also a funtional type by MElim, and therefore
BC(τ) = BC(τv) = Fun.The following lemma shows that the byteode translation is a morphism for substitution.Lemma 90 (Byteode substitution) For all expression e, value v and variable x, BC(e [x ← v]) =

BC(e) [load x← BC(v)] holds.Note that the validity of this lemma lies in the fat that x is bound by a let and therefore is not modi�ed in
BC(e).Proof of lemma 90 (Byteode substitution)The proof is by indution on e.ase e = xThen BC(e) [load x← BC(v)] = (load x) [load x← BC(v)] = BC(v) and BC(e [x← v]) = BC(v).ase e = x′ with x′ 6= xThen BC(e) [load x ← BC(v)] = (load x′) [load x ← BC(v)] = load x′ and BC(e [x ← v]) =

BC(x′) = load x′.ase e = c e′1 ... e′n with arity(c) = nLet τ be type(c).
BC(e) [load x← BC(v)]

= BC(e′i) [load x← BC(v)]; cast domi(τ); BCCall(c) (De�nition 85)
= BC(e′i [x← v]); cast domi(τ); BCCall(c) (Indution hypothesis)
= BC(c (e′1 [x← v]) ... (e′n [x← v])) (De�nition 85)
= BC((c e′1 ... e′n) [x← v])ase e = e1 e2 with e not of the form c e′1 ... e′n

BC((e1 e2) [load x← BC(v)]
= (BC(e1); cast Fun; BC(e2); call Fun.apply) [load x← BC(v)] (De�nition 85)
= BC(e1) [load x← BC(v)]; cast Fun; BC(e2) [load x← BC(v)]; call Fun.apply
= BC(e1 [x← v]); cast Fun; BC(e2 [x← v]); call Fun.apply (Ind. hyp.)
= BC(e1 [x← v] e2 [x← v]) (De�nition 85)
= BC((e1 e2) [x← v])ase e = let x′ be e1 in e2

BC(e) [load x← BC(v)]
= (BC(e1); cast BCκ2

(θ1); store x1 in BC(e2)) [load x← BC(v)] (De�nition 85)
= BC(e1) [load x← BC(v)]; cast BCκ2

(θ1);
store x1 in BC(e2) [load x← BC(v)]

= BC(e1 [x← v]); cast BCκ2
(θ1); store x1 in BC(e2) [x← v] (Indution hypothesis)

= BC(let x′ be e1 [x← v] in e2 [x← v]) (De�nition 85)
= BC((let x′ be e1 in e2) [x← v]) 117

ase e = λx′.e′By alpha-onversion, we an assume that x′ is di�erent from x (1).
BC(e) [load x← BC(v)]

= (new Fun(){ Object apply(Object x′) { BC(e′) }}) [load x← BC(v)] (De�nition 85)
= new Fun(){ Object apply(Object x′) { BC(e′) [load x← BC(v)] }})
= new Fun(){ Object apply(Object x′) { BC(e′ [x← v]) }}) (Indution hypothesis)
= BC(λx′.(e′ [x← v])) (De�nition 85)
= BC((λx′.e′) [x← v]) (1)We an now prove our main result.Proof of theorem 84 (Compilation)It is su�ient to show that BC(e) −→ BC(v). Indeed, by Lemma 89 (Values), we then have that BC(v)has type BC(type(v)).The proof is indution on the length of the redution, and by ase on e.ase e = vBy Lemma 89, BC(v) is a byteode value, so BC(v) −→ BC(v).ase e = c e′1 ... e′n with arity(c) = nSine e is well-typed, all e′i are also well-typed by property i of De�nition 4 (Error). Therefore, weknow by subjet redution that, for all i in 1..n, there exists a value vi suh that e′i −→ vi. Let τ be

type(c), and τvi
be type(vi).By indution hypothesis, we know that BC(e′i) −→ BC(vi). Therefore,

BC(c e′1 ... e′n)
= BC(e′1); cast dom1(τ); ...; BC(e′n); cast domn(τ); BCCall(c)
−→ BC(v1); cast dom1(τ); ...; BC(vn); cast domn(τ); BCCall(c)Sine c v1 ... vn is well-typed by Theorem 10 (Subjet redution), we an apply Lemma 88(Byteode appliation), whih shows that, for all i, BC(τvi

) is a subtype of domi(τ) (1).Therefore, all the ast sueed, and BC(v1); cast dom1(τ); ...; BC(vn); cast domn(τ); BCCall(c) −→
BC(v1); ...; BC(vn); BCCall(c).We now reason by ase on c.ase c = new CThen e −→ v′ = new C v1 ... vn.By de�nition, BC(v1); ...; BC(vn); BCCall(c) = BC(v1); ...; BC(vn); new C. This expression isequal to BC(new C v1 ... vn), sine by (1) the asts are redundant. This shows that BC(e)redues to BC(v′).ase c = C.iThen, �eld aess operators being unary, we have n = 1. By Theorem 40 (Field aess sound-ness), e −→ v′shift(sc(C),C′)+i

, with e′1 −→ new C′ v′1 ... v′n. Therefore, by indution hypothesis,
BC(e′1) −→ BC(new C′ v′1 ... v′n), whih is equal to BC(v′1); ...; BC(v′n); new C′ by De�nition 85,sine Lemma 88 (Byteode appliation) shows asts in BC(new C′ v′1 ... v′n) are redundant.So BC(e) −→ BC(v′1); ...; BC(v′n); new C′; field C.i, and by the redution for field, BC(e) −→
BC(v′shift(sc(C),C′)+i

).ase c = mSine m v1 ... vn is well-typed, we know by subjet redution that there exists a value v′ and anindex I suh that
m v1 ... vn −→ (λx1...xn.eI) v1 ... vn −→ eI [x1 ← v1]... [xn ← vn] −→ v′118

where m πI = λx1...xn.eI is the most preise implementation of m suh that πI mathes
(v1, ..., vn). Let τ and ∀ϑ. κ ⇒ θ1 → ... → θn → θ′ be the type of m. Let τ ′ be the type of
v′.The semantis of the byteode given in Figure 11.2 then implies that:

BC(v1); ...; BC(vn); call m
−→ BC(v1); store x1 in ...BC(vn); store xn in

BCπi,j
(BC(load xj)) ; iftrue BC(ei);cast codom(τ)

−→ BCπi,j
(BC(vj)); iftrue BC(ei) [load x1 ← BC(v1), ..., load xn ← BC(vn)];cast codom(τ)We know that πI mathes (v1, ..., vn). Sine the patterns are ordered by spei�ity, we knowfurthermore that for all j stritly smaller than I, (πj,1, ..., πj,n) does not math (v1, ..., vn). So byLemma 86, the �rst test that sueeds is for the index I. Therefore, BC(v1); ...; BC(vn)call mredues to BC(eI) [load x1 ← BC(v1), ..., load xn ← BC(vn)]; cast codom(τ).Sine eI [x1 ← v1, ..., xn ← vn] −→ v′, we know by indution hypothesis that BC(eI [x1 ←

v1, ..., xn ← vn]) −→ BC(v′). Moreover, by Lemma 90, BC(eI [x1 ← v1, ..., [←← x]n]vn) =
BC(eI) [load x1 ← BC(v1), ..., load xn ← BC(vn)]. Therefore,
BC(eI) [load x1 ← BC(v1), ..., load xn ← BC(vn)]; cast codom(τ) −→ BC(v′); cast codom(τ)It remains to be shown that this last ast sueeds. By De�nition 28, the type of m v1 ... vnis τs = ∀ϑϑv. κ ∧ κv ∧ θvi

≤ θi ⇒ θ′. By Theorem 10 (Subjet redution), we know that
τ ′ ≤ τs holds. Furthermore, by De�nition 27 and Triv, it is easy to see that τs ≤ ∀ϑ. κ ⇒ θ′.Therefore, by transitivity, τ ′ ≤ ∀ϑ. κ ⇒ θ′. So, by Lemma 89, BC(v′) has type BC(τ ′), and
BC(τ ′) ≤ BC(∀ϑ. κ ⇒ θ′). By De�nition 83, BC(∀ϑ. κ ⇒ θ′) is equal to BCκ(θ′), whih is also
codom(τ). That is, BC(v′) has a smaller byteode type than codom(τ), so the ast sueeds.Thus, BC(m e′1 ... e′n) −→ BC(v′).ase e = e1 e2 with e not of the form c e′1 ... e′nThen by De�nition 85, BC(e1 e2) is equal to BC(e1); cast Fun; BC(e2); call Fun.apply.By Theorem 10 (Subjet redution), we know that there exists values v1 and v2 suh that

e1 −→ v1, e2 −→ v2, and v1 v2 is well typed (1). Therefore, by indution hypothesis, BC(e1) −→
BC(v1) and BC(e2) −→ BC(v2). Therefore, BC(e1); cast Fun; BC(e2); call Fun.apply −→
BC(v1); cast Fun; BC(v2); call Fun.apply.We now reason by ase on v1. By (1), v1 must be a funtional value. There are therefore two ases:ase v1 = λx′

1.e
′
1Then, by De�nition 85, BC(v1) is new Fun(){ Object apply(Object x′1) { BC(e′1) }}.Therefore, the ast sueeds, and BC(v1); cast Fun; BC(v2); call Fun.apply redues to

new Fun(){ Object apply(Object x′1) { BC(e′1) }}; BC(v2); call Fun.apply, whih redues to
BC(v2); store x′

1 in BC(e′1), whih redues to BC(e′1) [load x′
1 ← BC(v2)]. By Lemma 90(Byteode substitution), this last expression is equal to BC(e′1 [x′

1 ← v2]). Sine e redues to
v1 v2 whih redues to e′1 [x′

1 ← v2], the property holds in this ase.ase v1 = c v′1 ... v′p with 0 ≤ p < arity(c)Let n be arity(c). Then, by De�nition 85, BC(v1) is
new Fun(){ Object apply(Object xp+1) { BC(λxp+2...xn.c v′1 ... v′p xp+1 ... xn) }}.Therefore, the ast sueeds, and BC(v1); cast Fun; BC(v2); call Fun.apply redues to
new Fun(){ Object apply(Object xp+1) { BC(λxp+2...xn.c v′1 ... v′p xp+1...xn) }}; BC(v2);
call Fun.apply, whih redues to BC(λxp+2...xn.c v′1 ... v′p xp+1...xn) [load xp+1 ←
BC(v2)]. By Lemma 90 (Byteode substitution), this last expression is equal to
BC(λxp+2...xn.c v′1 ... v′p xp+1...xn [xp+1 ← v2]), that is BC(λxp+2...xn.c v′1 ... v′p v2 xp+2...xn.By De�nition 85, this is equal to BC(c v′1 ... v′p v2). We therefore have shown that BC(e) redues119

to BC(c v′1 ... v′p v2), with e reduing to c v′1 ... v′p v2. If c v′1 ... v′p v2 a value, the propertyis proved. Otherwise, by Theorem 10 (Subjet redution), there exists a value v suh that
c v′1 ... v′p v2 redues to v. Sine e is not of the form c e1 ... en, there has been at least one step ofredution. Therefore, we an apply the indution hypothesis to c v′1 ... v′p v2, whih shows that
BC(c v′1 ... v′p v2) redues to BC(v), whih �nishes the proof.ase e = let x1 be e1 in e2We know by subjet redution that there exist values v1 and v suh that let x1 be e1 in e2 −→let x1 be v1 in e2 −→ e2 [x1 ← v1] −→ v.Let τ1 and ∀ϑ1. κ1 ⇒ θ1 be type(e1), Let τ2 and ∀ϑ2. κ2 ⇒ θ2 be type(let x1 be e1 in e2), and τv1and be type(v1). We therefore have τv1

≤ τ1 (1) by Theorem 10 (Subjet redution). By de�nition,
BC(let x1 be e1 in e2) = BC(e1); cast BCκ2

(θ1); store x1 in BC(e2). By indution hypothe-sis, BC(e1) −→ BC(v1) and BC(v1) has type BC(τv1
). Therefore, BC(let x1 be e1 in e2) −→

BC(v1); cast BCκ2
(θ1); store x1 in BC(e2).We now show that the ast sueeds. By De�nition 28, onstraint κ1 is inluded in κ2: this is immediatefrom the de�nition if x1 is not free in e2, and follows from a straightforward indution otherwise.Therefore, by Triv, the onstraint impliation ∀FV (τ1), FV (τ2), t. κ2 ∧ θ1 ≤ t |= κ1 ∧ θ1 ≤ t holds.That is, by De�nition 29 and De�nition 27, type ∀ϑ1. κ1 ⇒ θ1 is a subtype of ∀ϑ1ϑ2. κ2 ⇒ θ1.Therefore, by transitivity with (1), we have τv1

≤ ∀ϑ1ϑ2. κ2 ⇒ θ1. By Lemma 89, this shows that
BC(τv1

) ≤ BC(∀ϑ1ϑ2. κ2 ⇒ θ1) holds. Furthermore, BC(∀ϑ1ϑ2. κ2 ⇒ θ1) is equal to BCκ2
(θ1) byDe�nition 83. Therefore, BC(τv1

) is a byteode subtype of BCκ2
(θ1). This shows that the ast alwayssueeds, and

BC(let x1 be e1 in e2) −→ BC(v1); store x1 in BC(e2)By de�nition, BC(v1); store x1 in BC(e2) −→ BC(e2) [load x1 ← BC(v1)]. By Lemma 90,
BC(e2) [load x1 ← BC(v1)] is equal to BC(e2 [x1 ← v1]). By indution hypothesis, BC(e2 [x1 ← v1])redues to BC(v). Therefore, by transitivity, we have BC(let x1 be e1 in e2) −→ BC(v).

120

Chapter 12Typing kindsIn this hapter, we onsider the algorithms used to perform type-heking in our onstrained type system,based on ML≤.Type-heking is needed in two plaes. First, in the ore language of Setion 1, where type are inferred,we need to hek that the resulting types are well-formed. As de�ned in Setion 2.2, a type ∀ϑ. κ ⇒ θ iswell-formed if the onstraint impliation ∀∅. true |= κ holds.Seond, when type-heking multi-methods as in Setion 4, we need to hek that for eah methodimplementation, the restrition of the method type to the patterns is well-formed, and that the inferred typeof the implementation is below that restrited type. This seond ondition amounts to heking subtypingbetween polytypes, whih is de�ned in Setion 2.2 as a ertain onstraint impliation.Therefore, we only need to be able to deide onstraint impliation. We will present algorithms to do soin this hapter. First, we reall that onstraints involving onstruted monotypes an be deomposed intoatomi onstraints, on whih the impliation is deided. Then, we brie�y summarize the existing tehniquesused to deide impliation on atomi onstraints in ore ML≤. This orresponds to the system presented inSetion 2.2. In the last setion, we present a new algorithm to deide onstraint impliation, in the preseneof kinds, as de�ned in Setion 10.2.12.1 Constraint deomposition
ML≤ is a strutural type system. That is, an inequality between monotypes always follows from their havingthe same shape, and their sub-omponents being related. This is formalized in the variable elimination ruleof onstraint impliation, whih we reall here:VElim t ≤ φV [θ] ∈ κ or t ≥ φV [θ] ∈ κ φ′

V , t fresh
∀ϑ. κ |= κ ∧ t = φ′

V [t]A onsequene of this rule, proved in [5℄, is that every onstraint impliation problem an be reduedto a simpler problem, involving only onstraints on atoms: type onstrutors and type variables. We willtherefore only onsider the deision of onstraint impliations where atomi onstraints are either of the form
φV ≤ φV or of the form t ≤ t.12.2 Core ML≤Given the onstraint impliation ∀ϑ. κ |= κ′, one an onstrut a model of κ. That is, the set of onstanttype onstrutors and type variables in κ is equipped with the partial pre-order ≤ indued by the onstraint
κ and, for the onstant onstrutors, by the impliit type struture T . The onstraint impliation then holdsif there exists a substitution σ from the variables of κ′ to the model, suh that σ(κ′) is true in the model.121

This problem is NP-omplete, as (impliitly) shown in [43℄. However, it is possible to �nd algorithmsthat are only polynomial in pratie, similarly to the situation of type inferene for ML. An algorithm isskethed in [5℄, and is the basis of the implementation made by Alexandre Frey for the language Jazz. Thisimplementation was also used as a basis for the implementation in the Nie ompiler.The essene of the algorithm is that eah variable in κ′ is assigned a domain, whih is a set of possiblemappings of that variable into the model. The domains an be redued, by using the inequalities in κ and κ′,and their onsequenes by transitivity. For instane, if κ′ ontains the onstraint tV ≤ cV , then the domainof tV an be redues to only those values in the model that are smaller than cV . This an in turn be usedto redue the domain of other variables that are in relation with tV . If this redution leaves at least onedomain empty, then the impliation does not hold. If all domains have size one, then a solution was found.Otherwise, it is neessary to pik one variable with a domain of ardinal at least 2, �x the mapping of thatvariable to eah value in the domain in turn, and restart the redution proess. If that leads to a failure, itis neessary to baktrak and hoose a di�erent mapping for that variable inside its domain. If at least oneattempts sueeds, then we have found a solution. If all attempts fail, the onstraint impliation does nothold.12.3 Adding kindsThis algorithm an be extended to implement the system de�ned in Setion 10.2. In this ontext, the impliittype struture T ontains, besides the subtypings between onstant onstrutors, the implementations andabstrations of kinds of these onstants. Furthermore, we now deal with onstraint impliations whereonstraints are taken from the grammar φV ≤ φV | t ≤ t | tV : K.As before, given suh a onstraint impliation ∀ϑ. κ |= κ′, we �rst onstrut a model of κ. That is, theset of onstant type onstrutors and type variables in κ is equipped with the partial pre-order ≤ induedby the onstraint κ and, for the onstant onstrutors, by the impliit type struture T . Furthermore, eahtype variable tV in κ is made to implement a kind K if and only if κ ontains the onstraint tV : K or theonstraint tV : K ′ with some kind K ′ that extends kind K. Note that this losely mathes the onstrution ofthe extended type struture T 1 in the ompleteness proof of Theorem 80 (Corretion and ompletenessof the axiomatization of kinds). The only di�erene in that, in the proof, tV is made to implement
K if κ implies tV : K. We annot diretly apply that de�nition here, as this would require a way to deideonstraint impliation, whih is preisely what we are onstruting. However, our restrited de�nition of thekinds that tV implements in the model is su�ient. Indeed, the only other way in whih κ ould imply that
tV implements another kind K ′ is by appliation of axiom EqImp. In that ase, tV would be equivalent toanother element φV in the model, whih implies that their domains would be the same. Any impliation of
tV implementing K ′ would therefore also follow from φV implementing K ′.Seond, we ompute the domains of eah variable in κ′, reduing them as before by using the onstraintsin κ′. We an further redue the domains by notiing that if κ′ onstaint tV : K, then the mapping of
tV must be a onstant of the model that implements K. The main issue is to be able to apply axiomAbs to dedut further onstraints on the variables. For this, we need to ompute views, as de�ned inDe�nition 77. However, a naive approah would have a prohibitively high omplexity, sine the de�nitioninvolves simultaneous quanti�ation over four type onstrutors. Fortunately, it is possible to signi�antlyredue the amount of work to be done.First, by ondition 5 of De�nition 78, we know that the view of onstant type onstrutors is independentof the possible extensions to the type struture. Therefore, it is possible to ompute those views only one,in the module where the type onstrutor is introdued, and not in every module of the program.Seond, if viewK(cV) = c′V , then it follows from Requirement 76 (Kinds) and De�nition 77 that, for all
c′′V below cV , viewK(c′′V) is also c′V . Furthermore, in the Abs axiom, the requirement is that the variableis below the origin of the view. If we used viewK(c′′V) = c′V to apply that axiom, we ould as well use
viewK(cV) = c′V , sine the variable is also below cV by transitivity. Therefore, we an limit the omputationof views to maximal values for the origin.Algorithm 1 de�nes the funtion ompute_view, whih omputes views. In partiular, the auxiliary122

funtion set_view is used to implement the seond optimization: if the type onstrutor that abstrats thekind an be the origin of the view, then we an stop the omputation. Otherwise, we ompute it reursivelyfor eah of its diret sub-onstrutors.Algorithm 1 Computation of viewsproedure ompute_viewsfor all K ∈ Kinds dofor all C that abstrats K doset_views(C, K)end forend forend proedureproedure set_views(C, K) ⊲ Computes viewK(C′′) for a minimal set of C′′ below C.Require: The type onstrutor C abstrats K
min ← ⊥for all C′ that implements K doif C ≤ C′ thenif min = ⊥ or C′ ≤ min then

min ← C′end ifelseif ∃C0 suh that C0 ≤ C and C0 ≤ C′ then
min ← ⊥breakend ifend ifend forif min 6= ⊥ then

viewK(C)← minelsefor all C′′ diretly below C doset_views(C′′, K)end forend ifend proedureGiven that this omputation is done, we an now use Algorithm 2 to omplete the model of κ by repeatedappliation of the Abs axiom.Note that the iteration is needed beause the onsequene of the appliation of an instane of Abs anreate the onditions for another instane to be appliable. This is the ase in the following ontrived example.Given the hierarhy of Figure 12.1, the two kinds K1 and K2, and that B abstrats and implements K1 and
A abstrats and implements K2, we onsider the onstraint impliation ∀T. T : K1, T : K2, D ≤ T |= A ≤ T .By de�nition, viewK1

(D) is B and viewK2
(C) is A. It is not diretly possible to onlude that A ≤ T .However, by Abs for kind K1, ∀T. T : K1, T : K2, D ≤ T |= B ≤ T . Sine C ≤ B, by transitivity we have

∀T. T : K1, T : K2, D ≤ T |= C ≤ T . This in turns allows to apply Abs on K2, and to onlude that theimpliation holds.
123

Algorithm 2 Applying the Abs axiomproedure saturate_abs ⊲ Finds all onsequenes of the Abs axiom.repeatfor all K ∈ Kinds dofor all C suh that viewK(C) 6= ⊥ dofor all D below C dofor all D′ above D that implements K doadd viewK(C) ≤ D′ in the modelend forend forend forend foruntil nothing hangedend proedure

A

CD

B ::K
:K:K

::K

Figure 12.1: Example hierarhy
124

Chapter 13The Nie languageThe theoretial results of this dissertation have been used as the foundation for implementing a omplete,general-purpose language alled Nie. The motivation for this pratial work was three-fold. First, it servesas a proof of onept by showing that the system an be implemented with a reasonable amount of work anddeliver aeptable performane. Seond, sine the implementation is available freely1, it allows users to writereal programs in Nie when they deide its properties provide them with a bene�t. This also ontributes topopularizing those features that are not present in most mainstream languages, for instane multi-methods.Finally, this onrete use in turn generates feedbak that is inspiring for pointing out new researh themes.13.1 SyntaxThis setion lists the di�erenes between the onrete syntax used in this doument and the Nie language.This should be su�ient to read the real Nie programs presented in the next hapter. A general di�ereneis that the syntax of Nie follows the syntatial tradition of Algol (and therefore also of C, Java and otherlanguages) by plaing the type of a variable before its name, and similarly for �elds and for the return typeof a method.For more details, one an refer to the online version of the user manual at http://nie.sf.net/manual.html.13.1.1 ClassesThe syntax for lasses is lose to the one presented in Chapter 3. The only di�erene is that �eld typespreede their names and that �eld delarations are terminated by the ; harater, in the syntati traditionof Algol [36℄. Furthermore, type parameters are listed between angle brakets, like C++ [41℄ templateparameters and Java 1.5 type parameters.lass C<T> {Type1 field1;Type2 field2;}13.1.2 MethodsNie is a language with multi-methods. Therefore, methods an be delared outside lasses, at the pakagelevel. It keeps the distintion between method delaration and method implementation. Method imple-mentations dispath on their arguments by speialization of the lass of arguments. The return type does1The implementation is liensed under the GNU General Publi Liense, and an be downloaded from the website http://nie.sf.net, whih also inludes a user manual, links to mailing lists devoted to Nie and further information useful to usersof the language. 125

not need to be written, sine it is omputed as the speialization of the method type for the speializedarguments. Compared to Chapter 8, the keywords method and implementation are dropped. Furthermore,types are written as in C and Java.For implementations, a pattern an be absent, in whih ase it refers to the pattern �_�, whih mathesany value.ReturnType methodName(ParamType1 param1, ParamType2 param2);methodName(param1, param2) { ... }methodName(C1 param1, C2 param2) { ... }When a method has type parameters, they are introdued in front of the delaration between anglebrakets.<T> T id(T);While this syntax for methods would be su�ient, it looks quite unfamiliar to programmers used totraditional objet-oriented syntaxes. A design hoie for Nie has been made to also o�er more traditionalsyntax when possible. The motivation of this deision is to failitate the transition and to help programmersfous on the new features instead of struggling to learn a new syntax for the existing features. The traditionalnotation for delaring methods inside lasses (respetively abstrat interfaes) is therefore also allowed assyntati sugar for delaring a multi-method with a �rst parameter named this belonging to the urrentlass (respetively to a lass implementing the urrent abstrat interfae). Similarly, the alike keyword issupported as syntati sugar for the the type of this, whih is impliitly quanti�ed as a subtype of the urrentlass (respetively a type implementing the urrent abstrat interfae, see next setion). Similar syntatisugar is also provided for implementing a method inside a lass. Finally, it is possible simultaneously delarea method a provide its default implementation.For instane, the following delarations use the syntati sugar.lass C {C m() = this;}lass D {m() = new C();}They are equivalent to the following de-sugared version.lass C {}C m(C);m(C this) = this;lass D {}m(D this) = new C();13.1.3 KindsBeause this feature has not yet been popularized, �nding a good terminology remains to be done. Nie hasbeen modeled after Java for most of the syntax. Kinds are reated with the keyword abstrat interfae.The rationale is that a kind is similar to an interfae in desribing some failities that a lass must possessto implement the kind. However it is �abstrat� beause it is not itself a type; in partiular the type of avariable an not be an abstrat interfae.Using most the syntax desribed in this hapter, one an give the onrete Nie syntax of the solutionwith kinds in Setion 6.2. 126

abstrat interfae Comparable {boolean less(alike);}lass String implements Comparable {less(String other) { ... }}lass Date implements Comparable {less(Date other) { ... }}13.2 Type hekingNie's type system is the based on the extension of ML≤ with modular kinds formalized in Chapter 10.2 andimplemented following the algorithms presented in Chapter 12. The implementation of the onstraint solverwas based on Alexandre Frey's implementation for the Jazz language, extended in partiular for the supportof kinds.13.2.1 Option typesThe type system inludes another extension for safe handling of the null value whih is present in Java andmany other languages with referenes. The null value is usually supposed to be of the speial �bottom� type,meaning that it an be used in all ontexts where a referene is expeted. However, most operations fail atruntime when applied to the null value, for instane when aessing a �eld. We extended the type systemto make it possible to prevent suh failures statially. Beause of time onstraints, we do not formalize thisextension in this dissertation but brie�y present it in this setion.Our extension makes it possible to distinguish between types that inlude the null value and those thatdo not. Tehnially, we introdue two unary type onstrutors, ? (for �maybe�) and ! (for �surely�). Therefore,instead of the single type String for harater strings, we use !String that only allows real strings, and
?String that also allows the null value2. We make ! smaller than ?, whih implies that !String is a subtypeof ?String. We also make those two type onstrutors ovariant. This system an therefore be implementedusing the standard version ML≤, with ! and ? being normal type onstrutors. This an therefore be viewedas a layer about ML≤, and does not need hanges in the ore onstraint impliation solver.To ahieve type safety, we simply disallow operations on possibly null values. More preisely, we givethose operations funtion types with domain types pre�xed with the ! type onstrutor. For instane, givena lass C with a �eld of type !String, the �eld aess method has type !C→ !String. We an then give the
null onstant the polymorphi type ∀T.?T without breaking type safety.To make use of values with types onstruted on ?, we need to di�erentiate between the null and non-nullase, and to be able to use the value with the orresponding type onstrutor on ! in the seond ase. Itwould have been possible to provide a ML-style mathing operator to that e�et, binding the value to anew name in the seond ase. However, it feels more natural to make use of the existing style in languagesinluding null, whih is to use tests of the forms x == null and x ! = null to distinguish the two ases.Therefore, we inorporated in the high-level typeheker rules to reognize suh tests and take them intoaount, whih amounts to performing a stati data�ow analysis on loal variables. Basially, inside a branhrunning when x ! = null sueeds or when x == null fails, and provided that x is not aptured by a losureassigning a possibly non-null value to it, x an be assumed non-null. Suh information an be merged at thepoints where branhes join.2To avoid making the syntax of types heavier, we allow the non-null ase, whih we onsider is the most frequent by far, tobe the default, so that the ! type onstrutor is optional. Thus String is a synonym for !String. For larity, we keep ! expliitin this setion. 127

Note that this type system feature is only super�ially similar to ML's option type, de�ned with typea option = None | Some of a. A �rst di�erene is that ML option types an be nested, as in stringoption option. A valid value of this type is Some(None). We only want to handle values that are eithernull or a normal referene, and therefore syntatially disallow onseutive ourrenes of ! and ?. Thisallows to represent these values without any overhead, null being simply a spei� value di�erent fromany referene. Furthermore, sine !String is a subtype of ?String, the user an diretly use a non-nullstring where a possibly null one is expeted. In ML, the user has to manually wrap it using the Some dataonstrutor.13.3 Code generationThe Nie ompiler generates Java byteode [31℄ as formalized in Chapter 11. This hoie makes it possibleto exeute Nie programs with good performane on any omputer arhiteture for whih a Java VirtualMahine exists. Furthermore, it allows to make use of the many Java libraries in Nie programs. Theompiler automatially assign Nie types to existing Java lasses, �elds and methods, requiring no speiale�ort to start using suh these existing libraries. Furthermore, it is possible to expliitly �retype� themby assigning them arbitrary Nie types when it is neessary, in partiular when that an result in a morepreise type than what is possible to express in the Java type system. Nie ode is also ompiled in a waythat makes it easier to use from Java ode. Thus, multi-methods are ompiled as instane methods of thelass of (the erasure of) their �rst argument whenever possible, that is if the lass is also generated fromNie ode. This makes it possible to all the method in Java with the standard x.foo(y) syntax, insteadof someArbitraryClass.foo(x,y). Furthermore, this even allows overriding a Nie multi-method in Javaode, although this obviously an only be done for speializing on the �rst argument. All in all, this makesprojets mixing Java and Nie ode as simple as possible, whih is important for some users who have animportant existing ode base in Java and want to extend it in Nie without �rst translating their wholeprojet into Nie.

128

Chapter 14The expression problemThe expression problem is a lassial �expressiveness benhmark� for programming languages. It an bedesribed as the following situation. Given reursively de�ned datatypes and operations on those datatypes,we want to be able to extend datatypes by de�ning new ases and operations by adding new ones. Solvingthis problem is very important in pratie, sine it is essential to enable modular and extensible programmingfor large programs, as identi�ed in our third and fourth riteria in the introdution of this thesis. We basethis hapter on the presentation in [38℄, whih proposes the following requirements:1. Possibility to de�ne both new datatypes and new operations;2. Strong stati type safety;3. No modi�ation of existing ode nor dupliation;4. Separate ompilation;5. Independent extensibility: it should be possible to ombine independently developed extensions so thatthey an be used jointly.Their review of existing solutions shows that no previous solution meets all these requirements. Thefuntional approah makes it easy to add new operations, but impossible to add new datatypes withoutmodifying existing ode. Dually, the lassi objet-oriented approah makes it easy to add new datatypes,but impossible to add new operations without modifying existing ode. Variants of the Visitor pattern arealso available, but they either lak type safety [27, 39℄ or require defaults [44℄. Defaults are required to beable to handle all possible future extensions, whih is in pratie often impossible to do in a semantiallyorret way, whih fores the programmer to resort to runtime failure. The possibility to use multi-methodswith required default implementations for external multi-methods [18℄ is also onsidered. It mathes allriteria apart from this requirement for defaults.Two solutions are proposed [38℄ and implemented in the Sala language, using traits. The �rst solution isbased on the objet-oriented approah. By leaving some types abstrat until the program is losed, it allowsto de�ne new operations in extensions. Dually, the seond solution is based on the funtional approah.By giving an abstrat type for the visitor used, whih is spei�ed when the program is losed, it allows tode�ne new datatypes. Thus, both solutions allow extension in the diretion that was previously impossible,although stays more verbose and less straightforward than the natural one in eah approah.We will now present a solution to this expression problem using our multi-methods. In partiular, we willshow that our single solution uni�es the objet-oriented and the funtional approah, sine both diretionsof extension are identially simple. We do not require default implementations. In Setion 14.4, we showthat our solution has the same modularity properties as either solution in [38℄.In Setion 14.5, we review another proposal to solve the expression problem written in the OCamllanguage, and we ompare it with our proposal. 129

14.1 BaseAt the ore of the expression problem is the base pakage that de�nes an abstrat lass Exp for expressions,and a method eval that takes an expression and returns an integer. It also de�nes a onrete sublass Num.pakage base;abstrat lass Exp{ int eval();}lass Num extends Exp{ int value;eval() = value;} Unlike other solutions, no speial hindsight is needed to make this framework open for future extension.This pakage an be imported an used in a program, without any partiular work to �lose� it.pakage base.test;import base;void main(String[℄ args) {let e = new Num(value: 7);println(e.eval);}14.2 Data extension14.2.1 Linear extensionWe de�ne a simple extension of base by adding a new datatype for representing the addition of two expres-sions.pakage plus;import base;lass Plus extends Exp{ Exp left;Exp right;eval() = left.eval + right.eval;} Independently, we an de�ne another extension adding negation.pakage neg;import base;lass Neg extends Exp{ 130

Exp term;eval() = - term.eval;}14.2.2 Combining independent extensionsThose two independently developed extensions an be ombined, simply by importing both.pakage plusneg;import plus;import neg;14.3 Operations extensionsAdding new operations is equally simple. It is su�ient to de�ne a multi-method for the operation, and toimplement it for the known datatypes.pakage show;import base;String show(Exp);show(Num e) = e.value.toString;Note that Plus and Neg are not known in this pakage, and therefore no other implementation of showis required. We do not need to give show a default implementation either.14.3.1 Linear extensionsWe an adapt independently developed extensions of base so that they support the show operation. To thisend, we simply import the orresponding pakages, and add the required implementations for method show.pakage showplusneg;import show;import plusneg;show(Plus plus) = plus.left.show + "+" + plus.right.show;show(Neg neg) = "-(" + neg.term.show + ")";Note that if we omitted these implementations, the ompilation of pakage showplusneg would haveresulted in a ompile-time error beause of the overage test for method show.We an use this extended version in a program to uses both show, Plus and Neg.pakage showplusneg.test;import showplusneg;void main(String[℄ args) {let e = new neg.Neg(term: new plus.Plus(left: new base.Num(value: 7),right: new base.Num(value: 6)));println(e.show + " = " + e.eval);} 131

14.3.2 Tree transformer extensionsIt is equally easy to add new operations that return an expression. For instane, we de�ne a method doublethat return a number similar to the argument exept that all Num leafs have their value doubled.pakage doubleplusneg;import plusneg;Exp double(Exp);double(Num num) = new Num(value: num.value * 2);double(Plus p) = new Plus(left: p.left.double, right: p.right.double);double(Neg neg) = new Neg(term: neg.term.double);In [38℄, this ase requires de�ning abstrat fatory methods to reate the new objets to be returned,and to instantiate those fatory methods in the main program. This omes from the fat that they need toreate new versions of the type Exp in eah extending pakage. In our model, there is only one type Exp,and objet reation does not pose any problem. An advantage of their solution is that it allows to refer to�the version of type Exp that only supports plus and neg but not show� even in a program that uses showin other parts. However, it is not lear how useful this is in pratie. The downside of this distintion isthat it beomes possible to get errors when trying to mix di�erent versions of type Exp, whih is likely to beonfusing for the programmer.A program using method double an be written diretly:pakage doubleplusneg.test;import doubleplusneg;void main(String[℄ args) {let e = new Plus(left: new Neg(term: new Plus(left: new Num(value: 1),right: new Num(value: 2))),right: new Num(value: 3));println(e.double.eval);}14.3.3 Combining independent extensionsWe now put it all together by ombining all previous extensions. Again, this is a simple question of importingthe right pakages. There is no need to expliitly plug the piees together.pakage doubleplusneg.test;import doubleplusneg;import showplusneg;void main(String[℄ args) {let e = new Plus(left: new Neg(term: new Plus(left: new Num(value: 1),right: new Num(value: 2))),right: new Num(value: 3));println(e.double.show + " = " + e.double.eval);}14.3.4 Binary methodsBinary methods are methods whose implementation depends on the type of more than one of their arguments.They are hard to implement in a lass-based language, whose methods are asymmetri between their �rst132

argument and the other. Unsurprisingly sine we use multi-methods whih are by design symmetrial in alltheir arguments, handling binary methods an be done very naturally.For instane, we de�ne a method for testing the strutural equality of two expressions.pakage equals;import base;boolean equal(Exp e1, Exp e2);// Default implementationequal(e1, e2) = false;equal(Num e1, Num e2) = e1.value == e2.value;Note that we give a default implementation of equal returning false. This is not required and we ould alsonot provide it, and instead provide implementations for all ombinations of parameters. However, this wouldrequire a large number of implementations. Indeed, it is lear that most expressions are not struturallyequal. It is therefore more pratial to de�ne the default as false and handle the few interesting asesexpliitly.We an now onsider implementing equal in the ontext where Plus and Neg are de�ned.pakage equalsplusneg;import plus;import neg;import equals;equal(Plus e1, Plus e2) =equal(e1.left , e2.left) && equal(e1.right , e2.right);equal(Neg e1, Neg e2) =equal(e1.term , e2.term);We an use all the features together in a test program:pakage equalsshowplusneg;import equalsplusneg;import showplusneg;void main(String[℄ args) {let term1 = new Plus(new Num(value: 1), new Num(value: 2));let term2 = new Plus(new Num(value: 1), new Num(value: 2));let term3 = new Neg(new Num(value: 2));print(term1.show + "=" + term2.show + "? ");println(term1.equal(term2));print(term1.show + "=" + term3.show + "? ");println(term1.equal(term3));} Note that although equal is a method de�ned at toplevel, it an be used as well using the �dot� notationwhih is usual in objet-oriented languages. 133

14.4 DisussionA ruial point to asertain is whether our solution is satisfatory from a modularity point of view. Thisquestion is overed by two of the �ve requirements of the problem. First, it must be possible to separatelytypehek and ompile the pakages ontaining the independent extensions. Seond, it must be possible toombine those extensions to use them jointly. We now argue that both points are satis�ed by our modulesystem in general. It is therefore in partiular the ase of our solution to the expression problem.As formalized in Chapter 8, we an typehek modules independently based on the interfaes of theirimported modules. Furthermore, we have shown that the typeheking of method implementations done intheir module does not need to be dupliated, sine it implies validity in the ontext of the whole program.This is true even in the presene of polymorphi types thanks to the fat that method implementations areheked with an open-world assumption. It is indeed possible that the typeheking of a module importingseveral other modules fails solely beause of the ontent of those modules, but only beause some methodimplementation is missing. This situation ould arise in pakage showplusneg of Setion 14.3. Pakage
showplusneg imports pakage show, whih de�nes a multi-method show whose domain ontains the abstratlass Exp without implementing show for Exp. That is, the show method does not have a default imple-mentation in pakage show. This is valid in the ontext of pakage show sine Exp is abstrat. In parallel,pakage plusneg de�nes onrete sublasses Plus and Neg of Exp without knowledge of method show. Whenimporting both pakages, an implementation of show for Plus and Neg is required. This requirement isnot a tehniality required beause of the use of multi-methods. It is fundamentally expressing that afterindependently developing two extensions that are not orthogonal, one needs to expliitly speify how theyinterat. In the solution using traits of [38℄, this requirement is exatly the same: trait ShowPlusNeg mustde�ne how the new lasses Plus and Neg implement the show operation. A similar situation ours whentwo modules M1 and M2 ontain ambiguous implementations. In that ase, a more preise implementation in
M is su�ient to resolve the ambiguity1.In general, it is always possible in our system to ombine valid independently developed modules by pro-viding the adequate method implementations. Indeed, method overage fails if some method implementationsare missing, in whih ase the missing ases an be added, or if some implementations are ambiguous, inwhih ase more preise implementations an be added. We argue that this possible requirement of additionalmethod implementations is aeptable, and even desired. This requirement an only be avoided by restritingexpressivity, whih an also have the paradoxial e�et of reduing atual stati safety. For instane, as isargued in [34℄, when multi-methods are required to have a default implementation, it will sometimes happenthat no sensible implementation exists, as with a method area on the abstrat lass Shape. Therefore, thedefault implementation an hardly do something else than fail, for instane by throwing a runtime exeption.This introdues the risk of the program failing at runtime. In ontrast, when independently importing themethod area and a onrete lass extending Shape, our system will report the need to implement area forthat imported lass, whih should not be surprising. Similarly, in singly-dispathed languages, it is typialto simulate multiple dispath using instane tests or some version of the visitor pattern. However, sine theompiler has no knowledge about these tehniques, there is no stati guarantee that all ases are overed.14.5 Comparison with polymorphi variantsAnother solution to the expression problem is presented in [24℄. That solution indeed meets the �ve riteriaset at the beginning of this hapter. This result is quite remarkable, given the relatively early date of itspubliation and its ompatibility with a major general purpose programming language. The solution is basedon the used of polymorphi variants, whih are in partiular present in the OCaml language [29℄. Essentially,types an onsist of lists of variants open for the extension to other variants. This allows for funtions thataept an open set of data ases. Extension of operations an be ahieved by reating a new funtion that1To make this solution possible when M1 and M2 ontain idential implementations, we an re�ne the notion of methodimplementation ordering so that for idential implementations, the one de�ned in a module M is onsidered more preise thanthe one de�ned in an any module that M imports. This allows M to ontain a disambiguating implementation of m.134

alls the existing one for the existing ases. This an be made to work even if the funtion needs to bereursive, the old funtion reursively alling the new one. However, this has to be handled expliitly byadding an additional parameter to all reursive funtions, and by losing the reursion expliitly where theset of data ases ompletely known.The solution with polymorphi variants is less general in one aspet: it does not allow the reation ofsub-ases, whih is naturally ahieved in objet-oriented languages (and in partiular in our solution) by thereation of sublasses. In other words, variants allow data extension in width only, not in depth.Polymorphi variants use strutural subtyping, while our solution uses nominal subtyping. Both forms ofsubtyping have their strengths and weaknesses. Nominal subtyping is more natural when types are delaredas part of the design of the program, while strutural subtyping is more suitable to type inferene. Withstrutural subtyping, types an beome large, whih an be problem when writing types to the programmer.On the other hand, it allows for polymorphism over an ad-ho set of variants that an have been designedseparately, simply by listing those variants in extension. While this is typially not possible with nominalsubtyping, we gain a similar funtionality thanks to ours kinds. Indeed, it is possible to delare that severalexisting lasses or interfaes implements a new kind, e�etively allowing the delaration of a method thataepts any type implementing the kind.The solution of the expression problem using polymorphi variants requires the programmer to manuallyall the existing funtions from the new ones. This orresponds in our solution to the multiple dispathode that is generated automatially by the ompiler. An advantage of writing it by hand is that it allowsthe existing funtions to exist independently of the new ones, and to write several independent extensionsof the same base funtion. On the other hand, our model is �at, in that new method implementations areunonditionally extending the base method. If several di�erent behaviors are needed in the same program,it is required to add an additional parameter whose value an diret whih one is desired. Our �at modelmakes is unneessary to handle reursion expliitly, and makes it possible to let the ompiler generate thedispath ode. The program an therefore be muh more onise. This also opens the possibility for theompiler to generate more e�ient dispath ode.

135

136

Chapter 15Related work15.1 CoreThe λ& alulus [12℄ proposed an extension of the lambda-alulus with funtions that dispath on theirarguments runtime types. They argued that onsidering methods as �rst-lass elements rather than ob-jet omponents signi�antly simpli�es the theory over reord based models that require reursive types.However, this presentation was not aimed at modeling programming languages diretly: they did not allowprogrammer's de�nable base types; the use of the & operator to build methods does not �t diretly theinremental de�nition of method implementations.The ML≤ type system and language [5, 6℄ is a remarkable attempt at unifying languages with multi-methods and ML-style type systems. It provided the main foundation on whih we built our researh.For omparison's sake, the instantiation of our algebrai type system with the type language of ML≤ inSetion 2.2 together with the multi-method extension in Chapter 4 produes a system similar to the whole of
ML≤. These presentations used a highly non-standard operational semantis and soundness proofs throughthe use of a typed abstrat mahine, whih made the presentation and the proof of the system tedious andhard to understand. Our work uses a more onventional approah, whih onsists in desribing an untypedlanguage and untyped small-step semantis, and proving soundness through subjet-redution and progresslemmas. Another major ahievement of this work is to separate the objet-oriented part from the orelanguage, both in presentation and in the proofs. Sine the latter part is already well understood, this makesthe study of the theoretial aspets of multi-methods muh easier.We formalize the type-heking of multi-methods, while [5℄ takled formally only methods with oneargument, and desribed how to extend the theory to methods with multiple arguments only informally.Similarly, open multi-methods and the modularity aspets were not formalized.We also remove the need to annotate lambda-expressions with their domain, and show that their typean be inferred. Thus, only top-level delarations of multi-methods require type annotations.We believe thatthese top-level annotations are aeptable in a programming language, and that they annot be avoidedif modular type-heking is needed. Indeed, implementations of methods might not be known when type-heking of ode making use of these methods is performed.

ML≤ had no notion of #C pattern. This feature is espeially useful with polymorphi multi-methods:it makes it possible to implement methods of type ∀t. t → t or ∀t. t ≤ C ⇒ t → t that are not the identityfuntion but that atually return a newly onstruted objet. Useful onrete examples inlude the clonemethod, the unionmethod on a hierarhy of olletions with the preisetype ∀t. t ≤ Collection⇒ (t, t)→ t,et.Frey's dotoral dissertation [22℄ is an elegant algebrai approah to the typing of an ML-like languagewith objets, subtyping and multi-methods. Like our work, it builds on the earlier works on ML≤ [5℄. Hisalgebrai type system is built on arbitrary monotypes. Polymorphism is handled in extension, whih make ispossible to fator a bigger part of the soundness proof than in our system. However, this makes the frameworkless general than ours, where potential polymorphism is handled in onrete instanes. Frey only formalized137

a losed-world form of type-heking. In the disussion part, typeheking under the open-world assumptionis proposed as typeheking in all possible extensions. No pratial de�nition is inluded, sine that ouldonly be done for spei� instanes of the system. Frey's language inludes loal multi-methods, de�nedinside expressions, as in [5℄. This is more expressive than our language, where multi-methods only appearat toplevel. On the other hand, this fores multi-methods to be treated as part of the ore language, whilewe handle them separately as user-de�ned operators. It is not lear how loal multi-methods interat withmodular programming and the open-world assumption. In partiular, is it possible to add implementationsto the loal methods of an imported module? If so, would suh an implementation be able to aess thevariables de�ned in the sope of the loal method? If implementations annot be added to imported loalmethods, what spei� method overage rules an guarantee that the method will still be overed in the wholeprogram? This last problem is similar to the question of guaranteeing that imported (toplevel) methods arealways overed, whih is disussed in Setion 15.2.15.2 Modular multi-methodsMulti-methods �rst appeared in dynamially typed languages � CLOS and later Ceil [14℄. While this taintedmulti-methods as �powerful but unsafe�, it also opened up a line of researh for devising stati type systemsfor them. In partiular, a full proposal for a statially typed language with multi-methods and modules anbe found in [16℄, with the motivation of adding optional stati typeheking to Ceil. However, the need toperform overage and non-ambiguity heks for multimethods based on knowledge for the whole programhas often been seen as a failure to ahieve modular typeheking. In this view, modularity is de�ned asthe guarantee that when modules that have been heked independently � but possibly never importedtogether in a single module, even in ompiled form � are linked together in the same program, this wholeprogram is guaranteed to be type-safe. This is indeed impossible to ahieve with unrestrited multimethodsas found in [16℄. Several trade-o�s are possible between fully modular typeheking and full expressivenessof multimethods [33, 35℄. This approah has been implemented with MultiJava [18℄, a pratial languagethat extends Java with a restrited form of multimethods that guarantees modular typeheking. The �rstrestrition is that external methods annot be delared abstrat (that is, lak a default implementation).The seond restrition is that multimethod implementations must either be written in the same moduleas the method's delaration, or it must be delared inside the lass delaration of its �rst argument. As aompromise to overome those limitations, Relaxed MultiJava [34℄ is an extension of MultiJava in whih thoserestritions are transformed into ompile-time warnings instead of errors. During lass loading, immediatelyprior to exeution, the additional overage and non-ambiguity tests are performed to detet whether errorsan our.Our system supports the general form of multimethods without suh restritions1. In Setion 14.4, weargue that our system is indeed modular. The key is that the main module of the program has knowledgeof the ompiled interfae of all modules omposing the program, and that this information is su�ientto perform all neessary heks. Furthermore, when method overage fails, it is always possible to provideadditional method implementations that will make it sueed. Sine it is never neessary to modify importedmodules, the modularity requirement is met. This argument applies to the ase where the program an beompiled together before its start. A di�erent situation arises when modules � known in this ontext asplugins � an be linked with a running program. It is then obviously too late for a programmer to addmissing method implementations. In this ontext, we think that the tehnique presented in [34℄ of ompile-time warnings ombined with runtime heking is very promising, espeially as the linking of plugins an inany ase fail for other reasons. Alternatively, if more stati guarantees are desired, some form of restritingexpressivity ould be used. It would in partiular be interesting to investigate whether no restritions at allan be imposed on the main program, sine it an be supposed to be known by all plugins.1Performing overage heking in eah module and enforing the preoity rule, as de�ned in Setion 8.3, an be seen as aform of restrition ompared to solely performing overage heking on the whole program. However, those rules are only usefulto help detet errors earlier and to enfore what we believe is a good organization of the program, from a software engineeringpoint of view. They are optional, and the type safety and modularity results do not depend on their presene.138

A similar problem arises if one wants to be able to delare methods private to a ertain module. Inan unrestrited setting, the delaration of new sublasses might render the implementations of a methoddelared in an imported module either inomplete or ambiguous. Although, as said above, this situationould be handled by adding additional implementations of the method, this is most likely unaeptable whenthe method was private to the imported module, sine its existene should in that ase not be relevant tolient modules. Therefore, in this situation as well, we think it would be bene�ial to ombine our systemwith a form of restrition proposed in [33℄ for non-publi methods.15.3 KindsF-bounded polymorphism [8℄ has been introdued to extend the reord-based strutural approah to typingobjet-oriented languages. It allows to type binary methods, at the ost of preventing sublasses to besubtypes. This makes it di�ult to ompare with our proposal whih both guarantees sublasses to besubtypes and at the same time aepts, for instane, the plus method, whih is more omplex than a binarymethod sine it is partially polymorphi. Using F-bounded quanti�ation in onjuntion with multi-methodshas been proposed in [32℄, but it is still an open area of researh, in partiular with respet to soundnessand deidability.If we do not onsider programming in suh reord-based language, but fous on the types that an beexpressed with F-bounded polymorphism, we believe that it is possible to enode kinding onstraints using F-bounded quanti�ation, translating a kind K to a parameterized lass K<T> and a kinding onstraint T : Kinto T ≤ K<T>. This is similar to the framework syntati sugar proposed in [32℄. Type-heking in SystemF-bounded is also known to be undeidable [3℄. This does not prelude of the deidability of F-boundedquanti�ation in nominal type systems, as found in Pizza [37℄ or Generi Java [7℄, but none of these systemshave been proved deidable yet. Furthermore, their type systems annot handle partially polymorphi meth-ods using the above enoding, sine they prevent a lass to implement the same interfae twie with di�erenttype parameters. Our proposal does not require reursive onstraints; omplex onstraints an always be de-onstruted into atomi onstraints, whih simpli�es deidability and e�ient type-heking. This also makesquanti�ation over type onstrutors straightforward, whih is ruial for parameterized types. For instane,given the kind Colletion<T>, one an give map the type ∀C: Colletion, T, U. (C<T>, T→ U)→ C<U>,whih allows C to range over type onstrutors of kind Colletion.The Abel language [9℄ has a type system based on [10℄ that an model objet-orientation using kinds andpolymorphi reursive types. These kinds are de�ned by K ::= Type | K ⇒ K | POWER[T], where T is atype. Type T1 has kind POWER[T2] in fat means that T1 is a subtype of T2. In Abel, one an thereforesimulate bounded polymorphism by kinding the type variable with a POWER kind. Together with reursivetypes, this allows for the same solutions as in System F-bounded for the situations presented in this paper,but with the same problems. Our kinds are very di�erent, sine they are generative names, and do notenfore transitivity. It is essential for our solution that T : K and T ′ ≤ T does not imply T ′ : K. It mightbe possible to extend power kinds to relax transitivity, but to our knowledge it has not been done yet.Type-lasses [42℄ address the issue of homogeneous funtions by de�ning prediates on types. For instane,the following Haskell-like odelass Eq t where== :: t -> t -> Boollass Num t where+ : t -> t -> tinstane Num Int where== x y = intEq x y+ x y = intAdd x yan be expressed with kinds in the following way: 139

kind Eq== :: <t:Eq> t -> t -> Boolkind Num extends Eq+ :: <t:Num> t -> t -> tlass Int implements Num== �Int �Int = intEq+ �Int �Int = intAddAn important di�erene is that our kinds are open: it is not required to de�ne operations syntatiallytogether with the kind they operate on. This allows for modular de�nition of orthogonal operations, andoperations that operate on more than one kind. Additionally, type-lasses are not mixed with subtypepolymorphism. Therefore they do no raise the question of the interations between subtyping and kinding asfound in partially polymorphi funtions. On the other hand, the possibility to de�ne type-lasses indutivelydoes not have an equivalent in our proposal. This feature is ertainly useful, and should be onsidered in anextension of our system.

140

Chapter 16ConlusionWe have given a modular presentation of a omplete language and type system. This struture made itpossible to onsider independently extensions of the language and of the type system. This possibility isuseful when presenting a omplex system, sine one does not need to onsider and prove the whole systemat one. Furthermore, it helps researhing extensions of the system without redoing the whole work.In partiular, we make a presentation of objet-orientation with multi-methods as an extension of a ore,the traditional lambda-alulus with onstants. The proof of type-safety for this extension ould be madeby only proving subjet-redution and progress lemmas for multi-methods themselves.We formalized a module system for our language with multi-methods. We showed how typeheking anbe performed modularly, without limiting the expressiveness of (publi) multi-methods.In parallel, we showed how two existing type system, Hindley-Milner and ML≤, �t into our framework.We also extended the ML≤ type system, by motivating and formalizing the introdution of kinds and kindingonstraints for typing homogeneous or partially polymorphi methods.Finally, we formalized some aspets of the translation of our system into pratie, in partiular theompilation of our high-level language into a monomorphially-typed byteode language, and the algorithmsneeded to implement onstraint impliation in the presene of kinds. We also presented how we hose todesign the Nie language to implement these ideas.Experiene using Nie has brought up new hallenges that an motivate extensions of our work. Someof them have been skethed in this dissertation, like the type-safe handling of null values in Setion 13.2.1.In pratie, a di�ulty arises from the fat that imported Java methods do not have these nullness typeinformation. The user an expliitly retype suh methods to add that information, provided it an be inferredfrom the doumentation of the method. In the absene of suh retyping, the ompiler has to resort to eithera safe bet (possibly null return types, but non-null method arguments), whih is likely too restritive forpratial use beause it results in many false typing errors, or a more lenient default that does not guaranteenullness safety aross imported method alls. It would be interesting to investigate how muh of this nullnessinformation ould be inferred by a stati analysis of imported method ode.Another hallenge is the support of stati method overloading, in partiular while preserving type in-ferene. This feature allows several unrelated methods to have the same name and the same number ofarguments1. Note that the disambiguation is performed at ompile-time based on the stati types of thearguments, whih makes this feature orthogonal to runtime dispath. For instane, suppose there are twomethods foo of types int→ void and String→ void, and onsider an expression of the form λx....foo(x)....If the part of the expression preeding the all foo(x) does not further onstraint x, it is not possible todeide at that point what is the expeted type of x and whih method foo is alled. A simple solution is toreport an ambiguity error, whih an be solved by adding a type annotation to the delaration of x. However,it would be interesting to onsider other solutions that an resolve the ambiguity when it is possible based1This is of pratial important for Nie, sine Java does have stati method overloading, and therefore the ompiler has todeal with this situation at least for imported methods. For this reason, it was also natural to allow stati overloading for Niemulti-methods. 141

on the rest of the expression and the ontext in whih the whole expression is used, and to see how thesesolutions an be �t into our presentation.A fundamental property of the ML≤ type system is that related type onstrutors have the same variane.In pratie, this entails that sublasses must have the same number of type parameters as their parents2.This turns out to be restritive in pratie. For instane, one ould want to assert that the type Integer isa subtype of List < Boolean > by onsidering integers as a list of the bits in their binary representation.Conversely, it ould also be useful to introdue in a sublass a new type parameter. We believe it might bepossible to extend ML≤ to support suh situations by keeping trak of the onditions on type parametersfor type onstrutor orderings to hold. These onditions would beome additional premises in the theMIntro rule. Additionally, onstruted monotypes should in general ontain open lists of type parametersto aommodate for variable type onstrutors, as introdued in rule VElim.Closer to our original topi, our modular typeheking system for multi-methods does not apply diretlyto non-publi and �plugin� multi-methods. In those situation, it should be investigated how to integrateother works on modular multi-methods with striter modularity riteria, as disussed in Setion 15.2. Thisaspet is also of pratial importane for the Nie language.

2Thankfully, this does not rule parametrized lasses out sine there is no need for a root anestor ommon to all lasses.142

ConlusionNous avons e�etué une présentation modulaire d'un langage omplet et de son système de types. Cetteorganisation nous a permis de onsidérer indépendemment les extensions du langage et du système de types.Cette possibilité est utile pour la présentation d'un système omplexe, puisque ela permet de ne avoir àfaire la présentation et la preuve de orretion du système en un seul blo, les rendant plus digestes. Deplus, ela premet de reherher des extensions du système sans refaire tout le travail.En partiulier, nous avons présenté l'orientation objet ave multi-méthodes omme une extension d'unnoyau bien onnu, le lambda-alul ave onstantes. La preuve de orretion de ette extesion a pu être faireen prouvant simplement l'auto-rédution et le lemme de progrès pour les multi-méthodes elles-mêmes.Nous avons formalisé un système de modules pour notre langage à multi-méthodes, et nous avons montréomment le typage peut être e�etué modulairement, sans limiter l'expressivité des multi-méthodes (tout dumoins des multi-méthodes publiques).Parallelement, nous avons montré omment deux systèmes de types existants, Hindley-Milner et ML≤,peuvent être intégrés à notre système. Nous avons aussi étendu ML≤ en motivant et formalisant l'introdutionde kinds et de ontraintes de kinding pour typer les méthodes polymorphes homogènes et le méthodespartiellement polymorphes.En�n, nous avons formalisé ertains aspets de l'implémentation de notre système, en partiulier laompilation de notre langage de haut niveau vers un langage byteode typé monomorphe, et les algorithmesnéessaires à l'implémentation des kinds. Nous avons aussi présenté les hoix de oneption du langage Nie.L'utilisation de Nie a permis de déouvrir de nouveaux dé�s qui peuvent motiver des extensions de notretravail. Certains ont été esquissés dans ette dissertation, omme le traitement statiquement sûr des valeursnulles dans la setion 13.2.1. En pratique, une di�uté supplémentaire résulte du fait que les méthodes Javaimportées ne fournissent pas d'information sur leur traitement des valeurs nulles. L'utilisateur de Nie peutexpliitement �retyper� es méthodes pour ajouter ette information quand elle peut être devinée grâe auxommentaires de doumentation. En l'absene de tels retypages, le ompilateur doit soit supposer le as leplus restritif (type de retour possiblement nul, mais arguments non-nuls) pour déouvrir toutes les erreurspotentielles, mais aussi signaler de nombreuses fausses alertes au point d'être inutilisable, soit être plusaomodant, perdant alors la guarantie de sûreté des valeurs nulles lors des appels de méthodes importéesnon-retypées. Une alternative interessante à explorer serait d'inférer ette information à partir d'une analysestatique du ode des méthodes importées.Un autre dé� onsiste à permetre la surharge statique des méthode, en partiulier tout en onservantl'inférene de types. Cette fontionalité permet à des méthodes sans rapports d'avoir le même nom etnombre d'arguments3. Remarquons que la désambiguation est e�etuée à la ompilation sur la base destypes statiques des arguments, e qui rend ette fontionalité orthogonale au dispath dynamique. Parexample, supposons avoir deux méthodes foo des types int→ void et String→ void, et onsidérons uneexpression de la forme λx....foo(x).... Si la partie de l'expression préédant l'appel foo(x) ne ontraint pas
x, il n'est pas possible de déider à et endroit du type de x et de quelle méthode foo est appelée. Unesolution simple est de signaler une erreur d'ambiguité, qui peut être résolue par le programmeur en ajoutantune annotation de type à la délaration de x. Toutefois, il serait intéressant de onsidérer d'autres solutions3Cei est important en pratique pour Nie, puisque Java inlus la surharge statique. Le ompilateur Nie doit don traitere as, au moins pour les méthodes importées. Il était don naturel de permettre la surharge statique pour les méthodes Nieaussi. 143

qui pourraient résoudre l'ambiguité quand 'est possible en utilisant le reste de l'expression et le ontextedans lequel l'expression entière est utilisé, et de voir omment es solutions peuvent être intégrées à notresystème.Une propriété fondamentale du système de types ML≤ est que les onstruteurs de types d'une mêmehierarhie ont la même variane. En pratique, ela implique que les sous-lasses doivent avoir le mêmenombre de paramètres de types que leurs parents4. Cela est limitant en pratique. Par example, on peutvouloir indiquer que le type Integer est un sous-type de List < Boolean > en onsidérant la représentationbinaire des entiers. Inversement, il peut aussi être utile d'introduire une nouveau paramètre de type dansune sous-lasse. Nous pensons qu'il est possible d'étendre ML≤ pour permettre es situations en aumulantles onditions sur les paramètres de types sous lesquelles un onstruteur de types est plus petit qu'unautre. Ces onditions deviendraient des prémisses suplémentaires dans la règle MIntro. De plus, lesmonotypes onstruits devraient ontenir des listes ouverts de paramètres de types pour gérer les variablesde onstruteurs de types introduits par la règle VElim.Plus près de notre sujet initial, notre système de types modulaire pour les multi-méthodes ne s'appliquepas diretement au méthodes non publiques ou présentes dans des �plugins�. Pour es situations, il seraitutile d'intégrer d'autres travaux sur les multi-méthodes modulaires ayant des ritères de modularité plusstrits, omme nous l'avons argumenté dans la setion 15.2. Cet aspet a une importane pratique pour lelangage Nie.

4Heureusement, ela n'empêhe pas les lasses paramètrées d'exister puisqu'il n'y pas pas besoin d'y avoir une lasse raineanêtre de toutes les autres. 144

Bibliography[1℄ M. Abadi, L. Cardelli, B. C. Piere, and D. Rémy. Dynami typing in polymorphi languages. Jour-nal of Funtional Programming, 5(1):111�130, January 1995. Also appeared as SRC Researh Report120. Preliminary version appeared in the Proeedings of the ACM SigPlan Workshop on ML and itsAppliations, June 1992.[2℄ R. Agrawal, L. G. DeMihiel, and B. G. Lindsay. Stati Type Cheking of Multi-Methods. In Proeedingsof the OOPSLA '91 Conferene on Objet-oriented Programming Systems, Languages and Appliations,pages 113�128, 1991.[3℄ P. Baldan, G. Ghelli, and A. Ra�aeta. Basi theory of F-bounded quanti�ation. Information andComputation, 153(1):173�237, 1999.[4℄ D. G. Bobrow, L. G. DeMihiel, R. P. Gabriel, S. E. Keene, G. Kizales, and D. A. Moon. Commonlisp objet system spei�ation x3j13. SIGPLAN Noties, 23(Speial Issue), September 1998.[5℄ F. Bourdonle and S. Merz. On the integration of funtional programming, lass-based objet-orientedprogramming, and multi-methods. Researh Report 26, Centre de Mathématiques Appliquées, Eoledes Mines de Paris, Paris, Mar. 1996.[6℄ F. Bourdonle and S. Merz. Type-heking higher-order polymorphi multi-methods. In ConfereneReord of the 24th Annual ACM Symposium on Priniples of Programming Languages, pages 302�315,Paris, Jan. 1997. ACM.[7℄ G. Braha, M. Odersky, D. Soutamire, and P. Wadler. Making the future safe for the past: Addinggeneriity to the Java programming language. In Proeedings of OOPSLA, 1998.[8℄ P. Canning, W. Cook, W. Hill, W. Oltho�, and J. C. Mithell. F-bounded polymorphism for objet-oriented programming. In ACM, editor, Funtional Programming Languages and Computer Arhiteture,pages 273�280, 1989.[9℄ P. Canning, W. Hill, and W. Oltho�. A kernel language for objet-oriented programming. TehnialReport STL-88-21, Hewlett-Pakard Labs, 1988.[10℄ L. Cardelli. Strutural subtyping and the notion of power type. In Conferene Reord of the FifteenthAnnual ACM Symposium on Priniples of Programming Languages, pages 70�79, San Diego, California,1988.[11℄ G. Castagna. Covariane and ontravariane: Con�it without a ause. ACM Transations on Pro-gramming Languages and Systems, 17(3):431�447, May 1995.[12℄ G. Castagna, G. Ghelli, and G. Longo. A alulus for overloaded funtions with subtyping. In ACMConferene on LISP and Funtional Programming, pages 182�192, 1992. Extended and revised versionin Information and Computation 117(1):115-135, 1995.145

[13℄ C. Chambers. Objet-oriented multi-methods in Ceil. In O. L. Madsen, editor, Proeedings of the6th European Conferene on Objet-Oriented Programming (ECOOP), volume 615, pages 33�56, Berlin,Heidelberg, New York, Tokyo, 1992. Springer-Verlag.[14℄ C. Chambers. The Ceil language: Spei�ation and rationale, version 2.1. Tehnial report, Departmentof Computer Siene and Engineering University of Washington, Box 352350, Seattle, Washington 98195-2350 USA, Marh 1997.[15℄ C. Chambers and W. Chen. E�ient multiple and prediate dispathing. In Proeedings of the 1999ACM Conferene on Objet-Oriented Programming Languages, Systems, and Appliations (OOPSLA'99), volume 34(10) of ACM SIGPLAN Noties, pages 238�255, Denver, CO, November 1999. ACM.[16℄ C. Chambers and G. T. Leavens. Typeheking and modules for multi-methods. In ACM Transationson Programming Languages (TOPLAS), volume 17(9). ACM, November 1995.[17℄ W. Chen, V. Turau, and W. Klas. E�ient dynami look-up strategy for multi-methods. In M. Tokoroand R. Pareshi, editors, ECOOP '94, European Conferene on Objet-Oriented Programming, Bologna,Italy, volume 821 of Leture Notes in Computer Siene, pages 408�431, New York, N.Y., July 1994.Springer-Verlag.[18℄ C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava: Modular open lasses andsymmetri multiple dispath for Java. In OOPSLA 2000 Conferene on Objet-Oriented Programming,Systems, Languages, and Appliations, Minneapolis, Minnesota, volume 35(10), pages 130�145, 2000.[19℄ W. R. Cook. Objet-oriented programming versus abstrat data types. In J. W. de Bakker, W. P.de Roever, and G. Rozenberg, editors, Foundations of Objet-Oriented Languages, REX Shool/Work-shop, Noordwijkerhout, The Netherlands, May/June 1990, volume 489 of Leture Notes in ComputerSiene, pages 151�178. Springer-Verlag, New York, N.Y., 1991.[20℄ C. Duthyn, P. Lu, D. Szafron, S. Bromling, and W. Holst. Multi-dispath in the Java virtual mahine:Design and implementation. In Proeedings of 6th Usenix Conferene on Objet-Oriented Tehnologiesand Systems (COOTS'2001), San Antonio, USA, January 2001.[21℄ Eastern Researh Apple Computer and Tehnology. Dylan, an objet-oriented dynami language. AppleComputer, In., April 1992.[22℄ A. Frey. Approhe algébrique du typage d'un langage à la ML ave objets, sous-typage et multi-méthodes.PhD thesis, Éole des Mines de Paris, 2005.[23℄ R. P. Gabriel, J. L. White, and D. G. Bobrow. CLOS: Integrating objet-oriented and funtionalprogramming. Communiations of the ACM, 34(9):28�38, September 1991.[24℄ J. Garrigue. Code reuse through polymorphi variants. In Workshop on Foundations of SoftwareEngineering, Sasaguri, Japan, November 2000.[25℄ J. Gosling, B. Joy, G. Steele, and G. Braha. The Java Language Spei�ation. Sunsoft Java Series.Addison Wesley Developers Press, seond edition, 2000.[26℄ U. Hölzle. Integrating independently-developed omponents in objet-oriented languages. InECOOP '93, pages 36�56, 1993.[27℄ S. Krishnamurthi, M. Felleisen, and D. P. Friedman. Synthesizing objet-oriented and funtional designto promote re-use. Leture Notes in Computer Siene, 1445:91�??, 1998.[28℄ C. Léluse and P. Rihard. The O2 database programming language. In P. M. G. Apers and G. Wieder-hold, editors, Proeedings of the Fifteenth International Conferene on Very Large Data Bases, Ams-terdam, The Netherlands, pages 411�422. Morgan Kaufmann, August 22-25 1989.146

[29℄ X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objetive Caml system, doumentationand user's manual - release 3.05. Tehnial report, INRIA, July 2002. Doumentation distributed withthe Objetive Caml system.[30℄ X. Leroy and M. Mauny. Dynamis in ML. Journal of Funtional Programming, 3(4):431�463, 1993.[31℄ T. Lindholm and F. Yellin. The Java Virtual Mahine Spei�ation, seond edition. Addison-Wesley,1999.[32℄ V. Litvinov. Constraint-based polymorphism in Ceil. In Proeedings of the onferene on ObjetOriented Programming Systems Languages and Apliations, volume 33(10), pages 388�411, Vanouver,Canada, Otober 1998.[33℄ T. Millstein and C. Chambers. Modular statially typed multimethods. In Proeedings of the ThirteenthEuropean Conferene on Objet-Oriented Programming (ECOOP'99), volume 1628 of Leture Notes inComputer Siene, pages 279�303, Lisbon, Portugal, June 1999. Springer Verlag.[34℄ T. Millstein, M. Reay, and C. Chambers. Relaxed MultiJava: balaning extensibility and modulartypeheking. In OOPSLA '03: Proeedings of the 18th annual ACM SIGPLAN onferene on Objet-oriented programing, systems, languages, and appliations, pages 224�240. ACM Press, 2003.[35℄ T. D. Millstein. Reoniling software extensibility with modular program reasoning. PhD thesis, Depart-ment of Computer Siene and Engineering, University of Washington, Otober 2003.[36℄ P. Naur, J. W. Bakus, F. L. Bauer, J. Green, C. Katz, J. MCarthy, A. J. Perlis, H. Rutishauser,K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden, and M. Woodger. Report on thealgorithmi language algol 60. Commun. ACM, 3(5):299�314, 1960.[37℄ M. Odersky and P. Wadler. Pizza into Java: Translating theory into pratie. In Conferene Reordof the 24th Annual ACM Symposium on Priniples of Programming Languages, pages 146�159, Paris,Jan. 1997. ACM.[38℄ M. Odersky and M. Zenger. Independently extensible solutions to the expression problem. In Pro.FOOL 12, Jan. 2005. http://homepages.inf.ed.a.uk/wadler/fool.[39℄ J. Palsberg and C. B. Jay. The essene of the visitor pattern. In Pro. 22nd IEEE Int. ComputerSoftware and Appliations Conf., COMPSAC, pages 9�15, 19�21 1998.[40℄ D. Rémy and J. Vouillon. Objetive ML: An e�etive objet-oriented extension to ML. Theory andPratie of Objet Systems, 4(1):27�50, 1998.[41℄ B. Stroustrup. The C++ Programming Language. Addison-Wesley, seond edition, 1991.[42℄ P. Wadler and S. Blott. How to make ad-ho polymorphism less ad ho. In Priniples of ProgrammingLanguages, Jan 89.[43℄ M. Wand and P. O'Keefe. On the omplexity of type inferene with oerion. In Proeedings of thefourth international onferene on Funtional programming languages and omputer arhiteture, pages293�298. ACM Press, 1989.[44℄ M. Zenger and M. Odersky. Extensible algebrai datatypes with defaults. In ICFP '01: Proeedings ofthe sixth ACM SIGPLAN international onferene on Funtional programming, pages 241�252. ACMPress, 2001.
147

