
E
ole des Mines de ParisThèse en vue de l'obtention du dipl�me de do
teur en informatique

Typage modulaire des multi-méthodesModular typing for multi-methodsDaniel Bonniot

Cette thèse a été soutenue le 18 novembre 2005Le jury était 
onstitué deFrançois Bourdon
lePierre CointeRoberto Di CosmoJa
ques Garrigue (rapporteur)Didier Rémy (dire
teur)Manuel Serrano (rapporteur)



2



RésuméCette thèse présente un système de typage statique pour les langages à multi-méthodes ave
 la parti
ularitéde pouvoir être e�e
tué modulairement, sans né
essiter la 
onnaissan
e du programme entier. Nous montronségalement 
omment 
on
ilier les multi-méthodes ave
 un langage noyau à la ML ave
 sous-typage, tout enpréservant l'inféren
e de types pour le langage noyau, seul le type des méthodes devant être dé
laré.Notre présentation est elle aussi modulaire. Nous posons tout d'abord un système de types algébrique,qui 
omprend un langage noyau ave
 
onstantes et des types entièrement abstraits. Un langage peut être
onstruit par 
hoix des 
onstantes et du langage des types ainsi que de leur relation d'ordre. Nous pouvonsdès lors identi�er des 
onditions sous lesquelles le langage résultant est statiquement sûr. Cela nous permetd'étudier plus fa
ilement des extensions dans deux dire
tions di�érentes: pour l'expressivité des 
onstru
tionsdu langage et pour la ri
hesse du langage de type, tout en partageant une partie de la preuve de sûreté.Dans la première dire
tion, nous formalisons nos multi-méthodes 
omme une façon de dé�nir des 
on-stantes du langage. Dans la se
onde, nous présentons un ra�nement du système de types ML≤ en rajoutantdes 
ontraintes de kinding, qui permettent d'exprimer de type de méthodes �partiellement polymorphes�,
'est à dire dont le type à une pré
ision intermédiaire entre un 
elle d'un type monomorphe et 
elle d'untype polymorphe 
ontraint 
lassique, d'une manière modulaire.En�n, nous étudions le dé� 
lassique du �problème des expressions� pour valider la pertinen
e de nospropositions et les 
omparer aux solutions existantes. Nous donnons également un aperçu de la mise enoeuvre de l'ensemble de 
es idées par la 
on
eption et l'implémentation d'un langage 
omplet, Ni
e.
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SummaryThis thesis presents a stati
 type system for languages with multi-methods. Typing 
an be performedmodularly, with the knowledge of the whole program. We also show how to mix multi-methods with a 
orelanguage a la ML with subtyping, while preserving type inferen
e for the 
ore language: only method typeshave to be de
lared.Our presentation is modular as well. We �rst de�ne an algebrai
 type system that in
ludes a 
ore languagewith 
onstants and fully abstra
t types. A language 
an be built by 
hosing 
onstants and a language oftypes with an ordering. We identify 
onditions that guarantee the resulting language is stati
ally safe. Thispresentation makes it possible to study more easily extensions in two di�erent dire
tions: for the expressivityof the language 
onstru
ts and for the pre
iseness of the type language, while sharing a part of the safetyproof.In the �rst dire
tion, we formalize our multi-methods as a way to de�ne 
onstants for the 
ore language.In the se
ond one, we present an evolution of the ML≤ type system by adding kinding 
onstraints that allowto express the type of �partially polymorphi
� methods, that is, whose type's pre
ision lies between that ofa monomorphi
 type and that of a bounded polymorphi
 type, in a modular fashion.Finally, we study the 
lassi
al 
hallenge of the �expression problem� to validate the interest of our propo-sitions and 
ompare them to existing ones. We also give an overview of the pra
ti
al aspe
t of all those ideaswith the design and implementation of a 
omplete language, Ni
e.
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Introdu
tionOn peut dé�nir la programmation 
omme l'a
tivité humaine 
onsistant à produire un programme à partird'une spé
i�
ation. Dans 
ette dé�nition, un programme est une des
ription formelle d'une tâ
he exé
utablepar un ordinateur. Une spé
i�
ation est une des
ription de plus haut niveau qui spé
i�e une tâ
he. Lesspé
i�
ations peuvent être plus ou moins formelles, depuis une des
ription vague 
omme �un programmepour lire des 
ourriers éle
troniques� jusqu'à une des
ription 
omplète du 
omportement du programme.Nous insistons sur le fait que la programmation est réalisée par des êtres humains. Ont pourrait en e�etêtre tenté d'appeler spé
i�
ation une des
ription formelle mais de haut niveau qui peut être exé
utée parun ordinateur, par exemple quand un programme peut en être extrait automatiquement. Cependant, onpeut dans 
e 
as voir la spé
i�
ation elle-même 
omme un programme. Elle a été é
rite sur la base d'undes
ription préexistante de plus haut niveau, qui est 
e que nous appellerons la spé
i�
ation. Le fait queles programmes soient é
rits par des humains est important 
ar 
ela 
onditionne les 
ritères à utiliser pourévaluer la 
on
eption des langages de programmation.Il est bien 
onnu que tous les langages de programmation généralistes sont équivalents, dans le sens oùpour tout programme é
rit dans l'un de 
es langages et e�e
tuant une 
ertaine tâ
he, et pour tout autrelangage, il existe un programme dans 
e langage qui e�e
tue la même tâ
he. Cependant, 
ela ne rendpas 
aduque l'idée d'améliorer les langage existants, ou d'en 
réer de nouveaux. Simplement, on doit sefo
aliser sur la 
on
eption de langage qui rendent plus fa
ile la programmation pour les programmeurs.Nous identi�ons quatre 
ritères qui vont dans 
e sens.1. Les programmes doivent satisfaire leur spé
i�
ation. En parti
ulier, l'exé
ution d'un programme nedevrait jamais atteindre un état invalide où il �plante� ou doit être interrompu avant d'avoir a
hevé satâ
he. Un langage qui a la propriété de sûreté statique permet de garantir qu'un 
ertain programmene va jamais 
onduire à une telle situation. De plus, un langage dont les programmes peuvent êtreannotés de propriétés véri�ables statiquement (types, assertions logiques, ...) permet plus fa
ilementde véri�er que le programme satisfait la spé
i�
ation, éventuellement dans une forme a�aiblie. Plus
es propriétés sont ri
hes, plus elles peuvent �dèlement exprimer la spé
i�
ation.2. Il doit être �simple� d'é
rire des programmes. La simpli
ité étant di�
ile à formaliser, 
e 
ritère estdi�
ile à évaluer. Typiquement, la possibilité d'é
rire des programmes de façon 
on
ise (en pouvantomettre les opérations de bas niveau) et la fa
ilité pour d'autres programmeurs de 
omprendre lesprogrammes sont des signes de simpli
ité du langage. Quand une spé
i�
ation formelle existe, lasimpli
ité peut être 
ara
térisée par un faible é
art entre 
elle-
i et le programme.3. Puisque les grands programmes sont é
rits par des équipes de programmeurs, il doit être possible deles é
rire modulairement. Cela veut dire que la tâ
he prin
ipale doit être dé
omposable en tâ
hesplus petites, implémentés dans des parties de programme appelées modules. Chaque module doit êtreimplémentable ave
 une 
onnaissan
e minimale des autres modules dont il dépend.4. Pour éviter du travail inutile, il doit être possible de partager des modules d'utilité générale entredi�érents programmes [26℄. Ce 
ritère dé
oule du pré
édent mais le dépasse de deux façons. D'unepart, la réutilisation est souvent di�
ile 
ar 
haque programme peut avoir besoin d'un 
omportementdi�érent de 
e que le module partagé propose, ou en
ore le programme 
ontient des 
as additionnels à13




eux traités par le module partagé. D'autre part, puisque 
e module partagé est développé indépen-damment des programmes 
lient, on ne peut pas supposer qu'il est possible de modi�er le module pourles besoins spé
i�ques du programme. Le langage doit don
 o�rir des mé
anismes pour adapter etétendre les modules importés.Notre obje
tif général dans 
ette thèse est d'identi�er des situations où 
es 
ritères ne sont pas bienrespe
tés par les langage de programmation a
tuels, de proposer des mé
anismes permettant de traiter 
essituations, de prouver que 
es mé
anismes ont des bonnes propriétés et d'illustrer 
omment ils peuvent êtreutilisés en pratique.Dans le domaine de la re
her
he en langages de programmation, la base la plus généralement a

eptéeest le Meta-Langage (ML) de Robin Milner. La théorie de 
e langage est bien maîtrisée, 
e qui en faitune base idéale pour proposer des extensions. De plus, il a de bonne propriétés, 
omme la possibilitéd'inférer les types et de manipuler les fon
tions 
omme des valeurs de première 
lasse. En 
onséquen
e, denombreux langages de re
her
he a
tuels sont des extensions de ML. Toutefois, 
ette re
her
he a un impa
tréel mais limité sur les langages de programmation les plus utilisés dans l'industrie informatique. Baséstraditionnellement sur le paradigme impératif, ils ont dans 
es dernières années été étendus pour in
lurele paradigme de l'orientation objet. Cette extension a été motivée par le besoin de mieux permettre la
on
eption de systèmes à grande é
helle et de fournir plus de ri
hesse d'expression. Ces obje
tifs auraientpu être atteints en utilisant le paradigme fon
tionnel de ML, quoique d'une manière di�érente. Cela n'aprobablement pas eu lieu 
ar l'orientation objet pouvait plus fa
ilement être présentée 
omme une extensionde la programmation impérative (le premier langage orienté objets très largement répandu, C++, est uneextension pure du langage C). Il est de toutes façons intéressant de 
omparer 
omment les appro
hes orientéesobjets et fon
tionnelles propose de résoudre les même problèmes, et 
omment elles répondent à nos quatre
ritères. Cela peut en e�et inspirer la 
réation de nouveaux langages ou de nouveaux paradigmes quirépondent mieux à 
es 
ritères.Multi-méthodesIl est re
onnue que la programmation 
omporte deux aspe
ts: la dé�nition d'opérations et la dé�nition destru
tures de données [19℄. Un paradigme de programmation doit don
 
omporter des façons d'exprimer 
esdeux aspe
ts. Le paradigme fon
tionnel utilise prin
ipalement les types sommes (unions) et produits 
ommestru
tures de données, et les fon
tions dé�nies par pattern-mat
hing pour les opérations. Le paradigmeorienté objets o�re les 
lasses 
omme moyen de stru
turer les données, et les méthodes pour opérer sur 
elles-
i. Toutefois, 
es deux paradigmes introduisent une asymétrie entre 
es deux aspe
ts. Dans un programmede style fon
tionnel, les stru
tures de données peuvent être dé�nies indépendamment des fon
tions, alorsque l'é
riture des fon
tions par pattern mat
hing requiert la 
onnaissan
e de tous les 
as du type de donnée
on
erné. À l'inverse, dans le paradigme orienté objets, les méthodes sont dé�nies lo
alement à une 
lasseindépendamment des autres dé�nitions de 
lasses, alors que les 
lasses doivent in
lure la liste de toutes leursméthodes.Cette asymétrie est problématique lorsque l'on 
onsidère nos deux derniers 
ritères de modularité etd'extensibilité. Pour poursuivre le dualisme 
i-dessus, nous devons don
 à la fois pouvoir dé�nir de nouvellesopérations sur des stru
tures de données existantes et dé�nir de nouvelles stru
tures rentrant dans le 
hampdes opérations existantes. Dans le paradigme fon
tionnel, la dé�nition de nouvelles fon
tions est triviale.Néanmoins, l'extension des types sommes n'est pas possible puisque 
ela rendrait invalide les fon
tionsexistantes dé�nies par pattern mat
hing sur 
es types: elles n'auraient pas de bran
he pour les nouveaux
as. À l'inverse, en programmation orientée objets, l'extension des stru
tures de données revient à é
rire denouvelles 
lasses, 
e qui est au 
oeur du paradigme, alors que la dé�nition de nouvelles méthodes pour les
lasses existantes n'est pas autorisée.Le fait que 
ha
un de 
es paradigmes privilégie un aspe
t di�érent explique pourquoi ils sont vus 
ommeantagonistes. Toutefois, 
omme le montre la question de la modularité, les deux 
hoix ont des in
onvénients.Il est don
 intéressant de 
her
her à résoudre 
e 
on�it. Cela suppose de faire en même temps des opérationset des dé�nitions de stru
tures de données des 
on
epts de première 
lasse, dé�nissables indépendamment14



l'un de l'autre. Cela né
essite l'introdu
tion d'un troisième 
on
ept: l'implémentation d'une opération pourun 
ertain type de données. Ce nouveau paradigme est apparu initialement dans le langage CLOS, ave
l'usage d'une terminologie orientée objets (méthodes et 
lasses). De telles méthodes sont alors appeléesmulti-méthodes. Par rapport à l'orientation objet traditionnelle, 
elle nouvelle appro
he ajoute un aspe
tde la programmation fon
tionnelle: la possibilité d'ajouter de nouvelles opérations dé�nies par �pattern-mat
hing� sur plusieurs arguments. Toutefois, 
ette appro
he n'avait jusqu'i
i jamais été présentée dans un
ontexte in
luant d'autres aspe
ts de la programmation fon
tionnelle, 
omme le polymorphisme génériqueet l'inféren
e de types. De plus, un dé� additionnel est d'e�e
tuer la véri�
ation de types de programmesave
 multi-méthodes d'une façon modulaire. C'est l'un des obje
tifs prin
ipaux de 
ette thèse.KindsUn autre aspe
t de notre travail est de montrer l'intérêt et de formaliser une extension de systèmes detypes dans le but de mieux respe
ter notre premier 
ritère de typage statique fort. Nous présentons deuxsituations qui se présentent dans la pratique ave
 l'intera
tion du polymorphisme et du sous-typage, etnous proposons une solution unique pour traiter 
es deux 
as. Le premier 
as, déjà mentionné par [32℄,est le typage des méthodes homogènes, 
'est à dire, des méthodes qui a

eptent plusieurs types (mais pastous) 
omme arguments, tout en n'a

eptant de les mélanger dans le même appel. Un exemple typique estl'opérateur de 
omparaison less, qui peut être appliqué à deux 
haînes de 
ara
tères, deux nombres entiers,deux dates, et
, mais pas à deux valeurs de di�érents types, non plus qu'aux valeurs de types n'ayant pasd'ordre naturel, 
omme le 
omposants graphiques. Le se
ond 
as, introduit dans 
ette thèse, est apparuau 
ours de notre pratique de langages ave
 multi-méthodes et basés sur le système de types polymorphes
ontraints ML≤ [6℄. Nous avons remarqué que de nombreuses méthodes sont partiellement polymorphiques:leurs types ont une pré
ision intermédiaire entre un type monomorphe et un type polymorphe 
ontraint.Nous proposons de traiter 
es deux situation en introduisant une notion de kind, 
'est à dire, une propriétéque 
ertains types possèdent. Un avantage supplémentaire de notre solution est qu'elle est modulaire dansle sens où il est possible d'ajouter dans une hiérar
hie de 
lasses existantes de nouvelles 
lasses possédant un
ertain kind sans 
hanger le type des opérations qui 
on
ernent 
e kind.Présentation modulairePour formaliser nos réponses à 
es dé�s, nous devons dé�nir un langage 
omplet les in
orpore de façon
ohérente, et prouver ses propriétés. Nous atta
hons une attention spé
iale à la manière de présenter 
etteformalisation. Puisque le paradigme fon
tionnel est mieux 
ompris théoriquement que le paradigme orientéobjets, notre appro
he est essentiellement de partir d'un noyau fon
tionnel et d'ajouter l'orientation objet,
'est à dire les dé�nitions de 
lasses et de multi-méthodes. Toutefois, nous ne nous basons pas dire
tementsur Core-ML. Une raison pour 
e
i est que le système de types de Hindley et Milner ne 
ontient pas lesous-typage atomique, qui est né
essaire à notre appro
he de l'orientation objet. De plus, la 
ombinaisondu polymorphisme paramétrique et du sous-typage atomique donne lieu à de nouveaux dé�s de typage.Ceux-
i peuvent être relevés en enri
hissant en
ore le système de types. Il est probable que de nouvellesextensions deviennent né
essaires par la suite. Ces extensions peuvent prendre la forme soit de nouvellesopérations dans la sémantique du langage, de nouveaux types, ou des deux en même temps. En 
onséquen
e,une présentation monolithique dire
te aurait deux in
onvénients. D'une part à 
ause de sa taille: elle seraitdi�
ile à 
omprendre. Mais surtout, la 
on
eption d'extensions deviendrait de plus en plus 
omplexe puisque
ha
une né
essiterait une nouvelle présentation du système entier et une nouvelle preuve de 
orre
tion.Au 
ontraire, nous 
hoisissons de re
her
her une présentation aussi modulaire que possible. Ainsi, dansla première partie (
hapitre 1), nous présentons un système de types algébriques. Il 
omprend un langagenoyau ave
 
onstantes, et 
es types sont purement abstraits. Ce noyau permet de 
onstruire un langage
omplet en 
hoisissant les types 
on
rets et les 
onstants d'expressions, qui doivent véri�er 
ertaines propriétésgarantissant la 
orre
tion du langage. Celle 
onstru
tion nous permet d'étudier plus tard indépendammentnos propositions de systèmes de types (en parti
ulier ave
 les kinds) et 
eux 
on
ernant les mé
anismes de15



langage (orientation objet, multi-méthodes et leur typage modulaire). Dans le 
hapitre 2, nous montrons enparti
ulier que deux systèmes de types existants, 
elui de Hindley et Milner d'une part et ML≤ d'autre part,peuvent être exprimés 
omme des instan
es de notre système de types algébriques.Dans la se
onde partie, nous présentons les 
on
epts orientés objets dans 
e 
adre: les 
lasses dans le
hapitre 3, les multi-méthodes dans le 
hapitre 4, et les appels aux implémentation pré
édentes de méthodes(�super�) dans le 
hapitre 5. Dans le 
hapitre 6, nous montrons l'intérêt d'une extension originale des types
ML≤ pour typer plus pré
isément 
ertaines méthodes grâ
e à l'ajout de kinds.La troisième partie 
on
erne la modularité. Dans le 
hapitre 8, nous montrons 
omment les dé
larationsde méthodes peuvent être faites dans un 
adre modulaire, et 
omment les typer, indépendamment de l'algèbrede types. Nous appliquons ensuite 
ette appro
he dans le 
as de l'algèbre de types ML≤. Le 
hapitre 9 traitede l'intera
tion entre appel aux méthodes antérieures et modules. Le 
hapitre 10 formalise notre système dekinds dans un 
adre modulaire.Mise en pratique: le langage Ni
eEn marge de 
ette présentation théorique, j'ai implémenté un langage généraliste 
omplet fondé sur leprin
ipes présents dans 
ette thèse. Dans la quatrième partie, nous explorons 
ertains aspe
ts révélés par
ette mise en pratique. Le 
hapitre 11 dé
rit une 
ompilation de notre langage vers un langage de bas niveau,ave
 typage monomorphe, semblable au byte
ode Java. Nous prouvons la 
orre
tion de 
ette 
ompilation. Le
hapitre 12 dé
rit 
omment notre système de type ave
 kinds peut être implémenté. Le 
hapitre 13 présentele langage Ni
e, en détaillant les di�éren
es entre la syntaxe utilisée dans 
ette thèse et 
elle implémentée
on
rètement. Dans le 
hapitre 14, nous étudions le 
as 
lassique du �problème des expressions�. Nous yproposons une solution utilisant notre système ave
 multi-méthodes modulaires, et nous la 
omparons ave
d'autres solutions. En�n, nous 
omparons di�érents aspe
ts de notre travail ave
 dans travaux antérieursdans le 
hapitre 15.
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Introdu
tionWe may de�ne programming as the human a
tivity 
onsisting in turning a spe
i�
ation into a program. Inthis 
ontext, a program is a formal des
ription of a task that 
an be exe
uted automati
ally by a 
omputer.A spe
i�
ation is a higher-level des
ription that spe
i�es a task. Spe
i�
ations 
an vary in formality, froma vague des
ription like �a program to read emails� to a 
omplete des
ription of the program's behavior.For the sake of 
larity, we insist the programming is performed by humans. One 
ould be tempted to also
all spe
i�
ation a formal but high-level des
ription that 
an be exe
uted by a 
omputer, for instan
e ifa program 
an be automati
ally derived from it. However, we 
an then view su
h a spe
i�
ation itself asa program. It must have been written from a pre
eding, higher-level des
ription of the task, whi
h is theone we will 
all the spe
i�
ation. The fa
t that programs are written by humans is important be
ause it
onditions the 
riteria that should be used to evaluate the impa
t of programming languages design.It is a well-known fa
t that all general purpose programming languages are equivalent, in the sense thatfor any program written in one of those languages and performing a 
ertain task, and for any other language,there exists a program in that language that performs the same task. However, this does not mean thatthe idea of improving existing programming languages � or to 
reate new ones � is pointless. Rather,programming languages should be designed to fa
ilitate programming. We 
an identify four 
riteria.1. Programs need to 
orre
tly implement the spe
i�
ation. In parti
ular, the exe
ution of a programshould not rea
h an invalid state where it �
rashes� or needs to be stopped before having �nished itstask. A language that has the property of stati
 safety makes it possible to guarantee that a 
ertainprogram will never run into this situation. Moreover, a language whose programs 
an be equippedwith stati
ally enfor
eable properties (types, logi
al assertions, ...) makes it easier to automati
ally
he
k that the program 
onforms with (a possibly weakened form of) the spe
i�
ation. The ri
herthose properties are, the more 
losely they 
an express the spe
i�
ation.2. It should be possible to write programs in a �simple� way. Sin
e simpli
ity is di�
ult to formalize, this
riteria is di�
ult to evaluate. Typi
ally, 
on
iseness (by not needing to spe
ify low-level operations)and the ease with whi
h programs 
an be understood by other programmers are indi
ators of simpli
ity.When a formal spe
i�
ation exists, simpli
ity 
an be 
hara
terized by a small gap from the spe
i�
ationto the program.3. Sin
e large programs need to be written by teams of programmers, it should be possible to writeprograms modularly. That is, the main task should be de
omposable into smaller ones that 
anbe implemented as program parts 
alled modules. Ea
h module should be implementable with onlyminimal knowledge about the other modules it depends on.4. To save e�orts, one should be able to share generally useful modules between di�erent programs [26℄.This 
riteria builds on the previous one but goes beyond it for two reasons. First, reuse is oftendi�
ult be
ause ea
h program might need a slightly di�erent behavior in a 
ertain 
ase than what thethe shared module o�ers, or the program in
ludes spe
i�
 
ases in addition to those present in thegeneral module. Se
ond, sin
e the reused module was developed independently of the 
lient programs,one 
annot assume that it is possible to modify the shared module to a

ommodate for the spe
i�
needs of the program. Therefore, the language should o�er me
hanisms to 
ustomize and extend animported module. 17



Our general motivation in this thesis is to identify situations where these 
riteria are not met by 
urrentprogramming languages, to propose language features to handle those situations, to prove that these featureshave good properties and to illustrate how they 
an be used in pra
ti
e.In the domain of programming language resear
h, the most widely a

epted basis is Robin Milner'sMeta-Language (ML). The theory of this language is well-understood, whi
h makes it an ideal basis to buildextensions upon. Furthermore, it has appealing properties, like the ability to infer types and to manipulatefun
tions as �rst 
lass values. Therefore, many 
urrent resear
h languages are extensions of ML. However,this resear
h had a real but limited impa
t on the mainstream programming languages. Traditionally basedon the imperative paradigm, those have in the re
ent years been extended to handle the obje
t-orientedparadigm. This extension was motivated by the need to better support the design of large systems andto provide more expressiveness. These goals 
ould also have been met by using the fun
tion paradigm ofML, although in a di�erent way. It probably did not happen that way be
ause obje
t-orientation 
ouldbe more easily presented as an extension of imperative programming (the �rst mainstream obje
t-orientedprogramming language, C++, was ba
kward 
ompatible with C). In any 
ase, it is interesting to 
omparehow obje
t-orientation and fun
tional programming propose to solve similar problems, and how they meetour four 
riteria. Ultimately, this 
an help devising new languages or paradigms that better meet those
riteria.Multi-methodsIt has already been re
ognized that the a
tivity of programming has two main fa
ets: de�ning operations andde�ning data stru
tures [19℄. Therefore, a programming paradigm must provide ways to express these twoaspe
ts. The fun
tional paradigm mainly uses sum and produ
t types as its data stru
tures, and fun
tionsde�ned by pattern-mat
hing on data-types as its operations. The obje
t-oriented paradigm provides 
lassesto stru
ture data, and methods to operate on it. However, both paradigms introdu
e an asymmetry betweenthe two aspe
ts. In a fun
tional program, data-types 
an be de�ned independently of fun
tions, whilefun
tions need knowledge about the data-type 
onstru
tors. Conversely, in the obje
t-oriented paradigm,methods are de�ned lo
ally to a 
lass, while 
lasses in
lude the list of all their methods.This asymmetry is problemati
 when it 
omes to our last two 
riteria, modularity and extensibility.Following the above dualism, we need both to de�ne new operations on existing data stru
tures and tode�ne new data stru
tures to be handled by existing operations. In the fun
tional paradigm, de�ning newfun
tions is straightforward. On the other hand, extending existing data-types is not possible sin
e it wouldbreak existing fun
tions de�ned by pattern mat
hing on this type: they would miss the new 
ases. Conversely,extending data stru
tures amounts to writing new 
lasses, whi
h is pre
isely the obje
t-oriented paradigm,while de�ning new methods on existing 
lasses is not allowed.The fa
t that ea
h paradigm privileges a di�erent aspe
t explains why they are viewed as the two major
ompetitors. However, as the modularity issue shows, both 
hoi
es 
arry in
onvenien
es. Therefore it isinteresting to see how the 
on�i
t 
an be resolved. It involves making both operation and data de�nitions�rst-
lass, toplevel operations. This 
reates the need for a third 
on
ept: the implementation of an operationfor a 
ertain data type. This new paradigm initially appeared in CLOS, using obje
t-oriented terms likemethods and 
lasses. Su
h methods are 
alled multi-methods. Compared to traditional obje
t-orientation,this new approa
h adds one aspe
ts of fun
tional programming: the possibility to add a new operation,de�ned by �pattern-mat
hing� on multiple arguments. However, this approa
h had not yet been presentedin a setting that in
ludes more aspe
ts of fun
tional programming, like generi
 polymorphism and typeinferen
e. Furthermore, an additional 
hallenge is to perform the type-
he
king of programs with multi-methods in a modular fashion. This is one of the main goals of this thesis.KindsAnother aspe
t of our work is to motivate and formalize a type-system extension to improve on the �rst
riteria of stronger stati
 
he
king. We present two typing 
hallenges that arise in pra
ti
e from the interplay18



of polymorphism and subtyping, and we propose a single solution to solve them both. The �rst 
hallenge,whi
h has already been pointed out [32℄, is the typing of homogeneous methods, that is, methods that a

eptseveral (but not all) types for their arguments, while these types 
annot be intermixed. A typi
al example isthe 
omparison operator less, whi
h 
an be applied to two strings, two integers, two dates, et
, but not to twovalues of di�erent types, and neither to types that have no 
anoni
al ordering like graphi
al widgets. These
ond 
hallenge, introdu
ed in this thesis, has arisen from our experien
e with programming in languageswith multi-methods and based on the polymorphi
 
onstrained type system ML≤ [6℄. We found out thatmany useful methods are partially polymorphi
: their types lie in pre
ision in between a monomorphi
 anda bounded polymorphi
 type. We propose to handle those two situations by introdu
ing the notion of kind,that is, a property that some types possess. An extra bene�t of our solution is to be modular in the sensethat new 
lasses with a 
ertain kind 
an be added to an existing 
lass hierar
hy without 
hanging the typeof the operations that a
t on types of that kind.Modular presentationTo formalize our solutions to these 
hallenges, we need to de�ne a 
omplete language that in
orporates themin a 
oherent way and to prove its properties. We take spe
ial 
are in the way we expose this formalization.Sin
e fun
tional programming is better understood theoreti
ally than obje
t orientation, our approa
h is inessen
e to start from there, and to add obje
t-oriented features, that is, 
lass de�nitions and multi-methods.However, we will not base our work on Core-ML. One reason is that Hindley and Milner's type systemdoes not in
lude atomi
 subtyping, whi
h is ne
essary for our approa
h of obje
t-orientation. Furthermore,the 
ombination of generi
 polymorphism and obje
t-oriented subtyping gives rise to new typing 
hallenges.Those 
an be solved by enri
hing the type system further. The need for other extensions is likely to arise.These extensions 
ould take the form of either new operations in the semanti
s of the language, di�erenttypes, or both at the same time. Therefore, a dire
t presentation would have two drawba
ks. First be
auseof its size: it would be very hard to 
omprehend. Se
ond and probably more important, the task of designingthe extensions would be
ome in
reasingly 
omplex, as ea
h one would essentially need a new presentation ofthe whole system and a new proof of its 
orre
tness.Instead, we 
hose to experiment with a presentation that is as modular as possible. Therefore, in the�rst part (Chapter 1), we present an algebrai
 type system. It in
ludes a 
ore language with 
onstants,and its types are fully abstra
t. This 
ore allows a real language to be built by 
hoosing both 
on
retetypes and expression 
onstants, whi
h must verify some properties that guarantee the soundness of the fulllanguage. This 
onstru
tion allows us to study independently later on our proposals 
on
erning type systems(in parti
ular kinds) and those 
on
erning language features (obje
t-orientation, multi-methods and theirmodular typing). In Chapter 2, we show in parti
ular that two existing type systems, Hindley and Milner'sand ML≤, 
an be expressed as instan
es of our 
ore type system.In the se
ond part, we present obje
t-oriented features in this framework: 
lasses in Chapter 3, multi-methods in Chapter 4, and 
alls to previous method implementations (super 
alls) in Chapter 5. In Chapter 6,we motivate an original extension of ML≤ types to type more methods, with the addition of kinds.In the third part, we fo
us on modularity. In Chapter 8, we show how to de
lare methods in a modularsetting, and how to type
he
k them, independently of the type algebra. We also instantiate this feature in the
ase of the ML≤ type algebra. Chapter 9 dis
usses the intera
tion of super 
alls with modules. Chapter 10formalizes our system of kinds in a modular setting.Theory into pra
ti
e: the Ni
e languageIn parallel, I have implemented a full general-purpose programming language founded on the theory exposedin this dissertation. In the fourth part, we explore some of the aspe
ts involved in this e�ort of putting thistheory into pra
ti
e. Chapter 11 des
ribes a possible 
ompilation of our language to a monorphi
ally typed,lowlevel byte
ode language similar to the Java byte
ode, and proves the 
orre
tness of this 
ompilation.Chapter 12 des
ribes how the type system with kinds 
an be implemented. Chapter 13 introdu
es the19



Ni
e language, detailing the di�eren
es between the syntax used in this do
ument and the 
on
rete syntaximplemented. In Chapter 14, we study the 
lassi
al expression problem. We propose a solution using oursystem with multi-methods, and we 
ompare it with other solutions. Finally, we 
ompare the di�erentaspe
ts of our work with related work in Chapter 15.
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Chapter 1Algebrai
 type systemWe present type-
he
king, type inferen
e and soundness proofs for a 
ore fun
tional language. Insteadof exposing the syntax and stru
ture of types, we treat them as an abstra
t stru
ture with three visibleoperations, following the stru
ture of expressions: the 
onstru
tion of fun
tional types, the appli
ation ofone type to another, and the let binding of a type variable in a type. Note that this appli
ation is not theappli
ation of a type 
onstru
tor to a type. It is a meta-operator that, given the type of a fun
tion f andthe type of an argument v, returns the type of the expression f v. For instan
e, assume f and v have types
int→ bool and int respe
tively. We shall give the expression f v the type ( int→ bool) int. That is tosay that ( int→ bool) int is the type of the results of a fun
tion of type int→ bool applied to a value oftype int.Sin
e we want to reason about the 
onstru
tion of types, we shall distinguish the algebrai
 types, whi
hare provided by the instantiation of the framework, and the synta
ti
 types, whi
h are 
onstru
ted by ourtype system on top of the algebrai
 types. The instantiation of the system must provide an interpretation ofthese synta
ti
 types by providing a subtyping relation. Following up on the above example, we may assumefor instan
e that algebrai
 types are ground types built over the 
onstants int and bool and the arrowtype 
onstru
tor. That is int, bool, int→ bool are algebrai
 types1. Conversely, ( int→ bool) int is asynta
ti
 type that is equivalent to bool, while ( int→ bool) bool is equivalent to the error synta
ti
 type.1.1 Type algebraThe algebrai
 type system is parameterized by a type algebra. To de�ne it, we �rst introdu
e the notion ofsynta
ti
 types. Synta
ti
 type τ ::=Algebrai
 type aType variable | tFun
tional type | λt.τAppli
ation type | τ τLet type | let t be τ in τError type | EFigure 1.1: Synta
ti
 types1They happen to be also synta
ti
 types, whi
h 
ontain all algebrai
 types, see Figure 1.1.23



De�nition 1 (Synta
ti
 types) Given an arbitrary set A, whose elements are denoted by a and 
alledalgebrai
 types, and given an in�nite set of type variables denoted by t, the set of synta
ti
 types over A,written S(A), is de�ned by the grammar for synta
ti
 types τ of Figure 1.1.Informally, S(A) 
ontains the expressions τ of a small 
al
ulus (similar to Core-ML) built over an in�niteset of type variables t and over 
onstants a of A. Additionally, an error type E is distinguished. Note thatsynta
ti
 types are really a pie
e of syntax. In parti
ular, there is no β-redu
tion on synta
ti
 types. However,we will see in Se
tion 1.2.1 that a parallel 
an be drawn between synta
ti
 types and lambda-expressions.In the following, we use �type� as a shorthand for synta
ti
 type.In the type λt.τ , λ a
ts as a binder of variable t with s
ope τ . In the type let t be τ1 in τ2, leta
ts as a binder of variable t with s
ope τ2. The set of free variables of a type τ (De�nition 2), written
FV (τ), and the 
apture-free substitution of type τ for type variable t in type τ0 (De�nition 3), written
τ0 [t← τ ], are de�ned as usual. Synta
ti
 types are equal up to α-
onversion. That is, we do not distinguishbetween λt1.τ and λt2.τ [t1 ← t2] when t2 does not belong to FV (τ). Similarly, let t1 be τ1 in τ2 andlet t2 be τ1 in τ2 [t1 ← t2] are the same type when t2 does not belong to FV (τ2).De�nition 2 (Free variables of a synta
ti
 type) The set of the free variables of a synta
ti
 type isde�ned indu
tively by:

FV (a) = ∅

FV (t) = {t}

FV (λt.τ) = FV (τ) \ {t}

FV (τ1 τ2) = FV (τ1) ∪ FV (τ2)

FV (let t be τ1 in τ2) = FV (τ1) ∪
(

FV (τ2) \ {t}
)

FV (E) = ∅De�nition 3 (Substitution) The substitution of type τ for type variable t in type τ0, written τ0 [t ← τ ],is de�ned indu
tively by:
a [t← τ ] = a

t [t← τ ] = τ

t′ [t← τ ] = t′ (t′ 6= t)

(λt1.τ1) [t← τ ] = λt1.(τ1 [t← τ ]) (t1 6= t, t1 6∈ FV (τ))

(τ1 τ2) [t← τ ] = (τ1 [t← τ ]) (τ2 [t← τ ])

(let t1 be τ1 in τ2) [t← τ ] = let t1 be (τ1 [t← τ ]) in (τ2 [t← τ ]) (t1 6= t, t1 6∈ FV (τ))

E [t← τ ] = EFor fun
tional and let types, the side 
ondition 
an always be satis�ed by renaming the bound variable.It is easy to 
he
k that De�nition 3 and De�nition 2 are valid, sin
e they do not depend on the name
hosen for the bound variable of fun
tional and let types. Furthermore, the substitution 
an be extended toa total fun
tion by renaming of the bound variables whenever the side 
onditions are not satis�ed.The interest of synta
ti
 types lies in representing the possible ways in whi
h the types of expressionsof a programming language 
an be 
ombined to form the type of a larger expression. Synta
ti
 types needto be interpreted, so as to provide information about the 
orresponding expressions. This interpretation isprovided by a type algebra.De�nition 4 (Type algebra) A type algebra A is a 
ouple (A,≤), where A is a set of algebrai
 types,and the relation ≤ is a pre-order on S(A) su
h that the following four axioms are satis�ed:i. (Error) The type E is a maximal element. That is, for all type τ , τ ≤ E holds. Moreover, for all type
τ and type variable t, E ≤ E τ , E ≤ τ E and E ≤ let t be E in τ hold.24



ii. (Covarian
e) Synta
ti
 types are 
ovariant. That is, for all types τ , τ ′, τ0, and type variable t, if τ ′ ≤ τholds, then τ0 [t← τ ′] ≤ τ0 [t← τ ] holds.iii. (Redu
tion) For all types τ , τ ′ and type variable t, τ [t← τ ′] ≤ (λt.τ) τ ′iv. (Let) For all types τ , τ ′ and type variable t, τ ′ [t← τ ] ≤ let t be τ in τ ′We dis
uss the interpretation of these axioms in the next se
tion, where an expression language is intro-du
ed. In parti
ular, the maximality of E is motivated before De�nition 8, and a parallel is drawn betweenthese axioms and the redu
tion rules for the expression language in Se
tion 1.2.1.When τ1 ≤ τ2 holds, we will say that τ1 is a subtype of τ2. Two synta
ti
 types τ1 and τ2 are equivalentif both τ1 ≤ τ2 and τ2 ≤ τ1 hold, in whi
h 
ase we write τ1 ≡ τ2. When τ1 ≡ τ2 does not hold, we will write
τ1 6≡ τ2. The relation ≥ is the symmetri
 relation of ≤. The predi
ate τ1 < τ2 holds when τ1 ≤ τ2 holds but
τ1 ≥ τ2 does not hold. Similarly, τ1 > τ2 holds when τ1 ≥ τ2 holds but τ1 ≤ τ2 does not hold.Note that while we don't spe
i�
ally require a subtyping relation for the algebrai
 types, they 
an be
ompared by the restri
tion of ≤ to the set of algebrai
 types A. When there is ambiguity about the typealgebra in whi
h synta
ti
 types are 
ompared, we write A |= τ1 ≤ τ2 instead of τ1 ≤ τ2.1.1.1 Sub-algebrasWe show that a subset of a type algebra is also a type algebra.Theorem 5 (Sub-algebra) Let (A,≤) be a type algebra, and A′ be a subset of A. Then (A′,≤) is a typealgebra.Proof of theorem 5First, by De�nition 1, sin
e A′ is a subset of A, S(A′) is a subset of S(A). Therefore ≤, whi
h is a pre-orderon S(A), is also a pre-order on S(A′). Finally, all four 
onditions on ≤ in De�nition 4 hold for all types in
S(A), so they do hold in parti
ular for those in S(A′).1.1.2 ExampleLet us build a type algebra, based on the following simple monomorphi
 type system with atomi
 subtypingand fun
tion types. The algebrai
 types A are de�ned by the grammar a ::= int | float | a → a. Thesetypes are ordered as usual, by the smallest relation ≺ that veri�es:

int ≺ float
a2 ≺ a′

2 a′
1 ≺ a2

a′
2 → a′

1 ≺ a2 → a1We must provide a pre-order on S(A) that veri�es the axioms of De�nition 4. To this end, we introdu
ean auxiliary de�nition. We de�ne a translation 〈·〉 of the elements of S(A) to sets of algebrai
 types, whi
hmaps synta
ti
 types to the set of types they denote.
〈a〉 = {a′ | a ≺ a′}

〈t〉 = A

〈E〉 = ∅

〈τ1 τ2〉 = {a1 | ∃a2 ∈ 〈τ2〉, a2 → a1 ∈ 〈τ1〉}

〈λt.τ〉 = { a2 → a1 | a2 ∈ A, a1 ∈ 〈τ [t← a2]〉}

〈let t be τ1 in τ2〉 = {a2 | ∃a1 ∈ 〈τ1〉, a2 ∈ 〈τ2 [t← a1]〉}For instan
e, 〈int〉 = {int, float} and 〈λt.t〉 = { a→ a | a ∈ A}. Therefore, the translation of (λt.t) intis {int, float}.The order on synta
ti
 types is de�ned in the following way: τ1 ≤ τ2 holds if and only if 〈τ1〉 ⊇ 〈τ2〉.We 
an now show that (A,≤) is indeed a type algebra. The relation ≤ is a pre-order on S(A) sin
e ⊇ isre�exive and transitive. Moreover, it satis�es the axioms of De�nition 4:25



1. 〈E〉 = ∅. Therefore, for all t and τ , 〈τ〉 ⊇ 〈E〉, and 〈E τ〉 = 〈τ E〉 = 〈let t be E in τ〉 = ∅. That is,
τ ≤ E, E ≤ E τ , E ≤ τ E and E ≤ let t be E in τ hold.2. Covarian
e is proved by indu
tion on the stru
tural size of τ0. We need to prove that τ0 [t ← τ ′] ≤
τ0 [t ← τ ], provided that τ ′ ≤ τ . For the 
ase τ0 = λt1.τ1, we 
an assume w.l.o.g that t1 is di�erentfrom t and not free in τ nor in τ ′. Therefore (λt1.τ1) [t ← τ ] = λt1.(τ1 [t ← τ ]) and (λt1.τ1) [t ←
τ ′] = λt1.(τ1 [t ← τ ′]). For a2 → a1 in 〈λt1.τ1 [t ← τ ]〉, by de�nition of the translation, a1 ∈ 〈τ1 [t ←
τ ] [t1 ← a2]〉. Sin
e t1 6= t and t1 is not free in τ , τ1 [t ← τ ] [t1 ← a2] = τ1 [t1 ← a2] [t ← τ ]. Sin
e
τ1 [t1 ← a2] has a smaller size than λt1.τ1, we 
an apply the indu
tion hypothesis, and 〈τ1 [t1 ←
a2] [t ← τ ]〉 ⊆ 〈τ1 [t1 ← a2] [t ← τ ′]〉. Again, τ1 [t1 ← a2] [t ← τ ′] = τ1 [t ← τ ′] [t1 ← a2]. Therefore
a1 ∈ 〈τ1 [t← τ ′] [t1 ← a2]〉. That is, a2 → a1 ∈ 〈λt1.τ1 [t← τ ′]〉. Thus, λt1.τ1 [t← τ ′] ≤ λt1.τ1 [t← τ ].The 
ase of let types is similar, and the other 
ases are straightforward.3. We now prove an auxiliary property: the translation sets are upward-
losed. That is, for all algebrai
types a and a′, and synta
ti
 type τ , if a ∈ 〈τ〉 and a ≺ a′, then a′ ∈ 〈τ〉. The proof is by indu
tionon τ . All 
ases are immediate ex
ept for fun
tional types. For all a in 〈λt.τ〉, by de�nition of thetranslation, a is of the form a2 → a1 where a1 ∈ 〈τ [t ← a2]〉. By hypothesis a ≺ a′ and by de�nitionof ≺, a′ is of the form a′

2 → a′
1 with a′

2 ≺ a2 (1) and a1 ≺ a′
1 (2). By (2) and the indu
tionhypothesis, a′

1 ∈ 〈τ [t ← a2]〉 (3). Furthermore, it follows from (1) that a′
2 ≤ a2 holds. Therefore,by the 
ovarian
e axiom proved above, τ [t ← a′

2] ≤ τ [t ← a2]. That is, by de�nition of subtyping,
〈τ [t ← a′

2]〉 ⊇ 〈τ [t← a2]〉. Therefore, (3) implies a′
1 ∈ 〈τ [t← a′

2]〉. That is, a′ ∈ 〈λt.τ〉, whi
h provesthe property. This property implies in parti
ular that for all algebrai
 type a and synta
ti
 type τ , if
a ∈ 〈τ〉, then a ≥ τ (4).We may now prove the redu
tion axiom: for all types τ , τ ′ and type variable t, (λt.τ) τ ′ ≥ τ [t← τ ′].Let a1 be in 〈(λt.τ) τ ′〉. Then there exists a2 in 〈τ ′〉 su
h that a2 → a1 ∈ 〈λt.τ〉. That is, a1 ∈ 〈τ [t←
a2]〉. Sin
e a2 ∈ 〈τ ′〉, by (4) we have that a2 ≥ τ ′. So by 
ovarian
e, τ [t ← a2] ≥ τ [t ← τ ′]. That is,
〈τ [t← a2]〉 ⊆ 〈τ [t← τ ′]〉. Therefore, a1 is in 〈τ [t← τ ′]〉, whi
h shows the property.4. For all types τ , τ ′ and type variable t, let t be τ in τ ′ ≥ τ ′ [t ← τ ]. Let a2 be an element of
〈let t be τ in τ ′〉. Then by de�nition, there exists a1 in 〈τ1〉 su
h that a2 ∈ 〈τ2 [t ← a1]〉. By (4),
a1 ≥ τ1. So by 
ovarian
e, τ2 [t ← a1] ≥ τ2 [t ← τ1]. That is, 〈τ2 [t ← a1]〉 ⊆ 〈τ2 [t ← τ1]〉. Therefore,
a2 is in 〈τ2 [t← τ1]〉, whi
h shows the property.It is interesting to see in this algebra the meaning of Covarian
e (De�nition 4.ii). In parti
ular, typeappli
ation is 
ovariant on both arguments. This is not in 
ontradi
tion with the 
ontra-varian
e of the →algebrai
 type 
onstru
tor on its �rst argument. For instan
e, float → int ≤ int → float. Therefore,it is required by Covarian
e (De�nition 4.ii) that ( float → int) int ≤ ( int → float) int. This indeedholds, sin
e in the translation, 〈( float→ int) int〉 is {int, float} and 〈( int→ float) int〉 is {float}.1.2 Core languageExpression e ::= x | λx.e | e e | let x be e in e | cConstant c ::= C | fValue v ::= λx.e

| C v1 ... vn (n ≤ arity(C))
| f v1 ... vn (n < arity(f))Figure 1.2: Language syntaxWe 
onsider the set of Core-ML expressions, re
alled in Figure 1.2. Lambda abstra
tions λx.e and letexpressions let x be e1 in e bind they argument x in their body e, and are 
onsidered equal modulo26



renaming of x. These expressions are parameterized by a set of 
onstants c. Ea
h 
onstant 
omes withan algebrai
 type written constant-type(c), and with a positive integer arity written arity(c). Constants areeither data 
onstru
tors C or operators f . A 
onstant c applied to n arguments is a value when n is lessthan arity(c), or c is a data 
onstru
tor and n is arity(c). Thus, an operator f applied to exa
tly arity(f)arguments is not a value (and therefore it must be redu
ed).The semanti
s of expressions is de�ned in Figure 1.3. This notion of redu
tion en
ompasses both 
all-by-value and 
all-by-name. A deterministi
 restri
tion is presented in Se
tion 1.2.2. The β and β-let redu
tionrules are standard. The (possibly non-deterministi
) redu
tions of an operator f are de�ned by the set of
(arity(f)+1)-tuples R(f) used by Rule Op. Rule Ctxt allows redu
tions to o

ur inside expressions, ex
eptin the body of a let-expression or in the body of a fun
tion. Note that it does not 
hange semanti
s whether
ontexts have depth one as de�ned here or an arbitrary depth; it is always possible to apply Ctxt severaltimes to obtain redu
tions at an arbitrary depth inside an expression.Evaluation 
ontext E ::= [] e | e [] | let x be [] in e

β

(λx.e) e′ −→ e [x← e′]
β-Letlet x1 be e1 in e2 −→ e2 [x1 ← e1]Op

f e1 ... en −→ e
(e1, ..., en, e) ∈ R(f)

Ctxt
e −→ e′

E [e] −→ E [e′]Figure 1.3: General semanti
sVar type(x) = txCst type(c) = constant-type(c)Lam type(λx.e) = λtx.type(e)App type(e1 e2) = type(e1) type(e2)Let type(let x1 be e1 in e2) = let tx1
be type(e1) in type(e2)Figure 1.4: The typing fun
tionWe de�ne a fun
tion 
omputing the synta
ti
 type of any expression. Instead of using a type environment,we asso
iate to ea
h free variable x of the expression a distin
t free type variable tx. This typing fun
tion isde�ned re
ursively in Figure 1.4. Expression variables are mapped to their asso
iated type variables (RuleVar). Rule Cst gives Constants their de
lared type. Note that it is valid to use constant-type(c) as asynta
ti
 type, sin
e the grammar of Figure 1.1 implies that algebrai
 types are also synta
ti
 types. Thetype of a lambda abstra
tion λx.e is the synta
ti
 fun
tional type λtx.τ , where τ is the type of e (rule Lam).Sin
e synta
ti
 types are equal modulo α-
onversion, we show in Proposition 7 that the type of a lambdaabstra
tion does not depend on the 
hoi
e of its parameter name. The type of an appli
ation e1 e2 is thesynta
ti
 appli
ation of the types of e1 and e2 (rule App). Finally, in Rule Let, the type of a let-expressionlet x1 be e1 in e2 is the type that binds tx1

to type(e1) in type(e2). Again, this type does not depend onthe 
hoi
e of the name x1 by alpha-
onversion of let types.We prove a substitution lemma that des
ribes the properties of the typing fun
tion. It says that substi-tution 
ommutes with the typing fun
tion. An interpretation of this result is that the type of an expressionis a fun
tion of the type of all its parts. Moreover, be
ause of the 
ovarian
e of type algebras (De�nition4.ii), that fun
tion is 
ovariant in all its arguments. 27



Lemma 6 (Substitution)For all variable x and for all expressions e and e′,
type(e [x← e′]) = type(e) [tx ← type(e′)]Proof of lemma 6 (Substitution)The proof is by indu
tion on e.
ase e = xBy de�nition of the typing fun
tion, type(x) is tx. Therefore, type(x) [tx ← type(e′)] is tx [tx ← type(e′)],whi
h by De�nition 3 is equal to type(e′).By de�nition of substitution, x [x← e′] = e′. Therefore type(x [x← e′]) is also equal to type(e′), whi
hproves the property.
ase e = x′ with x′ 6= xBy de�nition of substitution, x′ [x ← e′] = x′. Therefore type(x′ [x ← e′]) = type(x′) = tx′ . Sin
e

x′ is di�erent from x, this implies tx′ 6= tx and therefore tx′ is in turn equal by De�nition 3 to
tx′ [tx ← type(e′)].
ase e = cThis 
ase is similar to the 
ase e = x′.
ase e = λx1.e1By α-
onversion on e, we 
an assume without loss of generality that x1 6= x (1) and that x1 6∈
FV (e′) (2).Let T be type((λx1.e1) [x ← e′]). By de�nition of substitution, (1) and (2), we have (λx1.e1) [x ←
e′] = λx1.(e1 [x ← e′]). Therefore, T is equal to type(λx1.(e1 [x ← e′])), whi
h by Rule Lam is equalto λtx1

.type(e1 [x← e′]).By indu
tion hypothesis, type(e1 [x ← e′]) is equal to type(e1) [tx ← type(e′)]. Therefore,
λtx1

.type(e1 [x ← e′]) is equal to λtx1
.(type(e1) [tx ← type(e′)]), whi
h by De�nition 3 with (1) isequal to (λtx1

.type(e1)) [tx ← type(e′)]. Sin
e by Rule Lam, type(λx1.e1) = λtx1
.type(e1), and we�nally have T = type(λx1.e1) [tx ← type(e′)], whi
h �nishes the proof of this 
ase.
ase e = e1 e2By de�nition of substitution, (e1 e2) [x← e′] = e1 [x← e′] e2 [x← e′].This 
ase is then a mere appli
ation of the indu
tion hypothesis type(ei [x ← e′]) = type(ei) [tx ←

type(e′)] (1) for i = 1, 2, 
ombined with the de�nition of the typing fun
tion for appli
ation types.
type((e1 [x← e′]) (e2 [x← e′]))

= type(e1 [x← e′]) type(e1 [x← e′]) (App)
= (type(e1) [tx ← type(e′)]) (type(e2) [tx ← type(e′)]) (1)
= (type(e1) type(e2)) [tx ← type(e′)] (De�nition 3)
= type(e1 e2) [tx ← type(e′)] (App)
ase e = let x1 be e1 in e2By α-
onversion, we 
an assume without loss of generality that x1 6= x (1) and x1 6∈ FV (e′) (2).Therefore, by de�nition of the substitution, (let x1 be e1 in e2) [x ← e′] = let x1 be e1 [x ←

e′] in e2 [x← e′].
type(let x1 be e1 [x← e′] in e2 [x← e′])

= let tx1
be type(e1 [x← e′]) in type(e2 [x← e′]) (Let)

= let tx1
be type(e1) [tx ← type(e′)] in type(e2) [tx ← type(e′)] (Ind. Hyp.)

= (let tx1
be type(e1) in type(e2)) [tx ← type(e′)] (De�nition 3 with (1))

= type(let x1 be e1 in e2) [tx ← type(e′)] (Let)28



Proposition 7 Let x and x′ be distin
t variables and e an expression su
h that x′ is not in FV (E). Then
type(λx.e) = type(λx′.e [x← x′]).Proof of proposition 7By the de�nition in Figure 1.4, type(λx.e) = λtx.type(e) and type(λx′.e [x← x′]) = λtx′ .type(e [x← x′]). ByLemma 6 (Substitution), type(e [x ← x′]) is equal to type(e) [tx ← tx′ ]. Therefore, type(λx′.e [x ← x′]) isequal to λtx′ .(type(e) [tx ← tx′ ]). Sin
e x′ is not free in e by hypothesis, tx′ is not free in type(e). Therefore,by alpha-
onversion, λtx′ .(type(e) [tx ← tx′ ]) is equal to λtx.type(e), whi
h proves the property.Sin
e typing is done by a fun
tion, it asso
iates exa
tly one type to every expression. Therefore, thereis no notion of generalization or instantiation. Instead, in a type algebra with polymorphi
 types, typesare always generalized as mu
h as possible, and the synta
ti
 types bound to by let types 
orrespond topolymorphi
 types. In parti
ular, this allows a let-bound value to be used polymorphi
ally.In most type systems, an expression is well-typed when it 
an be assigned some type a

ording to thetyping rules, and ill-typed expressions are those that 
an be assigned no type. In our framework, the typingfun
tion is independent of the 
on
rete type system, that is the type algebra. Therefore, the typing fun
tionis more naturally de�ned as a total fun
tion that assigns a synta
ti
 type to every expression. Ill-typedexpressions are 
hara
terized by the fa
t that their type is equivalent to the error type. This 
onvention is inagreement with the intuition that smaller types are inhabited by more values than greater types. A naturalextension is to introdu
e an error type that is maximal (as required by De�nition 4.i) and inhabited by novalue. Therefore, ill-typed expressions are those whose type is inhabited by no values, that is, whose type isequivalent to the error type.De�nition 8 (Well-typed expression)An expression e is well-typed if and only if type(e) 6≡ E.To ensure type soundness, we assume that the following requirements on 
onstants are satis�ed:Requirement 9 (Constants) Let n be arity(f).i. If f v1 ... vn is well-typed then there exists an expression e′ su
h that (v1, ..., vn, e′) belongs to R(f).ii. If (e1, ..., en, e′) belongs to R(f), then type(f e1 ... en) ≥ type(e′)iii. An expression of the form C v1 ... vp is never well-typed if p > arity(C)The �rst requirement guarantees that an operator has enough redu
tions to 
over all of its legal arguments.The se
ond one requires that all operator redu
tions lead to expressions with smaller types. Finally, a data
onstru
tor must not be appli
able to more values than its arity, sin
e no rule would guarantee that su
h anexpression redu
es to a value.The type system veri�es subje
t redu
tion with respe
t to the semanti
s of Figure 1.3. That is, alongthe paths of redu
tion, the type of expressions always get smaller.Theorem 10 (Subje
t redu
tion)For all expressions e and e′,

e −→ e′

type(e) ≥ type(e′)Although this theorem is standard, its proof is not. It 
an be done by using the typing fun
tions and thetwo requirements on type algebras. This is mere 
al
ulation on types, as opposed to the 
reative reasoningusually required. This simpli�
ation is possible be
ause we have a 
al
ulus of type expressions and be
ausea part of the proof is abstra
ted away in Redu
tion (De�nition 4.iii). The proof is thus short and easy to
he
k step by step. It should furthermore ease automati
 proof 
he
king.Proof of theorem 10 (Subje
t redu
tion)The proof is by indu
tion on the derivation proof of the redu
tion.29




ase OpThis 
ase is exa
tly 
overed by Requirement 9 (Constants).
ase β

type((λx.e) e′)
= type(λx.e) type(e′) (App)
= λtx.type(e) type(e′) (Lam)
≥ type(e) [tx ← type(e′)] (De�nition 4.iii)
= type(e [x← e′]) (Lemma 6)
ase β-Let

type(let x1 be e1 in e2)
= let tx1

be type(e1) in type(e2) (Let)
≥ type(e2) [tx1

← type(e1)] (De�nition 4.iv)
= type(e2 [x1 ← e1]) (Lemma 6)
ase CtxtIn this 
ase, e = E [e1] with e1 −→ e′1. So, by indu
tion hypothesis, type(e′1) ≤ type(e1) (1). We thenreason by 
ase on the form of E .
ase E = [] e2

type(e′1 e2)
= type(e′1) type(e2) (App)
≤ type(e1) type(e2) (De�nition 4.ii with (1))
= type(e1 e2) (App)
ase E = e2 []This 
ase is similar to E = [] e2.
ase E = let x1 be [] in e2

type(let x1 be e′1 in e2)
= let tx1

be type(e′1) in type(e2) (Let)
≤ let tx1

be type(e1) in type(e2) (De�nition 4.ii with (1))
= type(let x1 be e1 in e2) (Let)1.2.1 InterpretationIn most type systems, expressions are dire
tly assigned a type. In our system, they are instead assigned asynta
ti
 type, whi
h is then interpreted in a type algebra. In this se
tion, we present an intuition aboutthe signi�
an
e of these synta
ti
 types.One 
an note that there is a strong 
orresponden
e in stru
ture between the synta
ti
 types τ and theexpressions e of the 
ore language:

τ ::= t | a | λt.τ | τ τ | let t be τ in τ
e ::= x | c | λx.e | e e | let x be e in eIntuitively, the typing fun
tion returns a synta
ti
 type that re�e
ts the stru
ture of the program. Itonly approximates 
onstants to their de�ned types. This parallel is natural if one 
onsiders types as an30



abstra
tion of expressions, where the type of an expression provides partial knowledge about this expression.Thus, the typing fun
tion that maps an expression to its (prin
ipal) type is an abstra
tion fun
tion.Be
ause of this parallel, the subje
t redu
tion theorem 
an be proved after imposing properties on typesthat follow the redu
tion of expressions. Thus, the property iii of De�nition 4 (Redu
tion) at the level oftypes 
orresponds to the β-redu
tion rule for expressions:
(λt.τ) τ ′ ≥ τ [t← τ ′]
(λx.e) e′ −→ e [x← e′]Similarly, property ii of De�nition 4 (Covarian
e) 
orrespond to the redu
tions Ctxt, and property ivof De�nition 4 (Let) 
orresponds to the β-let redu
tion rule:let t be τ in τ ′ ≥ τ [t← τ ′]let x be e in e′ −→ e [t← e′]However, one should not think that this presentation is merely postponing all the proof requirementsto the type algebra. Important parts of the proof are done in the framework, as shown by Lemma 6(Substitution) and Theorem 10 (Subje
t redu
tion). Furthermore, the remaining proofs in the typealgebra are done at a higher level of abstra
tion, sin
e they do not need to refer to expressions anymore.1.2.2 ProgressWe 
hose so far to present semanti
s with a notion of redu
tion that en
ompasses both 
all-by-value and
all-by-name. Our framework 
an therefore be easily adapted to use these two semanti
s while preservingTheorem 10 (Subje
t redu
tion), sin
e it is easy to see that they have fewer redu
tions than the redu
tionde�ned in Figure 1.3. Furthermore, it is straightforward to impose a deterministi
 evaluation order byrestri
ting the set of evaluation 
ontexts E . In this se
tion, we present a 
all-by-value semanti
s with left-to-right evaluation order. It is de�ned in Figure 1.5.Evaluation 
ontext ECBV [] ::= [] e | v [] | let x be [] in e

β

(λx.e) v −→CBV e [x← v]
β-Letlet x1 be v1 in e2 −→CBV e2 [x1 ← v1]Op

f v1 ... vn −→CBV e
(v1, ..., vn, e) ∈ R(f)

Ctxt
e −→CBV e′

ECBV[e] −→ ECBV[e′]Figure 1.5: Call-by-value semanti
sTheorem 11 (Progress) If an expression e is 
losed and well-typed then either e is a value, or there existsan expression e′ su
h that e −→CBV e′.ProofThe proof is by indu
tion on e.
ase e = xThis 
ase is impossible be
ause x is not 
losed.
ase e = cThen by de�nition e is a value. 31




ase e = λx.e′Then e is a value.
ase e = let x1 be e1 in e2By property i of De�nition 4 (Error), the expression e1 must be well-typed, otherwise e would not bewell-typed. Therefore, by indu
tion hypothesis, either e1 is a value, in whi
h 
ase e redu
es by Ctxt,or e1 redu
es, in whi
h 
ase e redu
es by β-Let.
ase e = e1 e2By App, e1 and e2 are well-typed. By indu
tion hypothesis on e1, there are two 
ases. If e1 −→CBV e′1,then by Ctxt, e −→CBV e′1 e2, whi
h proves the desired property. Otherwise, e1 is a value v1. In this
ase we apply the indu
tion hypothesis to e2. If e2 −→CBV e′2, then by Ctxt e −→CBV v1 e′2, whi
hproves the property. Otherwise, e2 is a value v2. We now pro
eed by 
ase on v1. By Figure 1.2, thereare three 
ases:
ase v1 = λx1.e
′
1Then e redu
es by β.
ase v1 = C v′1 ... v′n with n ≤ arity(C)By hypothesis, e = C v′1 ... v′n v2 is well-typed. So by Requirement 9 (Constants), n + 1 ≤

arity(C). Hen
e e is also a value.
ase v1 = f v′1 ... v′n with n < arity(f)If n + 1 = arity(f), then sin
e e = f v′1 ... v′n−1 v2, Requirement 9 (Constants) imposes thatthere exists an e′ su
h that e −→CBV e′. Otherwise, n + 1 < arity(f), so e is a value.We 
an therefore present a type soundness result, whi
h is a trivial 
onsequen
e of Theorem 10 (Subje
tredu
tion) and Theorem 11 (Progress):Theorem 12 (Soundness)Let e be a well-typed expression. Either all redu
tions of e are in�nite, or there exists a value v su
h that
e −→CBV ... −→CBV v and v is well-typed. Furthermore, type(e) ≥ type(v).Proof of theorem 12 (Soundness)Let's assume that there exists a �nite redu
tion of e, that is e −→∗

CBV
e′ and e′ 6−→CBV. Theorem 10 (Subje
tredu
tion) shows that type(e) ≥ type(e′). Furthermore, sin
e e′ 6−→CBV, Theorem 11 (Progress) showsthat e′ is a value.1.3 Instantiating the algebrai
 type systemThe algebrai
 type system 
ontains two degrees of freedom, that 
an be used to build type systems forvarious programming languages.First, a domain A for (algebrai
) types must be provided together with a pre-order ≤ on S(A) su
h that

(A,≤) is a type algebra. Given an expression e, our framework 
omputes the synta
ti
 type type(e). Typa-bility and type-
he
king are de
idable if ≤ is de
idable, by applying the following de�nitions, respe
tively:the expression e is well typed if type(e) < E and it has algebrai
 type a if type(e) ≤ a. Regarding typeinferen
e, the synta
ti
 type type(e) 
an not be 
onsidered as a satisfa
tory type for an expression e, sin
e itis roughly as large as e. On the other hand, it is often possible to provide a partial fun
tion that simpli�essynta
ti
 types into another set (for instan
e algebrai
 types). In that 
ase, the 
omposition of the typingfun
tion and that translation fun
tion performs type inferen
e. We present in the next se
tion two detailedinstantiations: the Hindley-Milner type system and the ML≤ type system. Both instantiations support typeinferen
e. This shows that our system is general enough to express 
omplex and various type systems, whilefa
toring out a substantial part of the soundness proofs.The se
ond parameter of our framework is the set of operators, whi
h 
an be used to model a 
ompletelanguage by providing data 
onstru
tors and operators that satisfy Requirement 9 (Constants). In Part II,we use this fa
ility to model a realisti
 obje
t-oriented language with 
lasses and multi-methods.32



Chapter 2Type algebras2.1 The Hindley-Milner type systemAs an example, we show here that Hindley-Milner type s
hemes form a type algebra. Our framework 
anthus be used to present the type system of ML with a novel and 
on
ise proof of its 
orre
tness.The syntax for Hindley-Milner types is re
alled in Figure 2.1. Type variables are denoted by α as usual inML, while types are denoted by θ (rather than τ so as to avoid 
onfusion with synta
ti
 types). Type s
hemesare 
onsidered equal modulo renaming of bound type variables and removal of quanti�ed type variables thatdo not o

ur in the type, and reordering of quanti�ed type variables.Base type ι ::= int | bool | ...Type θ ::= ι | θ → θ | αType s
heme σ ::= ∀α.θFigure 2.1: Type syntax2.1.1 Instantiation of the frameworkTo instantiate the framework, we �rst de�ne the set of algebrai
 types HM as the set of type s
hemes. Wethen provide a pre-order on S(HM ) � the set of synta
ti
 types built on HM � that veri�es the requirementsof De�nition 4. As in the example of Se
tion 1.1.2, we do so in two steps. First, we translate synta
ti
 typesinto a suitable form in whi
h they 
an be 
ompared and se
ond we provide the ordering on the translatedform. However, it would not be su�
ient to translate synta
ti
 types to type s
hemes, sin
e that wouldin
ur a loss of information. For instan
e, 
onsider the synta
ti
 type ( int→ bool) t. Its natural translationwould be the type bool. However, we also need to keep tra
k of the information that the synta
ti
 typevariable t is 
onstrained to be equal to int. Therefore, we de�ne 
onstrained type s
hemes in De�nition 13as triples ∀α|C.θ where C is a set of equalities of the form θ1 = θ2. We 
all HMC the set of 
onstrained types
hemes. The translation of type ( int→ bool) t 
an then be de�ned as ∀|t = int.bool, whi
h retains thedesired information on t.Therefore, we will form a type algebra based on HMC . Sin
e HM 
an be seen as a subset of HMC byusing empty 
onstraints, this will indu
e by Theorem 5 (Sub-algebra) a type algebra on HM .De�nition 13 (Constrained type s
hemes) A 
onstrained type s
heme is a triple written ∀α|C.θ where
∀α.θ is a type s
heme, and C is a set of equalities of the form θ1 = θ2.De�nition 14 (Translation of Hindley-Milner types) Given a synta
ti
 types τ in S(HMC ), its trans-lation 〈τ〉 into a 
onstrained type s
heme is de�ned by indu
tion in Figure 2.2.33



〈∀α|C.θ〉 = ∀α|C.θ 〈t〉 = ∀∅|∅.αt 〈E〉 = ∀α|int = bool.α

〈τ〉 = ∀α|C.θ

〈λt.τ〉 = ∀ααt|C. αt → θ

〈τ1〉 = ∀α1|C1.θ1 〈τ2〉 = ∀α2|C2.θ2

〈τ1 τ2〉 = ∀α1α2α|C1 ∪ C2 ∪ {θ1 = θ2 → α}.α
α 6∈ α1, α2, C1, C2, θ1, θ2

〈τ1〉 = ∀α1|C1.θ1 〈τ2〉 = ∀α2|C2.θ2

〈let t be τ1 in τ2〉 = ∀α1α2|C1 ∪ C2.θ2
t 6∈ FV (τ2)

〈let t be τ1 in τ2〉 = 〈τ2 [t← 〈τ1〉]〉
t ∈ FV (τ2)Figure 2.2: Translation for Hindley-MilnerThe 
hoi
e of the names of bound type variables does not matter, sin
e 
onstrained type s
hemes, likesynta
ti
 types, are equal up to α-
onversion. The translation of the error type is a 
onstrained type s
hemewith an unsatis�able 
onstraint, whi
h we arbitrarily 
hose to be int = bool. The translation of λt.τ isbasi
ally 〈t〉 → 〈τ〉, ex
ept that generalization on t is done immediately.It should not be surprising that uni�
ation o

urs during type appli
ation. In parti
ular this fa
t makesexpli
it that in the usual ML rule

Γ ⊢ e1 : τ → τ ′ Γ ⊢ e2 : τ

Γ ⊢ e1 e2 : τ ′the two o

urren
es of τ in the premises amount to an equality 
onstraint between two a priori di�erenttypes.The translation fun
tion distinguishes let types depending on whether the bound type variable o

urs inthe body. In let t be τ1 in τ2, if t does not appear free in τ2, we need to make sure that the 
onstraintsgenerated by the translation of τ1 is 
opied in the resulting translation. Otherwise, it 
ould miss the fa
tthat τ1 and τ2 impose in
ompatible 
onstraints on a free type variable. This is for instan
e the 
ase inlet t be ( int→ int) t0 in ( boolean→ boolean) t0 (whi
h 
orrespond to the expression let x be 1 +
x0 in not x0).We are now able to de�ne the order on S(HMC ) in the following way. We shall denote ground substi-tutions by ρ, and write ρ(C) if for ea
h θ1 = θ2 in C, ρ(θ1) is synta
ti
ally equal to ρ(θ2). For two groundsubstitutions ρ1 and ρ2, and a set of type variables α, we will say that ρ1 and ρ2 are equal on α, whi
h wewrite ρ1

α
= ρ2, if for all type variable α in α, ρ1(α) = ρ2(α).De�nition 15 (Ordering of 
onstrained type s
hemes)Let ∀α1|C1.θ1 and ∀α2|C2.θ2 be two 
onstrained type s
hemes. Let α be FV (∀α1|C1.θ1) ∪ FV (∀α2|C2.θ2).By α-
onversion, we assume that α1 and α2 are disjoint from α.The relation ∀α1|C1.θ1 ≤ ∀α2|C2.θ2 holds if and only if for all ground substitution ρ2 with domain α∪α2su
h that ρ2(C2) holds, there exists a substitution ρ1 with domain α ∪ α1 su
h that ρ1

α
= ρ2, ρ1(C1) holds,and ρ1(θ1) = ρ2(θ2).We will say that two 
onstrained type s
hemes are equivalent if ea
h one is smaller than the other.De�nition 16 (Order on S(HMC )) Let τ1 and τ2 be two synta
ti
 types of S(HMC ). The relation

τ1 ≤HMC τ2 holds if and only if 〈τ1〉 ≤ 〈τ2〉 holds.In this se
tion, we shall use ≤ to denote ≤HMC when that does not lead to ambiguities.It is worth noting that the relation τ1 ≤HMC τ2 always holds if the 
onstraint in the translation of τ2 isnot satis�able. Sin
e the error type is maximal, this means that synta
ti
 types that generate unsatis�able34




onstraints are equivalent to the error type. Therefore, values of these types are not well-typed. Forinstan
e, the translation of the synta
ti
 type ( int→ int) bool is ∀∅|bool ≤ int.int. Sin
e the 
onstraint
bool ≤ int is not satis�able, we have ( int→ int) bool ≡ E.We 
an now assert that we have formed a type algebra in the sense of Se
tion 1.1.Theorem 17 (HMC) The 
ouple (HMC ,≤HMC ) is a type algebra.By Theorem 5 (Sub-algebra), this implies that Hindley-Milner type s
hemes also form a type algebra.Corollary 18 (HM) The 
ouple (HM ,≤HM ) is a type algebra, where, for any type ∀α1.θ1 and ∀α2.θ2 in
S(HM ), ∀α1.θ1 ≤ ∀α2.θ2 i� ∀α1|θ1.∅ ≤HMC ∀α2|θ2.∅.The proof is given below. It only needs to deal with te
hni
al properties of the pre-order we introdu
ed.This fa
t shows that we indeed a
hieved to fa
torize substantial parts of the soundness proof.We de�ne a size fun
tion on synta
ti
 types, designed so that the size of a type is smaller than thesize of its 
omponents and so that size(let t1 be τ1 in τ2) > size(τ2 [t1 ← τ1]). Note that for all type τ ,
size(τ) ≥ 1.De�nition 19 (Size of a synta
ti
 type) Given a synta
ti
 type τ , and a fun
tion f from type variablesto integer numbers, we de�ne sizef (τ) by stru
tural indu
tion on τ , with:

sizef (a) = 1

sizef (t) = 1

sizef (λt.τ) = 1 + sizef+t7→1(τ)

sizef (τ1 τ2) = sizef (τ1) + sizef (τ2)

sizef (let t1 be τ1 in τ2) = sizef (τ1) + sizef+t1 7→sizef (τ1)(τ2)

sizef (E) = 1Given a synta
ti
 type τ , we de�ne size(τ) as size1(τ), where 1 is the 
onstant fun
tion mapping all typevariables to 1.Proof of theorem 17 (HMC)Let us �rst prove property i of De�nition 4 (Error). Sin
e the 
onstraint of 〈E〉 is unsatis�able, τ ≤ Ealways holds by De�nition 15. Furthermore, the 
onstraint in the translation of τ E and E τ in
ludes the
onstraint of 〈E〉, so it is also unsatis�able, and these two types are indeed greater than E. It is also the
ase of let t be E in τ : when t does not appear in τ , the unsatis�able 
onstraint in 〈E〉 is dire
tly 
opiedinto the 
onstraint set of 〈let t be E in τ〉; when t appears in τ , a straightforward indu
tion show thatthe unsatis�able 
onstraint appears in 〈τ [t← E]〉.
• We now prove property ii of De�nition 4 (Covarian
e). We therefore assume τ1 ≤ τ2 . We prove that

τ [t← τ1] ≤ τ [t← τ2] by indu
tion on τ .
ase τ = tWe need to prove τ1 ≤ τ2, whi
h is the hypothesis.
ase τ = E or τ = a or τ = t′ with t′ 6= tThe result is immediate sin
e by De�nition 3, both τ [t← τ1] and τ [t← τ2] are equal to τ .
ase τ = τ0 τ ′
0By De�nition 3, for i = 1, 2, τ [t ← τi] = (τ0 [t ← τi]) (τ ′

0 [t ← τi]). For i = 1, 2, let ∀αi|Ci.θibe 〈τ0 [t ← τi]〉, βi be FV (∀αi|Ci.θi) and β be β1 ∪ β2. Let also ∀α′
i|C

′
i.θ

′
i be 〈τ ′

0 [t ← τi]〉,
β
′

i be FV (∀α′
i|C

′
i.θ

′
i) and, β

′ be β
′

1 ∪ β
′

2. We 
an assume w.l.o.g. that the αi and α′
i are allpair-wise disjoint (3) and disjoint with β ∪ β

′. Then, by De�nition 14, 〈(τ0 [t ← τi]) (τ ′
0 [t ←

τi])〉 = ∀αiα
′
iα|Ci ∪ C′

i ∪ {θi = θ′i → α}.α, where α is fresh, that is α /∈ αiα
′
i (4). Note that35



we are able to 
hoose to share the same α in both translations by α-
onversion on 
onstrainedtype s
hemes. Let ρ2 be a substitution su
h that ρ2(C2 ∪ C′
2 ∪ {θ2 = θ′2 → α}) holds (5). Sin
e

ρ2(C2) holds by 
onstru
tion, by the indu
tion hypothesis τ0 [t ← τ1] ≤ τ0 [t ← τ2] (that is
∀α1|C1.θ1 ≤ ∀α2|C2.θ2) and De�nition 15, there exists ρ1 su
h that ρ1

β
= ρ2 (6), ρ1(C1) holds (7)and ρ1(θ1) = ρ2(θ2) (8). Similarly, ρ2(C

′
2) holds, so there exists ρ′1 su
h that ρ′1

β
′

= ρ2 (9), ρ′1(C
′
1)holds (10) and ρ′1(θ

′
1) = ρ2(θ

′
2) (11). Sin
e α1 and α′

1 are disjoint by (3), we de�ne the substitution
ρ with:

ρ :















γ ∈ α1 7→ ρ1(γ) (12)
γ ∈ α′

1 7→ ρ′1(γ) (13)
γ ∈ β ∪ β

′
7→ ρ2(γ) (14)

α 7→ ρ2(α) (15)This substitution veri�es ρ
ββ

′

= ρ2 by (14). In parti
ular, ρ(α) = ρ2(α). By (14), (6) and (9), ρagrees with all of ρ1, ρ′1 and ρ2 on variables in β∪β
′ (16). Furthermore, ρ(C1) holds sin
e ρ1(C1)holds by (7) and ρ

α1β1

= ρ1 by (12) and (16). Similarly, ρ(C2) holds by (10), (13) and (16). Finally,
ρ(θ1) = ρ1(θ1) by (12) and (16), and ρ1(θ1) = ρ2(θ2) by (8). By (5), ρ2(θ2) = ρ2( θ′2 → α), whi
his by de�nition ρ2(θ

′
2) → ρ2(α). By (11) ρ2(θ

′
2) = ρ′1(θ

′
1) and by (13) and (16) ρ′1(θ

′
1) = ρ(θ′1).By (15) ρ2(α) = ρ(α). Therefore, ρ2(θ

′
2) → ρ2(α) is equal to ρ(θ′1) → ρ(α). This shows that ρsatis�es θ1 = θ′1 → α. Therefore, by De�nition 15, (τ0 τ ′

0) [t← τ1] ≤ (τ0 τ ′
0) [t← τ2].
ase τ = λt0.τ0We 
an assume w.l.o.g. that t0 is di�erent from t, and not free in τ1 nor τ2. For i = 1, 2,let ∀αi|Ci.θi be 〈τ0 [t ← τi]〉, βi be FV (∀αi|Ci.θi) and β be β1 ∪ β2. Then by De�nition 14

〈λt0.τ0 [t ← τi]〉 = ∀αiαt0 |Ci. αt0 → θi. Let ρ2 be su
h that ρ2(C2) holds. By the indu
tionhypothesis τ0 [t ← τ1] ≤ τ0 [t ← τ2], there exists ρ1 su
h that ρ1
β
= ρ2 (1), ρ1(C1) holds (2) and

ρ1(θ1) = ρ2(θ2) (3). First, (1) implies in parti
ular that ρ1 is equal to ρ2 on β \ {αt0}. Se
ond,
ρ1(C1) holds by (2). Third,

ρ1(αt0 → θ1)
= ρ1(αt0)→ ρ1(θ1)
= ρ2(αt0)→ ρ1(θ1) (1)
= ρ2(αt0)→ ρ2(θ2) (3)
= ρ2(αt0 → θ2)Therefore λt0.τ0 [t← τ1] ≤ λt0.τ0 [t← τ2].
ase τ = let t0 be τ0 in τ ′

0 with t0 ∈ FV (τ ′
0)We 
an assume w.l.o.g. that t0 is di�erent from t (1) and not free in τ1 (2) nor in τ2 (3). Therefore,

(let t0 be τ0 in τ ′
0) [t← τ1]

= let t0 be τ0 [t← τ1] in τ ′
0 [t← τ1] (De�nition 3)

≡ τ ′
0 [t← τ1] [t0 ← 〈τ0 [t← τ1]〉] (De�nition 14 and 16)

= τ ′
0 [t0 ← 〈τ0 [t← τ1]〉] [t← τ1] ((1) and (2) and t 6∈ 〈τ0 [t← τ1]〉)By indu
tion hypothesis on τ0, τ0 [t ← τ1] is smaller than τ0 [t ← τ2]. That is, by De�nition 16,

〈τ0 [t← τ1]〉 is smaller than 〈τ0 [t← τ2]〉.Therefore, by indu
tion hypothesis on τ ′
0, τ ′

0 [t0 ← 〈τ0 [t ← τ1]〉] is smaller than τ ′
0 [t0 ← 〈τ0 [t ←

τ2]〉].The type τ ′
0 [t0 ← 〈τ0 [t ← τ2]〉] has a smaller size than τ sin
e 〈τ0 [t ← τ2]〉, being an algebrai
type, has size 1 by De�nition 19. Therefore, we 
an apply the indu
tion hypothesis, whi
h impliesthat τ ′

0 [t0 ← 〈τ0 [t← τ2]〉] [t← τ1] is smaller than τ ′
0 [t0 ← 〈τ0 [t← τ2]〉] [t← τ2]. Furthermore,36



τ ′
0 [t0 ← 〈τ0 [t← τ2]〉] [t← τ2]

= τ ′
0 [t← τ2] [t0 ← 〈τ0 [t← τ2]〉] ((1) and (3) and t 6∈ 〈τ0 [t← τ2]〉)

≡ let t0 be τ0 [t← τ2] in τ ′
0 [t← τ2] (De�nition 14)

= (let t0 be τ0 in τ ′
0) [t← τ2] (De�nition 3)
ase τ = let t0 be τ0 in τ ′

0 with t0 6∈ FV (τ ′
0)We 
an assume w.l.o.g. that t0 is di�erent from t and not free in τ1 nor in τ2. By De�nition 3,

τ [t← τ1] = let t0 be τ0 [t← τ1] in τ ′
0 [t← τ1].For i = 1, 2, let ∀αi|Ci.θi be 〈τ0 [t← τi]〉, βi be FV (∀αi|Ci.θi) and β be β1∪β2. Let also ∀α′

i|C
′
i.θ

′
ibe 〈τ ′

0 [t← τi]〉, β
′

i be FV (∀α′
i|C

′
i.θ

′
i) and, β

′ be β
′

1 ∪ β
′

2. We 
an assume w.l.o.g. that the αi and
α′

i are all pair-wise disjoint (1) and disjoint with β ∪ β
′.Then, by De�nition 14, 〈let t0 be τ0 [t ← τi] in τ ′

0 [t ← τi]〉 = ∀αiα
′
i|Ci ∪ C′

i.θ
′
i. For any sub-stitution ρ2 su
h that ρ2(C2 ∪C′

2) holds, by 
onstru
tion, ρ2(C2) holds. By indu
tion hypothesis,
τ0 [t ← τ1] is smaller than τ0 [t ← τ2] That is, by De�nition 16, 〈τ0 [t ← τ1]〉 is smaller than
〈τ0 [t← τ2]〉. Therefore, by De�nition 15, there exists ρ1 su
h that ρ1

β
= ρ2 (2), ρ1(C1) holds (3)and ρ1(θ1) = ρ2(θ2). Similarly, ρ2(C

′
2) holds, so there exists ρ′1 su
h that ρ′1

β
′

= ρ2 (4), ρ′1(C
′
1)holds (5) and ρ′1(θ

′
1) = ρ2(θ

′
2) (6). By (1), we 
an de�ne the substitution ρ that agrees with ρ1 on

α1 (7), with ρ′1 on α′
1 (8), and with all of ρ1, ρ′1 and ρ2 on other variables (9), whi
h is possible by(2) and (4). Therefore, ρ

β
1
β
′

= ρ2. Furthermore, ρ(C1) holds by (3), (7) and (9), and ρ(C′
1) holdsby (5), (8) and (9). Finally, ρ(θ′1) = ρ′1(θ

′
1) by (8) and (9), and ρ′1(θ

′
1) = ρ2(θ

′
2) by (6). Therefore,by De�nition 15, (let t0 be τ0 in τ ′

0) [t← τ1] ≤ (let t0 be τ0 in τ ′
0) [t← τ2].

• We now prove property iii of De�nition 4 (Redu
tion): for all types τ , τ ′ and type variable t, (λt.τ) τ ′ ≥
τ [t← τ ′]. The proof is by indu
tion on the size of τ as de�ned in De�nition 19.
ase τ = λt0.τ0We 
an assume w.l.o.g. that t0 is di�erent from t and not free in τ ′. Therefore, by De�nition 3,

(λt0.τ0) [t ← τ ′] = λt0.(τ0 [t ← τ ′]). Sin
e size(τ0) < size(λt0.τ0), we 
an apply the indu
tionhypothesis, whi
h shows that τ0 [t ← τ ′] ≤ (λt.τ0) τ ′ (1). Sin
e property ii of De�nition 4(Covarian
e) is already proved, we 
an apply it to (1) and to the type λt0.t1 where t1 is a freshtype variable. This shows that λt0.(τ0 [t ← τ ′]) ≤ λt0.((λt.τ0) τ ′) holds. Thus, it only remainsto show that λt0.((λt.τ0) τ ′) ≤ (λt.λt0.τ0) τ ′ holds. Let ∀α0|C0.θ0 be 〈τ0〉 and ∀α′|C′.θ′ be 〈τ ′〉.Then by De�nition 14, 〈(λt.λt0.τ0) τ ′〉 = ∀αα′αtαt0α0|C
′ ∪ C0 ∪ {αt → (αt0 → θ0) = θ′ →

α}.α and 〈λt0.((λt.τ0) τ ′)〉 = ∀α′α′αtαt0α0|C′ ∪ C0 ∪ {αt → θ0 = θ′ → α′}. αt0 → α′. Weneed to show that the latter is smaller than the former. For any substitution ρ2 that satis�es
C′ ∪ C0 ∪ {αt → (αt0 → θ0) = θ′ → α} (2), let ρ1 be ρ2 + {α′ 7→ ρ2(θ0)} (3). Then by (3),
ρ1(αt0 → α′) = ρ2(αt0 → θ0) and ρ2(αt0 → θ0) = ρ2(α) by (2). Furthermore, ρ1 satis�es C′∪C0by (2) and (3). Finally, ρ1 satis�es αt → θ0 = θ′ → α′ sin
e ρ2(αt) = ρ2(θ

′) by (2) and sin
e
ρ1(θ0) = ρ2(θ0) = ρ1(α

′) by (3).
ase τ = let t1 be τ1 in τ2 where t1 ∈ FV (τ2) (1)We 
an assume w.l.o.g that t1 is di�erent from t (2), and does not belong to FV (τ ′) (3).By De�nition 14, 〈τ〉 = 〈τ2 [t1 ← 〈τ1〉]〉. That is, τ ≡ τ2 [t1 ← 〈τ1〉]. By De�nition 14, 〈〈τ1〉〉 =
〈τ1〉, so by De�nition 16, 〈τ1〉 ≡ τ1. So, by property ii of De�nition 4 (Covarian
e) whi
h wehave already proved, τ2 [t1 ← 〈τ1〉] ≡ τ2 [t1 ← τ1]. Therefore, again by property ii of De�nition 4(Covarian
e), (λt.τ) τ ′ ≡ (λt.τ2 [t1 ← τ1]) τ ′. By De�nition 19, τ2 [t1 ← τ1] has a smaller size thanlet t1 be τ1 in τ2. Therefore, we 
an apply the indu
tion hypothesis, and (λt.τ2 [t1 ← τ1]) τ ′ isgreater than τ2 [t1 ← τ1] [t← τ ′], whi
h by (2) and (3) is equal to τ2 [t← τ ′] [t1 ← τ1 [t← τ ′]]. Byproperty ii of De�nition 4 (Covarian
e), this type is equivalent to τ2 [t ← τ ′] [t1 ← 〈τ1 [t ← τ ′]〉].Sin
e t1 belongs to FV (τ2) by (1), this type is by De�nition 14 and De�nition 16 equivalent to37



let t1 be τ1 [t← τ ′] in τ2 [t← τ ′]. This shows the property, sin
e by De�nition 3, this type isequal to (let t1 be τ1 in τ2) [t← τ ′].
ase τ = let t1 be τ1 in τ2 where t1 6∈ FV (τ2)We 
an assume w.l.o.g that t1 is di�erent from t (1), and does not belong to FV (τ ′) (2).By De�nition 3 with (1) and (2), τ [t ← τ ′] = let t1 be τ1 [t ← τ ′] in τ2 [t ←
τ ′]. By applying the indu
tion hypothesis to τ1 and τ2, and by property ii ofDe�nition 4 (Covarian
e), let t1 be τ1 [t ← τ ′] in τ2 [t ← τ ′] is smaller thanlet t1 be (λt.τ1) τ ′ in (λt.τ2) τ ′. It remains to show that let t1 be (λt.τ1) τ ′ in (λt.τ2) τ ′is smaller than (λt.let t1 be τ1 in τ2) τ ′. To this end, we 
ompute their translations. Let
∀α1|C1.θ1 be 〈τ1〉, ∀α2|C2.θ2 be 〈τ2〉 and ∀α′|C′.θ′ be 〈τ ′〉. Sin
e τ ′ appears several times, we alsode�ne ∀α′′|C′′.θ′′ as an α-
onverted 
opy of 〈τ ′〉. That is, there exists a substitution ρ′ renamingthe variables α′′ su
h that ρ′(α′′) = α′, ρ′(θ′′) = θ′, and ρ′(C′′) = C′. Then by De�nition 14,
〈let t1 be (λt.τ1) τ ′ in (λt.τ2) τ ′〉 = ∀α1α2αtαt′α

′α′′α0α
′
0|C1 ∪ C2 ∪C′ ∪ C′′∪

{αt → θ1 = θ′ → α0, αt′ → θ2 = θ′′ → α′
0}.α

′
0

〈(λt.let t1 be τ1 in τ2) τ ′〉 = ∀α1α2αtα
′α0|C1 ∪ C2 ∪C′ ∪ {αt → θ2 = θ′ → α0}.α0For every substitution ρ2 that satis�es C1 ∪ C2 ∪ C′ ∪ {αt → θ2 = θ′ → α0} (3), let ρ1 be

(ρ2 ◦ ρ′) + {α0 7→ ρ2(θ1), α
′
0 7→ ρ2(θ2), αt′ 7→ (ρ2 ◦ ρ′)(θ′)}. Then by de�nition of ρ1 and (3),

ρ1(C1 ∪ C2 ∪ C′ ∪ C′′ ∪ {αt → θ1 = θ′ → α0, αt′ → θ2 = θ′′ → α′
0}) holds, and ρ1(α

′
0) is equalto ρ2(θ2), whi
h is equal to ρ2(α0) sin
e ρ2 satis�es αt → θ2 = θ′ → α0. So by De�nition 16,let t1 be (λt.τ1) τ ′ in (λt.τ2) τ ′ is smaller than (λt.let t1 be τ1 in τ2) τ ′.
ase τ = τ1 τ2Similarly, it follows from indu
tion hypothesis applied to τ1 and τ2 and from De�nition 4.ii that

((λt.τ1) τ ′) ((λt.τ2) τ ′) ≥ (τ1 τ2) [t ← τ ′]. It remains to show that ((λt.τ1) τ ′) ((λt.τ2) τ ′) issmaller than (λt.(τ1 τ2)) τ ′. Let ∀α1|C1.θ1 be 〈τ1〉, ∀α2|C2.θ2 be 〈τ2〉 and ∀α′|C′.θ′ be 〈τ ′〉.Sin
e τ ′ appears several times, we also de�ne ∀α′′|C′′.θ′′ as an α-
onverted 
opy of 〈τ ′〉. That is,there exists a substitution ρ′ renaming the variables α′′ su
h that ρ′(α′′) = α′, ρ′(θ′′) = θ′, and
ρ′(C′′) = C′. Then by De�nition 14,
〈((λt.τ1) τ ′) ((λt.τ2) τ ′)〉 =

∀α1α2αtαt′α
′α′′β′β′′β|C1 ∪ C′ ∪ C2 ∪ C′′∪

{αt → θ1 = θ′ → β1, αt′ → θ2 = θ′′ → β2, β1 = β2 → β}.β

〈(λt.(τ1 τ2)) τ ′〉 =
∀α1α2αtα

′α0β|C1 ∪C2 ∪ C′∪
{αt → β = θ′ → α0, θ1 = θ2 → β}.α0For every substitution ρ2 that satis�es C1 ∪ C2 ∪ C′ ∪ {αt → β = θ′ → α0, θ1 = θ2 → β} (1),let ρ1 be (ρ2 ◦ ρ′) + {β1 7→ ρ2(θ1), β2 7→ ρ2(θ2), αt′ 7→ ρ2(θ

′)}. Then by de�nition of ρ1 and (1),
ρ1(C1 ∪ C′ ∪ C2 ∪ C′′ ∪ {αt → θ1 = θ′ → β1, αt′ → θ2 = θ′′ → β2, β1 = β2 → β}) holds and
ρ1(β) is equal to ρ2(β), whi
h is equal to ρ2(α0) sin
e by (1) ρ2 satis�es αt → β = θ′ → α0. Soby De�nition 16, ((λt.τ1) τ ′) ((λt.τ2) τ ′) is smaller than (λt.(τ1 τ2)) τ ′.
ase τ = tLet ∀α′|C′.θ′ be 〈τ ′〉. Sin
e τ = t, τ [t← τ ′] is equal to τ ′ by De�nition 3. Therefore,

〈t [t← τ ′]〉
= 〈τ ′〉
= ∀α′|C′.θ′

= ∀α′αt|C′ ∪ {αt = θ′}.αt

= 〈(λt.t) τ ′〉
ase τ = E or τ = σ or τ = t′ 6= tLet ∀α|C.θ be 〈τ〉 and ∀α′|C′.θ′ be 〈τ ′〉. Sin
e FV (τ) is empty, τ [t← τ ′] is by De�nition 3 equal38



to τ . Therefore, 〈τ [t ← τ ′]〉 = 〈τ〉 = ∀α|C.θ. Furthermore, 〈(λt.τ) τ ′〉 = ∀αα′αt|C ∪ C′ ∪ {αt =
θ′}.θ.The inequality ∀α|C.θ ≤ ∀αα′αt|C∪C′∪{αt = θ′}.θ is trivial: for all ρ2 su
h that ρ2(C∪C′∪{αt =
θ′}), take ρ1 = ρ2 sin
e then ρ1(C) and ρ1(θ) = ρ2(θ). Note that the reverse inequality does nothold as soon as C′ is not trivial.

• Finally, for property iv of De�nition 4 (Let), we need to show that for all types τ , τ ′ and type variable
t, τ ′ [t← τ ] ≤ let t be τ in τ ′.If t belongs to FV (τ2), then by De�nition 14, let t be τ1 in τ2 ≡ τ2 [t ← 〈τ1〉]. Furthermore,
〈τ1〉 ≡ τ1 by De�nition 16 sin
e trad[〈τ〉] = 〈τ〉. Therefore, by property ii of De�nition 4 (Covarian
e),
τ2 [t ← 〈τ1〉] is equal to τ2 [t ← τ1], whi
h proves the property. If t does not belong to FV (τ2),let ∀α1|C1.θ1 be 〈τ1〉 and ∀α2|C2.θ2 be 〈τ2〉. Then 〈τ2 [t ← τ1]〉 = 〈τ2〉 = ∀α2|C2.θ2. Furthermore,
〈let t be τ1 in τ2〉 = ∀α1α2|C1 ∪ C2.θ2. For any substitution ρ2 su
h that ρ2(C1 ∪ C2) holds, take
ρ1 = ρ2. Then ρ1(C1) holds, and ρ1(θ2) = ρ2(θ2), so let t be τ1 in τ2 ≥ τ2 [t← t1] holds.2.1.2 Simpli�
ationBy de�nition, τ1 ≡ τ2 if τ1 ≤ τ2 and τ2 ≤ τ1. This provides an opportunity for type simpli�
ation. Let uswrite mgu(C) a most general uni�er of a 
onstraint C. That is, mgu(C) is a substitution that satis�es C,and su
h that for all substitution ρ that satis�es C, there exists a substitution ρ′ su
h that ρ = ρ′ ◦mgu(C).Lemma 20 (Simpli�
ation) Let ∀α|C.θ be a 
onstrained type s
heme. Let θ′ be mgu(C)(θ), α′ = α ∩

FV (θ′) and C′ the set of 
onstraints {mgu(C)(θ1) = mgu(C)(θ2)} for all {θ1 = θ2} in C su
h that mgu(C)(θ1)is di�erent from mgu(C)(θ2). Then ∀α|C.θ is equivalent to ∀α′|C′.θ′ProofFirst we prove that ∀α|C.θ is smaller than ∀α′|C′.θ′. For all ρ2 that satis�es C′, take ρ1 = ρ2 ◦mgu(C). Forall θ1 = θ2 in C, there are two 
ases. If mgu(C)(θ1) is equal to mgu(C)(θ2), then ρ2 ◦mgu(C)(θ1) is equal to
ρ2 ◦mgu(C)(θ2). Otherwise, mgu(C)(θ1) = mgu(C)(θ2) belongs to C′ by de�nition of simpli�
ation. Sin
e
ρ2 satis�es C′ by hypothesis, ρ2 ◦mgu(C)(θ1) is equal to ρ2 ◦mgu(C)(θ2). That is, ρ1 satis�es θ1 = θ2.Se
ond, we prove that ∀α|C.θ is greater than ∀α′|C′.θ′. For all ρ2 that satis�es C, sin
e mgu(C) is a mostgeneral uni�er of C, there exists ρ1 su
h that ρ2 = ρ1 ◦mgu(C). For ea
h 
onstraint of C′, it is by de�nitionof simpli�
ation of the form mgu(C)(θ1) = mgu(C)(θ2) where θ1 = θ2 belongs to C. Therefore it is satis�edby ρ1, sin
e by hypothesis on ρ2 that it satis�es θ1 = θ2, ρ1 ◦mgu(C)(θ1) is equal to ρ1 ◦mgu(C)(θ2).Using this simpli�
ation, we 
an infer the type of expressions.Corollary 21 (Prin
ipal type for Hindley-Milner) Let e be a 
losed expression. Then the prin
ipaltype of e is ∀α′.θ′, where 〈type(e)〉 = ∀α|C.θ, θ′ = mgu(C)(θ) and α′ = α ∩ FV (θ′).2.1.3 ExampleAs a �rst example, let us 
onsider the typing of (λx.x) 1. By the rules of the algebrai
 type system, thisexpression has synta
ti
 type:

type((λx.x) 1)
= type(λx.x) type(1)
= (λtx.type(x)) int
= (λtx.tx) intThis type 
an now be translated to a 
onstrained type s
heme. We �rst translate ea
h side of theappli
ation: 〈λtx.tx〉 = ∀αtx

|∅. αtx
→ αtx

and 〈int〉 = int, ∅. The system of 
onstraints generated by the39



appli
ation is therefore αtx
→ αtx

= int → α, and the 
onsidered expression has the 
onstrained types
heme ∀αtx
α|{αtx

→ αtx
= int→ α}.α. By Lemma 20 (Simplifi
ation) this type simpli�es to int, ∅.As a se
ond example, let us now 
onsider the expression let id be λx.x in λyz.z (id 1) (id false).

type(let id be λx.x in λyz.z (id 1) (id false))
= let tid be λtx.tx in λtytz.tz (tid int) (tid bool)By De�nition 14, its translation is:

〈let tid be λtx.tx in λtytz .tz (tid int) (tid bool)〉
= 〈λtytz.tz (tid int) (tid bool) [tid ← ∀αtx

|∅.αtx
]〉

= 〈λtytz.tz ((∀αtx
|∅.αtx

) int) ((∀αtx′ |∅.αtx′ ) bool)〉
= ∀α1α2α3α4αty

αtz
αtx

αtx′ |
{αtx

→ αtx
= int→ α1, αtx′ → αtx′ = bool→ α2, αty

→ (αtz
→ αtz

) = α1 → α3, α3 = α2 → α4}.α4The most general uni�er of that 
onstraint maps α1, αty
and αtx

to int, α2, α4, αtz
and αtx′ to booland α3 to bool → bool. Therefore, by Lemma 20 (Simplifi
ation), this translated type is equivalent to

bool, whi
h is 
onsequently the type of the expression, as expe
ted.2.1.4 Beyond Core-MLSo far, we have only 
onsidered features of Core-ML. A real language usually has more features. Data-types and pattern mat
hing 
an be added easily as in ML. Ea
h data-type de
laration 
an be 
onsideredas synta
ti
 sugar for the introdu
tion of a new base type name, 
onstru
tors for the di�erent 
ases and amat
hing operator. Pattern-mat
hing 
an then be seen as synta
ti
 sugar for the appli
ation of the mat
hingoperator, in
luding mat
hing arbitrarily deep stru
tures, default 
ases and textual ordering of the bran
hes.Ex
eptions and referen
es 
ould also be added to the 
ore language. However, referen
es are not a simpleinstan
e of the framework, but require an extension to the framework. As for ML, one 
ould augmentthe semanti
s with a global store, and provide referen
es via primitives; this would also require restri
tionof polymorphism to values. This restri
tion 
an be handled in the type algebra, through the translationfun
tion de�ned in this se
tion to instantiate the framework. That is, given the primitive operator ref oftype ∀α. α→ ref α, we 
an modify our translation fun
tion so that type variables that appear inside a reftype 
onstru
tor are not present in the quanti�ers. Therefore the typing part of the framework 
an be leftuntou
hed. It would a
tually be interesting to study how 
ould the semanti
s itself be made a parameter ofour system, so that features requiring spe
i�
 semanti
s 
ould be added without modifying the frameworkat all.2.2 ML≤

ML≤ [5, 6℄ is a rank-1 polymorphi
 
onstrained type system. It has been developed to type an extensionof ML with multi-methods and obje
t-orientation. The ML≤ type system is espe
ially adapted to type anobje
t-oriented language be
ause:
• 
onstraints allow to model atomi
 subtyping, whi
h 
an express the �sub-
lass� relationships;
• (parametri
) polymorphism allows to de�ne generi
 
lasses and operations;
• its open-world properties �t well with separate 
ompilation of program modules that 
an de�ne newtypes.However, the whole ML≤ system requires type annotations on lambda-expressions and thus la
ks typeinferen
e. Furthermore, the presentation in [5, 6℄ is ad-ho
 and rather unusual, making it di�
ult to study.40



Therefore, in this se
tion, we fo
us on the type system itself. We observe that ML≤ types form a typealgebra that 
an be used with the algebrai
 type system of Se
tion 1. We shall use this instan
e in Se
tion 8.6to model multi-methods as a 
on
rete instantiation of the generi
 fun
tions of Chapter 8.We �rst re
all the de�nition of the ML≤ type system. The, we show in Se
tion 2.2.4 how it 
an be
onsidered as an instan
e of the algebrai
 type system.2.2.1 Type stru
tureType-
he
king in ML≤ is done with respe
t to a type stru
ture T . The syntax for type stru
tures is given inFigure 2.3. A type stru
ture is a partially ordered set C of type 
onstru
tor 
onstants cV . Type 
onstru
tors
an be in sub-typing relation, written T ⊢ cV ≤ c′V . Type 
onstru
tors are annotated by their varian
e
V . A varian
e is a tuple over {⊕,⊖,⊗}, whi
h stand for 
o-, 
ontra-, and non-variant type parametersrespe
tively. Only type 
onstru
tors of the same varian
e 
an be in sub-typing relation. That is, cV1

≤ c′V2implies V1 = V2. Type stru
ture T ::= (C,≤)Single varian
e v ::= ⊕ | ⊖ | ⊗Varian
e V ::= vType 
onstru
tor 
onstant cV ∈ CGround monotype θg ::= cV [θ
g
]Figure 2.3: Type stru
ture syntaxA ground monotype θg is built by the appli
ation of a type 
onstru
tor cV to a list of ground monotypes

θg, and is written cV [θg]. In parti
ular, if cV is a nullary type 
onstru
tor, then cV [] is a ground monotype.In that 
ase, we will omit the bra
kets and denote this monotype by cV . We require that monotypes builton type 
onstru
tors respe
t the arity of their varian
e: in cV [θg], the number of elements in θg must mat
hthe arity of varian
e V .We will omit the annotation on type 
onstru
tors when it is obvious from the 
ontext. We assumethe existen
e an arrow type 
onstru
tor →(⊖,⊕) used to represent fun
tional types. As usual the arrow is
ontra-variant on its domain and 
o-variant on its 
odomain.De�nition 22 (Variant subtyping) The notation (θ1, ..., θn) ≤(v1,...,vn) (θ′1, ..., θ
′
n) stands for the set

(θ1 ≤v1
θ′1) ∪ ... ∪ (θn ≤vn

θ′n), where:
θ1 ≤⊕ θ2 = {θ1 ≤ θ2}

θ1 ≤⊖ θ2 = {θ2 ≤ θ1}

θ1 ≤⊗ θ2 = {θ1 ≤ θ2, θ2 ≤ θ1}De�nition 23 (Ground subtyping) We write T ⊢ θg ≤ θ′g the subtyping on ground monotypes. Therelation T ⊢ cV [θg] ≤ c′V [θ′g ] holds if and only if T ⊢ cV ≤ c′V and for all θ ≤ θ′ in θg ≤V θ′g, T ⊢ θ ≤ θ′.For instan
e, the ML≤ type stru
ture 
orresponding to the example of Se
tion 1.1.2 is T =
({int(), float(), →(⊖,⊕)}, {int ≤ float}). It then follows from De�nition 23 that, for instan
e, T ⊢
float→ int ≤ int→ float.2.2.2 ConstraintsThe syntax for 
onstraints and monotypes is given in Figure 2.4. Monotypes are similar to the groundmonotypes de�ned in Se
tion 2.2.1, with the addition of type 
onstru
tor variables and monotype variables.41



Type 
onstru
tor variables 
an stand for type 
onstru
tor 
onstants while monotype variables 
an stand forarbitrary monotypes. It is possible to quantify over these two �avors of variables. For instan
e, assuminga 
ovariant list type 
onstru
tor, a synta
ti
ally valid 
onstraint impli
ation is ∀t⊕, u. t⊕ ≤ list ∧ u ≤
int |= t⊕[u] ≤ list[int].Type 
onstru
tor φV ::=Type 
onstru
tor 
onstant cVType 
onstru
tor variable | tVMonotype θ ::=Monotype variable tConstru
ted monotype | φV [θ]Constraint κ ::= θ ≤ θ | φV ≤ φVVariable list ϑ ::= t | tVConstraint impli
ation ∀ϑ. κ1 |= κ2Figure 2.4: Constraint syntaxFor 
onvenien
e, we will freely 
onsider 
onstraint sets as 
onjun
ts of 
onstraints, by writing true for theempty set of 
onstraints, κ1 ∧κ2 instead of κ1 ∪κ2, and allow κ to denote a set of 
onstraints. Therefore, wehave in parti
ular that κ1 ∧ κ1 is identi
al to κ1, that κ1 ∧ κ2 is identi
al to κ2 ∧ κ1, and that κ1 ∧ (κ2 ∧ κ3)is identi
al to (κ1 ∧ κ2) ∧ κ3.We now de�ne the notion of 
onstraint impli
ation with the predi
ate T ⊢ ∀ϑ. κ1 |= κ2, whi
h reads�in type stru
ture T , for all ϑ, 
onstraint κ1 implies 
onstraint κ2�. For the intuition, it is important tonote that the universal quanti�
ation over ϑ applies to both κ1 and κ2. This predi
ate is de�ned as theleast predi
ate verifying the axioms of Figure 2.5. This de�nition is equivalent to the original presentationof ML≤ [5℄.Often, the type stru
ture 
an be left impli
it and we will simply write ∀ϑ. κ1 |= κ2.Intuitively, the relation ∀ϑ. κ1 |= κ2 holds if, for every valuation of the variables in ϑ su
h that κ1 issatis�ed, there exists a valuation of the other variables su
h that κ2 is satis�ed. However, it would not bedesirable to have that property in a 
losed-world setting. For instan
e, in a type stru
ture with a single type
onstru
tor A, the relation ∀t. t ≤ A |= A ≤ t should not hold, although the only known valuation for t is A.Otherwise, it would be
ome impossible to de�ne a sub
lass of A in a di�erent module. In Chapter 7, wewill formally 
onsider modular type-
he
king, whi
h involves extending type stru
tures while preserving thesoundness of some previously type-
he
ked 
ode. In parti
ular, De�nition 55 is a semanti
 interpretation ofthis 
onstraint impli
ation. We will also 
hara
terize how the 
onstraint language 
an be extended to makethe type system more expressive, and list the properties that must hold for su
h extensions to be valid.Trans states that 
onstraint impli
ation is transitive. Triv states that a 
onstraint implies any subsetof itself. VarIntro states that a given 
onstraint κ is implied by any 
onstraint obtained by instantiation ofvariables of κ not in the quanti�ed set ϑ. Intuitively, this is 
orre
t sin
e for every valuation of the variablesin ϑ su
h that σ(κ) is satis�ed, κ 
an indeed be satis�ed by instantiating its variables using σ. The nextfour rules deal with monotypes, as emphasized by the pre�x M in their names. MRef and MTrans statethe re�exivity and transitivity of monotype subtyping. MIntro and MElim express the relation betweensubtyping of 
onstru
ted monotypes and subtyping of their 
omponents, as in De�nition 23. The next threerules state the properties of type 
onstru
tors: the ordering of type 
onstru
tors is re�exive and transitive,and ordering of ground type 
onstru
tors 
an be used when it is present in the 
ontext T . Finally, VElimstates that the 
onstraints are stru
tural: if a type variable is 
omparable to a 
onstru
ted monotype, thenit must have the same shape. That is, it is built on a type 
onstru
tor of the same varian
e.As an illustration, let us prove that the 
onstraint impli
ation ∀t. int → int ≤ t |= u → u ≤ t ∧ u ≤
float holds in the example type stru
ture de�ned above.By CStru
t we have ∀t. int → int ≤ t |= int → int ≤ t ∧ int ≤ float. Furthermore, applyingVarIntro with σ being the substitution that maps u to int and leaves all other variables un
hanged, we42



Trans
∀ϑ. κ1 |= κ2 ∀ϑ. κ2 |= κ3

∀ϑ. κ1 |= κ3

Triv
κ′ ⊆ κ

∀ϑ. κ |= κ′

VarIntro
∀t ∈ ϑ σ(t) = t

∀ϑ. σ(κ) |= κ

MRef
∀ϑ. κ |= κ ∧ θ ≤ θMTrans

θ ≤ θ′ ∈ κ θ′ ≤ θ′′ ∈ κ

∀ϑ. κ |= κ ∧ θ ≤ θ′′

MIntro
φV ≤ φ′

V ∈ κ θ ≤V θ′ ⊂ κ

∀ϑ. κ |= κ ∧ φV [θ] ≤ φ′
V [θ′]

MElim
φV [θ] ≤ φ′

V [θ′] ∈ κ

∀ϑ. κ |= κ ∧ φV ≤ φ′
V ∧ θ ≤V θ′CRef

∀ϑ. κ |= κ ∧ φV ≤ φV

CTrans
φV ≤ φ′

V ∈ κ φ′
V ≤ φ′′

V ∈ κ

∀ϑ. κ |= κ ∧ φV ≤ φ′′
V

CStru
t
cV ≤ c′V ∈ T

∀ϑ. κ |= κ ∧ cV ≤ c′VVElim
t ≤ φV [θ] ∈ κ or t ≥ φV [θ] ∈ κ φ′

V fresh t′ fresh
∀ϑ. κ |= κ ∧ t = φ′

V [t′]Figure 2.5: Axioms of 
onstraint impli
ationhave ∀t. int→ int ≤ t ∧ int ≤ float |= u→ u ≤ t ∧ u ≤ float. Finally, we 
an apply Trans to get thedesired impli
ation.Sin
e many proofs will in
lude 
hains of impli
ations linked by the transitivity rule, we will often writethem in a more 
ondensed form by leaving the use of transitivity impli
it. For instan
e, the above proof 
analso be written as:
∀t.

int→ int ≤ t
|= int→ int ≤ t ∧ int ≤ float (CStru
t)
|= u→ u ≤ t ∧ u ≤ float (VarIntro with σ = id + {u 7→ int})We will use the following three properties, whi
h are proved in [5℄.The �rst one shows that it is always possible to make the set of quanti�ed variables of a 
onstraintimpli
ation smaller:Lemma 24 (∀E)

∀ϑ. κ |= κ′ ϑ′ ⊂ ϑ

∀ϑ′. κ |= κ′Proof of lemma 24The only rules in whi
h quanti�ed variables sets play a role are VarIntro and VElim. For VarIntro,the 
ondition ∀t ∈ ϑ σ(t) = t trivially implies ∀t ∈ ϑ′ σ(t) = t when ϑ′ is a subset of ϑ. Therefore
∀ϑ. σ(κ) |= κ holds when ∀ϑ′. σ(κ) |= κ holds. Similarly, for VElim, the freshness 
ondition on φ′

V and t′is only weakened by using a smaller quali�ed set of variables. A stru
tural indu
tion for the 
ase Trans�nishes the proof.Conversely, one 
an add quanti�ed variables that do not appear on the right hand side of the impli
ation:Lemma 25 (∀ I)
∀ϑ. κ |= κ′ FV (κ′) ∩ ϑ′ = ∅

∀ϑ, ϑ′. κ |= κ′Lemma 25 
an be proved by noting that sin
e κ′ has no free variable in ϑ′, it is possible to modify theproof of ∀ϑ. κ |= κ′ so that it does not introdu
e any variable in ϑ′, after a renaming of κ. Therefore, thereis also a proof of ∀ϑ, ϑ′. κ |= κ′. 43



It is possible to 
ombine two impli
ations by 
onjun
tion, provided that all the 
ommon variables of theright hand sides are quanti�ed over:Lemma 26 (Conjun
tion)
∀ϑ. κ1 |= κ′

1 ∀ϑ. κ2 |= κ′
2

∀ϑ. κ1 ∧ κ2 |= κ′
1 ∧ κ′

2

FV (κ′

1) ∩ FV (κ′

2) ⊂ ϑThe sket
h of the proof is the following. First, if κ1 and κ2 share variables not in ϑ, these 
an berenamed in κ2. This ensures together with the hypothesis FV (κ′
1) ∩ FV (κ′

2) ⊂ ϑ that we 
an now assumethe derivations of ∀ϑ. κ1 |= κ′
1 and ∀ϑ. κ2 |= κ′

2 only share variables in ϑ (1). Then we 
he
k that for everystep of the proof of ∀ϑ. κ1 |= κ′
1, we 
an add κ2 to both sides of the impli
ation. This is only non-trivial inthe 
ase of an appli
ation of VarIntro. In that 
ase, we want to prove ∀ϑ. σ(κ) ∧ κ2 |= κ ∧ κ2. But sin
ewe 
ould suppose (1), σ must leave κ2 invariant. So this is equivalent to ∀ϑ. σ(κ ∧ κ2) |= κ ∧ κ2, whi
his another instan
e of VarIntro. We have thus proved ∀ϑ. κ1 ∧ κ2 |= κ′

1 ∧ κ2. Similarly, we 
an prove
∀ϑ. κ′

1 ∧ κ2 |= κ′
1 ∧ κ′

2, whi
h �nishes the proof.2.2.3 Constrained typesA ML≤ type is a 
onstrained monotype, as de�ned in Figure 2.6. The ML≤ type ∀ϑ. κ ⇒ θ is well-formedif and only if ∀∅. true |= κ holds, that is, if the 
onstraint κ is satis�able.Type τ ::= ∀ϑ. κ⇒ θFigure 2.6: Constrained typesWe 
an now de�ne a partial order on ML≤ types.De�nition 27 (Subtyping in ML≤)Let τ1 be ∀ϑ1. κ1 ⇒ θ1 and τ2 be ∀ϑ2. κ2 ⇒ θ2. , then T ⊢ τ1 ≤ML≤
τ2 holds. T ⊢ τ1 ≤ML≤

τ2 holds if andonly if the 
onstraint impli
ation
T ⊢ ∀FV (τ1), FV (τ2), t. κ2 ∧ θ2 ≤ t |= κ1 ∧ θ1 ≤ tholds for a fresh variable t.Informally, this de�nition 
an be interpreted as follows: given an arbitrary value for the type variables inthe 
ontext (
orresponding to ∀FV (τ1), FV (τ2)), for any monotype t, if there is a ground instan
e of type

τ2 that is a subtype of t (that is κ2 ∧ θ2 ≤ t), then there is a ground instan
e of type τ1 that is a subtype of
t. Therefore, τ1 is a more pre
ise type than τ2, that is to say that τ1 ≤ τ2.For instan
e, in the example type stru
ture de�ned page 41, it is true that ∀u. u ≤ float ⇒ u → u ≤
int→ int. This amounts to the 
onstraint impli
ation ∀t. int→ int ≤ t |= u ≤ float∧ u→ u ≤ t, whi
hwas proved to hold in Se
tion 2.2.2.Subtyping and well-formedness have been proved de
idable in [5℄.2.2.4 Instantiation of the frameworkWe now show that ML≤ types form a type algebra. The set of algebrai
 of types MLS is the set of ML≤ typesdenoted by τ . We have to de�ne the pre-order on S(MLS ). Sin
e ML≤ types already in
lude 
onstraints,they are powerful enough to represent all synta
ti
 types. Formally, we de�ne a translation fun
tion from
S(MLS ) to MLS and use it to lift the subtyping relation to S(MLS ).44



〈∀ϑ. κ⇒ θ〉 = ∀ϑ. κ⇒ θ 〈t〉 = ∀∅. true ⇒ t 〈E〉 = ∀t. t ≤ t→ t⇒ t
〈τ〉 = ∀ϑ. κ⇒ θ

〈λt.τ〉 = ∀ϑ, t. κ⇒ t→ θ

〈τ1〉 = ∀ϑ1. κ1 ⇒ θ1 〈τ2〉 = ∀ϑ2. κ2 ⇒ θ2

〈τ1 τ2〉 = ∀ϑ1, ϑ2, t. κ1 ∧ κ2 ∧ θ1 ≤ ( θ2 → t)⇒ t
t 6∈ ϑ1, ϑ2, FV (κ1), FV (κ2), FV (θ1), FV (θ2)

〈let t1 be τ1 in τ2〉 = 〈τ2 [t1 ← τ1]〉
t1 ∈ FV (τ2)

〈τ1〉 = ∀ϑ1. κ1 ⇒ θ1 〈τ2〉 = ∀ϑ2. κ2 ⇒ θ2

〈let t1 be τ1 in τ2〉 = ∀ϑ1, ϑ2. κ1 ∧ κ2 ⇒ θ2

t1 6∈ FV (τ2)Figure 2.7: Translation for ML≤De�nition 28 (Translation of ML≤ types) The translation fun
tion 〈·〉 from S(MLS ) to MLS is de�nedby 
ases in Figure 2.7.Algebrai
 types translate to themselves. The translation of a type variable is an un
onstrained type,whose monotype 
omponent is the type variable. The translation of E is an arbitrary ill-formed ML≤ type.By De�nition 27, any type whose translation is ill-formed is equivalent to E. The translation of a lambdatype is generalized over the type of the argument. Sin
e ML≤ types are equal up to α-
onversion, thede�nition is independent of the 
hoi
e of a name for the bound type variable, whi
h must not appear in
ϑ. The translation of an appli
ation type is done by 
onstraining the monotype of the fun
tion to be asubtype of an arrow type whose domain is the monotype of the argument. By α-
onversion, we assumethat ϑ1 and ϑ2 are disjoint and we 
hoose a t that does not appear in any of them. We translate let typesdi�erently whether the bound type variable appears free in the body of the type or not, for the same reasonas in the translation for Hindley-Milner in Se
tion 2.1. In the 
ase where it does appear free, we de�ne thetranslation of let t1 be τ1 in τ2 as the translation of τ2 [t1 ← τ1]. This de�nition is well founded thanksto De�nition 19. Moreover, we show in Lemma 32 that we 
an equivalently de�ne it as the translation of
τ2 [t1 ← 〈τ1〉].De�nition 29 (Order on S(MLS )) Given a type stru
ture T , for all synta
ti
 types τ1 and τ2 in S(MLS ),
T ⊢ τ1 ≤ τ2 holds if and only if T ⊢ 〈τ1〉 ≤ML≤

〈τ2〉 holds.This de�nition allows to identify synta
ti
 types τ to their algebrai
 translation 〈τ〉 and to use themeta-variable τ for both.Given a type stru
ture T , we 
an now built a 
anoni
al type algebra based on T . We will write A(T )for the 
ouple (S(MLS ), T ⊢ · ≤ ·). Our main result in this se
tion is that A(T ) is indeed a type algebra.Theorem 30 (ML-Sub) For all type stru
ture T , A(T ) is a type algebra.Before proving this theorem, we �rst 
hara
terize the ML≤ types that are the result of the translation ofa synta
ti
 type.Lemma 31 (Translation) Let τ be a synta
ti
 type, in whi
h t possibly appears free, and 〈τ〉 be ∀ϑ. κ⇒ θ.Let ϑ′ be a variable list, κ′ be a ML≤ 
onstraint and θ′ be a ML≤ monotype. Then ∀ϑ, t, ϑ′. κ∧κ′∧θ′ ≤ t⇒ θis greater or equal to ∀ϑ, ϑ′. κ [t← θ′] ∧ κ′ ⇒ θ [t← θ′].Informally, this lemma states that the translation of synta
ti
 type variables always o

urs 
ovariantlyin the ML≤ translated type. 45



Proof of lemma 31 (Translation)Let ϑ0 be FV (∀ϑ, t, ϑ′. κ∧ κ′ ∧ θ′ ≤ t⇒ θ) ∪ FV (∀ϑ, ϑ′. κ [t← θ′]∧ κ′ ⇒ θ [t← θ′]. Then the proposition isby De�nition 29 and De�nition 27 equivalent to: ∀uϑ0. κ∧κ′∧θ′ ≤ t∧θ ≤ u |= κ [t← θ′]∧κ′∧θ [t← θ′] ≤ ufor a fresh u. We prove a generalization of this impli
ation quanti�ed by uϑ′
0 for an arbitrary superset ϑ′

0 of
ϑ0, by indu
tion on the size of τ :
ase τ = a or τ = t′ or τ = EThe type variable t is not free in τ , so it does not appear in κ nor in θ. Therefore this is a simpleappli
ation of the Triv axiom.
ase τ = tThat is to say that θ = t and κ = true. We have to prove ∀uϑ′

0. κ′ ∧ θ′ ≤ t∧ t ≤ u |= κ′ ∧ θ′ ≤ u, whi
his an instan
e of MTrans.
ase τ = λt1.τ1Let 〈τ1〉 be ∀ϑ1. κ1 ⇒ θ1. Then by De�nition 28, 〈λt1.τ1〉 = ∀ϑ1, t1. κ1 ⇒ t1 → θ1. By indu
tionhypothesis, ∀u′ϑ′
0. κ1 ∧ κ′ ∧ θ′ ≤ t ∧ θ1 ≤ u′ |= κ1 [t← θ′] ∧ κ′ ∧ θ1 [t← θ′] ≤ u′, so by Lemma 25 thisalso holds ∀u′ϑ′

0u
′′u. By Lemma 26 with u = u′′ → u′ we get ∀u′ϑ′

0u
′′u. κ1 ∧ κ′ ∧ θ′ ≤ t ∧ u = u′′ →

u′ ∧ θ1 ≤ u′ |= κ1 [t← θ′] ∧ κ′ ∧ u = u′′ → u′ ∧ θ1 [t← θ′] ≤ u′ (1). Therefore,
∀uϑ′

0u
′′u.

κ1 ∧ κ′ ∧ θ′ ≤ t ∧ t1 → θ1 ≤ u
|= κ1 ∧ κ′ ∧ θ′ ≤ t ∧ u = u′′ → u′ ∧ u′′ ≤ t1 ∧ θ1 ≤ u′ (VElim,MElim)
|= κ1 [t← θ′] ∧ κ′ ∧ u = u′′ → u′ ∧ u′′ ≤ t1 ∧ θ′ [t← θ′] ≤ u′ (1)
|= κ1 [t← θ′] ∧ κ′ ∧ t1 → θ1 [t← θ′] ≤ u′′ → u′ = u (MIntro)We 
on
lude by applying Lemma 24.
ase τ = τ1 τ2Let 〈τ1〉 be ∀ϑ1. κ1 ⇒ θ1 and 〈τ2〉 be ∀ϑ2. κ2 ⇒ θ2. Then by De�nition 28, 〈τ〉 = ∀ϑ1, ϑ2, v. κ1∧κ2∧θ1 ≤
( θ2 → v) ⇒ v. By indu
tion hypothesis on τ1 and τ2, for i = 1, 2, ∀uiϑ

′
i. κi ∧ κ′

i ∧ θ′ ≤ t ∧ θi ≤ ui |=
κi [t ← θ′] ∧ κ′ ∧ θi [t ← θ′] ≤ ui for arbitrary ϑ′

i and κ′
i. In parti
ular, we apply this hypothesis with

i = 1, ϑ′
1 = uϑ′

0 and κ′
1 = κ2 [t← θ′]∧κ′∧u1 = θ2 [t← θ′]→ t1∧ t1 ≤ u and remove the quanti�
ationon u1 by Lemma 24 (RQ) (1) and with i = 2, ϑ′

2 = uϑ′
0 and κ′

2 = κ′∧θ′ ≤ t∧θ1 = u2 → u1∧κ1∧u1 ≤
t1 ∧ t1 ≤ u and remove the quanti�
ation on u2 by Lemma 24 (RQ) (2). Therefore,
∀uϑ′

0.
κ1 ∧ κ2 ∧ κ′ ∧ θ′ ≤ t ∧ θ1 ≤ θ2 → t1 ∧ t1 ≤ u

|=

{

κ2 ∧ κ′ ∧ θ′ ≤ t ∧ θ′ ≤ t ∧ θ2 ≤ u2

∧ θ1 = u2 → u1 ∧ κ1 ∧ u1 ≤ t1 ∧ t1 ≤ u
(VElim, MElim)

|=

{

κ2 [t← θ′] ∧ κ′ ∧ θ′ ≤ t ∧ θ2 [t← θ′] ≤ u2

∧ θ1 = u2 → u1 ∧ κ1 ∧ u1 ≤ t1 ∧ t1 ≤ u
(2)

|=

{

κ2 [t← θ′] ∧ κ′ ∧ θ′ ≤ t ∧ θ1 ≤ ( θ2 [t← θ′]→ t1)
∧κ1 ∧ t1 ≤ u

(MIntro)

|=

{

κ2 [t← θ′] ∧ κ′ ∧ θ′ ≤ t ∧ θ1 ≤ v
∧ v = ( θ2 [t← θ′]→ t1) ∧ κ1 ∧ t1 ≤ u

(VarIntro with v 7→ θ2 [t← θ′]→ t1)

|=

{

κ2 [t← θ′] ∧ κ′ ∧ κ1 [t← θ′]
∧ θ1 [t← θ′] ≤ v = ( θ2 [t← θ′]→ t1) ∧ t1 ≤ u

(1)
|= (κ1 ∧ κ2 ∧ θ1 ≤ θ2 → t1) [t← θ′] ∧ κ′ ∧ t1 ≤ u (MTrans)
ase τ = let t1 be τ1 in τ2 where t1 6∈ FV (τ2)Let 〈τ1〉 be ∀ϑ1. κ1 ⇒ θ1 and 〈τ2〉 be ∀ϑ2. κ2 ⇒ θ2. Then by De�nition 28, 〈τ〉 = ∀ϑ1, ϑ2. κ1 ∧κ2 ⇒ θ2.Let u1 and u2 be fresh variables. By indu
tion hypothesis on τ1 and τ2, for i = 1, 2, ∀uiϑ

′
0. κi∧κ′

i∧θ′ ≤46



t ∧ θi ≤ ui |= κi [t← θ′] ∧ κ′ ∧ θi [t← θ′] ≤ ui for an arbitrary κ′
i. By MRef on θ1 and VarIntro on

u1, ∀u2ϑ
′
0. κ1 ∧ κ2 ∧ κ′ ∧ θ′ ≤ t ∧ θ2 ≤ u |= κ1 ∧ κ2 ∧ κ′ ∧ θ′ ≤ t ∧ θ2 ≤ u ∧ θ1 ≤ u1By indu
tion hypothesis on τ1, removing the quanti�
ation on u1 by Lemma 24,

∀u2ϑ
′
0.
κ1 ∧ κ2 ∧ κ′ ∧ θ′ ≤ t ∧ θ2 ≤ u2 ∧ θ1 ≤ u1

|= κ1 [t← θ′] ∧ κ2 ∧ κ′ ∧ θ′ ≤ t ∧ θ2 ≤ u2 ∧ θ1 [t← θ′] ≤ u1

|= κ1 [t← θ′] ∧ κ2 ∧ κ′ ∧ θ′ ≤ t ∧ θ2 ≤ u2 (Triv)
|= κ1 [t← θ′] ∧ κ2 [t← θ′] ∧ κ′ ∧ θ2 [t← θ′] ≤ u2 (Ind. Hyp. 2)
|= (κ1 ∧ κ2) [t← θ′] ∧ κ′ ∧ θ2 [t← θ′] ≤ u2
ase τ = let t1 be τ1 in τ2 where t1 ∈ FV (τ2)Then by De�nition 28, 〈τ〉 = 〈τ2 [t← τ1]〉, so the property is true by indu
tion hypothesis.Proof of theorem 30 (ML-Sub)
• We �rst prove property ii of De�nition 4 (Covarian
e). We therefore assume τ1 ≤ τ2 and we provethat τ [t← τ1] ≤ τ [t← τ2]. The proof is by indu
tion on the size of τ , using the axioms of 
onstraintimpli
ation. The 
ases of algebrai
 types, type variables and the error type are trivial.
ase τ = λt0.τ0We 
an assume w.l.o.g. that t0 is di�erent from t (1) and not free in τ (2) nor in τ ′ (3).Therefore, by De�nition 3, (λt0.τ0) [t ← τ ] = λt0.(τ0 [t ← τ ]) and (λt0.τ0) [t ← τ ′] = λt0.(τ0 [t ←

τ ′]). By indu
tion hypothesis, we have τ0 [t ← τ ′] ≤ τ0 [t ← τ ] (1). Let ∀ϑ1. κ1 ⇒ θ1 be
〈τ0 [t← τ ]〉 and ∀ϑ′

1. κ
′
1 ⇒ θ′1 be 〈τ0 [t ← τ ′]〉. (1) is therefore by De�nition 29 and De�nition 27

∀F, u1. κ1 ∧ θ1 ≤ u1 |= κ′
1 ∧ θ′1 ≤ u1, where F is FV (τ0 [t← τ ]) ∪ FV (τ0 [t← τ ′]). By Lemma 25applied to fresh variables u and u0, we have ∀F, u, u0, u1. κ1 ∧ θ1 ≤ u1 |= κ′

1 ∧ θ′1 ≤ u1. Thenby Lemma 26 with the trivial impli
ation ∀F, u, u0, u1. u = u0 → u1 |= u = u0 → u1, we have
∀F, u, u0, u1. κ1 ∧ θ1 ≤ u1 ∧ u = u0 → u1 |= κ′

1 ∧ θ′1 ≤ u1 ∧ u = u0 → u1. Finally, we applyLemma 24 to get ∀F \ {t0}, u. κ1 ∧ θ1 ≤ u1 ∧ u = u0 → u1 |= κ′
1 ∧ θ′1 ≤ u1 ∧ u = u0 → u1 (4).We 
an now prove the desired property: λt0.τ0 [t ← τ ′] ≤ λt0.τ0 [t ← τ ]. By De�nition 29 andDe�nition 27, this amounts to:

∀F \ {t0}, u.
κ1 ∧ t0 → θ1 ≤ u

|= κ1 ∧ t0 ≥ u0 ∧ θ1 ≤ u1 ∧ u = u0 → u1 (VElim,MElim)
|= κ′

1 ∧ t0 ≥ u0 ∧ θ′1 ≤ u1 ∧ u = u0 → u1 (4)
|= κ′

1 ∧ t0 → θ′1 ≤ u (MIntro)
ase τ = τ1 τ2By De�nition 3, (τ1 τ2) [t ← τ ] = (τ1 [t ← τ ]) (τ2 [t ← τ ]) and (τ1 τ2) [t ← τ ′] = (τ1 [t ←
τ ]) (τ2 [t ← τ ′]). Let ∀ϑ1. κ1 ⇒ θ1 be 〈τ1 [t ← τ ]〉, ∀ϑ′

1. κ
′
1 ⇒ θ′1 be 〈τ ′

1 [t ← τ ]〉, ∀ϑ2. κ2 ⇒ θ2 be
〈τ2 [t ← τ ]〉, and ∀ϑ′

2. κ
′
2 ⇒ θ′2 be 〈τ ′

2 [t ← τ ]〉, and let F1, F ′
1, F2 and F ′

2 be the free variables of
τ1 [t ← τ ], τ1 [t ← τ ′], τ2 [t ← τ ], and τ2 [t ← τ ′] respe
tively. We 
an assume w.l.o.g that thebound variables ϑ1, ϑ′

1, ϑ2 and ϑ′
2 are all disjoint from ea
h other and from F1 ∪ F ′

1 ∪ F2 ∪ F ′
2(1). We need to prove (τ1 [t ← τ ′]) (τ2 [t ← τ ′]) ≤ (τ1 [t ← τ ]) (τ2 [t ← τ ]). By De�nition 29 andDe�nition 27, this amounts to ∀F1, F2, F

′
1, F

′
2, u. κ1 ∧ κ2 ∧ θ1 ≤ θ2 → t ∧ t ≤ v |= κ′

1 ∧ κ′
2 ∧ θ′1 ≤

θ′2 → t ∧ t ≤ v.
∀F1, F2, F

′
1, F

′
2, v.

κ1 ∧ κ2 ∧ θ1 ≤ θ2 → t ∧ t ≤ v
|= κ1 ∧ κ2 ∧ θ1 ≤ θ1 ∧ θ1 ≤ θ2 → t ∧ t ≤ v (MRef)
|= κ1 ∧ κ2 ∧ θ1 ≤ u1 ∧ u1 ≤ θ2 → t ∧ t ≤ v (VarIntro with u1 7→ θ1)
|= κ1 ∧ κ2 ∧ θ1 ≤ u1 ∧ u1 = u2 → u′

2 ∧ θ2 ≤ u2 ∧ u′
2 ≤ t ≤ v (VElim,MElim)47



We referen
e this impli
ation as (2). We now use the indu
tion hypothesis, whi
h is τ1 [t← τ ] ≤
τ1 [t ← τ ′] and τ2 [t ← τ ] ≤ τ2 [t ← τ ′]. By De�nition 29 and De�nition 27, this amounts tothe 
onstraint impli
ations ∀F1, F

′
1, u1. κ1 ∧ θ1 ≤ u1 |= κ′

1 ∧ θ′1 ≤ u1, and ∀F2, F
′
2, u2. κ2 ∧ θ2 ≤

u2 |= κ′
2 ∧ θ′2 ≤ u2. In the �rst impli
ation, the variables appearing in the right hand side areeither the free variables F ′

1 of ∀ϑ′
1. κ

′
1 ⇒ θ′1, whi
h are already quanti�ed over, or the boundvariables ϑ′

1, whi
h are disjoint from ϑ′
2, F2 and F ′

2 by (1). The same argument applies the se
ondimpli
ation. Therefore, we 
an extend both impli
ations to ∀F1, F2, F
′
1, F

′
2, u1, u2, u by Lemma 25.Furthermore, we 
an apply Lemma 26, whi
h shows that ∀F1, F2, F

′
1, F

′
2, u1, u2, u. κ1 ∧ κ2 ∧ θ1 ≤

u1 ∧ θ2 ≤ u2 |= κ′
1 ∧ κ′

2 ∧ θ′1 ≤ u′
1 ∧ θ′2 ≤ u′

2 holds. We apply on
e again Lemma 26 with theimpli
ation ∀F1, F2, F
′
1, F

′
2, u1, u2, u. u1 = u2 → u′

2 ∧ u′
2 ≤ t ∧ t ≤ u |= u1 = u2 → u′

2 ∧ u′
2 ≤

t∧ t ≤ u, whi
h is an instan
e of Triv. Using Lemma 24, this gives us the next step in our mainproof, namely:
∀F1, F2, F

′
1, F

′
2, u.

κ1 ∧ κ2 ∧ θ1 ≤ u1 ∧ u1 = u2 → u′
2 ∧ θ2 ≤ u2 ∧ u′

2 ≤ t ∧ t ≤ v
|= κ′

1 ∧ κ′
2 ∧ θ′1 ≤ u1 ∧ u1 = u2 → u′

2 ∧ θ′2 ≤ u2 ∧ u′
2 ≤ t ∧ t ≤ v

|= κ′
1 ∧ κ′

2 ∧ θ′1 ≤ u1 ∧ u1 = θ′2 → t ∧ t ≤ v (MIntro)
|= κ′

1 ∧ κ′
2 ∧ θ′1 ≤ θ′2 → t ∧ t ≤ v (MTrans)By transitivity with (2), this shows the desired property.
ase τ = let t0 be τ0 in τ ′

0 with t0 ∈ FV (τ ′
0)We 
an assume w.l.o.g. that t0 is di�erent from t (1) and not free in τ ′ (2) nor in τ (3). Therefore,

(let t0 be τ0 in τ ′
0) [t← τ ′]

= let t0 be τ0 [t← τ ′] in τ ′
0 [t← τ ′] (De�nition 3)

≡ τ ′
0 [t← τ ′] [t0 ← τ0 [t← τ ′]] (De�nition 28)

= τ ′
0 [t0 ← τ0] [t← τ ′] ((1) and (2))

≤ τ ′
0 [t0 ← τ0] [t← τ ] (Indu
tion hypothesis)

= τ ′
0 [t← τ ′] [t0 ← τ0 [t← τ ]] ((1) and (3))

≡ let t0 be τ0 [t← τ ] in τ ′
0 [t← τ ] (De�nition 28)

= (let t0 be τ0 in τ ′
0) [t← τ ] (De�nition 3)Note that we 
an apply the indu
tion hypothesis on τ ′

0 [t0 ← τ0] sin
e by De�nition 19 it has asmaller size than τ .
ase τ = let t0 be τ0 in τ ′
0 with t0 6∈ FV (τ ′

0)We 
an assume w.l.o.g. that t0 is di�erent from t (1) and not free in τ1 (2) nor in τ2(3). We suppose that τ1 ≤ τ2, and we must prove that (let t0 be τ0 in τ ′
0) [t ← τ1] ≤

(let t0 be τ0 in τ ′
0) [t ← τ2]. By De�nition 3 with (1), (2) and (3), for i = 1, 2, τ [t ←

τi] = let t0 be τ0 [t ← τi] in τ ′
0 [t ← τi]. Let, for i = 1, 2, ∀ϑi. κi ⇒ θi be 〈τ0 [t ← τi]〉and ∀ϑ′

i. κ
′
i ⇒ θ′i be 〈τ ′

0 [t← τi]〉. We 
an assume w.l.o.g. that the ϑi and ϑ′
i are all pair-wise dis-joint (4). Let ϑ be FV (τ0 [t← τ1])∪FV (τ0 [t← τ2]) and ϑ′ be FV (τ ′

0 [t← τ1])∪FV (τ ′
0 [t← τ2]).Then by De�nition 28, 〈let t0 be τ0 [t ← τi] in τ ′

0 [t ← τi]〉 = ∀ϑiϑ
′
i. κi ∧ κ′

i ⇒ θ′i. By theindu
tion hypothesis τ0 [t ← τ1] ≤ τ0 [t ← τ2], ∀uϑ. κ2 ∧ θ2 ≤ u |= κ1 ∧ θ1 ≤ u. By Lemma 24,
∀ϑ. κ2 ∧ θ2 ≤ u |= κ1 ∧ θ1 ≤ u. So by VarIntro and Triv, ∀ϑ. κ2 |= κ1. Furthermore,by the indu
tion hypothesis τ ′

0 [t ← τ1] ≤ τ ′
0 [t ← τ2], ∀u′ϑ′. κ′

2 ∧ θ′2 ≤ u′ |= κ′
1 ∧ θ′1 ≤ u′.For every variable in ϑ′ that does not belong to ϑ, it does not appear in κ1 sin
e ϑ in
ludesthe free variables present in κ1, and the bound variables are di�erent by (4). Furthermore, thesame reasoning is valid for variables in ϑ that do not belong to ϑ′, and u′ is fresh. So, byLemma 25, ∀u′(ϑ ∪ ϑ′). κ2 |= κ1 and ∀u′(ϑ ∪ ϑ′). κ′

2 ∧ θ′2 ≤ u′ |= κ′
1 ∧ θ′1 ≤ u′. Therefore,by Lemma 26 (Conjun
tion), ∀u′(ϑ ∪ ϑ′). κ2 ∧ κ′

2 ∧ θ′2 ≤ u′ |= κ1 ∧ κ′
1 ∧ θ′1 ≤ u′. That is,

(let t0 be τ0 in τ ′
0) [t← τ1] ≤ (let t0 be τ0 in τ ′

0) [t← τ2].
• Let us prove property iii of De�nition 4 (Redu
tion): (λt.τ) τ ′ ≥ τ [t← τ ′]. Let ∀ϑ. κ⇒ θ be 〈τ〉 and48



∀ϑ′. κ′ ⇒ θ′ be 〈τ ′〉. If t appears in τ , then 〈τ [t← τ ′]〉 is ∀ϑ, ϑ′. κ [t← θ′] ∧ κ′ ⇒ θ [t← θ′], otherwise
〈τ [t← τ ′]〉 is ∀ϑ. κ⇒ θ.

〈(λt.τ) τ ′〉
= ∀ϑ, t, ϑ′, v. κ ∧ κ′ ∧ t→ θ ≤ θ′ → v ⇒ v (De�nition)
≡ ∀ϑ, t, ϑ′, v. κ ∧ κ′ ∧ θ′ ≤ t ∧ θ ≤ v ⇒ v (MElim for →)
≡ ∀ϑ, t, ϑ′. κ ∧ κ′ ∧ θ′ ≤ t⇒ θBy Lemma 31 (Translation), ∀ϑ, t, ϑ′. κ∧κ′∧θ′ ≤ t⇒ θ is greater or equal to ∀ϑ, ϑ′. κ [t← θ′]∧κ′ ⇒

θ [t← θ′].If t appears in τ , this type is equal to 〈τ [t← τ ′]〉. Otherwise, t does not appear in κ nor θ, so this typeis equal to ∀ϑ, ϑ′. κ∧ κ′ ⇒ θ, whi
h is by Triv greater or equal to ∀ϑ. κ⇒ θ, whi
h is 〈τ [t← τ ′]〉. Sothe inequality holds in both 
ases.
• Finally, property iv of De�nition 4 (Let) is straightforward. If t belongs to FV (τ2), then by Def-inition 28 and De�nition 29, let t be τ1 in τ2 ≡ τ2 [t ← τ1]. Otherwise, let ∀ϑ1. κ1 ⇒ θ1be 〈τ1〉 and ∀ϑ2. κ2 ⇒ θ2 be 〈τ2〉. Then 〈τ2 [t ← t1]〉 = 〈τ2〉 = ∀ϑ2. κ2 ⇒ θ2. Furthermore,
∀t. κ1 ∧ κ2 ∧ θ2 ≤ t |= κ2 ∧ θ2 ≤ t is a dire
t instan
e of Triv, so let t be τ1 in τ2 ≥ τ2 [t ← τ1]holds by De�nition 29.In pra
ti
e, the de�nition in De�nition 28 of the translation of let t1 be τ1 in τ2 where t1 is free in

τ2 as the translation of τ2 [t1 ← τ1] is problemati
, be
ause it implies that τ1 must be translated multipletimes, for ea
h o

uren
e of t1 in τ2. We now show that this 
an be avoided.Lemma 32 (E�
ient translation of let types) Let t1 be a type variable, and τ1 and τ2 two synta
ti
types of S(MLS ). Then the ML≤ types 〈τ2 [t1 ← τ1]〉 and 〈τ2 [t1 ← 〈τ1〉]〉 are equivalent.Consequently, using 〈τ2 [t1 ← 〈τ1〉]〉 in the translation leads to an identi
al type algebra.Proof of lemma 32 (E�
ient translation of let types)By De�nition 28, 〈〈τ1〉〉 = 〈τ1〉. So by De�nition 29, 〈τ1〉 ≡ τ1. Therefore, by Theorem 30 (ML-Sub) andproperty ii of De�nition 4 (Covarian
e), 〈τ2 [t1 ← τ1]〉 ≡ 〈τ2 [t1 ← 〈τ1〉]〉 holds.
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Part IIObje
t-orientation
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Chapter 3ClassesIn this 
hapter we present an extension language for the de
laration of 
lasses. Our 
lasses are taggedextensible re
ords of �elds. They do not 
ontain methods, sin
e methods 
an be de
lared independently, asformalized in Chapter 4. This removes the need to distinguish subtyping from sub
lassing, even in presen
eof 
ovariant spe
ialization of methods [11℄. Therefore, we only des
ribe how 
lass de
larations de
lare obje
t
reation and �eld a

ess operators. Most of the original aspe
t of the work lies in the typing of multi-methodsdes
ribed in Se
tion 8.6. However, it should be possible to �t other approa
hes to obje
t-orientation in ourframework.We ta
kle the general 
ase of multiple inheritan
e, whi
h in
ludes single inheritan
e as a sub
ase. Classes
an be parameterized by types. Therefore, ea
h 
lass does not de�ne a type, but a type 
onstru
tor with thesame name. Classes 
ome with a signature that des
ribes its number of type parameters and the varian
e ofea
h of them: respe
tively ⊕, ⊖ and ⊗ for 
o-, 
ontra- and non-variant type parameters. A 
lass 
an onlyinherit from 
lasses with the same varian
e. We shall thus often leave the varian
e annotations impli
it. Forinstan
e, a 
lass list⊕[t] de�nes a type 
onstru
tor with one 
ovariant type parameter.Class de
larations list the set of �elds of the de
lared 
lass. We use integers to label �elds for the ease ofthe presentation, but using names instead would raise no problem. The 
on
rete syntax for the de
larationof a 
lass C of varian
e V is:
lass CV [t] extends C1, ..., Cm {1 : F1(t), ..., p : Fp(t)}where ea
h Fi is a fun
tion mapping the type parameters t to monotypes. If a value has type CV [Θ] (andtherefore is an instan
e of 
lass CV by Requirement 38), then Fi(Θ) is the type of its ith �eld.For instan
e, lists 
an be de�ned by an abstra
t 
lass list and two sub
lasses, the empty list nil andthe non-empty list cons: 
lass list⊕[t] { }
lass nil⊕[t] extends list { }
lass cons⊕[t] extends list { 1 : t, 2 : list[t] }Field types are monomorphi
: they 
an only depend on the type parameters of the 
lass. This restri
tionarises from the fa
t that we want �eld a

ess operators to have a rank-1 polymorphi
 type, that is, with allquanti�ers at the front of the type. Otherwise, if we 
ould de�ne 
lass C[t] { 1:∀u. u→ t } , then the typeof the �eld a

ess operator would be ∀t. C[t] → (∀u. u → t), of rank 2. Note that, unlike in the en
odingof 
lasses as extensible re
ords of �elds and methods, this restri
tion does not prevent methods from beingpolymorphi
, sin
e methods are not 
lass members (see Se
tion 4).A 
lass de
laration 
an be interpreted as a partial de�nition for an ML≤ type stru
ture, as introdu
edin Se
tion 2.2. It introdu
es a new type 
onstru
tor for the 
lass, as well as subtyping between this new
onstru
tor and the type 
onstru
tors 
orresponding to its super-
lasses.De�nition 33 (Partial type stru
ture) The partial type stru
ture indu
ed by a 
lass de
laration, noted
TS(
lass CV [t] extends C1, ..., Cm ...), is the 
ouple ({CV }, {CV ≤ C1, ..., CV ≤ Cm}).53



In a program, whi
h typi
ally in
ludes several 
lass de
larations, the type stru
ture is the union of allpartial 
lass stru
tures. We formalize the notion of program in Chapter 4.De�nition 34 (Type stru
ture) Given a set of 
lass de
larations C1, ..., Cn, let (ci, oi) be TS(Ci). Theindu
ed type stru
ture TS(C1, ..., Cn) is (
⋃n

i=1 ci, (
⋃n

i=1 oi)
∗), where ∗ is the re�e
tive and transitive 
losureof relations.For instan
e, the type stru
ture de�ned by the list hierar
hy is

({list, nil, cons}, {nil ≤ list, cons ≤ list})For a 
lass de
laration to be valid, its �eld types must respe
t the varian
e of the 
lass. For instan
e,sin
e cons⊕[t] has varian
e ⊕, it 
an have a �eld with type t, but not with a type of the form t → θ forsome monotype θ, sin
e t appears 
ontra-variantly in that type. Without this restri
tion, we 
ould de�ne a
lass 
lass bad⊕[t] { 1: t → bool } . By 
ovarian
e, a value of type bad[int] 
ould be used in a 
ontext avalue of type bad[float] is expe
ted. However, this 
ontext 
ould fet
h the �eld, and expe
t it to be of type
float→ bool, while the value might only be of type int→ bool, whi
h is not a subtype of float→ boolby the 
ontra-varian
e of →. Similarly, if we formalized mutability, a 
lass with a 
ovariant type parameter
ould not have a mutable �eld of that type. The general 
ondition is formalized in the following requirement:Requirement 35 (Fields) Let C be a 
lass de
lared by 
lass CV [t] extends C1, ..., Cm {1 : F1(t), ..., p :
Fp(t)}. Then, the following ML≤ impli
ation must hold for all i in 1..p:

∀t t
′
. t ≤V t

′
|= Fi(t) ≤ Fi(t

′
)3.1 Obje
t instantiationWe shall now see how 
lass de
larations impli
itly add 
onstants to the 
ore language. Ea
h 
lass de
larationintrodu
es a new data 
onstru
tor whose arity is equal to the number of �elds of instan
es of C, in
ludingthe �elds de�ned in the super-
lasses of C. We 
an therefore represent an obje
t as the appli
ation of a newdata 
onstru
tor to a value for ea
h �eld in a given, arbitrary order.We use ordered lists to represent the super-
lasses and the �elds of 
lasses. We shall write [x1, x2, ..., xn]for the list of n elements, in order x1, then x2, until xn. We shall write + for list 
on
atenation. That is,

[x1, ..., xn] + [y1, ..., ym] is [x1, ..., xn, y1, ..., ym]. Given two lists L1 and L2, we shall write L1 \L2 for the listthat has all elements of L1 that do not appear in L2. Finally, we write • for the dupli
ate-free 
on
atenationof lists. That is, L1 • L2 is de�ned as L1 + (L2 \ L1). It follows that • is asso
iative: (L1 • L2) • L3 is thesame list as L1 • (L2 • L3), and 
an therefore be simply written as L1 • L2 • L3.De�nition 36 (Super-
lass and �eld lists) Let C be a 
lass de
lared by
lass CV [t] extends C1, ..., Cm {1 : F1(t), ..., p : Fp(t)}.
sc(C) = sc(C1) • sc(C2) • ... • sc(Cm) • [C]

Fields(C) = [F1, ..., Fp]

AllFields(C) = Fields(D1) + ... + Fields(Dn) where [D1, ..., Dn] = sc(C)The use of • avoids listing a 
lass twi
e if it is inherited through two di�erent paths.We will need to 
ompute the �rst index of the �elds de
lared by a 
lass C in the ordered list of all �eldsof a sub
lass C′ of C. We will 
ompute this index as shift(sc(C′), C), where shift(C, C) is de�ned indu
tivelyby 
ase on the �rst element of the �rst parameter:
shift([C1, C2, ..., Cn], C) = 0 (C1 = C)

shift([C1, C2, ..., Cn], C) =
∣

∣Fields (C1)
∣

∣ + shift([C2, ..., Cn], C) (C1 6= C)The shift meta-operator veri�es the following lemma:54



Lemma 37 (Shift) Let C be an element of sc(C′), [F1, ..., Fp] be Fields (C), and i be an integer in 1..p.Then
AllFields(C′)shift(sc(C′),C)+i = FiThe data 
onstru
tor new C is used to 
reate obje
t values by appli
ation to �eld expressions of theexpe
ted type. Let [F ′

1, ..., F
′
n] be AllFields(C), then

constant-type(new C) = ∀t. F ′
1(t)→ ...→ F ′

n(t)→ C[t]For instan
e, the instantiation operators for the list hierar
hy have the following types:
constant-type(new nil) = ∀t. nil[t]
constant-type(new cons) = ∀t. t→ list[t]→ cons[t]A 
lass C 
an also be de
lared abstra
t in order to assert that no obje
t is built on this 
lass. In this
ase the operator new C is not introdu
ed.Below, we require that new C is the only data 
onstru
tor that may 
reate an obje
t with a type
onstru
ted on C, as formalized by the following requirement.Requirement 38 (Class type) Let C be a 
lass of varian
e V . Let t be a list of fresh type variables oflength arity(V ). Let v be a value of type ∀ϑv. κv ⇒ θv. Then if true |= κv ∧ θv ≤ C[t] holds, v is of the formnew C′ v1 ... vn with n = |AllF ields(C′)| and C ∈ sc(C′).The 
onstraint impli
ation true |= κv ∧ θv ≤ C[t] holds when there exists monotypes θ and an instan
eof the type of v whi
h is a subtype of C[θ]. In parti
ular, it follows that the �eld a

ess operators of 
lass C,whi
h we de�ne in the next se
tion, 
an be applied to v. Requirement 38 will allow us to state in Lemma 39that this is only possible for obje
t instan
es, 
reated by new.This requirement does restri
t the expressiveness of obje
ts but simply rules out faulty data 
onstru
torsthat would have an obje
t type without being an obje
t of 
lass C. In turn, this would prevent �eld a

essoperators from being total on their domain. Without Requirement 38, one 
ould for instan
e de�ne a data
onstru
tor null with type ∀t. t. The value null would therefore be usable anywhere any obje
t is expe
ted,but there would be no possible meaningful redu
tion for the appli
ation of �eld a

ess operator to null.3.2 Field a

ess in 
lassesObje
t values are built by instantiation of 
lasses. Symmetri
ally, it is ne
essary to be able to de-
onstru
t these obje
ts by a

essing the values of their �elds. To this end, ea
h 
lass de
laration
lass CV [t] extends C1, ..., Cm (1 : F1(t), ..., p : Fp(t)) de�nes p �eld a

ess operators for ea
h �eld de-
lared in C. The operator that a

esses the ith �eld de
lared in 
lass C is written C.i. It has the followingtype:

constant-type(C.i) = ∀t. C[t]→ Fi(t)For instan
e, the �eld a

ess operators for the example list hierar
hy have the following types:
constant-type(cons.1) = ∀t. list[t]→ t
constant-type(cons.2) = ∀t. list[t]→ list[t]Lemma 39 (Field a

ess) Let C be a 
lass, C.i be a �eld a

ess operator of 
lass C, and v be a value su
hthat C.i v is well-typed. Then v is of the form new C′ v1 ... vn with n = |AllF ields(C′)| and C ∈ sc(C′).55



Proof of lemma 39Let ∀ϑ. κ⇒ θ be type(v), let V be the signature of 
lass C and t be a list of type variable of length arity(V ).By De�nition 27 and the hypothesis that C.i v is well-typed, the type ∀t, ϑ. κ ∧ θ ≤ C[t] ⇒ Fi(t) is wellformed. That is, the 
onstraint impli
ation true |= κv ∧ θv ≤ C′[t] holds. Therefore, by Requirement 38(Class type), v is of the form new C′ v1 ... vn, where n = |AllF ields(C′)| and C ∈ sc(C′).In order to de�ne the redu
tion rule for the �eld a

ess operator C.i, we use the shift meta-operatorde�ned in the previous se
tion.
C.i (new C′ e1 ... en) −→ eshift(sc(C′),C)+iNote that, by Lemma 39, C.i (new C′ e1 ... en) 
an only be well-typed if C′ is a sub
lass of C. Thisensures that shift(sc(C′), C) is well-de�ned.Next, we show that the �eld a

ess operator is soundly de�ned.Theorem 40 (Field a

ess soundness) Given a type stru
ture and a set of operators su
h that Require-ment 35 and Requirement 38 are ful�lled, let C.i be a �eld a

ess operator. Then the two following propertieshold:

• if C.i v is well-typed, then there exists a value v′ su
h that C.i v −→ v′. Furthermore, v is of the formnew C′ v1 ... vn and v′ = vshift(sc(C′),C)+i;
• if

type(C.i (new C′ v1 ... vn)) = τthen there exists τ ′ su
h that
type(vshift(sc(C′),C)+i) = τ ′ and τ ′ ≤ τProof of theorem 40 (Field a

ess soundness)

• By hypothesis, C.i v is well-typed. Therefore, by Lemma 39 (Field a

ess), v is of the formnew C′ v1 ... vn, where n = |AllF ields(C′)| and C ∈ sc(C′). So by the redu
tion rule for �elda

ess, the expression C.i v redu
es to vshift(sc(C′),C)+i.
• We omit here the annotation by varian
e V . Let ∀ϑvj

. κvj
⇒ θvj

be type(vj) for j in 1..n and ∀t. F1(t)→
...→ Fn(t)→ C′[t] be type(new C′). Therefore, by App and De�nition 28:

type(new C′ v1 ... vn) = ∀tϑvj
. κvj

∧ θvj
≤ Fj(t)⇒ C′[t]with j ranging from 1 to n. Let t and t

′ be distin
t fresh monotype variable lists of length arity(V ).Then by Figure 1.4 and De�nition 28, type(C.i (new C′ v1 ... vn)) = ∀t t
′
ϑvj

. κvj
∧θvj

≤ Fj(t)∧C′[t] ≤

C[t
′
]⇒ F ′

i (t
′
) (5).Let s be the integer shift(sc(C′), C) + i. We 
laim that the type ∀ϑes. κs ⇒ θs of vs is a subtype of(5). By De�nition 27 this amounts to:

∀t t t
′
.

κvj
∧ θvj

≤ Fj(t) (j ranging from 1 to n) ∧C′[t] ≤ C[t
′
] ∧ F ′

i (t
′
) ≤ t

|= κvs
∧ θes ≤ Fs(t) ∧ C′[t] ≤ C[t

′
] ∧ F ′

i (t
′
) ≤ t (Triv, keeping only j = s)

|= κvs
∧ θes ≤ F ′

i (t) ∧ C′[t] ≤ C[t
′
] ∧ F ′

i (t
′
) ≤ t (Lemma 37: Fs = F ′

i )

|= κvs
∧ θes ≤ F ′

i (t) ∧ t ≤ t
′
∧ F ′

i (t
′
) ≤ t (MElim)

|= κvs
∧ θes ≤ F ′

i (t) ≤ F ′
i (t

′
) ≤ t (Requirement 35, Lemma 26)

|= κvs
∧ θes ≤ t (MTrans)Restri
tion to ∀t by Lemma 24 
on
ludes. 56



Chapter 4Generi
 fun
tionsMulti-methods are less popular than mono-methods used in single-dispat
h languages (C++ [41℄, Java [25℄,OCaml [40℄, ...). Nevertheless, they have been studied and used in several programming languages (CLOS[4, 23℄, Dylan [21℄, Ce
il [13, 14℄, ...). However, their type-
he
king in the presen
e of polymorphi
 types, ina de
idable and modular way that preserves type inferen
e on ML expressions is still an issue.In this se
tion, we present a formalization of generi
 fun
tions in our framework. Generi
 fun
tions areoperations that 
an sele
t di�erent behavior depending on the type of their arguments. They 
apture theessential properties of multi-methods, while being more general, by abstra
ting over the type algebra usedto type
he
k them. Thus they are a good framework to formalize type-
he
king and modularity. In thisse
tion we only present the type-
he
king aspe
t. We handle modularity in Chapter 8.4.1 ExampleFor this example we assume a type algebra that has bounded polymorphi
 types. As this example is onlymeant to support intuition, we deliberately remain informal. Base types in
lude int, float, and num su
hthat int ≤ float ≤ num. Type num is abstra
t in the sense that it has no dire
t instan
e. Conversely, intand float are 
on
rete.In order to motivate the introdu
tion of generi
 fun
tions, assume given two monomorphi
 fun
tions
opp_float and opp_int that 
ompute the unary minus fun
tion on �oats and integers. We would liketo de�ne a fun
tion that 
omputes the opposite of any number. The fun
tion opp_float 
ould be used,be
ause an integer 
an be 
onsidered as a �oat by subsumption. However, in that 
ase the result has type
float, while we know stati
ally that it is int. Bounded polymorphism allows to give it the more pre
ise type
∀t ≤ num. t→ t. However, opp_float 
annot be given this type sin
e it always returns a �oat. Furthermore,the only fun
tion with this type that 
an be written in Core-ML is the identity on num.What we need is a generi
 fun
tion 
onstru
t that pattern mat
hes on the runtime-type of its arguments.In our example: generi
 opp : ∀t ≤ num. t→ t =

float⇒ opp_float
int⇒ opp_intThe intent is that one of the implementations of the generi
 fun
tion will be sele
ted and applied, atruntime, depending on the runtime type of the argument. Ea
h implementation bran
h 
onsists of a list ofpatterns to de
lare the types it handles and of an expression that implements the generi
 fun
tion in that
ase. There must be one pattern for ea
h argument of the generi
 fun
tion. In the example above, thelists of patterns of ea
h implementation have a single element, respe
tively float and int, sin
e the generi
fun
tion has only one parameter. No implementation is needed for num sin
e it is an abstra
t type.57



4.2 SyntaxThe syntax for programs with generi
 fun
tions is:Generi
 fun
tion G ::= generi
 g : τ = I1, ...IpImplementation I ::= π ⇒ eClass C ::= 
lass C extends C { ... }De
laration D ::= G | CProgram P ::= let re
 D in ewhere π belongs to a language of patterns. A pattern represents the set of types that belong to that pattern,as de�ned by the binary predi
ate τ ∈ π. Both the set of patterns and this predi
ate are left abstra
t at thisstage. A semanti
s for programs with generi
 fun
tions is �rst de�ned in Se
tion 4.3; then in Se
tion 4.4we state type-
he
king rules and express the property that these abstra
t 
omponents must verify so as toensure type soundness. We provide a 
on
rete instan
e of generi
 fun
tions in Se
tion 8.6.4.3 Semanti
sWe need to de�ne the redu
tion rules for generi
 fun
tion operators. To this end, we formalize what it meansfor a pattern to mat
h a tuple of types in the following de�nition:De�nition 41 (Pattern mat
hing) A pattern π mat
hes (τ1, ..., τn) if for all i in 1..n, τi ∈ πi holds.We also de�ne an ordering on patterns. A pattern is smaller than another one if it mat
hes more types.De�nition 42 (Pattern ordering) A pattern π1 is smaller or equal to a pattern π2, written π1 ≤ π2, iffor all types (τ1, ..., τn) su
h that π2 mat
hes (τ1, ..., τn), π1 mat
hes (τ1, ..., τn).A pattern π1 is smaller than a pattern π2, written π1 < π2, if π1 ≤ π2 holds and π2 ≤ π1 does not hold.We order implementations based on the order of their patterns.De�nition 43 (Implementation ordering) An implementation π1 ⇒ e1 is smaller than (respe
tivelysmaller or equal to) a pattern π2 ⇒ e2 if π1 is smaller than (respe
tively smaller or equal to) π2.Intuitively, smaller implementations are more pre
ise, be
ause they are appli
able to less types.The de
laration generi
 g : τ = π1 ⇒ e1, ..., πp ⇒ ep introdu
es an operator g in the language, with
constant-type(g) = τ . The redu
tion rules for this operator are de�ned by:

πi mat
hes (type(v1), ..., type(vn))

(v1, ..., vn, ei v1 ... vn) ∈ R(g)Hen
e, we have de�ned an operator that �ts the general framework of Se
tion 1. In parti
ular, the derivedrule obtained by 
ombination with the redu
tion rule for operators Op is then:
πi mat
hes (type(v1), ..., type(vn))

g v1 ... vn −→ ei v1 ... vnNote that the semanti
s is possibly non-deterministi
 sin
e several implementations might mat
h a giventuple of arguments. For instan
e, 
onsider the generi
 fun
tiongeneri
 add : ∀t ≤ num. (t, t)→ t =
float, float⇒ ...
float, int⇒ ...
int, float⇒ ...The addition of two integers 
ould be handled by the se
ond and the third implementation, and, by symmetry,there is no reason to 
hoose one rather than the other. In pra
ti
e, it is often desirable to enfor
e a58



deterministi
 behavior. This 
an be a
hieved by requiring that generi
 fun
tions are not ambiguous. Thisrequires that for ea
h possible 
all there exists a most spe
i�
 mat
hing implementation. Redu
tion thenhappens unambiguously by sele
tion of the most spe
i�
 implementation. This aspe
t is well-known fromthe study of multi-methods [28, 2, 13, 6℄, and is orthogonal to type-soundness.The semanti
s is typed in the sense that the types of the values are used in the de�nition of the redu
tionrule. However, this does not mean that expressions have to 
arry a type at run-time. In opposition todynami
 values (values 
arrying runtime types on whi
h type mat
hing 
an be performed, as in [30, 1℄),types involved here are not stati
 types 
arried at runtime, but runtime types. In the general 
ase, redu
tion
an therefore require the 
omputation of the runtime types, whi
h 
an be 
ostly in term of performan
e.However, depending on the a
tual language of patterns that is used, redu
tion might also be performedwithout a
tually 
omputing the types of the arguments. For instan
e, in an obje
t-oriented language, obje
tvalues may 
arry the 
lass of whi
h they are an instan
e. Therefore, if one 
an de
ide whether a type mat
hesa pattern solely 
onsidering the 
lass on whi
h the type is built, redu
tion 
an be implemented without anyruntime type 
omputation. This is indeed the 
ase for multi-methods, as 
an be seen in Se
tion 8.6.Note that sin
e generi
 fun
tions are operators, they are made available globally to the whole programby rule Cst. They 
an therefore appear in generi
 fun
tion bodies, so that generi
 fun
tions are globallymutually re
ursive. In parti
ular, this allows for polymorphi
 re
ursion. This does not lead to unde
idabilityof type
he
king sin
e types of generi
 fun
tions are de
lared and not inferred.4.4 Type-
he
kingGiven a program P 
ontaining the 
lass de
larations C1, ..., Cn, we pla
e ourselves in the type stru
ture
TS(C1, ..., Cn) as de�ned in De�nition 34.We now present a stati
 type system to dete
t errors in programs with generi
 fun
tions. Thanks to ourgeneral soundness result, Theorem 12, this redu
es to proving that generi
 fun
tions de�ne operators thatsatisfy Requirement 9 (Constants). Informally, the type of a generi
 fun
tion introdu
es two requirementson its implementations, 
orresponding to the �subje
t-redu
tion� and �progress� parts of the requirement foroperators.Firstly, it 
an be seen as a spe
i�
ation that every implementation must meet. However, sin
e the patternsrestri
t the domain of the arguments, this type 
an be spe
ialized, taking into a

ount the information inthe patterns. Thus, we require a notion of restri
tion of a type to a list of patterns, and we demand thatea
h implementation has a subtype of the restri
tion of the generi
 type to the implementation's patterns.For instan
e, the restri
tion of the type ∀t ≤ num. t → t of opp to pattern float is float → float. Aparti
ular 
ase arises when the restri
ted type is the error type E. Sin
e E is maximal, the above requirementis trivially satis�ed. However, this situation 
orresponds to an implementation that would never be used(whi
h is why no 
ondition is needed on the type of the implementation to ensure type safety). Therefore, itmakes good sense to additionally require that the restri
ted type is not E. For instan
e, an implementationof opp with pattern string would be reje
ted, sin
e string is not a subtype of num.Formally, we assume given a total fun
tion restrict. The type restrict(τ, π) de�nes the restri
tion of a type
τ to a list of patterns π. It must satisfy the following requirement:Requirement 44 (Restri
tion) For all types τ , τi (i = 1..n) and patterns π,

τi ∈ πi (i = 1..n)

restrict(τ, π) τ1 ... τn ≤ τ τ1 ... τnAs an example, we give possible de�nitions for restrict and ∈ in the monomorphi
 type algebra of Se
-tion 1.1.2. Patterns are in this 
ase simply algebrai
 types denoted by a. A type belongs to a pattern if itis a subtype of that pattern. That is, a ∈ a′ holds i� a ≺ a′. The restri
tion of a fun
tional type to a listof patterns is the fun
tional type whose domain is the list of patterns and whose 
odomain is the original
odomain. That is, restrict(a, b1...bn) is b1 → ... → bn → a0 when a is of the form a1 → ... → an → a0 and
bi ≺ ai holds for all i from 1 to n; it is E otherwise. It is easy to 
he
k that Requirement 44 (Restri
tion)59



is satis�ed by these de�nitions. The rationale for the de�nition of restrict is that when a generi
 fun
tion oftype a1 → ... → an → a0 is applied to values of types b1...bn, it needs to be implemented by a fun
tion oftype b1 → ...→ bn → a0.We 
an now de�ne the validity of a generi
 fun
tion de
laration, and of an implementation.De�nition 45 (Valid implementation) An implementation π ⇒ e is valid for type τ if1. restrict(τ, π) 6= E2. type(e) ≤ restrict(τ, π)De�nition 46 (Valid generi
 fun
tion) The de
laration of a generi
 fun
tion generi
 g : τ =
I1, ..., Ip is valid if for all i, the implementation Ii is valid for type τ .Condition (1) in De�nition 45 prevents from using patterns that are in
ompatible with the domain of thegeneri
 fun
tion and that would therefore never be used. This 
ondition is not mandatory but makes goodsense. Conversely, 
ondition (2) is essential to ensure subje
t-redu
tion.Now, we 
onsider the se
ond requirement on the implementations of a generi
 fun
tion, whi
h is ne
essaryto ful�ll the Requirement Requirement 9.i, that is the �progress� part. To this end, one 
an noti
e that thetype of the generi
 fun
tion determines its domain. The implementation bran
hes, taken together, must 
overthis domain. Ba
k to the introdu
tory example, the generi
 fun
tion opp must possess an implementationfor any non-abstra
t subtype of num. It is indeed not ne
essary that an implementation exists for types thathave no runtime values. We therefore de�ne run-time types and 
overed generi
 fun
tions :De�nition 47 (Runtime type) A type τ is a run-time type if there exists a value v su
h that type(v) = τ .De�nition 48 (Covered generi
) A generi
 fun
tion generi
 g : τ = π1 ⇒ e1, ...πp ⇒ ep is 
overedif for all run-time types τ1, ..., τn su
h that τ τ1 ... τn 6= E, there exists an index i su
h that πi mat
hes
(τ1, ..., τn).Chambers and Leavens present an e�
ient algorithm for testing 
overage (and non-ambiguity, to ensuredeterminism) in [16℄, whi
h is appli
able in our 
ontext. Therefore, we do not address this point.It is now possible to express a su�
ient 
ondition for programs with generi
 fun
tions to be sound.Theorem 49 (Generi
 fun
tions) The operators de�ned by valid and 
overed generi
 fun
tions satisfyRequirement 9 (Constants).The �rst part of Requirement 9 (Constants) is dire
tly implied by De�nition 48 of 
overed generi
fun
tions together with the redu
tion rules. The se
ond part is a 
onsequen
e of De�nition 45 of a validimplementation, using Requirement 44 (Restri
tion) on the restri
tion operator.Proof of theorem 49 (Generi
 fun
tions)Sin
e generi
 fun
tions are operators, we need to prove parts i and ii of Requirement 9 (Constants).i. By hypothesis, g v1 ... vn is well-typed, so by De�nition 47 ea
h type(vi) is a runtime type. So, byDe�nition 48, there exists an implementation π1...πn ⇒ e su
h that, for i from 1 to n, type(vi) ∈ πi.Therefore, by de�nition of redu
tion rules, g v1 ... vn −→ e v1 ... vnii. Let I be an implementation π ⇒ e su
h that π mat
hes type(v1)...type(vn), and τg be constant-type(g),the de
lared type of g. We need to prove that type(e v1 ... vn) is a subtype of type(g v1 ... vn).

type(e v1 ... vn)
= type(e) type(v1) ... type(vn) (App)
≤ restrict(τg, π) type(v1) ... type(vn) (validity of I and Covarian
e (De�nition 4.ii))
≤ τg type(v1) ... type(vn) (Requirement 44 and Covarian
e (De�nition 4.ii))
= type(g v1 ... vn) (App)60



A program let re
 G | C in e is well-typed if every generi
 fun
tion G is valid and 
overed, and if e iswell-typed. The result of the program is the evaluation of e. By Theorem 12 (Soundness) and Theorem 49(Generi
 fun
tions), e redu
es to a value v su
h that type(v) ≤ type(e).We formalize type-
he
king for modular programs with generi
 fun
tions in Chapter 8.

61



62



Chapter 5Super5.1 Super in 
lass-based languagesSuper is a 
onstru
t that allows to reuse an existing implementation of a method inside another implemen-tation of the method in a sub-
lass.In the following example written in Java, a method performing side-e�e
ts (and therefore returning void),starts with performing the possible side-e�e
ts of the existing implementation.
lass A {int x;void print(OutputStream s) {s.print(x);}}
lass B extends A {int y;void print(OutputStream s) {super.print(s);s.print(y);}} Here, super.print means the implementation of method print in the super-
lass of the 
urrent 
lass.In parti
ular, it is not mandatory to use the same name as the 
urrent method. It is therefore possible to
all another method, implemented in the super-
lass. That is, in the body of a method f in 
lass B, it ispossible to use super.g. This semanti
s is tightly 
oupled with single-dispat
h, in that it relies on the fa
tthat dispat
h is only made on the �rst argument only.5.2 Super in multi-method languages5.2.1 DylanThe Dylan language features multi-methods. It allows to 
all a more general method from a method, withthe next-method keyword. A higher-level des
ription of its semanti
s is: next-method 
alls the methodthat would have been 
alled if the 
urrent method had not existed. This 
all 
an fail at runtime in 
ase ofambiguity, for the same reasons as for method 
alls. Dylan allows su
h failures at runtime, whi
h is probablyunavoidable given the possibility in Dylan to add method implementations at runtime.The following program is the translation in the syntax of Dylan of the example of Se
tion 5.1.63



define 
lass <A> (<obje
t >)slot x;end 
lass <A>;define 
lass <B> (<A>)slot y;end 
lass <B>;define generi
 print (a :: <A>);define method print (a :: <A>)format-out("%d\n", a.x);end method print;define method print (b :: <B>)next -method();format-out("%d\n", b.y);end method print;Besides the synta
ti
 di�eren
es with the 
ode in the previous se
tion, the main point to note is that a
all to next-method does not spe
ify a method name. One way to interpret this fa
t is that next-methodis a high-level 
onstru
t spe
ifying how an implementation of a method is related to the implementations itoverrides, while super in the previous se
tion is a lower-lever 
onstru
t spe
ifying a spe
ial way to performdispat
h for a 
ertain method 
all.Furthermore, the next-method statement does not spe
ify arguments. This is possible sin
e, by default,next-method is 
alled with the same arguments as the 
urrent method. It is possible in Dylan to passother arguments. The spe
i�
ation requires that the new arguments lead to the same sequen
e of appli
ablemethods as the original arguments. Otherwise, the semanti
s is unde�ned. The underlying problem is thatdispat
h has already been performed. In parti
ular, by passing arguments with greater types, they mightnot be 
ompatible with the 
alled method, even though they are 
ompatible with the generi
 fun
tion. This
ase is illustrated in the following example:define 
lass <A> (<obje
t >)slot x, init-value: 0;end 
lass <A>;define 
lass <B> (<A>)slot y, init-value: 0;end 
lass <B>;define 
lass <C> (<B>)end 
lass <C>;define generi
 print (a :: <A>);define method print (a :: <A>)format-out("%d\n", a.x);end method print;define method print (b :: <B>)next -method();format-out("%d\n", b.y);end method print; 64



define method print (
 :: <C>)next -method(make(<A>));end method print;In the implementation of print for 
lass C, next-method is 
alled with a newly built instan
e of 
lass
A. However, the method 
alled is the implementation of print for 
lass B. That method 
an not handle theinstan
e of 
lass A that it re
eives in this 
all, whi
h will provoke an error at runtime.5.2.2 Ce
ilCe
il features the resend keyword. While serving the same role as next-method in Dylan, it is betterin two ways. First, it is possible to expli
itly resolve ambiguities by dire
ting the 
all: every argument ofthe 
urrent method spe
ialized for a 
lass C 
an be spe
ialized in the resend to an an
estor of 
lass C. Forinstan
e, if a 
lass C has two super-
lasses B1 and B2 that are both sub
lasses of 
lass A, the implementationof a method for 
lass C 
an spe
ify that a resend targets the implementation of that method for either
B1 or B2. Se
ond, Ce
il restri
ts passing a di�erent argument than the original one to the 
ase where thatargument is not spe
ialized. This allows to give a safe formal semanti
s in every 
ase, unlike in Dylan.The referen
e manual of Ce
il in
ludes typing rules for resend. However, they do not take into a

ountpolymorphi
 types, whi
h are presented later as an extension. Furthermore, they require the expli
it typingof every method implementation. In parti
ular, the type of resend is the de
lared return type of theimplementation that it 
alls.5.3 FormalizationThe syntax of method implementations is extended to allow the following notation:implementation m π ⇒ λx1...xn.e(super)where e(super) is an expression that 
an 
ontain one or more o

urren
es of the super keyword.This notation is synta
ti
 sugar for:implementation m π ⇒ λx1...xn.e(superm,π x1 ... xn)We de�ne the target of super as the most pre
ise implementation of m that is less pre
ise that the
urrent implementation, or ⊥ if su
h implementation does not exist. The ordering of implementations isde�ned in De�nition 43.De�nition 50 (Target of super) Let m be a method, and π be a list of patterns. Then

target(superm,π) = max {π′ ⇒ e′ ∈ implementations(m) | π′ < π}If there is no implementation of m with patterns less pre
ise than π, or none that is a maximum, the maxis unde�ned, and target(superm,π) is ⊥. In that se
ond 
ase, the use of super is ambiguous, and thereforeresults in a type
he
king error.One 
an then de�ne the semanti
s of super:De�nition 51 (Redu
tion of super) Let m be a method, and π be a list of patterns. If target(superm,π)is π′ ⇒ e′, then superm,π −→ e′.The semanti
s of super is therefore 
ompletely spe
i�ed by the target(·) predi
ate.65



5.3.1 TypingThe type given to superm,π is the restri
tion of the type of m to the patterns of the target implementation:De�nition 52 (Type of super) Let m be a method, and π be a list of patterns. Then the type of superm,πis de�ned by:
constant-type(superm,π) =

{

E if target(superm,π) = ⊥
restrict(constant-type(m), π′) if target(superm,π) = π′ ⇒ e′Theorem 53 (Super) For any well typed method m and list of patterns π, the operator superm,π veri�esRequirement 9 (Constants).Proof of theorem 53 (Super)1. Sin
e superm,π is well-typed by hypothesis, target(superm,π) is well de�ned by De�nition 52. Letthen π′ ⇒ e′ be target(superm,π). By De�nition 51, superm,π −→ e′.2. Let π′ ⇒ e′ be the implementation target(superm,π). The only redu
tion rule for super issuperm,π −→ e′. In this 
ase, we have by De�nition 52 type(superm,π) = restrict(type(m), π′) (1).Sin
e m is well typed, the implementation π′ ⇒ e′ must be valid by De�nition 46. That is, by De�ni-tion 45, type(e′) ≤ restrict(type(m), π′). This shows, together with (1) that type(e′) ≤ type(superm,π)holds.5.4 ExampleLet us see how super 
an be used in pra
ti
e, and how the typing rules and the target resolution are applied.We 
onsider a 
lass hierar
hy that models buttons in a graphi
al user interfa
e toolkit:
lass Button {String text;// A 
losure exe
uted when the button is pressed.() → void a
tion;}void draw(Button);draw(Button this) { ... }void 
li
ked(Button);
li
ked(Button this) {(this.a
tion )();}
lass ImageButton extends Button {Image image;}draw(ImageButton this) { ... }
lass OnOffButton extends Button{ 66



boolean disabled;}
li
ked(OnOffButton this) {if (! this.disabled)super;} The OnOffButton 
lass adds to the Button 
lass the ability to dea
tivate the button. The use of superin the 
li
ked method on a OnOffButton allows to abstra
t over the behavior of the parent 
lass. If theparent was modi�ed, this modi�
ation will also a�e
t the sub-
lasses.The target of super in 
li
ked(OnOffButton is 
li
ked(Button). Sin
e the method is monomorphi
,the type of super is simply the type of the method.Suppose now that we want to use a button that has both an image, and the ability to be dea
tivated,and that we want to monitor 
li
ks, for instan
e to 
ount them:
lass MyButton extends ImageButton , OnOffButton {int nbCli
ks;}
li
ked(MyButton this) {this.nbCli
ks = this.nbCli
ks + 1;super;} The set of implementations that are less pre
ise than 
li
ked(MyButton) 
ontains both
li
ked(Button) and 
li
ked(OnOffButton). Sin
e the latter is more pre
ise than the former, the targetof super is 
li
ked(OnOffButton).Sub
lassing is sometimes presented as similar to a textual 
opy of the implementations of the parent
lass that are not rede�ned in the 
hild 
lass. A

ording to this presentation, one 
ould be worried that thetarget resolution gives priority to the implementation inherited from OnOffButton over the one inheritedfrom Button through ImageButton. However, the rede�ned implementation has priority be
ause it indi
atesthat the implementation that it repla
es is not wanted in the 
on
erned 
ase. Thus, 
li
ked(Button) isnot valid for 
lass OnOffButton sin
e it does not take into a

ount the a
tivation state. It is thereforenot valid either for the sub
lass MyButton, and so must not be 
onsidered in the resolution of the target.This 
orresponds exa
tly to the notion of most pre
ise implementation, whi
h is used for the dispat
h ofmethod 
alls. Indeed, the same reasoning about the invalidity of overridden implementations also justi�esthe semanti
s of dispat
h.
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Chapter 6Kinds
6.1 Introdu
tionThis 
hapter illustrates how the type system 
an be extended by augmenting the language of 
onstraintsof ML≤. We present two typing 
hallenges that arise in pra
ti
e from the interplay of polymorphism andsubtyping, and we propose a single solution to solve them both.The �rst 
hallenge, whi
h has already been pointed out [32℄, is the typing of homogeneous methods,that is, methods that a

ept several (but not all) types for their arguments, while these types 
annot beintermixed. A typi
al example is the 
omparison operator less, whi
h 
an be applied to two strings, twointegers, two dates, et
, but not to two values of di�erent types, and neither to types that have no 
anoni
alordering like graphi
al widgets.The se
ond 
hallenge, introdu
ed in this thesis, has arisen from our experien
e with programming inlanguages with multi-methods and based on the polymorphi
 
onstrained type system ML≤ [6℄. We found outthat many useful methods are partially polymorphi
: their types lie in pre
ision in between a monomorphi
and a bounded polymorphi
 type. For instan
e, 
onsidering the hierar
hy Integer ≤ Rational ≤ Float,and the inverse operation x 7→ 1

x
: the type Float→ Float is 
orre
t for inverse, but it is too 
oarse sin
e itdoes not show that the inverse of a Rational is a Rational; on the other hand, the type ∀T ≤ Float. T→ T,whi
h would 
orre
tly map a Rational to a Rational, is in
orre
t be
ause the inverse of an integer mightnot be an integer but a rational in general. Our solution is to give inverse the type ∀α. α : Field⇒ α→ α,meaning that for every 
lass α that 
an be given the mathemati
al stru
ture of a �eld, the inverse operationmaps α to an α. Sin
e integers do not form a �eld, but a mere subset of the �eld of rational numbers, ourtype indeed spe
i�es that the inverse of an Integer is a Rational. Indeed, the best instantiation for α isthen Rational. In our proposal Field is not a type but a kind, that is, a property that some types possess.An extra bene�t of our solution is to be modular in the sense that new 
lasses with the kind Field 
an beadded to an existing 
lass hierar
hy without 
hanging the type of the inverse operation.In this thesis, we propose an extension of ML≤ with kinds that allows to type
he
k both homogeneousmethods and partially polymorphi
 methods.In Se
tion 6.2 and Se
tion 6.3, we present several typing 
hallenges that motivate the introdu
tion of kindsin type systems with subtyping; in Se
tion 6.5, we propose a simple solution that however fails to a
hieveseparate type-
he
king of modules; In Chapter 10, we will show that kinds intera
t well with modulartype
he
king: new 
lasses 
an be added in the domain of an existing method without 
hanging the type ofthe method. Moreover, our extension of ML≤ also preserves all the essential properties of the system.We start by examining several 
hallenging type-
he
king situations of pra
ti
al importan
e. Through-out this 
hapter, we 
onsider type systems with nominal subtyping. Spe
i�
ally, our examples use 
lassde
larations to de
lare new type names, for whi
h subtyping is determined by the inheritan
e hierar
hy.69



6.2 Typing homogeneous operationsWe �rst 
onsider the problem of typing homogeneous operations. Homogeneous operations are a spe
i�
 sortof binary (or n-ary) operations, 
hara
terized by the shape of their domain. They a

ept several types asarguments. However, values of di�erent types 
annot be mixed in the same 
all [32℄. For instan
e, 
onsiderthe 
omparison operator less. Its type must express two properties. First, only some types have a naturalordering. Therefore, 
omparing graphi
al widgets should not be possible. Se
ond, even for 
omparable typeslike strings, integers, or dates, it should be ill-typed to mix any two of these types in a 
all: de
iding whethera string is smaller than an integer does not make sense in general. We shall examine how it is possible (ornot) to express this requirement in several type systems.Monomorphi
 type systemThe following program is an attempt to type less in a monomorphi
 type system, using Java syntax.abstra
t 
lass Comparable {boolean less(Comparable other);}
lass String extends Comparable {boolean less(Comparable other){ /* 
ompares a string to a Comparable */ }}
lass Date extends Comparable {boolean less(Comparable other) { ... }} A monomorphi
 type system 
annot prevent the intermixing of arguments of di�erent types. Conse-quently, it is ne
essary to handle the 
ase where a String is 
ompared with an arbitrary value of type
Comparable. Typi
ally, this is done by runtime type inspe
tion. In this 
ase, it would be possible to return
false, but sin
e the 
omparison of a String and, say, a Date never makes sense, it is probably better to raisea runtime ex
eption if values of di�erent �kinds� are 
ompared. Our aim is pre
isely to stati
ally rule outthese 
ases.Monomorphi
 type system with multi-methodsBe
ause we are still using an inexpressive type system, we 
annot express the homogeneity of less. However,a �rst improvement is that the ability to dispat
h on several arguments allows for the separate de�nition of
omparison on pairs on obje
ts of the same �kind�, while with mono-methods, ea
h spe
ialized version of lesshad to handle an arbitrary (se
ond) argument.abstra
t 
lass Comparable {}boolean less(Comparable , Comparable); /* Multi -method */less(Comparable s1, Comparable s2){ throw new Error("Trying to 
ompare obje
ts of unrelated 
lasses"); }
lass String extends Comparable;less(String s1, String s2) { ... }
lass Date extends Comparable;less(Date d1, Date d2) { ... } 70



The de
laration of the less multi-method makes any 
ouple of two sub
lasses of Comparable valid ar-guments. The default implementation less(Comparable, Comparable) is therefore needed to handle theinvalid 
ases. In the valid implementations, both arguments are stati
ally known to be instan
es of sub
lassesof the 
on
erned 
lass.F-bounded polymorphi
 type systemF-bounded polymorphism [8℄ extends bounded polymorphism by allowing the bound of a variable to referto the type variable being bound. It o�ers the following solution to type homogeneous operations [32℄.abstra
t 
lass Comparable <T> {boolean less(T other);}
lass String extends Comparable <String> {boolean less(String other) { ... }}
lass Date extends Comparable <Date> {boolean less(Date other) { ... }} The idea is that x.less(y) is well typed only if x has type Comparable<T> for some T, and y has typeT. It is therefore possible to make sure the operation is homogeneous by de
laring 
lass String extendsComparable<String> and 
lass Date extends Comparable<Date> only, so that, for instan
e, Date is nota subtype of Comparable<String>.We shall now propose our solution to this typing problem. The 
omparison of our system with F-boundedpolymorphism will be made in Se
tion 15.3.Introdu
ing kindsBetween the monomorphi
 type (Comparable, Comparable)→ boolean for less, whi
h is too loose, and theF-bounded polymorphi
 type ∀T ≤ Comparable<T>. (T, T) → boolean, whi
h is unintuitive, we 
ould have
onsidered the simpler bounded polymorphi
 type ∀T ≤ Comparable. (T, T)→ boolean. However, this doesnot work: it is in fa
t equivalent to the monomorphi
 type, sin
e intuitively, T 
an be instantiated by thetype Comparable.In fa
t, String and Date share the property of being 
omparable, without having a 
ommon super-type. Therefore Comparable should not be a type, but a property possessed by some types. In other words,Comparable is a kind. We shall write Date : Comparable or Date implements Comparable to expressthat Date is a type of kind Comparable. We �rst present our solution informally.kind Comparable;<T : Comparable > boolean less(T, T);
lass String implements Comparable {boolean less(String other) { ... }}
lass Date implements Comparable {boolean less(Date other) { ... }} Sin
e T 
an be instantiated to either String or Date, pairs of strings or pairs of dates 
an be 
ompared.Furthermore, no valid instantiation for T is a super-type of both String and Date, whi
h prevents intermixing.71



The type ∀T : Comparable. (T, T)→ boolean therefore ful�lls the two desired properties for less. In addition,we believe it is less involved than the F-bounded solution.Inheritan
e without intermixing problemKinds are also appropriate to type
he
k more 
omplex 
ases of homogeneous operations. For instan
e,Litvinov [32℄ argues that it is sometimes useful to have a 
lass inherit from another, while not allowinghomogeneous operations to a

ept intermixing the super and the sub
lass (typi
ally, Points are ColorPointswhen it does not makes sense to 
ompare one of ea
h 
lass).We present here their solution, whi
h is to parameterize both 
lasses and use F-bounded quanti�
ation.We use our own syntax when it eases the 
omparison.
lass PointF<Pt extends PointF<Pt>> {int x = 0; int y = 0;int area() = this.x * this.y;eqPoint(PointF<Pt> other);eqPoint(PointF other) = this.x == other.x && this.y == other.y;}
lass Point is PointF<Point > {}
lass ColorPointF extends PointF {Color 
olor;eqPoint(ColorPoint other) = super && this.
olor == other.
olor;}
lass ColorPoint is ColorPointF <ColorPoint > {}Sin
e type parameters are invariant, ColorPointF<ColorPoint> is not a subtype of PointF<Point>.Therefore, mixed 
alls to eqPoint are not well-typed. On the other hand, the area method 
an as desiredbe used for both Point and ColorPoint.Our solution, using kinds, is instead to 
reate a 
ommon super
lass Abstra
tPoint 
ontaining the featuresto inherit (the x and y �elds), and two 
lasses Point and ColorPoint that implement the kind Comparable.Sin
e AbstractPoint does not implement Comparable, intermixing is prevented.kind Comparable;<T : Comparable > boolean eqPoint(T, T);abstra
t 
lass Abstra
tPoint{ int x = 0; int y = 0;int area() = this.x * this.y;eqPoint(Point other) = this.x == other.x && this.y == other.y;}
lass Point extends Abstra
tPoint implements Comparable {}
lass ColorPoint extends Abstra
tPoint implements Comparable {int 
olor = 0;eqPoint(ColorPoint other) = super && this.
olor == other.
olor;} Both versions solve the problem as expe
ted: they only allow 
omparing instan
es of the same 
lass.72



void test() {eqPoint(new Point(), new Point());eqPoint(new ColorPoint(), new ColorPoint());//eqPoint(new ColorPoint(), new Point()); // Type Error} Our approa
h avoids again the �fake� and 
umbersome parameterization. Furthermore, the addition ofthe 
lass Abstra
tPoint allows to make obvious the fa
t that a ColorPoint is not a Point. In the F-bounded version, this fa
t is not immediately apparent: one must a
tually try to prove the subtyping �andfail� to 
on
lude that it does not hold. We believe that this makes F-bounded quanti�
ation too 
omplexfor a widespread use in programming languages.6.3 Partially polymorphi
 fun
tionsSo far, we used kinds to des
ribe a 
ommon property of unrelated types. One question immediately follows:how do kinds intera
t with subtyping? Given a 
lass A of kind K and a sub
lass B of A, should then Balways be of kind K? A
tually, a fun
tion of type ∀T : K. T → T 
an always take an argument whose type
B is a subtype of type A of kind K, sin
e by subsumption the argument is also of type A. However, usingsubsumption, we 
an only 
on
lude that the type of the result is A. Conversely, if B itself was of kind K, thenwe 
ould type the appli
ation by instantiation of T by B, whi
h would give the result the more pre
ise type
B. In this se
tion, we shall show that it is sometimes desired to have the less pre
ise result type: manyfun
tions have type that are more pre
ise than A → A, but less pre
ise than ∀T ≤ A. T → T. We 
all thesefun
tions �partially polymorphi
�, and now give several examples.Numeri
al operationsConsider the following numeri
al hierar
hy:
lass Float {...}
lass Integer extends Float {...}
lass Int32 extends Integer {...}
lass BigInt extends Integer {...} IntegerInt32 BigInt

Float
What is the type of the addition on numbers? The sum of two �oats is a �oat, the sum of two integers isan integer, the sum of a �oat and an integer is a �oat. More generally, the type of the sum of two numbersis their least upper bound (1).The monomorphi
 type system and the Hindley-Milner type system do not allow to 
apture all possibletypes des
ribed by (1) in a single type expression. This explains why arithmeti
 operators are usually treatedapart. However, as we shall see below, this situation also o

urs with user de�ned types, for whi
h ad ho
typing is not possible. With bounded polymorphism, it is possible to type plus with ∀T ≤ Float. (T, T)→ T.This expression 
orre
tly 
aptures all possible types des
ribed by (1).However, this type is, in a way, too pre
ise: we don't want the sum of two Int32 to be an Int32, but justan Integer, be
ause this sum 
an over�ow, in whi
h 
ase the result should be a BigInt. Thus, we re�ne (1),by requiring that the type of the sum always be above Integer: the type of the sum of two numbers is theupper bound of Integer and of their least upper bound (2). However, bounded polymorphism 
an not 
aptureall types des
ribed by (2) anymore. Intuitively, (2) 
onstrains a type variable with both an upper-bound and73



a lower-bound, while bounded polymorphism only allows upper-bounds. Conversely, (2) 
an be expressed ina 
onstrained polymorphi
 type system with the type expression ∀Integer ≤ T ≤ Float.(T, T)→ T.However, this type has the disadvantage that it 
an only be given on
e one knows the 
omplete numeri
alhierar
hy. Suppose we now want to sub
lass Float with two implementations that di�er with respe
t tothe number of bits used to store the �oat � Float32 and Float64. Sin
e the new 
lasses are not aboveInteger, the previous type given to plus asserts that the sum of two Float32 may be any Float. It seemslegitimate to spe
ify that addition of two �oats does not 
hange their representation, but this 
annot beexpressed. Tuning the type using more 
onstraints to mat
h the requirements needs a 
omplete knowledgeof the type hierar
hy. Therefore, this approa
h prevents extending the type hierar
hy in a �exible way, thatis, a modular development of 
lasses. Furthermore, even when the 
omplete hierar
hy is known, typing pluswould require disjun
tive 
onstraints, like ∀T. Integer ≤ T ∨ Float32 ≤ T ∨ Float64 ≤ T⇒ (T, T)→ T.We 
all partially polymorphi
 the fun
tions that behave like plus with respe
t to types: their types isliving somewhere in-between monomorphi
 types and fully bounded polymorphi
 types. We believe thatthey o

ur rather frequently. Therefore, it is an important issue to handle them appropriately. Please, notethat the above situation is very similar to the typing of numeri
al operators in Java [25℄: the sum of two
float is a float, the sum of two int is an int, but the sum of two short (or byte) is an int. Java handlesthis situation by ad ho
 typing rules. Let us give a few more examples.User de�ned methodsA similar situation o

urs with the typing of, for instan
e, the negation operator ¬ on boolean algebras. Thisshows that partial polymorphism o

urs not only in possibly prede�ned fun
tions, but also in user de�ned
ode. Consequently, this rules out ad ho
 or non-modular solutions that do not solve the general 
ase.Indeed, what is the type of this negation operator with respe
t to a hierar
hy that in
ludes both thealgebra of booleans and the algebra of binary de
ision diagrams (BDD) ?BooleanAlgebraBoolean BDDOne Zero ConditionalThe type BooleanAlgebra→BooleanAlgebra is very impre
ise. It would lead to a big loss of typinginformation, for instan
e by having not(x < y) be an expression of type BooleanAlgebra, given two integersx and y. The polymorphi
 type ∀T ≤ BooleanAlgebra. T→ T is not 
orre
t, sin
e the negation of a 
onstantBDD instan
e of 
lass One is not a One but a Zero; an union type like ∀T. Boolean ≤ T ∨ BDD ≤ T⇒ T→ Tis 
orre
t and pre
ise, but disallows the introdu
tion of a new boolean algebra and thus breaks modularity.Furthermore, the introdu
tion of disjun
tions in 
onstraints would signi�
antly in
rease the 
omplexity ofthe type-
he
king.As a last example, 
onsider a hierar
hy representing a sour
e program tree inside a 
ompiler or aninterpreter. If the sour
e language distinguishes between expressions and statements, it makes sense tode
lare that 
lass Expression is a sub
lass of 
lass Statement be
ause an expression 
an be 
onsidered asa statement that 
omputes and then forgets a value. Many useful fun
tions take a statement and possiblyauxiliary arguments, and return a statement: the resolution fun
tion that repla
es identi�ers with a referen
eto their de�nition, optimization fun
tions, a ma
ro-expansion fun
tion, et
. None of these fun
tions arefully polymorphi
: name resolution maps identi�ers, represented by some 
lass in the hierar
hy, to variablede�nitions, whi
h are of a di�erent 
lass; ma
ro-expansion repla
es ma
ro-
alls by their de�nition, whi
hmay be arbitrary expression. On the other hand, typing these fun
tions as monomorphi
 is too 
oarse: sin
eonly expressions are a

epted at 
ertain pla
es in a syntax tree (for instan
e, as the right-hand-side of an74



assignment) it is useful to re�e
t in the type of these fun
tions that expressions are mapped to expressionsand not to arbitrary statements.6.4 Using kinds to type partially polymorphi
 fun
tionsLet us try to �nd a 
ommon solution for all these situations. Sin
e the problem of �nding a satisfa
tory typeto these fun
tions seems di�
ult to solve, it might be that the problem itself is not formulated properly. Letus re
onsider the boolean algebra situation. A Conditional is indeed a sub
lass of BDD, be
ause any valueof type Conditional is a BDD. However, a value of type BDD is not itself a BooleanAlgebra. It is the setof all BDDs that forms a boolean algebra. Therefore, BooleanAlgebra is not a super-type of BDD, it is aproperty of the type BDD.This situation already o

urred in Se
tion 6.2, and motivated the introdu
tion of kinds. This new exampleadditionally involves the intera
tion of kinding with subtyping. The property of forming a boolean algebrais not true for an arbitrary subset of all BDDs. For example, neither the sets of all Conditional BDDs northe two single-element subsets 
ontaining respe
tively One and Zero are boolean algebras. Thus, it is 
ru
ialthat kinding is not inherited. All these observations 
an be summarized as follows: The property of forminga boolean algebra is represented by the kind BooleanAlgebra. Class BDD is of kind BooleanAlgebra. ClassZero is a sub
lass of BDD, and is not of kind BooleanAlgebra. The operation not, for any 
lass T of kindBooleanAlgebra, takes a parameter of type T and return a value of type T. This translates naturally to thefollowing de
larations:kind BooleanAlgebra;<T : BooleanAlgebra> T not(T);
lass BDD implements BooleanAlgebra;
lass Zero extends BDD;...
lass Boolean implements BooleanAlgebra;Numeri
al operations 
an be typed in a similar way. We introdu
e the kind Num to express the propertyof being a number and give the type ∀T : Num. (T, T)→ T to plus. This type 
aptures all properties of plusdes
ribed above. In parti
ular, all forms of integers equivalently. The type Int32 does not have kind Num.Hen
e, the �best� solution for T when plus is applied to an Int32 is �T=Integer�. Thus, the only guaranteefor the return type is to be below Integer.Kinds 
an also be viewed as an open set of 
lasses with names. This approa
h allows for new 
lassesto be added to a kind without having to modify the type of methods operating on the 
lasses of this kind.One reason that makes this solution more modular than an approa
h based on disjun
tive 
onstraints is thatwhenever we introdu
e a new 
lass in the numeri
al hierar
hy, we are able to determine its behavior relativelyto the kind Num. Additionally, we believe that the types are also shorter to write, easier to understand, andeasier to handle in a type-
he
king algorithm.This solution also gives an arguably more intuitive type to plus. We believe this is an important issueto ensure that powerful type systems 
an be used in wide-spread programming languages. Using kinds, thetype 
an be explained in simple words: �plus has type (T,T)→T for every numeri
al 
lass T�. In our view,Int32 is not a numeri
al 
lass (that is, a 
lass of kind Num), but an implementation of a numeri
al 
lass.6.5 Closed-world formalizationWe present a �rst attempt to formalize a type system with kinds. In this se
tion, we will make the 
losed-world assumption. That is, we will 
onsider that type-
he
king is made for whole programs only, so thatthere is no di�eren
e between the type stru
ture in whi
h an expression is type-
he
ked and the global type-stru
ture of the running program. This has two purposes. First, it allows the use of simpler typing rules,75



that are useful for an intuitive understanding of types involving kinds. Se
ond, it serves as a motivation forthe more 
omplex rules of Chapter 10, where typing will take pla
e in an open world. Hen
e, results in thisse
tions are subsumed by Chapter 10.We extend in Figure 6.1 the ML≤ type algebra of Se
tion 2.2. Type stru
tures now also in
lude a set
K of kinds, and a new relation denoting kinding (cV : K). Constraints in
lude kinding 
onstraints. In theprevious examples, we used the notations ∀T ≤ θ. θ′ and ∀T : K. θ′ as shorthands for ∀T. T ≤ θ ⇒ θ′ and
∀T. T : K ⇒ θ′ respe
tively.Type stru
ture T ::= (C,K,≤, :)Constraint κ ::= θ ≤ θ | φV ≤ φV | φV : KFigure 6.1: Extensions to ML≤A type 
an be interpreted as the upward-
losing of the set of its ground instan
es that satisfy the
onstraint. Given a type, we de�ne its denotation as:

den(∀α. κ⇒ θ) = {θ′, ∃σ. σ(θ) ≤ θ′ and σ(κ) hold}where θ′ ranges over ground types and σ ranges over mappings from type variables to ground types. Ea
h
onstraint in σ(κ) is of the form θ1 ≤ θ2 or θ : K and 
an be readily interpreted as true or false in the typestru
ture.For instan
e, the type of plus in Se
tion 6.3, ∀T. T : Num⇒ (T, T )→ T is denoted by the upward 
losingof set { (Float, Float) → Float, (Integer, Integer) → Integer}. In parti
ular, the 
losure 
ontainssuper-types of the above two types that des
ribe how any pair of two types is mapped to a result type:
(Float, Integer) → Float, (Int32, Int64) → Integer, ... This 
orresponds to our intuition of the typebehavior of the addition.Given this interpretation of types, it is easy to de�ne sub-typing and type-
he
king. Type τ1 is a subtype of
τ2 if den(τ2) ⊆ den(τ1). Instantiation and generalization rules ensure that an expression has the polymorphi
type τ if and only if it has all the monomorphi
 types in the denotation of τ .This formalization is only 
orre
t and safe in a 
losed-world. Therefore, it 
ould be used to type-
he
kentire programs, but not program modules taken separately. We present in Chapter 10 a variation on thetheory that a

ommodates with modular type-
he
king. We provide there a 
omplete formalization andproofs, and a 
omparison with related work.
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Part IIIModularity
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Chapter 7Modular type algebrasWhen a program is made of modules, it must be possible to type
he
k ea
h module independently. Further-more, a module 
an import another module and add 
lass de
larations, whi
h modi�es the type stru
ture ofthe type algebra. It must therefore be possible to guarantee that 
ode type
he
ked in the original algebra isstill well-typed in the new algebra.To this end, we de�ne the notion of a type algebra extension.De�nition 54 (Type algebra extension) A type algebra (A′,≤′) is an extension of a type algebra (A,≤)if and only if A ⊆ A′ and for all synta
ti
 types τ1 and τ2 in S(A) su
h that τ1 ≤ τ2 holds, τ1 ≤′ τ2 alsoholds.Note that the 
ondition that A is 
ontained in A′ ensures that S(A) is 
ontained in S(A′), whi
h in turnmakes the inequality τ1 ≤
′ τ2 well-formed.7.1 ML≤We now give 
onditions that guarantee that an ML≤ type algebras is an extension of another. Sin
e wepresent a variant of ML≤ in Chapter 10, we �rst formalize the possibility to 
reate a variant of ML≤ byextending the 
onstraint language.7.1.1 Variants of ML≤A variant of ML≤ 
an extend, 
ompared to the original version of Se
tion 2.2,

• the syntax of 
onstraints;
• the set of axioms de�ning 
onstraint impli
ation;
• the notion of type stru
ture T .Furthermore, for enabling modular typing, we assume given a transitive predi
ate allowing to state thata type stru
ture T ′ is an extension of another type stru
ture T , written T ′ ≥ T .The only 
ondition required for a variant of ML≤ is that the axiomatization of 
onstraint impli
ationbe 
orre
t and 
omplete, as we de�ne below in De�nition 55. Indeed, we already proved in Se
tion 2.2 that

ML≤ is a type algebra. This proof uses only the axioms of 
onstraint impli
ation, whi
h are also present inthe 
onsidered variant of ML≤. Therefore, the proof remains valid, and the variant is also a type algebra. Onthe other hand, the axiomatization is extended, and must therefore be proved again 
orre
t and 
omplete.79



De�nition 55 (Corre
tion and 
ompleteness) A ML≤ axiomatization |= is 
orre
t and 
omplete if thefollowing property holds: for all type stru
ture T , variable list ϑ and 
onstraints κ1 and κ2 in T , the 
onstraintimpli
ation ∀ϑ. κ1 |= κ2 is provable if and only if for all extension T ′ of T , for all ground substitution σ1su
h that T ′ ⊢ σ1(κ1), there exists a ground substitution σ2 su
h that σ2
ϑ
= σ1 and T ′ ⊢ σ2(κ2).The notation σ1

ϑ
= σ2 means, as in Se
tion 2.1, that substitutions σ1 and σ2 are equal for all elements of

ϑ. In 
orre
t and 
omplete axiomatizations, one 
an o�er an interpretation of subtyping between polytypes.Corollary 56 (Interpretation) Let τ1 and τ2 be two 
losed types. Then τ1 ≤ τ2 holds in a type stru
ture
T if and only if in every extension T ′ of T , for every ground instan
e θ2 of τ2 in T ′ there is a groundinstan
e θ1 of τ1 su
h that T ′ ⊢ θ1 ≤ θ2.Proof of 
orollary 56 (Interpretation)Let ∀ϑ1. κ1 ⇒ θ1 be τ1 and ∀ϑ2. κ2 ⇒ θ2 be τ2. By De�nition 27, τ1 ≤ τ2 is equivalent to the 
onstraintimpli
ation ∀t. κ2 ∧ θ2 ≤ t |= κ1 ∧ θ1 ≤ t where t is a fresh variable, that is not free in κ1, κ2, θ1, θ2 (1).By De�nition 55, this 
onstraint impli
ation is equivalent to

∀T ′ ≥ T , ∀σ1 | T ′ ⊢ σ1(κ2 ∧ θ2 ≤ t),
∃σ2 | T ′ ⊢ σ2(κ1 ∧ θ1 ≤ t) and σ2(t) = σ1(t)

(7.1)On the other hand, the target proposition is:
∀T ′ ≥ T , ∀σ | T ′ ⊢ σ(κ2),
∃σ′ | T ′ ⊢ σ′(κ1) and T ′ ⊢ σ′(θ1) ≤ σ(θ2)

(7.2)Sin
e all 
onstraints are evaluated in the extension stru
ture T ′, we may leave T ′ impli
it.Let us prove that 7.1 implies 7.2. For T ′ ≥ T and σ su
h that T ′ ⊢ σ(κ2) (2), let σ1 be σ+{t 7→ σ(θ2)} (3).Sin
e σ(κ2) holds by (2), σ1(θ2) = σ(θ2) by (1) and σ1(t) = σ(θ2) by (3), the premise σ1(κ2 ∧ θ2 ≤ t) of 7.1holds. Therefore, by 7.1, there exists a substitution σ2 su
h that σ2(κ1∧θ1 ≤ t) (4) and σ2(t) = σ1(t) = σ(θ2)(5) hold. One 
an therefore take σ′ = σ2, sin
e σ2(κ1) holds by (4) and σ2(θ1) ≤ σ2(t) = σ(θ2) holds by (4)and (5).Conversely, for given T ′ ≥ T and σ1 su
h that σ1(κ2 ∧ θ2 ≤ t (6), we have in parti
ular by hypothesis
σ1(κ2). Therefore, by 7.2, there exists σ′ su
h that σ′(κ1) holds (7) and σ′(θ1) ≤ σ1(θ2) holds (8). Let σ2be σ′ + {t 7→ σ1(t)} (9). We then have σ2(κ1) by (7) and (1). Furthermore, σ2(θ1 ≤ t) is equivalent by (9)and (1) to σ′(θ1) ≤ σ1(t), whi
h is true by transitivity on (8) and hypothesis σ1(θ2) ≤ σ1(t) (6).Theorem 57 (Extension of a ML-Sub type algebra) If an ML≤ type stru
ture T ′ is an extension ofa type stru
ture T , then the type algebra A(T ′) is an extension of A(T ).Proof of theorem 57 (Extension of a ML-Sub type algebra)By 
orollary 56 (Interpretation), in every extension T0 of T , for every ground instan
e θ′ of τ ′ in T0there is a ground instan
e θ of τ su
h that T0 ⊢ θ ≤ θ′. Every extension of T ′ is also an extension of Tsin
e extension is transitive. Therefore this also holds for every extension of T ′. Therefore by 
orollary 56(Interpretation) T ′ ⊢ τ ≤ τ ′.7.1.2 Original ML≤In parti
ular, the original version of ML≤ de�ned in [5℄ has a 
orre
t and 
omplete axiomatization. In thatsetting, the extension of a type stru
ture is de�ned in the following way:De�nition 58 (Extension of a ML-Sub type stru
ture) A type stru
ture T ′ is an extension of T ifall type 
onstru
tors of T are in T ′ and if for all type 
onstru
tors c1 and c2 of T , T ′ ⊢ c1 ≤ c2 if and onlyif T ⊢ c1 ≤ c2. 80



These 
onditions 
orrespond to the usual extension of the type stru
ture found in obje
t oriented systemfor a module importing other modules: the existing types are not modi�ed, but new types 
an be freelyadded.The proof that the original version of ML≤ veri�es De�nition 55 is done in the ML≤ report [5℄.
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Chapter 8Open generi
 fun
tionsIt has already been re
ognized [19℄ that the a
tivity of programming has two main sides: de�ning operationsand de�ning data stru
tures. The fun
tional paradigm mainly uses sum and produ
t types as its datastru
tures, and fun
tions de�ned by pattern-mat
hing on data-types as its operations. The obje
t-orientedparadigm provides 
lasses to stru
ture data, and methods to operate on it. However, both paradigmsintrodu
e an asymmetry between the two 
on
epts. In a fun
tional program, data-types 
an be de�nedindependently of fun
tions, while fun
tions need knowledge about the data-type 
onstru
tors. Conversely,methods are de�ned lo
ally to a 
lass, while 
lasses in
lude the list of all their methods.This asymmetry is problemati
 when it 
omes to modular programming, that is, programming reusingpre-
ompiled libraries, without 
hanging them [26℄. Following the above dualism, modular programming isthus both de�ning new operations on existing data stru
tures and de�ning new data stru
tures to be handledby existing operations. In the fun
tional paradigm, de�ning new fun
tions is straightforward. On the otherhand, extending existing datatypes is not possible sin
e it would break existing fun
tions de�ned by patternmat
hing on this datatype, whi
h would miss the new 
ases. Conversely, extending data stru
tures in anobje
t-oriented setting amounts to writing new 
lasses, while de�ning new methods on existing 
lasses is notallowed.In Chapter 4, all implementations of a generi
 fun
tion had to be synta
ti
ally present together with thede�nition of the fun
tion. This is similar to pattern mat
hing in a fun
tional language, and thus fails in thesame way to provide support for modular programming. The solution is to open generi
 fun
tions, so thatimplementation bran
hes 
an be de�ned independently, whi
h brings ba
k symmetry. An open generi
 opp
an thus be de�ned as: generi
 opp : ∀t ≤ num. t→ timplementation opp float⇒ opp_floatimplementation opp int⇒ opp_intIf the new type of 
omplex numbers, subtype of num, is added in a di�erent module that imports the aboveone, a new implementation of opp 
an �and must� be provided:implementation opp complex⇒ ...We illustrate the two situations en
ountered with modular programming by taking the example of a smallprogramming language implementation. The stru
ture of this implementation is presented in Figure 8.1.Modularity is expressed by the fa
t that de
larations are grouped inside modules. Ea
h module is representedby module NAME {...} and is typi
ally written separately from other modules.83



module CORE {abstra
t 
lass Expression {}
lass Apply extends Expression
{ f : Expression, arg : Expression }generi
 eval : Expression→ Expressiongeneri
 print : Expression→ Stringimplementation eval Apply⇒ ...implementation print Apply⇒ ...

}module NUMERIC imports CORE {
lass IntegerLiteral extends Expression ...implementation eval IntegerLiteral⇒ ...implementation print IntegerLiteral⇒ ...
}module COMPILER imports CORE and NUMERIC {generi
 compile : Expression→ Codeimplementation compile Apply⇒ ...implementation compile IntegerLiteral⇒ ...
}Figure 8.1: Programming with open generi
 fun
tions8.1 Syntax and semanti
sThe syntax for programs with open generi
 fun
tions is:Generi
 fun
tion G ::= generi
 g : τImplementation I ::= implementation g π ⇒ eClass C ::= 
lass C extends C { ... }De
laration D ::= G | I | CModule M ::= module M imports M ; let re
 DProgram P ::= M; eval eA modulemoduleM importsM ′; let re
 D de
lares a module with name M that imports the moduleswhose names are in the list M ′. A programM0;M1...Mn; eval e 
onsists of a main moduleM0, additionalmodulesM1...Mn that 
an be imported byM0, and an expression e whi
h expresses the desired behaviorof the program.Sin
e modules 
an be 
onsidered independently, they refer to ea
h other � in their import lists � by name.Therefore, we need a way to map a module name to its de�nition. We will 
all module repository a fun
tionfrom module names into modules. We 
an asso
iate a module repository to ea
h program:De�nition 59 (Module repository) Let P be the program M0;M1...Mn; eval e. For i from 0 to n, let

Mi be the name of module Mi. The module repository for P, written repository(P), is then the fun
tion
{M0 7→ M0, ..., Mn 7→ Mn}. 84



A natural semanti
s of a program P is de�ned by translation into the generi
 fun
tions of Chapter 4.The generi
 fun
tions found in all modules are re
onstru
ted by grouping the implementations with theirrespe
tive de
larations.De�nition 60 (Closure of a modular program) Let P be the modular program M0;M1...Mn; eval eand let R be repository(P). The 
losure P is the non-modular program let re
 (classes(M0)) ∪
generics(M0,M0...Mn) in e, written closure(P), where

classes(module M imports M1...Mn; let re
 G | I | C) = C ∪
⋃n

i=1 classes(R(Mi))

generics(module M imports M1...Mp; let re
 G | I | C,M0...Mn)
=

{generi
 g : τ =
⋃n

i=0 implementations(g,Mi) | generi
 g : τ ∈ G} ∪
⋃p

i=1 generics(R(Mi),M0...Mn)}

declarations(module M imports M ; let re
 G | I | C) = G

implementations(g,module M imports M ; let re
 G | I | C)
=

{π ⇒ e | implementation g π ⇒ e ∈ I}The program 
an then be evaluated as before. The advantage of open generi
 fun
tions is that programs
an now be de
omposed into modules, and that modules 
an be type
he
ked separately.8.2 Modular type-
he
kingA module type-
he
ks if all its implementations are valid a

ording to De�nition 45. Sin
e this de�nition isindependent of other implementations, modules 
an be type-
he
ked separately.Formally, we need to de�ne the aspe
ts of a module that are relevant for type-
he
king other modules.These 
an be divided in two: the de
larations of 
lasses, whi
h a�e
t the type-algebra in whi
h type-
he
king o

urs, and the implementations of generi
 fun
tions, whi
h are needed to 
he
k the 
overage andnon-ambiguity of generi
 fun
tions.De�nition 61 (Module signature)Let M be the module module M imports M1, ..., Mn; let re
 D, and let R be a module repository. Thetype signature of M in R is
typesig(M, R) = classes(M) ∪

⋃n

i=1 typesig(R(Mi))The generi
 fun
tion signature of M in R is
gensig(M, R) = declarations(M) ∪ {g π | implementation g π ⇒ e ∈ D} ∪

⋃n

i=1 gensig(R(Mi))Finally, the signature of M in R is the union of both:
sig(M, R) = typesig(M, R) ∪ gensig(M, R)Basi
ally, the signature of a module erases the body of method implementations and keeps only toplevelde
larations. It is apparent from this de�nition that the imported de�nitions are sear
hed re
ursively in thesignature of imported modules.We require a fun
tion that asso
iate to a type signature S a type algebra A(S). Given a moduleM, wethen de�ne the asso
iated type algebra A(M) as A(typesig(M)). To guarantee type-safety, we require thatthis algebra is an extension of the algebras of all imported modules.85



Requirement 62 (Module import) Let M be a module that imports modules M1, ...,Mn. Then, forall i from 1 to n, the type algebra A(M) must be an extension of the type algebra A(Mi), as spe
i�ed byDe�nition 54.De�nition 63 (Type 
orre
t module)Let module M imports M1, ..., Mn; let re
 D be a module M. Module M is type 
orre
t if every imple-mentation implementation g π ⇒ e in D is valid for τ (as spe
i�ed in De�nition 45) in the type algebra
A(M), where τ is the de
lared type of g in sig(M).The following 
overage 
ondition is similar to De�nition 48, ex
ept that it 
an now be 
he
ked using onlythe information 
ontained in the signature of modules.De�nition 64 (Coverage)A generi
 signature GS is 
overed in a type algebra A if for all generi
 g : τ in GS, for all run-time types
τ1, ..., τn in A su
h that τ τ1 ... τn 6= E, there exists an implementation g π in GS su
h that π mat
hes
(τ1, ..., τn).Theorem 65 (Modular type-
he
king) Let P be the program M0;M1...Mn; eval e and R be
repository(P). The equivalent non-modular program closure(P) is well-typed if
• every module in M0...Mn is type 
orre
t;
• e is well typed in A(M0);
• and gensig(M0, R) is 
overed in A(M0).The proof relies mainly on the fa
t that the type algebra asso
iated with the whole program is anextension of the type algebra of every module, in whi
h their 
ode is type
he
ked.Proof of theorem 65 (Modular type-
he
king)By Theorem 49 (Generi
 fun
tions), we only need to prove that every generi
 fun
tion in closure(P) is
overed and valid.First, the type algebra A(M0) is the same as that of closure(P) sin
e by De�nition 60 and De�nition 61they have exa
tly the same 
lasses. Let generi
 g : τ = I1, ...Ip be a generi
 fun
tion in closure(P) (1) andlet τ1, ..., τn be run-time types in A(M0) su
h that τ τ1 ... τn 6= E (2). By (1) and De�nition 60, there existsa module M transitively imported by M0 su
h that generi
 g : τ belongs to the generi
 de
larations of

M. Therefore, by De�nition 61, generi
 g : τ belongs to gensig(M0, R). By hypothesis, gensig(M0, R) is
overed in A(M0). Therefore, by De�nition 64 and (2), there exists an implementation g π in gensig(M0, R)su
h that π mat
hes (τ1, ..., τn) (3). By De�nition 61, there exists a module M′ transitively imported by
M0 and there exists an expression e su
h that implementation g π ⇒ e belongs to the de
larations ofM′.Therefore, by De�nition 60, π ⇒ e is an implementation of g in closure(P) that mat
hes (τ1, ..., τn) by (3).This shows by De�nition 48 that generi
 fun
tion g is 
overed in closure(P).We also need to prove that an implementation of a generi
 fun
tion g that is valid in a module M isvalid in a program P that 
ontains that module. LetM0 be the main module of P . Let the implementationbe π ⇒ e, τ be type(g), τ ′ be restrict(τ, π), and τe be type(e). Sin
e M is type 
orre
t by hypothesis, theimplementation is valid by De�nition 63. Therefore, by De�nition 45, τe ≤ τ ′ holds in A(M). By applyingRequirement 62 (Module import) to the 
hain of imports from P toM, A(M0) is an extension of A(M).Therefore, by De�nition 54, τ ≤ τ ′ also holds in A(M0), and the implementation is valid for the wholeprogram P .8.3 Early dete
tion of errorsChe
king 
overage and non-ambiguity must be done for the (whole) program, that is when all the imple-mentations and types are known. It is therefore ne
essary to postpone these 
he
ks until the whole program86



is known. However, this s
heme for 
he
king 
overage is problemati
 be
ause it leaves mu
h freedom aboutthe module in whi
h to de�ne a 
ertain implementation. This is arguably a problem from the software-engineering point of view. For example, it would be possible in our 
ompiler example of Figure 8.1 to omitthe implementation of eval in module NUMERIC. At the point of linking the modules together, the 
overagetest would fail for eval. Solving this failure would amount to adding the missing implementation. But sin
eit logi
ally belongs to module NUMERIC, this solution breaks modularity by for
ing the update of an already
ompiled module.Therefore, we believe it is a good design to 
he
k 
overage in every module. This 
he
k is done in thetyping 
ontext made of all de
larations present in this module and all the modules it imports transitively.Thus, apart from errors lo
al to the module, the 
overage test 
an only fail when a module imports a generi
fun
tion, and de�nes new types in its domain without providing the 
orresponding implementation, or when itimports two modules leading to the same situation. These are indeed the situation where an implementationlogi
ally belong to this module. The error 
an then be solved lo
ally by in
luding this implementation inthe module, without breaking any existing 
ode. This 
overage testing s
heme also enfor
es an intuitiveorganization of 
ode:
• when a module extends an existing data stru
ture, it must de�ne the implementations for all the generi
fun
tions that operate on this data stru
ture;
• when a module de�nes a new generi
 fun
tion, it must de�ne its implementations for all the datastru
tures in its domain.The list of all generi
 fun
tions and data stru
tures is drawn from the typing 
ontext de�ned at the beginningof this paragraph. An example of the �rst point is the implementation of eval in module NUMERIC; theimplementations of compile in module COMPILER illustrates the se
ond point.Additionally, the lo
ation where a method implementation is pla
ed 
an be further 
onstrained even inthe 
ase where it 
ould have been omitted. This is done by requiring that the implementation is written asearly as possible, instead of being delayed to 
lient modules. This requirement is formalized in the followingde�nition. In addition to improving the organization of programs, this rule is important in the presen
e ofsuper 
alls, as we illustrate in Chapter 9.De�nition 66 (Pre
o
ity rule) An implementation implementation g π ⇒ ... is not valid in a module

M if g and π are visible together in a single module imported by M.Furthermore, it is possible to make the 
overage test unne
essary, at the pri
e of a loss of generalityfor generi
 fun
tions. A well-known 
ase is mono-methods, used in obje
t-oriented languages with singledispat
h. These methods sele
t an implementation based on the runtime type of a distinguished �re
eiver�argument. Furthermore they are always de�ned together with the 
lass for whi
h they provide an imple-mentation. The 
overage test then redu
es to 
he
king that an implementation is present if none is inheritedfrom the parent 
lasses�whi
h 
ould happen if the parents are abstra
t. This 
he
k 
an therefore be donewith the sole knowledge of the 
lass de�nition and of its parents. In our presentation, this 
orrespondsto restri
t implementations to only one pattern on the �rst argument. It is then su�
ient to 
he
k thatwhenever a new type is de�ned, all ne
essary implementations are also provided. More elaborate restri
tionsfor multi-methods are studied in [33℄.8.4 Type inferen
e for open generi
 fun
tionsIt is an open problem to infer types for the generi
 fun
tions of Chapter 4. However, we 
laim here that it doesnot make sense to try to infer types for open generi
 fun
tions. In short, the idea is that inferen
e requires theknowledge of the implementation of the fun
tion. For open generi
 fun
tions, only some implementationsmight be known in a module. The type inferred might then be too pre
ise to 
apture the intent of thefun
tions, whi
h would either prevent proper implementation in 
lient modules, or break modularity byrequiring the imported module to be re-type-
he
ked.87



As a degenerate 
ase, it is perfe
tly legal to de
lare an open generi
 fun
tion with no implementationat all. This makes sense if the fun
tion operates on a hierar
hy rooted at an abstra
t 
lass, with no knownsub
lasses. That is to say that the module 
ould only 
ontain:generi
 gHow 
an we possibly infer a type for g? If we 
hoose ∀t.t, one will not be able to implement g in a 
lientmodule. Conversely, we 
ould pi
k an arbitrary type for g, but it would in general not mat
h the usage ofthe generi
. One possibility would be to infer the type from the usage of g in the 
urrent module. But it
ould happen that g is not used either, in whi
h 
ase the problem remains. Consequently, we believe that itis natural for users to de
lare the types of generi
s, sin
e they are toplevel de�nitions exported to the 
lientsof the module and sin
e their type is therefore the spe
i�
ation of their behavior.8.5 ML≤In this se
tion, we show that ML≤ is an appropriate type algebra for the modular type
he
king of multi-methods. To this end, we need to de�ne the type algebra asso
iated to a module, and show that it meetsRequirement 62 (Module import).An ML≤ type-stru
ture is asso
iated to ea
h moduleM with
TM = ({C | 
lass C ... ∈ typesig(M)}, {C1 ≤ C2 | 
lass C1 extends ..., C2, ... ∈ typesig(M)})The type algebra A(M) asso
iated to moduleM is then simply the ML≤ type algebra based on TM .Lemma 67 (Module import in ML-Sub) If module M imports module M′, then TM is an extensionof TM′ .Proof of lemma 67 (Module import in ML-Sub)By De�nition 61, all type 
onstru
tors (
lasses) ofM′ are inM, and the sub-
onstru
tor relations over type
onstru
tors are preserved. Moreover, every new sub-
onstru
tor de
larations 
on
ern new type 
onstru
tors.Therefore, by De�nition 54, TM is an extension of TM′ . Theorem 57 (Extension of a ML-Sub typealgebra) then shows that A(M) is an extension of A(M′).The proof of Requirement 62 (Module import) is a dire
t 
onsequen
e of this lemma and Theorem 57(Extension of a ML-Sub type algebra).8.6 ML≤ multi-methodsWe present here multi-methods as a parti
ular 
ase of open generi
 fun
tions. Multi-methods are generi
fun
tions whose patterns mat
h values depending on the 
lass these values are an instan
e of. We thereforede�ne a language of patterns to express su
h mat
hing. Furthermore, we de�ne the restri
tion predi
ate

restrict(·, ·) that guarantees the type-
orre
tness of multi-methods in the 
ase of the ML≤ type algebra.8.6.1 SyntaxThe abstra
t syntax for a multi-method de
laration is the same as for open generi
 fun
tions. However, for
larity, we repla
e the generi
 keyword by method:method m : τmMethod implementations are identi
al to generi
 fun
tion implementations, pre�xed by the implementationkeyword. 88



Patterns, the ∈ predi
ate and the restri
tion fun
tion remain to be de�ned. The language of patterns isde�ned by:
π ::= | @C | #CThe intent is that the pattern mat
hes any expression. The pattern @C mat
hes any instan
e of either
lass C or of one of its sub
lasses. This means that an implementation with pattern @C 
an also be usedfor sub-
lasses of C, whi
h is usual in obje
t-oriented languages. On the other hand, the pattern #C onlymat
hes instan
es of 
lass C. This pattern is ne
essary to implement some polymorphi
 multi-methods, forwhi
h no implementation 
an have a pre
ise enough type to be valid for any sub
lass. We shall illustratethis situation with an example in Se
tion 8.6.3. De�nitions 68 and 69 formalize this informal presentationof patterns.8.6.2 Type-
he
kingWe de�ne multi-methods as an instan
e of open generi
 fun
tions by providing the mat
hing and restri
tionpredi
ates, and we 
he
k that they meet their requirements.De�nition 68 (Pattern 
onstraint) For any pattern π and type τ we de�ne the pattern 
onstraint π(τ)by:

(∀ϑ. κ⇒ θ) = true
@C(∀ϑ. κ⇒ θ) = κ ∧ θ ≤ C[t]
#C(∀ϑ. κ⇒ θ) = κ ∧ θ = C[t]where t are lists of fresh type variables of length arity(C).De�nition 69 (Mat
hing) The relation τ ∈ π holds if and only if true |= π(τ) holds.De�nition 70 (Restri
tion) The restri
tion

restrict(∀ϑ. κ⇒ θ1 → ...→ θn → θ, π1...πn)is equal to
∀ϑt1...tn. κ ∧ ti ≤ θi ∧ πi(ti)⇒ t1 → ...→ tn → θand restrict(τ, π1...πn) is the error type E if τ is not a fun
tional type of textual arity n.Note that if restrict(τ, π) is not well-formed it is equal to E by De�nition 27 and the fa
t that E ismaximal.We 
an then prove that the Requirement 44 (Restri
tion) holds:Lemma 71 (Restri
tion)

τ ′
i ∈ πi (i = 1..n)

restrict(τm, π) τ ′
1 ... τ ′

n ≡ τm τ ′
1 ... τ ′

nProof of lemma 71 (Restri
tion)Let τm be ∀ϑ. κ⇒ θ1 → ...→ θn → θ, and τ ′
i be ∀ϑ′

i. κ
′
i ⇒ θ′i.By De�nition 70 and App:

restrict(τm, πi) τ ′
i = ∀ϑtiϑ

′
i. κ ∧ ti ≤ θi ∧ πi(ti) ∧ κ′

i ∧ θ′i ≤ ti ⇒ θ
τm τ ′

1 ... τ ′
n = ∀ϑϑ′

i. κ ∧ θ′i ≤ θi ∧ κ′
i ⇒ θThe proof of τm τ ′

1 ... τ ′
n ≤ restrict(τm, πi) τ ′

i is straightforward:
∀t.

κ ∧ ti ≤ θi ∧ πi(ti) ∧ κ′
i ∧ θ′i ≤ ti ∧ θ ≤ t

|= κ ∧ θ′i ≤ θi ∧ κ′
i ∧ θ ≤ t (MTrans)89



Conversely, restrict(τm, πi) τ ′
i ≤ τm τ ′

1 ... τ ′
n holds be
ause:

∀t.
κ ∧ θ′i ≤ θi ∧ κ′

i ∧ θ ≤ t
|= κ ∧ θ′i ≤ θi ∧ κ′

i ∧ πi(θ
′
i) ∧ θ′i ≤ θ′i ∧ θ ≤ t (τ ′

i ∈ πi)
|= κ ∧ ti ≤ θi ∧ κ′

i ∧ πi(ti) ∧ θ′i ≤ ti ∧ θ ≤ t (VarIntro : ti 7→ θ′i)Therefore, we 
an apply Theorem 49 (Generi
 fun
tions), whi
h shows that valid and 
overed multi-methods verify Requirement 9 (Constants). Using Theorem 65 (Modular type-
he
king), the typesoundness of modular programs with valid and 
overed multi-methods is therefore guaranteed.8.6.3 ExamplesThis se
tion illustrates the implementation and typing aspe
ts of multi-methods. Firstly, we 
onsider thede�nition of a generi
 method equals for stru
tural equality of values. We assume given a fun
tion identicalfor testing referen
e equality, to handle the general 
ase, and a re
ord type Point with a 
omponent x.method equals : ∀t. t→ t→ boolimplementation equals = identicalimplementation equals @Point @Point =
λp.λq. equalsp.x q.xThe �rst implementation is valid sin
e identical has type ∀t. t → t → bool. The se
ond implementationis valid sin
e it has inferred type Point→ Point→ bool and 
al
ulation in the ML≤ type algebra showsthat:

restrict(∀t. t→ t→ bool, @Point @Point)
≡ ∀t, t1, t2. t1 ≤ t ∧ t2 ≤ t ∧ t1 ≤ Point∧ t2 ≤ Point⇒ t1 → t2 → bool

≡ ∀t1, t2. t1 ≤ Point ∧ t2 ≤ Point⇒ t1 → t2 → bool

≡ Point→ Point→ boolWe 
an now implement the opp example of Chapter 4 in the 
on
rete 
ase of multi-methods with:method opp : ∀t. t ≤ num⇒ t→ timplementation opp #float = opp_floatimplementation opp #int = opp_intThis illustrates that # patterns are useful to implement methods with pre
ise types like opp, whi
h 
ouldnot be implemented using @ patterns: if we try to use pattern @float we �nd:
restrict(∀t. t ≤ num⇒ t→ t, @float) ≡ ∀t. t ≤ float⇒ t→ tIt would thus be invalid to use pattern @float with a fun
tion that returns a float. That would be unsoundindeed, sin
e this implementation 
ould be 
alled with a stri
t subtype (say rational) of float, in whi
h
ase opp's type requires that the result be type rational. On the other hand,

restrict(∀t. t ≤ num⇒ t→ t, #float) ≡ float→ floatThe reason why the implementation with pattern #float is sound is that this pattern does not mat
h thestri
t subtypes of float. The 
overage test will therefore ensure that an implementation exists for any su
hsubtype, and ea
h of these implementations will be required to return a result of the same type.The # patterns are also useful outside base type and operators. Consider the 
ase of a generi
 
ontainerhierar
hy. Container 
lasses List, Ve
tor, et
, derive from an abstra
t Container 
lass. It is natural to90



de�ne fun
tional operations on 
ontainers that return the same kind of 
ontainer as their argument. These
an be implemented using # patterns, and not by @ patterns:method map : ∀t, u, c ≤ Container. (c[t], t→ u)→ c[u]implementation map #List = ...new List...implementation map #Vector = ...new Vector...8.6.4 Semanti
sThe semanti
s is implied by the mat
hing relation, as de�ned in Chapter 4. We 
an now follow up onthe dis
ussion about the fa
t that this semanti
s depends on types. With the patterns des
ribed in thisse
tion, only the head type 
onstru
tor is needed to spe
ify redu
tions. In an obje
t-oriented language, thistagging information is already 
ommonly present at run-time. It 
orresponds to the new_C data 
onstru
torof Chapter 3. Multi-methods 
an thus be implemented without run-time typing.Furthermore, it is not fundamental to give an eager semanti
s. The patterns presented in this se
tiononly require the head type 
onstru
tor to be known in order to 
hoose the method implementation. Obje
t�elds 
ould therefore be 
omputed lazily. This is mu
h similar to the semanti
s of pattern mat
hing in lazylanguages, whi
h would make the introdu
tion of su
h multi-methods �t well in lazy languages.Algorithms for e�
ient redu
tion of multi-method operators (that is, implementation of multiple-dispat
h) 
an be found in [17, 15, 20℄.
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Chapter 9Super in a modular settingIn Se
tion 5, we formalized the semanti
s of super in a whole program. In parti
ular, the de�nition of thetarget of a super 
all uses the set of implementations of a method. As soon as a program has more than onemodule, it is possible that this set is not 
ompletely known in the 
urrent module. It is therefore relevantthat the target be resolved in the 
urrent module. We therefore start by formalizing the semanti
s of superin a modular setting.9.1 FormalizationThe super keyword de�ned in Se
tion 5 was annotated by the method it relates to and by the patterns ofthat method's implementation in whi
h it appears. We now additionally add an annotation for the modulein whi
h it appears. The de�nitions of its target and its semanti
s are then modi�ed to spe
ify that the setof implementation of the method is taken from that module's signature, as de�ned in De�nition 61.De�nition 72 (Modular target of super) Let m be a method, π be a list of patterns, M a module and
R a module repository. Then the target of superm,π,M in R is

target(superm,π,M) = max {π′ ⇒ e′ ∈ gensig(m, R) | π′ < π}Again, if there is no implementation of m with patterns less pre
ise than π, or none that is a maximum,the max is unde�ned, and target(superm,π,M) is ⊥. In that se
ond 
ase, the use of super is ambiguous,and therefore results in a type
he
king error.One 
an then de�ne the semanti
s of super:De�nition 73 (Modular redu
tion of super) Let m be a method, π be a list of patterns andM a mod-ule. If target(superm,π,M) is π′ ⇒ e′, then superm,π,M −→ e′.The type given to superm,π,M is the restri
tion of the type of m to the patterns of the target implemen-tation:De�nition 74 (Modular type of super) Let m be a method, π be a list of patterns, andMbe a module.Then the type of superm,π,M is de�ned by:
constant-type(superm,π,M) =

{

E if target(superm,π,M) = ⊥
restrict(constant-type(m), π′) if target(superm,π,M) = π′ ⇒ e′Theorem 75 (Modular super) For any well typed method m, module M and list of patterns π, the op-erator superm,π,M veri�es Requirement 9 (Constants).93



The proof is mostly identi
al to the non-modular version. The only di�eren
e lies in the fa
t that typinginequality guaranteed by the validity of the method implementation is known in the type algebra asso
iatedwith the module de
laring the implementation. One has to use the argument that the type algebra of thewhole program is an extension of that type algebra.Proof of theorem 75 (Modular super)1. Sin
e superm,π,M is well-typed by hypothesis, target(superm,π,M) is well de�ned by De�nition 74.Let then π′ ⇒ e′ be target(superm,π,M). By De�nition 73, superm,π,M −→ e′.2. Let π′ ⇒ e′ be the implementation target(superm,π,M). Let M0 the main module of the program.Let (A0,≤0) be the type algebra A(M0) and (A1,≤1) be the type algebra A(M).The only redu
tion rule for super is superm,π,M −→ e′. In this 
ase, we have by De�nition 74
type(superm,π,M) = restrict(type(m), π′) (1). Sin
e m is well typed, the implementation π′ ⇒ e′must be valid by De�nition 46. That is, by De�nition 45, type(e′) ≤1 restrict(type(m), π′). By Re-quirement 62 (Module import), A(M0) is an extension of A(M). Therefore, by De�nition 54,
type(e′) ≤0 restrict(type(m), π′). This shows, together with (1) that type(e′) ≤0 type(superm,π,M)holds.In pra
ti
e, the 
hoi
e to resolve the target in the signature of the o

urring module only is 
onvenient forthe purpose of separate 
ompilation, sin
e the super 
all 
an be resolved to the spe
i�
 target implementationwhi
h is known at the time the module is 
ompiled. This 
hoi
e also ensures that no ambiguity error forsuper 
alls arises when 
ombining independent modules together, whi
h 
ould be the 
ase if the target ofthe 
all was resolved taking into 
onsideration the whole program.9.2 Consequen
es of the pre
o
ity ruleIt is interesting to note that many 
ases where the resolution of the target of a super operator would bedi�erent in the non-modular program are in fa
t ruled out by the pre
o
ity rule (De�nition 66). That is,when an implementation is omitted although it 
ould have been de�ned, but it is present in another module,as in the following example:module M0 {
lass A}module M1 imports M0 {method m : A -> voidimplementation m �A = eA;}module M2 import M0 {
lass B extends A}module M1' imports M1,M2 {
lass C extends Bimplementation m �C = eC; // super in eC refers to m �A}module M2' imports M1,M2 {implementation m �B = eB;}program imports M1',M2' 94



This situation is ruled out by De�nition 66. The implementation of m for 
lass B is in
orre
t in moduleM2' be
ause of the pre
o
ity rule. Indeed, it 
ould have been done in module M1', where both m and B arevisible.
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Chapter 10Modular kindsIn Chapter 6, we have motivated the introdu
tion of kinding 
onstraints, and presented a formalization thatworks in a 
losed-world setting. In this 
hapter, we argue that this formalization is not suited to modulartype
he
king and we propose a revised solution that supports modular programming.10.1 The open world problemRules of Se
tion 6.5 were designed with a 
losed-world assumption. They are indeed sound in a 
losedworld. However, we now show with a simplisti
 example that using the same rules in an open-world wouldbe unsound.module M1 {interfa
ekind K
lass A : Kmethod f : <T : K> T->Timplementationf �A = fun x -> (new A)}module M2 imports M1 {interfa
e
lass B : Kvar b : Bimplementationlet b = M1.f (new B)} That is, if we type
he
k the module M1 in its type stru
ture with a single 
lass A implementing K andthen type
he
k M2 in the type stru
ture indu
ed by M1 (sin
e it is imported by M2) and M2, both modulestype
he
k su

essfully. However, taken as a whole, the program would fail. This shows that new rules haveto be given for type
he
king in an open world.Indeed, in module M1, the implementation of f �A must be a subtype of restrict(∀T : K. T → T, @A),whi
h is by de�nition ∀X, T. X ≤ A, X ≤ T, T : K ⇒ X → T . Its denotation is {A → A} sin
e the only
lass implementing the kind K is A. The type of fun x -> (new A) is ∀U. U → A, so its denotation in
ludes
A → A and it is a 
orre
t implementation for f �A. In module M2, the type of f whi
h is known from theinterfa
e of M1 to be ∀T. T : K ⇒ T → T 
an now be instantiated to B → B sin
e B : K. Therefore b has97



indeed type B and the module M2 is well typed. However, M1.f (new B) redu
es to (fun x -> (new A))(new B), whi
h redu
es to (new A), whi
h is not of type B. Subje
t-redu
tion does not hold.The problem obviously 
omes from the 
losed-world assumption: in M1 we assumed that the only 
lassimplementing K is A, however that is not true in the 
lient module M2. There are at least two possible pla
eswhere an error 
ould have been reported. As a �rst solution, the de
laration of 
lass B in module M2 
ouldbe invalid. However, this requires knowledge of the implementation of module M1: if we had written f �A= fun x -> x, 
lass B would raise no problem. Therefore, this �rst solution is non-modular, and we rule itout. Our solution is instead to take the open-world assumption. The implementation of f in module M1 willthen be de
lared in
orre
t on the ground that a sub
lass of A of kind K might be de
lared later. Formally,this amounts to the fa
t that ∀U. U → A is not a subtype of ∀X, T. X ≤ A, X ≤ T, T : K ⇒ X → T .Is it still possible to implement method f at all? The identity fun
tion is a 
orre
t implementation.However, it might indeed be the 
ase that a new obje
t must be returned. This is possible using our # pattern.Had module M1 implemented f with f #A = fun x -> (new A), this implementation would indeed have asubtype of restrict(∀T : K. T → T, #A), whi
h is by de�nition ∀X, T. X = A, X ≤ T, T : K ⇒ X → T ,that is ∀T. A ≤ T, T : K ⇒ A → T . This implementation would be sound be
ause it is only appli
able toinstan
es of 
lass A. The 
overage test would require that an implementation be provided for B. The use of# patterns gives the �exibility of the �rst solution. It retains modularity by using only information from thepatterns of the method implementations 
ontained in imported modules, whi
h have to be present in modulesignatures in order to be able to implement the 
overage test of multi-methods.However, it might be tedious to use # patterns in 
ertain 
ases, as it prevents to share the same imple-mentation for several 
lasses. For instan
e, it might be known by design that no sub
lass of A 
an be of kindK. In that 
ase, it would be useful to be able to de
lare this fa
t, and 
onsequently allow to implement fhomogeneously for A and all its sub
lasses, using the �A pattern. To support this situation, we introdu
e thepossibility to add abstra
ts annotations: 
lass C abstra
ts kind K if no sub
lass of C is allowed to have kindK. This is espe
ially useful to reason in an open-world setting, sin
e it tells us about all possible sub
lassesof C, even those that might be de
lared in other, unknown modules. In our previous example, 
lass BDDabstra
ts BooleanAlgebra, and 
lass Integer abstra
ts Num.Let us 
onsider how to use this information for type
he
king. We reuse module M1 from the previousexample, adding 
lass A abstra
ts K so that the implementation of f be
omes legal. The restri
ted typeof f to �A is, by de�nition, ∀X, T. X ≤ A, X ≤ T, T : K ⇒ X → T . We would like its 
onstraint to imply
A ≤ T . Consequently, ∀U. U → A would be a subtype of the restri
ted type, and the implementation wouldtype
he
k. Note that this 
an be done safely only if we know that no sub
lass of A will ever have kind K,whi
h is exa
tly what the de
laration 
lass A abstra
ts K ensures. Otherwise, an obje
t 
 of su
h a 
lassC 
ould be passed to f, and f(
) would have stati
 type C (by instantiating T to C), while this expressionwould redu
e to new A of type A, thus breaking subje
t-redu
tion.For ea
h kind K, we will de�ne the view of 
lass C for kind K, and write it viewK(C). The 
lass viewK(C),if it exists, must a 
lass to whi
h type C is mapped when viewed as an instan
e of kind K. In parti
ular,
viewK(C) is always a super
lass of C and always implements kind K. In that 
ase, and under the assumptions
X ≤ C, X ≤ T, T : K, we want to be able to 
on
lude that viewK(C) ≤ T . We formally de�ne views inthe next se
tion, and show that this 
on
lusion is indeed valid. In our example, viewK(A) is A itself and theimplementation of f type
he
ks.A fruitful way to look at views is that they de�ne, for ea
h kind, an abstra
t view of the 
lass hierar
hy. Forinstan
e, kind Num de�nes a view of the numeri
al 
lasses where Int32 and BigInt are mapped to Integer.This view is more abstra
t than the original hierar
hy be
ause it hides the details of the implementationof Integer. Note that viewNum(Float) does not exist, sin
e Float does not abstra
t Num. This leaves thepossibility to extend the hierar
hy with a new sub
lass of Float that implements Num.10.2 Open-world formalizationIn this se
tion we formally present an extension of ML≤ with kinds. We use the framework introdu
ed inChapter 7 to show that this extension leads to a modular type algebra.98



As in Se
tion 6.5, type stru
tures in
lude a set of kinds, a partial order on kinds and predi
ates forimplementation and abstra
tion of kinds by 
lasses, and 
onstraints in
lude the implementation of a kind bya type 
onstru
tor. Type stru
ture T ::= (C,K,≤, :, ::)Constraint κ ::= θ ≤ θ | φV ≤ φV | φV : KA kind is a name in K that represents a 
hara
teristi
 shared by a set of 
lasses. In a sense, kinds arethe type of 
lasses (te
hni
ally speaking, of type 
onstru
tors).When a 
lass C has the 
hara
teristi
 of a kind K, we will say that it implements this kind, and writeC : K. If a 
lass C abstra
ts a kind K, written C :: K, no sub
lass of C is allowed to implement that kind.While in many 
ases 
lasses that abstra
t a kind also implement it, there is no te
hni
al reason to enfor
ethis property.It is also possible to express that a kind K′ extends kind K, written K′ ≤ K. This states that whenevera 
lass implements K′, it also implements K. If we interpret views as an abstra
tion relation, K′ is thenmore abstra
t than K. We assume the existen
e of a kind 
alled Top that is a super-kind of all other kinds,implemented by every 
lass and abstra
ted by every �nal 
lass. 1We impose three requirements on type stru
tures to ensure the 
oheren
e of kind annotations:Requirement 76 (Kinds) A type stru
ture (C,K,≤, :, ::) is valid if:i. for all kinds K and K′ su
h that K′ ≤ K, for all 
lass C, if C : K′ then C : K.ii. for all kinds K and K′ su
h that K′ ≤ K, for all 
lass C, if C :: K then C :: K′.iii. for all kind K, for all 
lasses C and C′ su
h that C' ≤ C, if C :: K then C′ :: K.The �rst requirement simply expresses the notion of kind extension. The se
ond requirement is the dualof the �rst one. Sin
e no sub
lass of C 
an implement K (C :: K), it follows from the �rst requirement that nosub
lass of C 
an implement K′. The third requirement saturates the abstra
ts annotations: sin
e no sub
lassof C 
an implement K (C :: K), this is in parti
ular true for any sub
lass C′ of C. Therefore, we might as wellrequire C′ to abstra
t K. Note that a 
on
rete programming language would therefore not require abstra
tsannotations to be repeated on all sub
lasses, but would infer the annotations automati
ally.We 
an now de�ne views.De�nition 77 (View) If a 
lass C abstra
ts kind K and if there exists a 
lass C′ su
h that, for all 
lass C′′below C, C′ is the lowest 
lass above C′′ implementing K, then the view of 
lass C for kind K, written viewK(C),is the 
lass C′. Otherwise, viewK(C) = ⊥.A parti
ular 
ase 
on
erns �nal 
lasses. When C is a �nal 
lass, then viewK(C) is the least 
lass aboveit that implements K. The intuition here is that sin
e C is �nal, it 
annot have sub-
lasses, so there is nodi�
ulty to satisfy the downward-
losing property of K
−→ . For instan
e, with a �nal 
lass NativeFloatbelow Float, we would have NativeFloat Num

−→ Float.De�nition 78 (Type stru
ture extension) A type stru
ture T ′ extends a type stru
ture T if the follow-ing 
onditions are respe
ted:1. the 
onditions of De�nition 582. if cV : K in T , then cV : K in T ′3. if cV :: K in T , then cV :: K in T ′1 Top is spe
ial in the sense that we do not want the user to have to assert the above properties, but is has no spe
ialtreatment in the theory. It 
an thus been seen as synta
ti
 sugar.99



4. if K ≤ K ′ in T , then K ≤ K ′ in T ′5. if viewK(cV ) = c′V in T with c′V 6= ⊥, then viewK(cV ) = c′V in T ′We now introdu
e new axioms to deal with kinds.De�nition 79 (Constraint impli
ation with kinds) The 
onstraint impli
ation relation |= is the leastrelation that satis�es the axioms of Figure 10.1 and of Figure 2.5.TrivImp cV : K

∀ϑ. κ |= κ ∧ cV : K
Abs φV ≤ cV ∈ κ φV ≤ φ′

V ∈ κ φ′
V : K ∈ κ

∀ϑ. κ |= κ ∧ viewK(cV ) ≤ φ′
V

viewK(cV ) 6= ⊥EqImp φV = φ′
V ∈ κ φV : K ∈ κ

∀ϑ. κ |= κ ∧ φ′
V : K

ExtImp φV : K ′ ∈ κ K ′ ≤ K

∀ϑ. κ |= κ ∧ φV : KFigure 10.1: Axioms for kindsThe main axiom, Abs, de�nes how views augment the 
onstraint impli
ation relation. When a 
lass cVhas a view for kind K, and there exists a type 
onstru
tor φV below both cV and a type 
onstru
tor φ′
Vthat implements K, then we 
an 
onlude that viewK(cV ) is below φ′

V . This axiom is 
orre
t be
ause of theminimality 
ondition in De�nition 77.Using the framework of Chapter 7, we just need to prove the 
orre
tion and 
ompleteness of this axiom-atization, as de�ned by De�nition 55. By Theorem 57 (Extension of a ML-Sub type algebra), thisensures that extensions of the type stru
ture lead to extensions of the type algebra.Theorem 80 (Corre
tion and 
ompleteness of the axiomatization of kinds) For all type stru
ture
T , variable list ϑ and 
onstraints κ1 and κ2 in T , the 
onstraint impli
ation ∀ϑ. κ1 |= κ2 holds if and onlyif for all extension T ′ of T , for all ground substitution σ1 su
h that T ′ ⊢ σ1(κ1), there exists a groundsubstitution σ2 su
h that σ2

ϑ
= σ1 and T ′ ⊢ σ2(κ2).Proof of theorem 80 (Corre
tion and 
ompleteness of the axiomatization of kinds)We �rst 
onsider soundness, that is, the �if� part of the proposition. The original proof of [5℄ is by 
aseon the axioms. Sin
e we only strengthened the requirements on type stru
tures, the proofs for the existingaxioms 
arry on un
hanged. We thus only need to prove that the newly introdu
ed axioms are also sound.For all axioms, we 
hoose σ2 = σ1, and we write it σ. By De�nition 78, all the hypotheses on the typestru
ture T are also valid on T ′.
ase TrivImpBy hypothesis, σ(κ) holds in T ′. Furthermore, cV : K in T , and thus also in T ′ by De�nition 78.Therefore, σ(κ ∧ cV : K) holds in T ′.
ase AbsSin
e by hypothesis viewK(cV ) 6= ⊥ in T , viewK(cV ) has the same value in T ′ as in T ′ by De�nition 78.By hypothesis, 
lass σ(φ′

V ) veri�es σ(φ′
V ) ≥ σ(φV ), and σ(φV ) ≤ cV . By De�nition 77, viewK(cV ) isthe least su
h 
lass in T ′. Therefore viewK(cV ) ≤ σ(φ′

V ).
ase EqImpThis is trivial, sin
e ≤ is a partial order over the type 
onstru
tors of T ′.
ase ExtImp
K ′ ≤ K holds in T ′ by De�nition 78. By hypothesis, σ(φV ) : K ′. So by Requirement 76.i, σ(φV ) : K.100



We now prove 
ompleteness, that is, the �only if� part of the proposition. As in [5℄, we �rst 
onsider the
ase where κ1 is a well-formed 
onstraint in base form, that is without 
onstru
ted monotypes. In that 
ase,we 
an 
onstru
t a spe
i�
 extension of the type stru
ture T 1, whi
h assigns a 
onstant to every variablein ϑ. We shall prove that T 1 extends T and that for all ϑ-
losed 
onstraint κ, the 
onstraint impli
ation
∀ϑ. κ1 |= κ holds if and only if κ holds in T 1. This 
orresponds to lemma 18 in [5℄. The rest of the proof isthen un
hanged, from their lemma 19 to 21, whi
h proves 
ompleteness.Let us de�ne T 1. Let V 1 be the set of V type 
onstru
tors in T and of V type 
onstru
tors variables in
ϑ. Let T 1 be the set of type variables in ϑ. We de�ne partial orders ≤ and equivalen
e relations = on T 1and all V 1 by:

t ≤ t′ ⇔ ∀ϑ. κ1 |= t ≤ t′

φV ≤ φ′
V ⇔ ∀ϑ. κ1 |= φV ≤ φ′

V

t = t′ ⇔ t ≤ t′ and t′ ≤ t
φV = φ′

V ⇔ φV ≤ φ′
V and φ′

V ≤ φVWe build the type stru
ture T 1 by adding to T a 
onstant type 
onstru
tor for ea
h equivalen
e 
lass of
V 1 and T 1. Noting [φV ] the 
lass of φV , we de�ne T 1 with:

[φV ] : K in T 1 ⇔ ∀ϑ. κ1 |= φV : K
[φV ] :: K in T 1 ⇔ there exists cV in T su
h that ∀ϑ. κ1 |= φV ≤ cV and cV :: K hold in T
K ′ ≤ K in T 1 ⇔ K ′ ≤ K in TThese de�nitions do not depend on the 
hoi
e of φV in its equivalen
e 
lass thanks to axioms EqImp andCTrans.Let us 
he
k that T 1 is a type stru
ture. By de�nition, the relations ≤ are partial orders. For Require-ment 76 (Kinds):i. By hypothesis, K ′ ≤ K and [φV ] : K ′ hold in T 1. That is, by de�nition of T 1, K ′ ≤ K and
∀ϑ. κ1 |= φV : K ′ hold in T . Therefore, by ExtImp, ∀ϑ. κ1 |= φV : K hold in T . That is, by de�nitionof T 1, [φV ] : K holds in T 1.ii. By hypothesis, K ′ ≤ K and [φV ] :: K hold in T 1. That is, by de�nition of T 1, K ′ ≤ K and thereexists a 
lass cV in [φV ] su
h that cV :: K hold in T . Sin
e T is a type stru
ture, by Requirement 76(Kinds), cV :: K ′ holds in T . Therefore, by de�nition of T 1, [φV ] :: K ′ holds in T 1.iii. By hypothesis, [φ′

V ] ≤ [φV ] and [φV ] :: K hold in T 1. That is, by de�nition of T 1, ∀ϑ. κ1 |= φ′
V ≤ φVholds in T (1), and there exists a 
lass cV su
h that ∀ϑ. κ1 |= φV ≤ cV (2) and cV :: K hold in T (3).By Lemma 26 (Conjun
tion) with (1) and (2), ∀ϑ. κ1 |= φ′

V ≤ φV ∧ φV ≤ cV holds in T . Therefore,by CTrans and Triv, ∀ϑ. κ1 |= φ′
V ≤ cV holds in T . Therefore, by (3) and de�nition of T 1, [φV ] :: K ′holds in T 1.Let us now 
he
k that T 1 is an extension of T , up to the [_] quotient, as de�ned in De�nition 78.1. True by CStru
t.2. If cV : K in T , then by TrivImp ∀ϑ. κ1 |= cV : K holds in T . Therefore, [cV ] : K holds in T 1.3. By de�nition of abstra
tion in T 1, sin
e cV belongs to [cV ]4. By de�nition of T 15. By hypothesis, viewK(cV ) exists and is c′V in T . Therefore, by De�nition 77, cV abstra
ts K. Thatis, [cV ] abstra
ts K in T 1. Moreover, for all [φV ] su
h that [φV ] : K and that there exists [φ′

V ]su
h that [φ′
V ] ≤ [φV ] and [φ′

V ] ≤ [cV ], we have to prove that [c′V ] ≤ [φV ]. We have by hypothesis
∀ϑ. κ1 |= φ′

V ≤ φV : K ∧ φ′
V ≤ cV . Therefore, by Abs, ∀ϑ. κ1 |= c′V ≤ φV . That is, [c′V ] ≤ [φV ] in T 1.Therefore, viewK([cV ]) is [c′V ] in T 1. 101



It now remains to prove that for all ϑ-
losed 
onstraint κ, κ holds in T 1 if and only if ∀ϑ. κ1 |= κ holdsin T . First, suppose ∀ϑ. κ1 |= κ. By 
onstru
tion, κ1 holds in in T 1. Furthermore, we have proved that T 1is an extension of T . So we 
an apply the soundness property, whi
h proves, sin
e κ is ϑ-
losed, that κ holdsin T 1. For the 
onverse proof, we pro
eed by indu
tion on the stru
ture of κ.
ase κ = φV ≤ φ′
VBy hypothesis, κ holds in T 1. That is, [φV ] ≤ [φ′

V ]. Thus by de�nition of ≤ in T 1, ∀ϑ. κ1 |= φV ≤ φ′
V .
ase κ = θ ≤ θ′By hypothesis, θ ≤ θ′ in T 1. So by De�nition 23, θ = φV [θ] and θ′ = φ′

V [θ′], with φV ≤ φ′
V and

θ ≤V θ′ holding in T 1. So by de�nition of ≤ in T 1, ∀ϑ. κ1 |= φV ≤ φ′
V , and by indu
tion hypothesisand Lemma 26 (Conjun
tion), ∀ϑ. κ1 |= θ ≤V θ′. So, again by Lemma 26 (Conjun
tion), ∀ϑ. κ1 |=

φV ≤ φ′
V ∧ θ ≤V θ′. Therefore, by MIntro, ∀ϑ. κ1 |= θ ≤ θ′.
ase κ = φV : KBy hypothesis, φV : K holds in T 1. So by de�nition of T 1, ∀ϑ. κ1 |= φV : K.
ase κ = κ′

1 ∧ κ′
2By indu
tion hypothesis, ∀ϑ. κ1 |= κ′

1 and ∀ϑ. κ1 |= κ′
2. So by Lemma 26 (Conjun
tion), ∀ϑ. κ1 |=

κ′
1 ∧ κ′

2.The extension of ML≤ with kinds has been used as a type system of our programming language Ni
e.This has been very useful to spot interesting typing situations and 
he
k how they 
an be solved usingkinds. A note on synta
ti
 details is given in Appendix 13 to enable the reader to experiment with ourimplementation. We 
ould also verify that type-
he
king 
an be implemented e�
iently.10.3 LanguageIn this se
tion, we brie�y des
ribe a 
omplete programming language that supports kinds. We base ourpresentation on the generi
 framework of Chapter 1, thus illustrating its interest for fa
toring a large partof the presentation and the proofs. This framework is extensible in two dire
tions. First, an arbitrary typealgebra � a language for types equipped with a subtyping relation � 
an be used, provided it meets foursimple requirements. Se
ond, new operators 
an be de�ned to add features to the language. In parti
ular,multi-methods 
an be de�ned as operators.For the type algebra, we take the extended version of ML≤, as de�ned in Se
tion 10.2. In parti
ular,type 
onstraints in
lude kinding 
onstraints. For operators, we 
an simply reuse the multi-methods de�nedin Chapter 8. Their expressivity is automati
ally augmented by the possibility to in
lude kinding 
onstraintsin their types. Additionally, the surfa
e language needs to in
lude the possibility to de
lare new kinds, andto de
lare that a 
lass implements an existing kind. These de
larations have no evaluation semanti
s, but
reate the type stru
ture in whi
h subtyping is de�ned. The syntax for programs with multi-methods andkinding 
onstraints is:De
laration G ::= generi
 g : τImplementation I ::= implementation g π ⇒ eClass C ::= 
lass C extends C { ... }Kind K ::= kind KKinding KI ::= 
lass C implements KModule M ::= module M imports M ; let re
 G | I | C | K | KIProgram P ::= imports M eval eInterestingly, there is no need to add spe
i�
 rules to 
he
k the kind implementation de
larations. They
ome as a parti
ular 
ase of multi-method type
he
king and 
overage test: if 
lass C implements K and102



method f has type <T : K> T -> T, then the 
overage test will 
he
k that there exists an implementationof f that mat
hes 
lass C. Additionally, ea
h implementation will be for
ed to be type-
orre
t.Sin
e Theorem 80 (Corre
tion and 
ompleteness of the axiomatization of kinds) holds, themodular type
he
king s
heme of Chapter 8 is sound for these programs.10.4 Con
lusionIn Chapter 6, we have identi�ed the need to augment the expressiveness of type systems with polymorphismand nominal subtyping to handle two typing situations that o

ur in pra
ti
e. Our solution is to introdu
ekinds that des
ribe a property that types 
an de
lare to possess.In this 
hapter, we have proposed an extension of the ML≤ type system that implements that solutionwhile preserving the main properties of the system. The resulting system a
hieves modularity, sin
e it allowsmodules to be type-
he
ked independently and new 
lasses to be added in a hierar
hy 
ontaining partiallypolymorphi
 methods. We have implemented this type system in the Ni
e programming language, showingin parti
ular that type-
he
king remains tra
table.
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Part IVPra
ti
e
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Chapter 11Code generation11.1 Monomorphi
 byte
ode languageWe de�ne in this 
hapter a target language for 
ompiling our high-level language with 
lasses and multi-methods. One goal is to show how our language 
an be 
ompiled to a low-level sta
k language that is expli
itlytyped and in
ludes the veri�
ation of 
ode before running it. This is useful, sin
e su
h low-level languagesare be
oming 
ommon, in parti
ular with Java byte
ode [31℄ and the Common Language Infrastru
ture.However, many features of these languages are not ne
essary for this presentation. For instan
e, sin
etheir dispat
h is limited to one argument, it will be ne
essary to express multiple dispat
h with more primitiveoperations. Therefore, we 
an ignore single dispat
h for the sake of simpli
ity. We 
hoose to formalize asubset of the Java byte
ode. This 
hoi
e makes the presentation more pra
ti
al by allowing 
ompilation toan existing and widespread ar
hite
ture. Furthermore, it stays valid for similar targets that in
lude the samesubset of features that we use.Byte
ode type T ::=Class name CArray | T []Variable name xMethod name mByte
ode expression B ::=
load x

| store x in B
| call m
| cast T
| iftrue B else B
| instanceof C
| exactinstanceof C
| true | false
| new C
| field C.iSequen
e | B; BByte
ode value V ::= true | false | V ; new CFun
tion de�nition F ::= static method m(T x) : T {B; return}Class de�nition D ::= class C extends C′ { Tfield; }Figure 11.1: Byte
ode107



The syntax of byte
ode types, byte
ode expressions and fun
tion de�nitions is given in Figure 11.1.Sin
e all methods are stati
, only one type of 
all is used, whi
h 
orresponds to invokestatic in the JVM.Therefore, we simply 
all it 
all. The fa
t that store has an expli
it s
ope enables us to express moresimply a redu
tion semanti
s. This s
ope 
orresponds to the lifetime asso
iated to lo
al variables in theJVM.The obje
ts that are instan
es of a 
lass C are represented by a sequen
e of values for ea
h �eld followedby the operator new C. This 
orresponds to pushing the values of the �elds on the sta
k before 
alling the
new C operator.The byte
ode expression exactinstanceofC is not part of the JVM. However, it 
an be emulated easily,for instan
e by using the instru
tions to retrieve the 
lass of the value, then to get the name of that 
lassand to 
ompare it with the name of 
lass C. This 
orresponds to the byte
ode

call Object.getClass; call Class.getName; nameOfC; call Object.equalswhere nameOfC is the fully quali�ed name of C.We denote by C the types of the byte
ode language. They 
orrespond exa
tly to 
lass names. They areordered by the subtype ordering, whi
h is de
lared by the heritage relation on 
lasses.
true; iftrue B1 else B2 −→ B1 false; iftrue B1 else B2 −→ B2

m de
lared with static method m(T1 x1, ..., Tn xn) : T {B; return}

V1; ...; Vn; call m −→ V1; ...Vn; store xn in ... store x1 in B

V ; store x in B −→ B [(load x)← V ]

lass C′ extends C

V ; new C′; cast C −→ V ; new C′
lass C′ extends C

V ; new C′; instanceof C −→ true


lass C′ does not extend C

V ; new C′; instanceof C −→ false

V ; new C; exactinstanceof C −→ true
C′ 6= C

V ; new C′; exactinstanceof C −→ false

V1; ...; Vn; new C′; field C.i −→ Vshift(sc(C′),C)+i

B1 −→ B′
1

B1; B2 −→ B′
1; B2Figure 11.2: Byte
ode semanti
sA redu
tion semanti
s on these expressions is given in Figure 11.2. We do not try to model side e�e
ts.The generalization to referen
es is indeed orthogonal to our fo
us, whi
h is the implementation of multi-methods and the translation of polymorphi
 
ode into veri�able monomorphi
 
ode. Therefore, we do notneed an evaluation environment. Furthermore, we suppose for the sake of simpli
ity that every expressionvariable has a di�erent name, in order to avoid expli
it renamings.The �rst redu
tion expresses that a true value followed by an iftrue operator redu
es to the �rst bran
h.A fun
tion 
all redu
es, when arguments are evaluated to values, to the expression storing the values in theformal parameters and evaluating the body of the fun
tion. Store expressions redu
e by substituting thevalue for instan
es of loads for the 
orresponding variable in the body of the store expression. A cast Cexpression redu
es provided that the instan
e is built on a sub
lass of C. Sin
e we are interested in 
ompilingtype-safe programs to byte
ode, we are only interested in showing that 
asts never fail. In that setting, itis su�
ient to let the unsu

essful 
ase be stu
k, sin
e we don't model ex
eptions. The instanceof and

exactinstanceof expressions redu
e a

ordingly to the 
lass upon whi
h the value is built. The redu
tion108



of �eld a

essed requires the 
omputation of the rank di�eren
e of the �eld between the de
laring super-
lassand the 
lass the value is an instan
e of. This rank di�eren
e is de�ned as in Se
tion 3.2 using the shiftoperator. The list of �elds de
lared by a 
lass, Fields(_), as well as the full list of �elds, AllF ields(_), arealso used in this se
tion. Finally, sequen
e expressions redu
e if their pre�x redu
e.11.1.1 Type 
he
kingThe byte
ode is submitted to type-
he
king before being exe
uted. Figure 11.4 de�nes the Γ; S ⊢ B : S′relation, whi
h infers the byte
ode types S′ on the sta
k after evaluation of a byte
ode expression B, givena type environment Γ and the types S on the sta
k before the evaluation.
C ≤ C

class C extends C′

C ≤ C′

C ≤ C′ C′ ≤ C′′

C ≤ C′′

T ≤ T ′

T [] ≤ T ′[]Figure 11.3: Subtyping
Γ, x : T ; S ⊢ load x : S, T

Γ, x : T ; S ⊢ B : S′

Γ; S, T ⊢ store x in B : S′

m de
lared with static method m(T1 x1, ..., Tn xn) : T {...} ∀i ∈ 1..n T ′
i ≤ Ti

Γ; S, T ′
1, ..., T

′
n ⊢ call m : S, T

Γ; S, T ′ ⊢ cast T : S, T

Γ; S ⊢ B1 : S, T1 Γ; S ⊢ B2 : S, T2

(T2 ≤ T1 = T ) or (T1 ≤ T2 = T )

Γ; S, boolean ⊢ iftrue B1 else B2 : S, T

Γ; S, T ⊢ instanceof C : S, boolean Γ; S, T ⊢ exactinstanceof C : S, boolean

Γ; S ⊢ true : S, boolean Γ; S ⊢ false : S, boolean
AllF ields(C) = T1, ..., Tn ∀i T ′

i ≤ Ti

Γ; S, T ′
1, ..., T

′
n ⊢ new C : S, C

C′ ≤ C Fields(C) = T1, ..., Tn

Γ; S, C′ ⊢ field C.i : S, Ti

Γ; S ⊢ B1 : S′ Γ; S′ ⊢ B2 : S′′

Γ; S ⊢ B1; B2 : S′′Figure 11.4: Type 
he
kingA load expression pushes the type of the loaded expression on the type sta
k. The expression store

x in B produ
es the same type sta
k as the expression B in the 
ontext where x has the top type of thein
oming sta
k. A fun
tion 
all pops the types of the arguments and pushes the return type, provided thatthe argument types are subtypes of the de
lared parameter types. The expression cast T 
hanges the toptype to T . An iftrue expression requires the top type to be boolean, and pushes the type produ
ed byeither bran
h provided it is greater than the one of the other bran
h. instanceof and exactinstanceofpop an arbitrary type and push the boolean type. true and false push the boolean type. The expression
new C pushes type C provided the types on top of the sta
k are subtypes of the 
orresponding �eld types.A �eld a

ess expression field C.i pops a subtype C′ of C and pushes the type of the ith �eld of 
lass C.Finally, a sequen
e B1; B2 produ
es the same sta
k as B2 produ
es with the in
oming sta
k being the oneprodu
ed by B1. 109



11.2 Monomorphi
 instan
es of polytypesThe type system de�ned in the previous se
tion is very limited 
ompared to ML≤. In parti
ular, it does notin
lude type 
onstru
tors, fun
tional types and polymorphi
 
onstrained types. ML≤ types must thereforebe translated into byte
ode types, in parallel with the translation of high-level expressions into byte
odeexpressions. This translation must verify the following 
onstraints:
• the generated byte
ode must have the same semanti
s as the sour
e program;
• the generated byte
ode must be well-typed a

ording to the byte
ode type system;
• as far as possible, the translation must allow fast exe
ution of the generated byte
ode.The se
ond point is debatable. One 
ould also 
hoose not to respe
t the byte
ode type system andrely on the possibility of some virtual ma
hines to swit
h o� byte
ode veri�
ation. Supposing the sour
eprogram was well-typed, the �rst point still ensures that no error will o

ur at runtime. However, the user ofa released 
ompiled program would not have any guarantees that the program is safe. Furthermore, virtualma
hines 
an suppose that the exe
uted byte
ode is veri�able. It is therefore possible that they performsome optimizations that be
ome in
orre
t on non-veri�able byte
ode. Therefore, it seems that this approa
hwould require a modi�ed byte
ode format, together with a modi�ed virtual ma
hine to exe
ute it. In that
ase, the format 
ould as well in
lude other features, su
h as multiple dispat
h. While this approa
h is alsointeresting, we do not explore it here.In this se
tion, we motivate our 
hoi
es for the translation of ML≤ types into byte
ode types, before for-malizing that translation in Se
tion 11.3. We �rst 
onsider types build by the appli
ation of type 
onstru
torsto other types, before ta
kling the more di�
ult 
ase of polymorphi
 
onstrained types.11.2.1 Type Constru
torsParameterized 
lassesThe translation of a parameterized 
lass de�nition is done by erasure, as in Pizza [37℄: a non-parameterizedbyte
ode 
lass is de�ned, whose �elds have the byte
ode translation of their type.The translation of a type C[θ] 
onstru
ted on a parameterized 
lass C is simply C.Fun
tional typesLambda-abstra
tions are 
ompiled into obje
ts that 
ontain the 
aptured variables of the environment anda �nal method with a 
anoni
al name (apply) that represents the fun
tion. A fun
tional type is thereforetranslated into a byte
ode interfa
e type that de
lares a method apply with one argument for ea
h argumentof the lambda-abstra
tion.At �rst sight, one 
ould want to de
lare in this interfa
e type the byte
ode type of the arguments and thereturn type of the fun
tion. This would allow the byte
ode of the lambda-expression and of its 
alls to usea better approximation of their type, therefore avoiding in some 
ases to need a 
ast. However, this wouldmake impossible the dire
t use of a fun
tional expression as parameter of a higher order fun
tion, as soonas the byte
ode type of this expression is not exa
tly the one expe
ted. It would in parti
ular be the 
asefor polymorphi
 fun
tions and for fun
tions whose domain is larger, or whose 
odomain is smaller, than theexpe
ted type. These 
ases are valid in ML≤ but would not be in the byte
ode, sin
e it has only invarian
erules for the type of methods in sub
lasses. For instan
e, given types C ≤ B ≤ A, type B → B would betranslated into an interfa
e 
ontaining the method B apply(B), and a value of type A→ C would 
onsist ofan instan
e of a 
lass with a method C apply(A). However, that latter 
lass 
annot be made to implementthe interfa
e. Therefore, in the byte
ode, the value 
annot be used dire
tly where type B → B is expe
ted,even though that is valid in the sour
e language.One 
ould 
onsider adding a 
ast towards the expe
ted fun
tional interfa
e type. This 
ast would onlysu

eed if the 
lass of the fun
tional value expli
itly de
lares implementing this interfa
e. This is impra
ti
al:110



for a value of type ∀T. T → T , this would amount to implementing the fun
tional interfa
e type of everytype o

urring in the program. Besides the sheer number of those, this would pose a problem for separate
ompilation.Another solution is to insert problemati
 fun
tional value inside another one de
laring the expe
tedfun
tional interfa
e type, redire
ting 
alls to the original fun
tion and 
ast the result to return the expe
tedtype. This solution has a runtime 
ost of one 
losure 
reation for every fun
tional value passed as an argumentwith a di�erent type, plus one indire
tion and a 
ast per 
all of this fun
tional value.A simpler solution for fun
tional types is to use only one interfa
e per arity, every parameter and returntype being Object. The runtime 
ost is of one 
ast for ea
h argument and for the return type per 
all,ex
ept when used polymorphi
ally. Compared to the previous solution, this one is advantageous if lambda-expressions are often polymorphi
 and have typi
ally few arguments. Furthermore, it avoids the 
reationof numerous fun
tional interfa
e types, ea
h one in
urring a 
ost at its �rst use in the virtual ma
hine.Furthermore, it is ideal in the 
ase where 
asts 
an be dea
tivated when the byte
ode is trusted, sin
e typingguarantees that they will not fail.Only this last solution has been implemented. A 
omparison of the two approa
hes on 
on
rete exampleswould be ne
essary to 
on
lusively de
ide whi
h one is most e�
ient.ArraysArrays are the only parameterized types in Java byte
ode. They are 
ovariant, whi
h imposes a runtimeveri�
ation during writes inside arrays, possibly failing with an ArrayStoreException. In Ni
e, arraysare invariant. Typing is therefore more restri
tive (although polymorphism allows to express naturallypolymorphi
 fun
tions on arrays, provided they respe
t their types). By translating a ML≤ array type tothe byte
ode array type whose elements are the translation of the type parameter, the byte
ode type systemis therefore automati
ally respe
ted. Furthermore, generated programs never lead to runtime errors whilewriting arrays elements be
ause of the type of the element.11.2.2 Constrained polymorphi
 typesIndeed, those types represent in general a set of monomorphi
 type instan
es that are equivalent to no singlemonomorphi
 type. The translation is therefore only an approximation. Our goal is to �nd an optimalmonomorphi
 approximation for any polytype.ExampleLet f be a fun
tion of type ∀T ≤ A. T → T , where A is a 
lass that has a sub
lass B. We need to �nda byte
ode type for the domain D and the 
odomain C of f . The 
hoi
e of those two types is 
onstrainedboth by the byte
ode implementation of the fun
tion and by the 
all sites of f .Two requirements have to be met, sin
e they originate from reasoning on the runtime types of values.Ignoring them would lead to a possible 
ast error at runtime. Firstly, the values returned by f might beinstan
es of both A and B. The byte
ode 
odomain must therefore verify C ≥ A (and C ≥ B, but this lastrequirement is weaker than the previous one). Se
ondly, the argument passed during a 
all to f 
an be aninstan
e of A or B, whi
h 
onstraints the domain with D ≥ A.Two other 
ontexts show what byte
ode type is expe
ted, and therefore allow to know what pre
ise valueto 
hoose for C and D to minimize the number of 
asts: the 
ode of f is typed under the hypothesis T ≤ A,and T is the type of the parameter of f . Therefore, all the operations done on this parameter must be validfor T = A. If we 
hoose D = A, we therefore guarantee that no 
ast is ne
essary in the 
ode generated for
f . On the other hand, the value returned by a 
all to f 
an in general be used with type T , instantiatedfor this parti
ular 
all, either in A or in B. Sin
e the 
hoi
e of the 
odomain is 
onstrained by C ≥ A, we
annot avoid a 
ast for the 
ase T = B. On the other hand, by 
hoosing C = A rather than C = Object,we avoid a 
ast in the 
ase T = A.This example suggests that the optimal valid translation for a polymorphi
 fun
tion is obtained when
hoosing the greatest instan
e of the type parameters. We shall now formalize and prove this rule.111



11.3 Compilation11.3.1 TypesA 
losed monotype is translated by erasure into a byte
ode type. Only array types are parameterized by thetype of their 
omponents.De�nition 81 (Erasure for monomorphi
 types) Given a ground monotype θ, its erasure BC(θ) isde�ned by: Array type BC(Array[θ]) = BC(θ)[]Constru
ted monotype BC(cV [m]) = BC(cV ) (cV 6= Array)Fun
tion type BC( θ1 → θ2) = Funwhere cV 7→ BC(cV ) is a one-to-one mapping from type 
onstru
tors to byte
ode 
lass names, and Fun is a
lass with a single method Object apply(Object).Lemma 82 (Covarian
e of the byte
ode translation) Let θ and θ′ be two ground monotypes su
h that
θ ≤ θ′. Then BC(θ) ≤ BC(θ′).Proof of lemma 82 (Covarian
e of the byte
ode translation)If either θ or θ′ are fun
tion types, then both are sin
e θ ≤ θ′ holds. Therefore, both of their translationsare Fun, and the result holds.Otherwise, let θ be cV [θ] and θ′ be c′V [θ

′
]. By De�nition 23, sin
e θ ≤ θ′, we have cV ≤ c′V and θ ≤V θ′.
ase c′V = ArraySin
e Array is a �nal 
lass and sin
e cV ≤ Array, we also have cV = Array. Furthermore, Arrayhas signature V = (⊗) (that is, it is an invariant type 
onstru
tor), so θ = θ′ = θ0. Thus, BC(θ) =

BC(θ′) = BC(θ0)[].
ase c′V is a 
lass di�erent from ArraySin
e cV ≤ c′V , cV is also a 
lass di�erent from Array. Therefore, BC(θ) = cV and BC(θ′) = c′V .Furthermore, the type 
onstru
tors verify cV ≤ c′V , so the byte
ode 
lasses also verify BC(cV ) ≤
BC(c′V ).The translation of polymorphi
 type is done by instantiation into the most general monotype. For methodtypes, the domain and the 
odomain are translated independently.De�nition 83 (Erasure for polymorphi
 types)

BCκ(θ) = mub {BC(σ(θ)) | σ(κ)}

BC(∀t. κ⇒ θ) = BCκ(θ)

domi(∀t. κ⇒ θ1 → ...→ θn → θ) = BCκ(θi)

codom(∀t. κ⇒ θ1 → ...→ θn → θ) = BCκ(θ)where mub is a fun
tion mapping a set of byte
ode types to one of their minimal upper bounds.For a set of byte
ode types, Object is always an upper bound. With multiple inheritan
e, there 
an beseveral minimal upper bounds. For our purposes, it does not matter whi
h one is 
hosen, sin
e any upperbound would be 
orre
t. The minimality just helps keeping the byte
ode type as informative as possible,and potentially redu
es the number of 
asts needed inside the implementation of methods.This 
omputation is stable by extension of the set of types, so it is 
ompatible with separate 
ompilation.Indeed, the new byte
ode types are always smaller than the existing ones, sin
e only sub
lasses of existing
lasses 
an be added. Thus, by Lemma 82 (Covarian
e of the byte
ode translation), they do notmodify the result of the 
omputation of the minimal upper bound.112



11.3.2 ProgramsThe goal of this se
tion is to de�ne a translation BC(·) from sour
e programs of Chapter 4 into byte
odethat veri�es the following theorem. We use a 
all-by-value semanti
s.Theorem 84 (Compilation) Let p be let re
 D in e and BC(p) be its byte
ode translation. If p is well-typed, then BC(p) is a well-formed byte
ode program. Furthermore, let v be a value su
h that e −→ v and
τv = type(v). Then BC(e) −→ BC(v) and the byte
ode value BC(v) has byte
ode type BC(τv).De�nition 85 (Byte
ode translation) Given an expression e, we de�ne its translation BC(e) by 
aseon e. For a variable x, its translation is load x.Given the expression let x1 be e1 in e2, let ∀ϑ1. κ1 ⇒ θ1 be type(e1) and
∀ϑ2. κ2 ⇒ θ2 be type(let x1 be e1 in e2). Then BC(let x1 be e1 in e2) is de�ned as
BC(e1); cast BCκ2

(θ1); store x1 in BC(e2).A lambda-abstra
tion λx.e is translated into an obje
t with a single method:
new Fun(){ Object apply(Object x) { BC(e) }}.For an appli
ation of the form c e1 ... en, where c is an operator of arity n, its translation is
BC(ei); cast domi(type(c)); BCCall(c), where

BCCall(m) = call m

BCCall(new C) = new C

BCCall(C.i) = field C.iFun
tional 
onstants that are not dire
tly applied to all of their arguments are 
ompiled in their eta-expansed form. Let n be arity(c) and p be a number, with 0 ≤ p < n. Then BC(c e1 ... ep) is equal to
BC(λxp+1...xn.c e1...ep, xp+1...xn).An appli
ation e1 e2 where e1 is not a 
onstant is translated into
BC(e1); cast Fun; BC(e2); call Fun.apply.Finally, BC(true) is true and BC(false) is false.For a method de�nition method m : τ (πi,1, ..., πi,n)⇒ λx1...xn.ei, its byte
ode translation is

static method m(dom1(τ) x1, ..., domn(τ) xn) : codom(τ)
{

BCπ1,1
(load x1); BCπ1,2

(load x2); and; ...; BCπ1,n
(load xn); and; iftrue BC(e1)

else ...
else BCπp−1,1

(load x1); BCπp−1,2
(load x2); and; ...; BCπp−1,n

(load xn); and; iftrue BC(ep−1)
else BC(ep);
cast codom(τ); return

}where
BC@C(B) = B; instanceof C

BC#C(B) = B; exactinstanceof C

BC@_(B) = trueFor a 
lass de
laration class C[t] extends C1, ..., Cm {f1 : F1(t), ..., fp : Fp(t)}, its byte
ode translationis
class C extends C1, ..., Cm { BCtrue(F1(t)) f1; ..., BCtrue(Fp(t)) fp; }For 
ompiling methods, we suppose that the implementations are ordered with respe
t to the spe
i�
ityof patterns. That is, su
h that for all numbers i and j, i < j =⇒ πj 6≤ πi. This is always possible, sin
e thesour
e program is well-typed, while two equal patterns would lead to an ambiguity error.113



For let expressions, we 
ast the bound value to be of type BCκ2
(θ1). It would be 
orre
t to 
ast it to beof type BCκ1

(θ1) instead. However, sin
e κ2 is the 
onstraint for the whole expression, it is a superset of κ1,as 
an be 
he
ked in De�nition 28. Therefore, BCκ1
(θ1) is a more pre
ise (that is, smaller) byte
ode type,whi
h takes into a

ount the way the bound variable is used in the body of the let expression. By giving amore pre
ise byte
ode type to x1, this potentially redu
es the number of 
asts needed in the translated body.At the same time, this initial 
ast is guaranteed to su

eed sin
e the whole sour
e expression is well-typed,as we show in the proof of Theorem 84 (Compilation).We 
an observe that many 
asts 
an be erased, as soon as the byte
ode typing ensures that the expressionon the sta
k has a subtype of the desired type. This happens often in pra
ti
e1, both in fully monomorphi

ode and in fully polymorphi
 
ode. Casts are only ne
essary at the border between these two kinds of 
ode,that is, when a value with a known monomorphi
 type is passed to a polymorphi
 fun
tion and the result ofthe 
all is used with its stati
ally known monomorphi
 type.In our translation, 
asts are performed before method 
alls and before storing the value of a let-boundvariable. It would be possible to pla
e them di�erently. For instan
e, one 
ould 
ast the result of method
alls and of loads, whi
h would guarantee that the types on the sta
k are always as pre
ise as they 
an be.The translation we 
hose has two advantages. Firstly, it easily guarantees that byte
ode is well-typed, sin
e a
ast is inserted if ne
essary before ea
h 
he
ked instru
tion, that is method 
alls and �eld a

esses. Se
ondly,this translation redu
es the number of 
asts that are needed. For instan
e, if the result of a method 
all isnot used, no 
ast is performed. On the other hand, if this result is bound by a let to be used several times,the 
ast is made before the binding, to avoid a possible 
ast at ea
h use.We assign methods a return type whi
h is the monomorphi
 approximation of their 
odomain. Thisrequires in general a 
ast before the return instru
tion sin
e the implementation of the method 
an usepolymorphi
ally typed fun
tions, whi
h entails a loss of typing information. Alternatively, one 
ould give allmethods a return type of Object (and thus avoid the 
ast) and rely on the other 
asts to be performed asneeded. This would redu
e the number of 
asts when the result is not used with a spe
i�
 type, but wouldin
rease it if the 
ast inside the method was redundant and the approximation was su�
ient for the waythe result was used. Furthermore, our solution has the advantage of giving methods a more intuitive type,whi
h is useful when looking at the generated 
ode or using it in a 
all from a di�erent language using thesame byte
ode.For 
lasses, the translation of �eld types is, given De�nition 83, a minimal upper bound of the translationof all possible instantiations for the 
lass type parameters. This implies that the type parameters, if theyappear at all in the translated type, are translated to the byte
ode type Object.Lemma 86 (Byte
ode pattern test) Let v be a well-typed value and π be a pattern. Then v ∈ π holds ifand only if BCπ(BC(v)) −→∗ true holds.Proof of lemma 86 (Byte
ode pattern test)The proof is by 
ase on π. Let type(v) be ∀ϑ. κ⇒ θ.
ase π = @CThen v ∈ π amounts to true |= κ ∧ θ ≤ C[t]. Therefore, by Requirement 38 (Class type), v =new C′ v1 ... vn, where C′ is a sub
lass of C (1). Thus, BC(v) is BC(v1); ...; BC(vn); new C′. Thus,

BCπ(BC(v)) is BC(v1); ...; BC(vn); new C′; instanceof C. So, by the semanti
s of Figure 11.2 and(1), BCπ(BC(v)) −→ true.Conversely, if BC(v); instanceofC −→ true, then by Figure 11.2BC(v) = V1; ...; Vn; new C′ where C′is a sub
lass of C. Therefore v is of the form new C′ v1 ... vn. By de�nition, constant-type(new C′) =
∀t. F ′

1(t) → ... → F ′
n(t) → C′[t] where [F ′

1, ..., F
′
n] = AllFields(C′). So by App, θ is of the form C′[t′].Let V be the varian
e of C and C′ and t be a list of arity(V ) fresh type variables. Then,1In the sour
e 
ode of the 
ompiler for Ni
e, from 90 to 95% of the 
asts theoreti
ally needed are unne
essary for this reason.114



true
|= κ (v is well-typed)
|= κ ∧C′ ≤ C (C′ sub
lass of C)
|= κ ∧C′ ≤ C ∧ t′ ≤V t′ (MRef)
|= κ ∧C′ ≤ C ∧ t′ ≤V t (VarIntro with σ(t) = t′)
|= κ ∧C′[t′] ≤ C[t] (MIntro)That is to say that v ∈ @C holds.
ase π = #CThen v ∈ π amounts to true |= κ ∧ θ = C[t], and therefore in parti
ular true |= κ ∧ θ ≤ C[t].So by Requirement 38 (Class type), v = new C′ v1 ... vn, where C′ is a sub
lass of C. Sin
etrue |= κ ∧ θ = C[t], C′ is a
tually equal to C. So BC(v) is equal to BC(v1); ...; BC(vn); new C.Furthermore, BCπ(BC(v)) = BC(v1); ...; BC(vn); new C; exactinstanceof C. So, by the semanti
sof Figure 11.2, BCπ(BC(v)) −→ true.Conversely, if BC(v); exactinstanceofC −→ true, then by Figure 11.2BC(v) = V1; ...; Vn; new C. So
v is of the form new C v1 ... vn. By de�nition, constant-type(new C) = ∀t. F1(t)→ ...→ Fn(t)→ C[t]where [F1, ..., Fn] = AllFields(C). So by App, θ is of the form C[t]. Let V be the varian
e of C and t′be a list of arity(V ) fresh type variables. Then,true
|= κ (v is well-typed)
|= κ ∧C = C (CRef)
|= κ ∧C = C ∧ t =V t (Ref)
|= κ ∧C = C ∧ t =V t′ (VarIntro with σ(t′) = t)
|= κ ∧C[t] = C[t′] (MIntro)That is to say that v ∈ #C holds.
ase π = _Then by de�nition BCπ(BC(v)) = true.Conversely, true |= true, therefore v ∈ _.We prove spe
ial properties about values. Firstly, we show that the type of a value is spe
ial in that thebyte
ode translation of all its instan
es are the same byte
ode type.Lemma 87 (Value types) Let v be a value of type τv = ∀ϑv. κv ⇒ θv. Then for all ground substitution σ,

BC(σ(θv)) is equal to BC(τv).Proof of lemma 87 (Value types)It is su�
ient to show that the type BC(σ(θv)) does not depend on σ. By De�nition 83, this will show thatthat type is BC(τv). The proof is by 
ase on v.
ase v = true, v = falseThen τv is Boolean. Therefore, for all substitution σ, BC(σ(θv)) is Boolean.
ase v = new C v1 ... vnThen τv is ∀t1, ..., tn. κ1 ∧ θ1 ≤ t1, ..., κn ∧ θn ≤ tn ⇒ C[t1, ..., tn]. Therefore, for all substitution σ,
BC(σ(θv)) is BC(C). 115




ase v = λx.eBy De�nition 28, for any σ, σ(θv) is a fun
tional type. Therefore, by De�nition 81 and De�nition 83,
BC(σ(θv)) is the byte
ode type Fun.We now show that in a well-typed appli
ation of a fun
tion to values, the byte
ode translation of the typeof the values is a subtype of the translated domain of the fun
tion. This implies that no 
ast will be neededto translate the appli
ation itself, whi
h will be used to show in Lemma 89 (Values) that the translation ofa value is a byte
ode value.Lemma 88 (Byte
ode appli
ation) Let e v1 ... vn be a well-typed expression. Let τ by the type of e and,for all i from 1 to n, τvi

be the type of vi. Then, for all i from 1 to n, BC(τvi
) is a subtype of domi(τ)Proof of lemma 88 (Byte
ode appli
ation)Let ∀ϑ. κ⇒ θ1 → ...→ θn → θ′ be τ , and ∀ϑv. κvi

⇒ θvi
be τvi

. Sin
e e v1 ... vn is well-typed, the 
onstraint
κ∧κvi

∧ θvi
≤ θi is satis�able. Let therefore σ0 be a ground substitution su
h that σ0(κ∧κvi

∧ θvi
≤ θi) holds(2). By Lemma 87 and (2), BC(τvi

) is equal to BC(σ0(θvi
)). Furthermore, by (2), σ0(θvi

) ≤ σ0(θi) holds.Therefore, by Lemma 82 (Covarian
e of the byte
ode translation), BC(σ0(θvi
)) ≤ BC(σ0(θi))holds. By De�nition 83 and sin
e σ0 satis�es κ by (2), BC(σ0(θi)) must be smaller than the upper bound

BCκ(θi), whi
h is also domi(τ). That is, by transitivity, BC(τvi
) is a subtype of domi(τ).We now show two further properties of values. Firstly, the translation of a sour
e value is a byte
odevalue. Se
ondly, subtyping on polytypes must be preserved by translation, if the smaller type 
an be the typeof a value. This property is required so that a polymorphi
 value 
an be used dire
tly as an expression of aless general type. This 
orresponds in parti
ular to the observation made in Se
tion 11.2.1 about fun
tionaltypes. For instan
e, this property would be violated if ∀T. T → T was translated into obje
t with a methodof type Object → Object and String → String was translated into an obje
t with a method of type

String→ String.Lemma 89 (Values) Let v be a well-typed value of type τv. Then BC(v) is a byte
ode value whose byte
odetype is BC(τv).Furthermore, for all type τ su
h that τv ≤ τ , BC(τv) is smaller than BC(τ).Proof of lemma 89 (Values)The proof is by indu
tion and 
ase on v.
ase v = true, v = falseThen type(v) = Boolean, and BC(v) is by de�nition a byte
ode value of type boolean = BC(Boolean).Furthermore, let τ su
h that Boolean ≤ τ . By 
orollary 56 (Interpretation), every instan
e θ of τveri�es Boolean ≤ θ, so by Lemma 82, BC(Boolean) ≤ BC(θ). Therefore, BC(Boolean) ≤ BC(τ).
ase v = new C v1 ... vnBy indu
tion hypothesis, ea
hBC(vi) has byte
ode type BC(type(vi)). Sin
e v is well-typed, Lemma 88(Byte
ode appli
ation) shows that BC(type(vi)) is a subtype of domi(τ). Therefore, in De�ni-tion 85 for BC(v), the 
asts are redundant, and BC(v) is equal to BC(v1); ...; BC(vn); new C, whi
his a byte
ode value of byte
ode type C.By de�nition, constant-type(new C) = ∀t. F1(t) → ... → Fn(t) → C[t] where [F1, ..., Fn] =
AllFields(C). Let type(vi) be ∀ϑvi

. κvi
⇒ θvi

. Then by App, τv = type(new C v1 ... vn) =

∀tϑvi
. κvi

∧ θvi
≤ Fi(t)⇒ C[t]. Therefore, by De�nition 81 and De�nition 83, BC(τv) = C.Let τ0 = ∀ϑ0. κ0 ⇒ θ0 be a type su
h that τv ≤ τ0. Let κ′ be κvi

∧ θvi
≤ Fi(t). By 
orollary 56(Interpretation), for every ground substitution σ su
h that σ(κ0), there exists σ′ su
h that σ′(κ′)and σ′(C[t]) ≤ σ(θ0). So by Lemma 82, BC(σ′(C[t])) ≤ BC(σ(θ0)). Furthermore, BC(σ′(C[t])) isalways equal to C by De�nition 81. So C ≤ BC(σ(θ0)) holds for all σ. Thus, by De�nition 83,

BC(τv) = C ≤ BC(τ0). 116




ase v = λx.eBy De�nition 28, De�nition 81 and De�nition 83, BC(τv) is Fun. By De�nition 85, BC(v) has byte
odetype Fun as well.Furthermore, for all type τ su
h that τv ≤ τ , τ is also a fun
tional type by MElim, and therefore
BC(τ) = BC(τv) = Fun.The following lemma shows that the byte
ode translation is a morphism for substitution.Lemma 90 (Byte
ode substitution) For all expression e, value v and variable x, BC(e [x ← v]) =

BC(e) [load x← BC(v)] holds.Note that the validity of this lemma lies in the fa
t that x is bound by a let and therefore is not modi�ed in
BC(e).Proof of lemma 90 (Byte
ode substitution)The proof is by indu
tion on e.
ase e = xThen BC(e) [load x← BC(v)] = (load x) [load x← BC(v)] = BC(v) and BC(e [x← v]) = BC(v).
ase e = x′ with x′ 6= xThen BC(e) [load x ← BC(v)] = (load x′) [load x ← BC(v)] = load x′ and BC(e [x ← v]) =

BC(x′) = load x′.
ase e = c e′1 ... e′n with arity(c) = nLet τ be type(c).
BC(e) [load x← BC(v)]

= BC(e′i) [load x← BC(v)]; cast domi(τ); BCCall(c) (De�nition 85)
= BC(e′i [x← v]); cast domi(τ); BCCall(c) (Indu
tion hypothesis)
= BC(c (e′1 [x← v]) ... (e′n [x← v])) (De�nition 85)
= BC((c e′1 ... e′n) [x← v])
ase e = e1 e2 with e not of the form c e′1 ... e′n

BC((e1 e2) [load x← BC(v)]
= (BC(e1); cast Fun; BC(e2); call Fun.apply) [load x← BC(v)] (De�nition 85)
= BC(e1) [load x← BC(v)]; cast Fun; BC(e2) [load x← BC(v)]; call Fun.apply
= BC(e1 [x← v]); cast Fun; BC(e2 [x← v]); call Fun.apply (Ind. hyp.)
= BC(e1 [x← v] e2 [x← v]) (De�nition 85)
= BC((e1 e2) [x← v])
ase e = let x′ be e1 in e2

BC(e) [load x← BC(v)]
= (BC(e1); cast BCκ2

(θ1); store x1 in BC(e2)) [load x← BC(v)] (De�nition 85)
= BC(e1) [load x← BC(v)]; cast BCκ2

(θ1);
store x1 in BC(e2) [load x← BC(v)]

= BC(e1 [x← v]); cast BCκ2
(θ1); store x1 in BC(e2) [x← v] (Indu
tion hypothesis)

= BC(let x′ be e1 [x← v] in e2 [x← v]) (De�nition 85)
= BC((let x′ be e1 in e2) [x← v]) 117




ase e = λx′.e′By alpha-
onversion, we 
an assume that x′ is di�erent from x (1).
BC(e) [load x← BC(v)]

= (new Fun(){ Object apply(Object x′) { BC(e′) }}) [load x← BC(v)] (De�nition 85)
= new Fun(){ Object apply(Object x′) { BC(e′) [load x← BC(v)] }})
= new Fun(){ Object apply(Object x′) { BC(e′ [x← v]) }}) (Indu
tion hypothesis)
= BC(λx′.(e′ [x← v])) (De�nition 85)
= BC((λx′.e′) [x← v]) (1)We 
an now prove our main result.Proof of theorem 84 (Compilation)It is su�
ient to show that BC(e) −→ BC(v). Indeed, by Lemma 89 (Values), we then have that BC(v)has type BC(type(v)).The proof is indu
tion on the length of the redu
tion, and by 
ase on e.
ase e = vBy Lemma 89, BC(v) is a byte
ode value, so BC(v) −→ BC(v).
ase e = c e′1 ... e′n with arity(c) = nSin
e e is well-typed, all e′i are also well-typed by property i of De�nition 4 (Error). Therefore, weknow by subje
t redu
tion that, for all i in 1..n, there exists a value vi su
h that e′i −→ vi. Let τ be

type(c), and τvi
be type(vi).By indu
tion hypothesis, we know that BC(e′i) −→ BC(vi). Therefore,

BC(c e′1 ... e′n)
= BC(e′1); cast dom1(τ); ...; BC(e′n); cast domn(τ); BCCall(c)
−→ BC(v1); cast dom1(τ); ...; BC(vn); cast domn(τ); BCCall(c)Sin
e c v1 ... vn is well-typed by Theorem 10 (Subje
t redu
tion), we 
an apply Lemma 88(Byte
ode appli
ation), whi
h shows that, for all i, BC(τvi

) is a subtype of domi(τ) (1).Therefore, all the 
ast su

eed, and BC(v1); cast dom1(τ); ...; BC(vn); cast domn(τ); BCCall(c) −→
BC(v1); ...; BC(vn); BCCall(c).We now reason by 
ase on c.
ase c = new CThen e −→ v′ = new C v1 ... vn.By de�nition, BC(v1); ...; BC(vn); BCCall(c) = BC(v1); ...; BC(vn); new C. This expression isequal to BC(new C v1 ... vn), sin
e by (1) the 
asts are redundant. This shows that BC(e)redu
es to BC(v′).
ase c = C.iThen, �eld a

ess operators being unary, we have n = 1. By Theorem 40 (Field a

ess sound-ness), e −→ v′shift(sc(C),C′)+i

, with e′1 −→ new C′ v′1 ... v′n. Therefore, by indu
tion hypothesis,
BC(e′1) −→ BC(new C′ v′1 ... v′n), whi
h is equal to BC(v′1); ...; BC(v′n); new C′ by De�nition 85,sin
e Lemma 88 (Byte
ode appli
ation) shows 
asts in BC(new C′ v′1 ... v′n) are redundant.So BC(e) −→ BC(v′1); ...; BC(v′n); new C′; field C.i, and by the redu
tion for field, BC(e) −→
BC(v′shift(sc(C),C′)+i

).
ase c = mSin
e m v1 ... vn is well-typed, we know by subje
t redu
tion that there exists a value v′ and anindex I su
h that
m v1 ... vn −→ (λx1...xn.eI) v1 ... vn −→ eI [x1 ← v1]... [xn ← vn] −→ v′118



where m πI = λx1...xn.eI is the most pre
ise implementation of m su
h that πI mat
hes
(v1, ..., vn). Let τ and ∀ϑ. κ ⇒ θ1 → ... → θn → θ′ be the type of m. Let τ ′ be the type of
v′.The semanti
s of the byte
ode given in Figure 11.2 then implies that:

BC(v1); ...; BC(vn); call m
−→ BC(v1); store x1 in ...BC(vn); store xn in

BCπi,j
(BC(load xj)) ; iftrue BC(ei);cast codom(τ)

−→ BCπi,j
(BC(vj)); iftrue BC(ei) [load x1 ← BC(v1), ..., load xn ← BC(vn)];cast codom(τ)We know that πI mat
hes (v1, ..., vn). Sin
e the patterns are ordered by spe
i�
ity, we knowfurthermore that for all j stri
tly smaller than I, (πj,1, ..., πj,n) does not mat
h (v1, ..., vn). So byLemma 86, the �rst test that su

eeds is for the index I. Therefore, BC(v1); ...; BC(vn)call mredu
es to BC(eI) [load x1 ← BC(v1), ..., load xn ← BC(vn)]; cast codom(τ).Sin
e eI [x1 ← v1, ..., xn ← vn] −→ v′, we know by indu
tion hypothesis that BC(eI [x1 ←

v1, ..., xn ← vn]) −→ BC(v′). Moreover, by Lemma 90, BC(eI [x1 ← v1, ..., [←← x]n]vn) =
BC(eI) [load x1 ← BC(v1), ..., load xn ← BC(vn)]. Therefore,
BC(eI) [load x1 ← BC(v1), ..., load xn ← BC(vn)]; cast codom(τ) −→ BC(v′); cast codom(τ)It remains to be shown that this last 
ast su

eeds. By De�nition 28, the type of m v1 ... vnis τs = ∀ϑϑv. κ ∧ κv ∧ θvi

≤ θi ⇒ θ′. By Theorem 10 (Subje
t redu
tion), we know that
τ ′ ≤ τs holds. Furthermore, by De�nition 27 and Triv, it is easy to see that τs ≤ ∀ϑ. κ ⇒ θ′.Therefore, by transitivity, τ ′ ≤ ∀ϑ. κ ⇒ θ′. So, by Lemma 89, BC(v′) has type BC(τ ′), and
BC(τ ′) ≤ BC(∀ϑ. κ ⇒ θ′). By De�nition 83, BC(∀ϑ. κ ⇒ θ′) is equal to BCκ(θ′), whi
h is also
codom(τ). That is, BC(v′) has a smaller byte
ode type than codom(τ), so the 
ast su

eeds.Thus, BC(m e′1 ... e′n) −→ BC(v′).
ase e = e1 e2 with e not of the form c e′1 ... e′nThen by De�nition 85, BC(e1 e2) is equal to BC(e1); cast Fun; BC(e2); call Fun.apply.By Theorem 10 (Subje
t redu
tion), we know that there exists values v1 and v2 su
h that

e1 −→ v1, e2 −→ v2, and v1 v2 is well typed (1). Therefore, by indu
tion hypothesis, BC(e1) −→
BC(v1) and BC(e2) −→ BC(v2). Therefore, BC(e1); cast Fun; BC(e2); call Fun.apply −→
BC(v1); cast Fun; BC(v2); call Fun.apply.We now reason by 
ase on v1. By (1), v1 must be a fun
tional value. There are therefore two 
ases:
ase v1 = λx′

1.e
′
1Then, by De�nition 85, BC(v1) is new Fun(){ Object apply(Object x′1) { BC(e′1) }}.Therefore, the 
ast su

eeds, and BC(v1); cast Fun; BC(v2); call Fun.apply redu
es to

new Fun(){ Object apply(Object x′1) { BC(e′1) }}; BC(v2); call Fun.apply, whi
h redu
es to
BC(v2); store x′

1 in BC(e′1), whi
h redu
es to BC(e′1) [load x′
1 ← BC(v2)]. By Lemma 90(Byte
ode substitution), this last expression is equal to BC(e′1 [x′

1 ← v2]). Sin
e e redu
es to
v1 v2 whi
h redu
es to e′1 [x′

1 ← v2], the property holds in this 
ase.
ase v1 = c v′1 ... v′p with 0 ≤ p < arity(c)Let n be arity(c). Then, by De�nition 85, BC(v1) is
new Fun(){ Object apply(Object xp+1) { BC(λxp+2...xn.c v′1 ... v′p xp+1 ... xn) }}.Therefore, the 
ast su

eeds, and BC(v1); cast Fun; BC(v2); call Fun.apply redu
es to
new Fun(){ Object apply(Object xp+1) { BC(λxp+2...xn.c v′1 ... v′p xp+1...xn) }}; BC(v2);
call Fun.apply, whi
h redu
es to BC(λxp+2...xn.c v′1 ... v′p xp+1...xn) [load xp+1 ←
BC(v2)]. By Lemma 90 (Byte
ode substitution), this last expression is equal to
BC(λxp+2...xn.c v′1 ... v′p xp+1...xn [xp+1 ← v2]), that is BC(λxp+2...xn.c v′1 ... v′p v2 xp+2...xn.By De�nition 85, this is equal to BC(c v′1 ... v′p v2). We therefore have shown that BC(e) redu
es119



to BC(c v′1 ... v′p v2), with e redu
ing to c v′1 ... v′p v2. If c v′1 ... v′p v2 a value, the propertyis proved. Otherwise, by Theorem 10 (Subje
t redu
tion), there exists a value v su
h that
c v′1 ... v′p v2 redu
es to v. Sin
e e is not of the form c e1 ... en, there has been at least one step ofredu
tion. Therefore, we 
an apply the indu
tion hypothesis to c v′1 ... v′p v2, whi
h shows that
BC(c v′1 ... v′p v2) redu
es to BC(v), whi
h �nishes the proof.
ase e = let x1 be e1 in e2We know by subje
t redu
tion that there exist values v1 and v su
h that let x1 be e1 in e2 −→let x1 be v1 in e2 −→ e2 [x1 ← v1] −→ v.Let τ1 and ∀ϑ1. κ1 ⇒ θ1 be type(e1), Let τ2 and ∀ϑ2. κ2 ⇒ θ2 be type(let x1 be e1 in e2), and τv1and be type(v1). We therefore have τv1

≤ τ1 (1) by Theorem 10 (Subje
t redu
tion). By de�nition,
BC(let x1 be e1 in e2) = BC(e1); cast BCκ2

(θ1); store x1 in BC(e2). By indu
tion hypothe-sis, BC(e1) −→ BC(v1) and BC(v1) has type BC(τv1
). Therefore, BC(let x1 be e1 in e2) −→

BC(v1); cast BCκ2
(θ1); store x1 in BC(e2).We now show that the 
ast su

eeds. By De�nition 28, 
onstraint κ1 is in
luded in κ2: this is immediatefrom the de�nition if x1 is not free in e2, and follows from a straightforward indu
tion otherwise.Therefore, by Triv, the 
onstraint impli
ation ∀FV (τ1), FV (τ2), t. κ2 ∧ θ1 ≤ t |= κ1 ∧ θ1 ≤ t holds.That is, by De�nition 29 and De�nition 27, type ∀ϑ1. κ1 ⇒ θ1 is a subtype of ∀ϑ1ϑ2. κ2 ⇒ θ1.Therefore, by transitivity with (1), we have τv1

≤ ∀ϑ1ϑ2. κ2 ⇒ θ1. By Lemma 89, this shows that
BC(τv1

) ≤ BC(∀ϑ1ϑ2. κ2 ⇒ θ1) holds. Furthermore, BC(∀ϑ1ϑ2. κ2 ⇒ θ1) is equal to BCκ2
(θ1) byDe�nition 83. Therefore, BC(τv1

) is a byte
ode subtype of BCκ2
(θ1). This shows that the 
ast alwayssu

eeds, and

BC(let x1 be e1 in e2) −→ BC(v1); store x1 in BC(e2)By de�nition, BC(v1); store x1 in BC(e2) −→ BC(e2) [load x1 ← BC(v1)]. By Lemma 90,
BC(e2) [load x1 ← BC(v1)] is equal to BC(e2 [x1 ← v1]). By indu
tion hypothesis, BC(e2 [x1 ← v1])redu
es to BC(v). Therefore, by transitivity, we have BC(let x1 be e1 in e2) −→ BC(v).
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Chapter 12Typing kindsIn this 
hapter, we 
onsider the algorithms used to perform type-
he
king in our 
onstrained type system,based on ML≤.Type-
he
king is needed in two pla
es. First, in the 
ore language of Se
tion 1, where type are inferred,we need to 
he
k that the resulting types are well-formed. As de�ned in Se
tion 2.2, a type ∀ϑ. κ ⇒ θ iswell-formed if the 
onstraint impli
ation ∀∅. true |= κ holds.Se
ond, when type-
he
king multi-methods as in Se
tion 4, we need to 
he
k that for ea
h methodimplementation, the restri
tion of the method type to the patterns is well-formed, and that the inferred typeof the implementation is below that restri
ted type. This se
ond 
ondition amounts to 
he
king subtypingbetween polytypes, whi
h is de�ned in Se
tion 2.2 as a 
ertain 
onstraint impli
ation.Therefore, we only need to be able to de
ide 
onstraint impli
ation. We will present algorithms to do soin this 
hapter. First, we re
all that 
onstraints involving 
onstru
ted monotypes 
an be de
omposed intoatomi
 
onstraints, on whi
h the impli
ation is de
ided. Then, we brie�y summarize the existing te
hniquesused to de
ide impli
ation on atomi
 
onstraints in 
ore ML≤. This 
orresponds to the system presented inSe
tion 2.2. In the last se
tion, we present a new algorithm to de
ide 
onstraint impli
ation, in the presen
eof kinds, as de�ned in Se
tion 10.2.12.1 Constraint de
omposition
ML≤ is a stru
tural type system. That is, an inequality between monotypes always follows from their havingthe same shape, and their sub-
omponents being related. This is formalized in the variable elimination ruleof 
onstraint impli
ation, whi
h we re
all here:VElim t ≤ φV [θ] ∈ κ or t ≥ φV [θ] ∈ κ φ′

V , t fresh
∀ϑ. κ |= κ ∧ t = φ′

V [t]A 
onsequen
e of this rule, proved in [5℄, is that every 
onstraint impli
ation problem 
an be redu
edto a simpler problem, involving only 
onstraints on atoms: type 
onstru
tors and type variables. We willtherefore only 
onsider the de
ision of 
onstraint impli
ations where atomi
 
onstraints are either of the form
φV ≤ φV or of the form t ≤ t.12.2 Core ML≤Given the 
onstraint impli
ation ∀ϑ. κ |= κ′, one 
an 
onstru
t a model of κ. That is, the set of 
onstanttype 
onstru
tors and type variables in κ is equipped with the partial pre-order ≤ indu
ed by the 
onstraint
κ and, for the 
onstant 
onstru
tors, by the impli
it type stru
ture T . The 
onstraint impli
ation then holdsif there exists a substitution σ from the variables of κ′ to the model, su
h that σ(κ′) is true in the model.121



This problem is NP-
omplete, as (impli
itly) shown in [43℄. However, it is possible to �nd algorithmsthat are only polynomial in pra
ti
e, similarly to the situation of type inferen
e for ML. An algorithm issket
hed in [5℄, and is the basis of the implementation made by Alexandre Frey for the language Jazz. Thisimplementation was also used as a basis for the implementation in the Ni
e 
ompiler.The essen
e of the algorithm is that ea
h variable in κ′ is assigned a domain, whi
h is a set of possiblemappings of that variable into the model. The domains 
an be redu
ed, by using the inequalities in κ and κ′,and their 
onsequen
es by transitivity. For instan
e, if κ′ 
ontains the 
onstraint tV ≤ cV , then the domainof tV 
an be redu
es to only those values in the model that are smaller than cV . This 
an in turn be usedto redu
e the domain of other variables that are in relation with tV . If this redu
tion leaves at least onedomain empty, then the impli
ation does not hold. If all domains have size one, then a solution was found.Otherwise, it is ne
essary to pi
k one variable with a domain of 
ardinal at least 2, �x the mapping of thatvariable to ea
h value in the domain in turn, and restart the redu
tion pro
ess. If that leads to a failure, itis ne
essary to ba
ktra
k and 
hoose a di�erent mapping for that variable inside its domain. If at least oneattempts su

eeds, then we have found a solution. If all attempts fail, the 
onstraint impli
ation does nothold.12.3 Adding kindsThis algorithm 
an be extended to implement the system de�ned in Se
tion 10.2. In this 
ontext, the impli
ittype stru
ture T 
ontains, besides the subtypings between 
onstant 
onstru
tors, the implementations andabstra
tions of kinds of these 
onstants. Furthermore, we now deal with 
onstraint impli
ations where
onstraints are taken from the grammar φV ≤ φV | t ≤ t | tV : K.As before, given su
h a 
onstraint impli
ation ∀ϑ. κ |= κ′, we �rst 
onstru
t a model of κ. That is, theset of 
onstant type 
onstru
tors and type variables in κ is equipped with the partial pre-order ≤ indu
edby the 
onstraint κ and, for the 
onstant 
onstru
tors, by the impli
it type stru
ture T . Furthermore, ea
htype variable tV in κ is made to implement a kind K if and only if κ 
ontains the 
onstraint tV : K or the
onstraint tV : K ′ with some kind K ′ that extends kind K. Note that this 
losely mat
hes the 
onstru
tion ofthe extended type stru
ture T 1 in the 
ompleteness proof of Theorem 80 (Corre
tion and 
ompletenessof the axiomatization of kinds). The only di�eren
e in that, in the proof, tV is made to implement
K if κ implies tV : K. We 
annot dire
tly apply that de�nition here, as this would require a way to de
ide
onstraint impli
ation, whi
h is pre
isely what we are 
onstru
ting. However, our restri
ted de�nition of thekinds that tV implements in the model is su�
ient. Indeed, the only other way in whi
h κ 
ould imply that
tV implements another kind K ′ is by appli
ation of axiom EqImp. In that 
ase, tV would be equivalent toanother element φV in the model, whi
h implies that their domains would be the same. Any impli
ation of
tV implementing K ′ would therefore also follow from φV implementing K ′.Se
ond, we 
ompute the domains of ea
h variable in κ′, redu
ing them as before by using the 
onstraintsin κ′. We 
an further redu
e the domains by noti
ing that if κ′ 
onstaint tV : K, then the mapping of
tV must be a 
onstant of the model that implements K. The main issue is to be able to apply axiomAbs to dedu
t further 
onstraints on the variables. For this, we need to 
ompute views, as de�ned inDe�nition 77. However, a naive approa
h would have a prohibitively high 
omplexity, sin
e the de�nitioninvolves simultaneous quanti�
ation over four type 
onstru
tors. Fortunately, it is possible to signi�
antlyredu
e the amount of work to be done.First, by 
ondition 5 of De�nition 78, we know that the view of 
onstant type 
onstru
tors is independentof the possible extensions to the type stru
ture. Therefore, it is possible to 
ompute those views only on
e,in the module where the type 
onstru
tor is introdu
ed, and not in every module of the program.Se
ond, if viewK(cV ) = c′V , then it follows from Requirement 76 (Kinds) and De�nition 77 that, for all
c′′V below cV , viewK(c′′V ) is also c′V . Furthermore, in the Abs axiom, the requirement is that the variableis below the origin of the view. If we used viewK(c′′V ) = c′V to apply that axiom, we 
ould as well use
viewK(cV ) = c′V , sin
e the variable is also below cV by transitivity. Therefore, we 
an limit the 
omputationof views to maximal values for the origin.Algorithm 1 de�nes the fun
tion 
ompute_view, whi
h 
omputes views. In parti
ular, the auxiliary122



fun
tion set_view is used to implement the se
ond optimization: if the type 
onstru
tor that abstra
ts thekind 
an be the origin of the view, then we 
an stop the 
omputation. Otherwise, we 
ompute it re
ursivelyfor ea
h of its dire
t sub-
onstru
tors.Algorithm 1 Computation of viewspro
edure 
ompute_viewsfor all K ∈ Kinds dofor all C that abstra
ts K doset_views(C, K)end forend forend pro
edurepro
edure set_views(C, K) ⊲ Computes viewK(C′′) for a minimal set of C′′ below C.Require: The type 
onstru
tor C abstra
ts K
min ← ⊥for all C′ that implements K doif C ≤ C′ thenif min = ⊥ or C′ ≤ min then

min ← C′end ifelseif ∃C0 su
h that C0 ≤ C and C0 ≤ C′ then
min ← ⊥breakend ifend ifend forif min 6= ⊥ then

viewK(C)← minelsefor all C′′ dire
tly below C doset_views(C′′, K)end forend ifend pro
edureGiven that this 
omputation is done, we 
an now use Algorithm 2 to 
omplete the model of κ by repeatedappli
ation of the Abs axiom.Note that the iteration is needed be
ause the 
onsequen
e of the appli
ation of an instan
e of Abs 
an
reate the 
onditions for another instan
e to be appli
able. This is the 
ase in the following 
ontrived example.Given the hierar
hy of Figure 12.1, the two kinds K1 and K2, and that B abstra
ts and implements K1 and
A abstra
ts and implements K2, we 
onsider the 
onstraint impli
ation ∀T. T : K1, T : K2, D ≤ T |= A ≤ T .By de�nition, viewK1

(D) is B and viewK2
(C) is A. It is not dire
tly possible to 
on
lude that A ≤ T .However, by Abs for kind K1, ∀T. T : K1, T : K2, D ≤ T |= B ≤ T . Sin
e C ≤ B, by transitivity we have

∀T. T : K1, T : K2, D ≤ T |= C ≤ T . This in turns allows to apply Abs on K2, and to 
on
lude that theimpli
ation holds.
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Algorithm 2 Applying the Abs axiompro
edure saturate_abs ⊲ Finds all 
onsequen
es of the Abs axiom.repeatfor all K ∈ Kinds dofor all C su
h that viewK(C) 6= ⊥ dofor all D below C dofor all D′ above D that implements K doadd viewK(C) ≤ D′ in the modelend forend forend forend foruntil nothing 
hangedend pro
edure

A

CD

B ::K
:K:K

::K

Figure 12.1: Example hierar
hy
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Chapter 13The Ni
e languageThe theoreti
al results of this dissertation have been used as the foundation for implementing a 
omplete,general-purpose language 
alled Ni
e. The motivation for this pra
ti
al work was three-fold. First, it servesas a proof of 
on
ept by showing that the system 
an be implemented with a reasonable amount of work anddeliver a

eptable performan
e. Se
ond, sin
e the implementation is available freely1, it allows users to writereal programs in Ni
e when they de
ide its properties provide them with a bene�t. This also 
ontributes topopularizing those features that are not present in most mainstream languages, for instan
e multi-methods.Finally, this 
on
rete use in turn generates feedba
k that is inspiring for pointing out new resear
h themes.13.1 SyntaxThis se
tion lists the di�eren
es between the 
on
rete syntax used in this do
ument and the Ni
e language.This should be su�
ient to read the real Ni
e programs presented in the next 
hapter. A general di�eren
eis that the syntax of Ni
e follows the synta
ti
al tradition of Algol (and therefore also of C, Java and otherlanguages) by pla
ing the type of a variable before its name, and similarly for �elds and for the return typeof a method.For more details, one 
an refer to the online version of the user manual at http://ni
e.sf.net/manual.html.13.1.1 ClassesThe syntax for 
lasses is 
lose to the one presented in Chapter 3. The only di�eren
e is that �eld typespre
ede their names and that �eld de
larations are terminated by the ; 
hara
ter, in the synta
ti
 traditionof Algol [36℄. Furthermore, type parameters are listed between angle bra
kets, like C++ [41℄ templateparameters and Java 1.5 type parameters.
lass C<T> {Type1 field1;Type2 field2;}13.1.2 MethodsNi
e is a language with multi-methods. Therefore, methods 
an be de
lared outside 
lasses, at the pa
kagelevel. It keeps the distin
tion between method de
laration and method implementation. Method imple-mentations dispat
h on their arguments by spe
ialization of the 
lass of arguments. The return type does1The implementation is li
ensed under the GNU General Publi
 Li
ense, and 
an be downloaded from the website http://ni
e.sf.net, whi
h also in
ludes a user manual, links to mailing lists devoted to Ni
e and further information useful to usersof the language. 125



not need to be written, sin
e it is 
omputed as the spe
ialization of the method type for the spe
ializedarguments. Compared to Chapter 8, the keywords method and implementation are dropped. Furthermore,types are written as in C and Java.For implementations, a pattern 
an be absent, in whi
h 
ase it refers to the pattern �_�, whi
h mat
hesany value.ReturnType methodName(ParamType1 param1, ParamType2 param2);methodName(param1, param2) { ... }methodName(C1 param1, C2 param2) { ... }When a method has type parameters, they are introdu
ed in front of the de
laration between anglebra
kets.<T> T id(T);While this syntax for methods would be su�
ient, it looks quite unfamiliar to programmers used totraditional obje
t-oriented syntaxes. A design 
hoi
e for Ni
e has been made to also o�er more traditionalsyntax when possible. The motivation of this de
ision is to fa
ilitate the transition and to help programmersfo
us on the new features instead of struggling to learn a new syntax for the existing features. The traditionalnotation for de
laring methods inside 
lasses (respe
tively abstra
t interfa
es) is therefore also allowed assynta
ti
 sugar for de
laring a multi-method with a �rst parameter named this belonging to the 
urrent
lass (respe
tively to a 
lass implementing the 
urrent abstra
t interfa
e). Similarly, the alike keyword issupported as synta
ti
 sugar for the the type of this, whi
h is impli
itly quanti�ed as a subtype of the 
urrent
lass (respe
tively a type implementing the 
urrent abstra
t interfa
e, see next se
tion). Similar synta
ti
sugar is also provided for implementing a method inside a 
lass. Finally, it is possible simultaneously de
larea method a provide its default implementation.For instan
e, the following de
larations use the synta
ti
 sugar.
lass C {C m() = this;}
lass D {m() = new C();}They are equivalent to the following de-sugared version.
lass C {}C m(C);m(C this) = this;
lass D {}m(D this) = new C();13.1.3 KindsBe
ause this feature has not yet been popularized, �nding a good terminology remains to be done. Ni
e hasbeen modeled after Java for most of the syntax. Kinds are 
reated with the keyword abstra
t interfa
e.The rationale is that a kind is similar to an interfa
e in des
ribing some fa
ilities that a 
lass must possessto implement the kind. However it is �abstra
t� be
ause it is not itself a type; in parti
ular the type of avariable 
an not be an abstra
t interfa
e.Using most the syntax des
ribed in this 
hapter, one 
an give the 
on
rete Ni
e syntax of the solutionwith kinds in Se
tion 6.2. 126



abstra
t interfa
e Comparable {boolean less(alike);}
lass String implements Comparable {less(String other) { ... }}
lass Date implements Comparable {less(Date other) { ... }}13.2 Type 
he
kingNi
e's type system is the based on the extension of ML≤ with modular kinds formalized in Chapter 10.2 andimplemented following the algorithms presented in Chapter 12. The implementation of the 
onstraint solverwas based on Alexandre Frey's implementation for the Jazz language, extended in parti
ular for the supportof kinds.13.2.1 Option typesThe type system in
ludes another extension for safe handling of the null value whi
h is present in Java andmany other languages with referen
es. The null value is usually supposed to be of the spe
ial �bottom� type,meaning that it 
an be used in all 
ontexts where a referen
e is expe
ted. However, most operations fail atruntime when applied to the null value, for instan
e when a

essing a �eld. We extended the type systemto make it possible to prevent su
h failures stati
ally. Be
ause of time 
onstraints, we do not formalize thisextension in this dissertation but brie�y present it in this se
tion.Our extension makes it possible to distinguish between types that in
lude the null value and those thatdo not. Te
hni
ally, we introdu
e two unary type 
onstru
tors, ? (for �maybe�) and ! (for �surely�). Therefore,instead of the single type String for 
hara
ter strings, we use !String that only allows real strings, and
?String that also allows the null value2. We make ! smaller than ?, whi
h implies that !String is a subtypeof ?String. We also make those two type 
onstru
tors 
ovariant. This system 
an therefore be implementedusing the standard version ML≤, with ! and ? being normal type 
onstru
tors. This 
an therefore be viewedas a layer about ML≤, and does not need 
hanges in the 
ore 
onstraint impli
ation solver.To a
hieve type safety, we simply disallow operations on possibly null values. More pre
isely, we givethose operations fun
tion types with domain types pre�xed with the ! type 
onstru
tor. For instan
e, givena 
lass C with a �eld of type !String, the �eld a

ess method has type !C→ !String. We 
an then give the
null 
onstant the polymorphi
 type ∀T.?T without breaking type safety.To make use of values with types 
onstru
ted on ?, we need to di�erentiate between the null and non-null
ase, and to be able to use the value with the 
orresponding type 
onstru
tor on ! in the se
ond 
ase. Itwould have been possible to provide a ML-style mat
hing operator to that e�e
t, binding the value to anew name in the se
ond 
ase. However, it feels more natural to make use of the existing style in languagesin
luding null, whi
h is to use tests of the forms x == null and x ! = null to distinguish the two 
ases.Therefore, we in
orporated in the high-level type
he
ker rules to re
ognize su
h tests and take them intoa

ount, whi
h amounts to performing a stati
 data�ow analysis on lo
al variables. Basi
ally, inside a bran
hrunning when x ! = null su

eeds or when x == null fails, and provided that x is not 
aptured by a 
losureassigning a possibly non-null value to it, x 
an be assumed non-null. Su
h information 
an be merged at thepoints where bran
hes join.2To avoid making the syntax of types heavier, we allow the non-null 
ase, whi
h we 
onsider is the most frequent by far, tobe the default, so that the ! type 
onstru
tor is optional. Thus String is a synonym for !String. For 
larity, we keep ! expli
itin this se
tion. 127



Note that this type system feature is only super�
ially similar to ML's option type, de�ned with typea option = None | Some of a. A �rst di�eren
e is that ML option types 
an be nested, as in stringoption option. A valid value of this type is Some(None). We only want to handle values that are eithernull or a normal referen
e, and therefore synta
ti
ally disallow 
onse
utive o

urren
es of ! and ?. Thisallows to represent these values without any overhead, null being simply a spe
i�
 value di�erent fromany referen
e. Furthermore, sin
e !String is a subtype of ?String, the user 
an dire
tly use a non-nullstring where a possibly null one is expe
ted. In ML, the user has to manually wrap it using the Some data
onstru
tor.13.3 Code generationThe Ni
e 
ompiler generates Java byte
ode [31℄ as formalized in Chapter 11. This 
hoi
e makes it possibleto exe
ute Ni
e programs with good performan
e on any 
omputer ar
hite
ture for whi
h a Java VirtualMa
hine exists. Furthermore, it allows to make use of the many Java libraries in Ni
e programs. The
ompiler automati
ally assign Ni
e types to existing Java 
lasses, �elds and methods, requiring no spe
iale�ort to start using su
h these existing libraries. Furthermore, it is possible to expli
itly �retype� themby assigning them arbitrary Ni
e types when it is ne
essary, in parti
ular when that 
an result in a morepre
ise type than what is possible to express in the Java type system. Ni
e 
ode is also 
ompiled in a waythat makes it easier to use from Java 
ode. Thus, multi-methods are 
ompiled as instan
e methods of the
lass of (the erasure of) their �rst argument whenever possible, that is if the 
lass is also generated fromNi
e 
ode. This makes it possible to 
all the method in Java with the standard x.foo(y) syntax, insteadof someArbitraryClass.foo(x,y). Furthermore, this even allows overriding a Ni
e multi-method in Java
ode, although this obviously 
an only be done for spe
ializing on the �rst argument. All in all, this makesproje
ts mixing Java and Ni
e 
ode as simple as possible, whi
h is important for some users who have animportant existing 
ode base in Java and want to extend it in Ni
e without �rst translating their wholeproje
t into Ni
e.
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Chapter 14The expression problemThe expression problem is a 
lassi
al �expressiveness ben
hmark� for programming languages. It 
an bedes
ribed as the following situation. Given re
ursively de�ned datatypes and operations on those datatypes,we want to be able to extend datatypes by de�ning new 
ases and operations by adding new ones. Solvingthis problem is very important in pra
ti
e, sin
e it is essential to enable modular and extensible programmingfor large programs, as identi�ed in our third and fourth 
riteria in the introdu
tion of this thesis. We basethis 
hapter on the presentation in [38℄, whi
h proposes the following requirements:1. Possibility to de�ne both new datatypes and new operations;2. Strong stati
 type safety;3. No modi�
ation of existing 
ode nor dupli
ation;4. Separate 
ompilation;5. Independent extensibility: it should be possible to 
ombine independently developed extensions so thatthey 
an be used jointly.Their review of existing solutions shows that no previous solution meets all these requirements. Thefun
tional approa
h makes it easy to add new operations, but impossible to add new datatypes withoutmodifying existing 
ode. Dually, the 
lassi
 obje
t-oriented approa
h makes it easy to add new datatypes,but impossible to add new operations without modifying existing 
ode. Variants of the Visitor pattern arealso available, but they either la
k type safety [27, 39℄ or require defaults [44℄. Defaults are required to beable to handle all possible future extensions, whi
h is in pra
ti
e often impossible to do in a semanti
ally
orre
t way, whi
h for
es the programmer to resort to runtime failure. The possibility to use multi-methodswith required default implementations for external multi-methods [18℄ is also 
onsidered. It mat
hes all
riteria apart from this requirement for defaults.Two solutions are proposed [38℄ and implemented in the S
ala language, using traits. The �rst solution isbased on the obje
t-oriented approa
h. By leaving some types abstra
t until the program is 
losed, it allowsto de�ne new operations in extensions. Dually, the se
ond solution is based on the fun
tional approa
h.By giving an abstra
t type for the visitor used, whi
h is spe
i�ed when the program is 
losed, it allows tode�ne new datatypes. Thus, both solutions allow extension in the dire
tion that was previously impossible,although stays more verbose and less straightforward than the natural one in ea
h approa
h.We will now present a solution to this expression problem using our multi-methods. In parti
ular, we willshow that our single solution uni�es the obje
t-oriented and the fun
tional approa
h, sin
e both dire
tionsof extension are identi
ally simple. We do not require default implementations. In Se
tion 14.4, we showthat our solution has the same modularity properties as either solution in [38℄.In Se
tion 14.5, we review another proposal to solve the expression problem written in the OCamllanguage, and we 
ompare it with our proposal. 129



14.1 BaseAt the 
ore of the expression problem is the base pa
kage that de�nes an abstra
t 
lass Exp for expressions,and a method eval that takes an expression and returns an integer. It also de�nes a 
on
rete sub
lass Num.pa
kage base;abstra
t 
lass Exp{ int eval();}
lass Num extends Exp{ int value;eval() = value;} Unlike other solutions, no spe
ial hindsight is needed to make this framework open for future extension.This pa
kage 
an be imported an used in a program, without any parti
ular work to �
lose� it.pa
kage base.test;import base;void main(String[℄ args) {let e = new Num(value: 7);println(e.eval);}14.2 Data extension14.2.1 Linear extensionWe de�ne a simple extension of base by adding a new datatype for representing the addition of two expres-sions.pa
kage plus;import base;
lass Plus extends Exp{ Exp left;Exp right;eval() = left.eval + right.eval;} Independently, we 
an de�ne another extension adding negation.pa
kage neg;import base;
lass Neg extends Exp{ 130



Exp term;eval() = - term.eval;}14.2.2 Combining independent extensionsThose two independently developed extensions 
an be 
ombined, simply by importing both.pa
kage plusneg;import plus;import neg;14.3 Operations extensionsAdding new operations is equally simple. It is su�
ient to de�ne a multi-method for the operation, and toimplement it for the known datatypes.pa
kage show;import base;String show(Exp);show(Num e) = e.value.toString;Note that Plus and Neg are not known in this pa
kage, and therefore no other implementation of showis required. We do not need to give show a default implementation either.14.3.1 Linear extensionsWe 
an adapt independently developed extensions of base so that they support the show operation. To thisend, we simply import the 
orresponding pa
kages, and add the required implementations for method show.pa
kage showplusneg;import show;import plusneg;show(Plus plus) = plus.left.show + "+" + plus.right.show;show(Neg neg) = "-(" + neg.term.show + ")";Note that if we omitted these implementations, the 
ompilation of pa
kage showplusneg would haveresulted in a 
ompile-time error be
ause of the 
overage test for method show.We 
an use this extended version in a program to uses both show, Plus and Neg.pa
kage showplusneg.test;import showplusneg;void main(String[℄ args) {let e = new neg.Neg(term: new plus.Plus(left: new base.Num(value: 7),right: new base.Num(value: 6)));println(e.show + " = " + e.eval);} 131



14.3.2 Tree transformer extensionsIt is equally easy to add new operations that return an expression. For instan
e, we de�ne a method doublethat return a number similar to the argument ex
ept that all Num leafs have their value doubled.pa
kage doubleplusneg;import plusneg;Exp double(Exp);double(Num num) = new Num(value: num.value * 2);double(Plus p) = new Plus(left: p.left.double, right: p.right.double);double(Neg neg) = new Neg(term: neg.term.double );In [38℄, this 
ase requires de�ning abstra
t fa
tory methods to 
reate the new obje
ts to be returned,and to instantiate those fa
tory methods in the main program. This 
omes from the fa
t that they need to
reate new versions of the type Exp in ea
h extending pa
kage. In our model, there is only one type Exp,and obje
t 
reation does not pose any problem. An advantage of their solution is that it allows to refer to�the version of type Exp that only supports plus and neg but not show� even in a program that uses showin other parts. However, it is not 
lear how useful this is in pra
ti
e. The downside of this distin
tion isthat it be
omes possible to get errors when trying to mix di�erent versions of type Exp, whi
h is likely to be
onfusing for the programmer.A program using method double 
an be written dire
tly:pa
kage doubleplusneg.test;import doubleplusneg;void main(String[℄ args) {let e = new Plus(left: new Neg(term: new Plus(left: new Num(value: 1),right: new Num(value: 2))),right: new Num(value: 3));println(e.double.eval);}14.3.3 Combining independent extensionsWe now put it all together by 
ombining all previous extensions. Again, this is a simple question of importingthe right pa
kages. There is no need to expli
itly plug the pie
es together.pa
kage doubleplusneg.test;import doubleplusneg;import showplusneg;void main(String[℄ args) {let e = new Plus(left: new Neg(term: new Plus(left: new Num(value: 1),right: new Num(value: 2))),right: new Num(value: 3));println(e.double.show + " = " + e.double.eval);}14.3.4 Binary methodsBinary methods are methods whose implementation depends on the type of more than one of their arguments.They are hard to implement in a 
lass-based language, whose methods are asymmetri
 between their �rst132



argument and the other. Unsurprisingly sin
e we use multi-methods whi
h are by design symmetri
al in alltheir arguments, handling binary methods 
an be done very naturally.For instan
e, we de�ne a method for testing the stru
tural equality of two expressions.pa
kage equals;import base;boolean equal(Exp e1, Exp e2);// Default implementationequal(e1, e2) = false;equal(Num e1, Num e2) = e1.value == e2.value;Note that we give a default implementation of equal returning false. This is not required and we 
ould alsonot provide it, and instead provide implementations for all 
ombinations of parameters. However, this wouldrequire a large number of implementations. Indeed, it is 
lear that most expressions are not stru
turallyequal. It is therefore more pra
ti
al to de�ne the default as false and handle the few interesting 
asesexpli
itly.We 
an now 
onsider implementing equal in the 
ontext where Plus and Neg are de�ned.pa
kage equalsplusneg;import plus;import neg;import equals;equal(Plus e1, Plus e2) =equal(e1.left , e2.left) && equal(e1.right , e2.right);equal(Neg e1, Neg e2) =equal(e1.term , e2.term);We 
an use all the features together in a test program:pa
kage equalsshowplusneg;import equalsplusneg;import showplusneg;void main(String[℄ args) {let term1 = new Plus(new Num(value: 1), new Num(value: 2));let term2 = new Plus(new Num(value: 1), new Num(value: 2));let term3 = new Neg(new Num(value: 2));print(term1.show + "=" + term2.show + "? ");println(term1.equal(term2));print(term1.show + "=" + term3.show + "? ");println(term1.equal(term3));} Note that although equal is a method de�ned at toplevel, it 
an be used as well using the �dot� notationwhi
h is usual in obje
t-oriented languages. 133



14.4 Dis
ussionA 
ru
ial point to as
ertain is whether our solution is satisfa
tory from a modularity point of view. Thisquestion is 
overed by two of the �ve requirements of the problem. First, it must be possible to separatelytype
he
k and 
ompile the pa
kages 
ontaining the independent extensions. Se
ond, it must be possible to
ombine those extensions to use them jointly. We now argue that both points are satis�ed by our modulesystem in general. It is therefore in parti
ular the 
ase of our solution to the expression problem.As formalized in Chapter 8, we 
an type
he
k modules independently based on the interfa
es of theirimported modules. Furthermore, we have shown that the type
he
king of method implementations done intheir module does not need to be dupli
ated, sin
e it implies validity in the 
ontext of the whole program.This is true even in the presen
e of polymorphi
 types thanks to the fa
t that method implementations are
he
ked with an open-world assumption. It is indeed possible that the type
he
king of a module importingseveral other modules fails solely be
ause of the 
ontent of those modules, but only be
ause some methodimplementation is missing. This situation 
ould arise in pa
kage showplusneg of Se
tion 14.3. Pa
kage
showplusneg imports pa
kage show, whi
h de�nes a multi-method show whose domain 
ontains the abstra
t
lass Exp without implementing show for Exp. That is, the show method does not have a default imple-mentation in pa
kage show. This is valid in the 
ontext of pa
kage show sin
e Exp is abstra
t. In parallel,pa
kage plusneg de�nes 
on
rete sub
lasses Plus and Neg of Exp without knowledge of method show. Whenimporting both pa
kages, an implementation of show for Plus and Neg is required. This requirement isnot a te
hni
ality required be
ause of the use of multi-methods. It is fundamentally expressing that afterindependently developing two extensions that are not orthogonal, one needs to expli
itly spe
ify how theyintera
t. In the solution using traits of [38℄, this requirement is exa
tly the same: trait ShowPlusNeg mustde�ne how the new 
lasses Plus and Neg implement the show operation. A similar situation o

urs whentwo modules M1 and M2 
ontain ambiguous implementations. In that 
ase, a more pre
ise implementation in
M is su�
ient to resolve the ambiguity1.In general, it is always possible in our system to 
ombine valid independently developed modules by pro-viding the adequate method implementations. Indeed, method 
overage fails if some method implementationsare missing, in whi
h 
ase the missing 
ases 
an be added, or if some implementations are ambiguous, inwhi
h 
ase more pre
ise implementations 
an be added. We argue that this possible requirement of additionalmethod implementations is a

eptable, and even desired. This requirement 
an only be avoided by restri
tingexpressivity, whi
h 
an also have the paradoxi
al e�e
t of redu
ing a
tual stati
 safety. For instan
e, as isargued in [34℄, when multi-methods are required to have a default implementation, it will sometimes happenthat no sensible implementation exists, as with a method area on the abstra
t 
lass Shape. Therefore, thedefault implementation 
an hardly do something else than fail, for instan
e by throwing a runtime ex
eption.This introdu
es the risk of the program failing at runtime. In 
ontrast, when independently importing themethod area and a 
on
rete 
lass extending Shape, our system will report the need to implement area forthat imported 
lass, whi
h should not be surprising. Similarly, in singly-dispat
hed languages, it is typi
alto simulate multiple dispat
h using instan
e tests or some version of the visitor pattern. However, sin
e the
ompiler has no knowledge about these te
hniques, there is no stati
 guarantee that all 
ases are 
overed.14.5 Comparison with polymorphi
 variantsAnother solution to the expression problem is presented in [24℄. That solution indeed meets the �ve 
riteriaset at the beginning of this 
hapter. This result is quite remarkable, given the relatively early date of itspubli
ation and its 
ompatibility with a major general purpose programming language. The solution is basedon the used of polymorphi
 variants, whi
h are in parti
ular present in the OCaml language [29℄. Essentially,types 
an 
onsist of lists of variants open for the extension to other variants. This allows for fun
tions thata

ept an open set of data 
ases. Extension of operations 
an be a
hieved by 
reating a new fun
tion that1To make this solution possible when M1 and M2 
ontain identi
al implementations, we 
an re�ne the notion of methodimplementation ordering so that for identi
al implementations, the one de�ned in a module M is 
onsidered more pre
ise thanthe one de�ned in an any module that M imports. This allows M to 
ontain a disambiguating implementation of m.134




alls the existing one for the existing 
ases. This 
an be made to work even if the fun
tion needs to bere
ursive, the old fun
tion re
ursively 
alling the new one. However, this has to be handled expli
itly byadding an additional parameter to all re
ursive fun
tions, and by 
losing the re
ursion expli
itly where theset of data 
ases 
ompletely known.The solution with polymorphi
 variants is less general in one aspe
t: it does not allow the 
reation ofsub-
ases, whi
h is naturally a
hieved in obje
t-oriented languages (and in parti
ular in our solution) by the
reation of sub
lasses. In other words, variants allow data extension in width only, not in depth.Polymorphi
 variants use stru
tural subtyping, while our solution uses nominal subtyping. Both forms ofsubtyping have their strengths and weaknesses. Nominal subtyping is more natural when types are de
laredas part of the design of the program, while stru
tural subtyping is more suitable to type inferen
e. Withstru
tural subtyping, types 
an be
ome large, whi
h 
an be problem when writing types to the programmer.On the other hand, it allows for polymorphism over an ad-ho
 set of variants that 
an have been designedseparately, simply by listing those variants in extension. While this is typi
ally not possible with nominalsubtyping, we gain a similar fun
tionality thanks to ours kinds. Indeed, it is possible to de
lare that severalexisting 
lasses or interfa
es implements a new kind, e�e
tively allowing the de
laration of a method thata

epts any type implementing the kind.The solution of the expression problem using polymorphi
 variants requires the programmer to manually
all the existing fun
tions from the new ones. This 
orresponds in our solution to the multiple dispat
h
ode that is generated automati
ally by the 
ompiler. An advantage of writing it by hand is that it allowsthe existing fun
tions to exist independently of the new ones, and to write several independent extensionsof the same base fun
tion. On the other hand, our model is �at, in that new method implementations areun
onditionally extending the base method. If several di�erent behaviors are needed in the same program,it is required to add an additional parameter whose value 
an dire
t whi
h one is desired. Our �at modelmakes is unne
essary to handle re
ursion expli
itly, and makes it possible to let the 
ompiler generate thedispat
h 
ode. The program 
an therefore be mu
h more 
on
ise. This also opens the possibility for the
ompiler to generate more e�
ient dispat
h 
ode.
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Chapter 15Related work15.1 CoreThe λ& 
al
ulus [12℄ proposed an extension of the lambda-
al
ulus with fun
tions that dispat
h on theirarguments runtime types. They argued that 
onsidering methods as �rst-
lass elements rather than ob-je
t 
omponents signi�
antly simpli�es the theory over re
ord based models that require re
ursive types.However, this presentation was not aimed at modeling programming languages dire
tly: they did not allowprogrammer's de�nable base types; the use of the & operator to build methods does not �t dire
tly thein
remental de�nition of method implementations.The ML≤ type system and language [5, 6℄ is a remarkable attempt at unifying languages with multi-methods and ML-style type systems. It provided the main foundation on whi
h we built our resear
h.For 
omparison's sake, the instantiation of our algebrai
 type system with the type language of ML≤ inSe
tion 2.2 together with the multi-method extension in Chapter 4 produ
es a system similar to the whole of
ML≤. These presentations used a highly non-standard operational semanti
s and soundness proofs throughthe use of a typed abstra
t ma
hine, whi
h made the presentation and the proof of the system tedious andhard to understand. Our work uses a more 
onventional approa
h, whi
h 
onsists in des
ribing an untypedlanguage and untyped small-step semanti
s, and proving soundness through subje
t-redu
tion and progresslemmas. Another major a
hievement of this work is to separate the obje
t-oriented part from the 
orelanguage, both in presentation and in the proofs. Sin
e the latter part is already well understood, this makesthe study of the theoreti
al aspe
ts of multi-methods mu
h easier.We formalize the type-
he
king of multi-methods, while [5℄ ta
kled formally only methods with oneargument, and des
ribed how to extend the theory to methods with multiple arguments only informally.Similarly, open multi-methods and the modularity aspe
ts were not formalized.We also remove the need to annotate lambda-expressions with their domain, and show that their type
an be inferred. Thus, only top-level de
larations of multi-methods require type annotations.We believe thatthese top-level annotations are a

eptable in a programming language, and that they 
annot be avoidedif modular type-
he
king is needed. Indeed, implementations of methods might not be known when type-
he
king of 
ode making use of these methods is performed.

ML≤ had no notion of #C pattern. This feature is espe
ially useful with polymorphi
 multi-methods:it makes it possible to implement methods of type ∀t. t → t or ∀t. t ≤ C ⇒ t → t that are not the identityfun
tion but that a
tually return a newly 
onstru
ted obje
t. Useful 
on
rete examples in
lude the clonemethod, the unionmethod on a hierar
hy of 
olle
tions with the pre
isetype ∀t. t ≤ Collection⇒ (t, t)→ t,et
.Frey's do
toral dissertation [22℄ is an elegant algebrai
 approa
h to the typing of an ML-like languagewith obje
ts, subtyping and multi-methods. Like our work, it builds on the earlier works on ML≤ [5℄. Hisalgebrai
 type system is built on arbitrary monotypes. Polymorphism is handled in extension, whi
h make ispossible to fa
tor a bigger part of the soundness proof than in our system. However, this makes the frameworkless general than ours, where potential polymorphism is handled in 
on
rete instan
es. Frey only formalized137



a 
losed-world form of type-
he
king. In the dis
ussion part, type
he
king under the open-world assumptionis proposed as type
he
king in all possible extensions. No pra
ti
al de�nition is in
luded, sin
e that 
ouldonly be done for spe
i�
 instan
es of the system. Frey's language in
ludes lo
al multi-methods, de�nedinside expressions, as in [5℄. This is more expressive than our language, where multi-methods only appearat toplevel. On the other hand, this for
es multi-methods to be treated as part of the 
ore language, whilewe handle them separately as user-de�ned operators. It is not 
lear how lo
al multi-methods intera
t withmodular programming and the open-world assumption. In parti
ular, is it possible to add implementationsto the lo
al methods of an imported module? If so, would su
h an implementation be able to a

ess thevariables de�ned in the s
ope of the lo
al method? If implementations 
annot be added to imported lo
almethods, what spe
i�
 method 
overage rules 
an guarantee that the method will still be 
overed in the wholeprogram? This last problem is similar to the question of guaranteeing that imported (toplevel) methods arealways 
overed, whi
h is dis
ussed in Se
tion 15.2.15.2 Modular multi-methodsMulti-methods �rst appeared in dynami
ally typed languages � CLOS and later Ce
il [14℄. While this taintedmulti-methods as �powerful but unsafe�, it also opened up a line of resear
h for devising stati
 type systemsfor them. In parti
ular, a full proposal for a stati
ally typed language with multi-methods and modules 
anbe found in [16℄, with the motivation of adding optional stati
 type
he
king to Ce
il. However, the need toperform 
overage and non-ambiguity 
he
ks for multimethods based on knowledge for the whole programhas often been seen as a failure to a
hieve modular type
he
king. In this view, modularity is de�ned asthe guarantee that when modules that have been 
he
ked independently � but possibly never importedtogether in a single module, even in 
ompiled form � are linked together in the same program, this wholeprogram is guaranteed to be type-safe. This is indeed impossible to a
hieve with unrestri
ted multimethodsas found in [16℄. Several trade-o�s are possible between fully modular type
he
king and full expressivenessof multimethods [33, 35℄. This approa
h has been implemented with MultiJava [18℄, a pra
ti
al languagethat extends Java with a restri
ted form of multimethods that guarantees modular type
he
king. The �rstrestri
tion is that external methods 
annot be de
lared abstra
t (that is, la
k a default implementation).The se
ond restri
tion is that multimethod implementations must either be written in the same moduleas the method's de
laration, or it must be de
lared inside the 
lass de
laration of its �rst argument. As a
ompromise to over
ome those limitations, Relaxed MultiJava [34℄ is an extension of MultiJava in whi
h thoserestri
tions are transformed into 
ompile-time warnings instead of errors. During 
lass loading, immediatelyprior to exe
ution, the additional 
overage and non-ambiguity tests are performed to dete
t whether errors
an o

ur.Our system supports the general form of multimethods without su
h restri
tions1. In Se
tion 14.4, weargue that our system is indeed modular. The key is that the main module of the program has knowledgeof the 
ompiled interfa
e of all modules 
omposing the program, and that this information is su�
ientto perform all ne
essary 
he
ks. Furthermore, when method 
overage fails, it is always possible to provideadditional method implementations that will make it su

eed. Sin
e it is never ne
essary to modify importedmodules, the modularity requirement is met. This argument applies to the 
ase where the program 
an be
ompiled together before its start. A di�erent situation arises when modules � known in this 
ontext asplugins � 
an be linked with a running program. It is then obviously too late for a programmer to addmissing method implementations. In this 
ontext, we think that the te
hnique presented in [34℄ of 
ompile-time warnings 
ombined with runtime 
he
king is very promising, espe
ially as the linking of plugins 
an inany 
ase fail for other reasons. Alternatively, if more stati
 guarantees are desired, some form of restri
tingexpressivity 
ould be used. It would in parti
ular be interesting to investigate whether no restri
tions at all
an be imposed on the main program, sin
e it 
an be supposed to be known by all plugins.1Performing 
overage 
he
king in ea
h module and enfor
ing the pre
o
ity rule, as de�ned in Se
tion 8.3, 
an be seen as aform of restri
tion 
ompared to solely performing 
overage 
he
king on the whole program. However, those rules are only usefulto help dete
t errors earlier and to enfor
e what we believe is a good organization of the program, from a software engineeringpoint of view. They are optional, and the type safety and modularity results do not depend on their presen
e.138



A similar problem arises if one wants to be able to de
lare methods private to a 
ertain module. Inan unrestri
ted setting, the de
laration of new sub
lasses might render the implementations of a methodde
lared in an imported module either in
omplete or ambiguous. Although, as said above, this situation
ould be handled by adding additional implementations of the method, this is most likely una

eptable whenthe method was private to the imported module, sin
e its existen
e should in that 
ase not be relevant to
lient modules. Therefore, in this situation as well, we think it would be bene�
ial to 
ombine our systemwith a form of restri
tion proposed in [33℄ for non-publi
 methods.15.3 KindsF-bounded polymorphism [8℄ has been introdu
ed to extend the re
ord-based stru
tural approa
h to typingobje
t-oriented languages. It allows to type binary methods, at the 
ost of preventing sub
lasses to besubtypes. This makes it di�
ult to 
ompare with our proposal whi
h both guarantees sub
lasses to besubtypes and at the same time a

epts, for instan
e, the plus method, whi
h is more 
omplex than a binarymethod sin
e it is partially polymorphi
. Using F-bounded quanti�
ation in 
onjun
tion with multi-methodshas been proposed in [32℄, but it is still an open area of resear
h, in parti
ular with respe
t to soundnessand de
idability.If we do not 
onsider programming in su
h re
ord-based language, but fo
us on the types that 
an beexpressed with F-bounded polymorphism, we believe that it is possible to en
ode kinding 
onstraints using F-bounded quanti�
ation, translating a kind K to a parameterized 
lass K<T> and a kinding 
onstraint T : Kinto T ≤ K<T>. This is similar to the framework synta
ti
 sugar proposed in [32℄. Type-
he
king in SystemF-bounded is also known to be unde
idable [3℄. This does not pre
lude of the de
idability of F-boundedquanti�
ation in nominal type systems, as found in Pizza [37℄ or Generi
 Java [7℄, but none of these systemshave been proved de
idable yet. Furthermore, their type systems 
annot handle partially polymorphi
 meth-ods using the above en
oding, sin
e they prevent a 
lass to implement the same interfa
e twi
e with di�erenttype parameters. Our proposal does not require re
ursive 
onstraints; 
omplex 
onstraints 
an always be de-
onstru
ted into atomi
 
onstraints, whi
h simpli�es de
idability and e�
ient type-
he
king. This also makesquanti�
ation over type 
onstru
tors straightforward, whi
h is 
ru
ial for parameterized types. For instan
e,given the kind Colle
tion<T>, one 
an give map the type ∀C: Colle
tion, T, U. (C<T>, T→ U)→ C<U>,whi
h allows C to range over type 
onstru
tors of kind Colle
tion.The Abel language [9℄ has a type system based on [10℄ that 
an model obje
t-orientation using kinds andpolymorphi
 re
ursive types. These kinds are de�ned by K ::= Type | K ⇒ K | POWER[T ], where T is atype. Type T1 has kind POWER[T2] in fa
t means that T1 is a subtype of T2. In Abel, one 
an thereforesimulate bounded polymorphism by kinding the type variable with a POWER kind. Together with re
ursivetypes, this allows for the same solutions as in System F-bounded for the situations presented in this paper,but with the same problems. Our kinds are very di�erent, sin
e they are generative names, and do notenfor
e transitivity. It is essential for our solution that T : K and T ′ ≤ T does not imply T ′ : K. It mightbe possible to extend power kinds to relax transitivity, but to our knowledge it has not been done yet.Type-
lasses [42℄ address the issue of homogeneous fun
tions by de�ning predi
ates on types. For instan
e,the following Haskell-like 
ode
lass Eq t where== :: t -> t -> Bool
lass Num t where+ : t -> t -> tinstan
e Num Int where== x y = intEq x y+ x y = intAdd x y
an be expressed with kinds in the following way: 139



kind Eq== :: <t:Eq> t -> t -> Boolkind Num extends Eq+ :: <t:Num> t -> t -> t
lass Int implements Num== �Int �Int = intEq+ �Int �Int = intAddAn important di�eren
e is that our kinds are open: it is not required to de�ne operations synta
ti
allytogether with the kind they operate on. This allows for modular de�nition of orthogonal operations, andoperations that operate on more than one kind. Additionally, type-
lasses are not mixed with subtypepolymorphism. Therefore they do no raise the question of the intera
tions between subtyping and kinding asfound in partially polymorphi
 fun
tions. On the other hand, the possibility to de�ne type-
lasses indu
tivelydoes not have an equivalent in our proposal. This feature is 
ertainly useful, and should be 
onsidered in anextension of our system.
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Chapter 16Con
lusionWe have given a modular presentation of a 
omplete language and type system. This stru
ture made itpossible to 
onsider independently extensions of the language and of the type system. This possibility isuseful when presenting a 
omplex system, sin
e one does not need to 
onsider and prove the whole systemat on
e. Furthermore, it helps resear
hing extensions of the system without redoing the whole work.In parti
ular, we make a presentation of obje
t-orientation with multi-methods as an extension of a 
ore,the traditional lambda-
al
ulus with 
onstants. The proof of type-safety for this extension 
ould be madeby only proving subje
t-redu
tion and progress lemmas for multi-methods themselves.We formalized a module system for our language with multi-methods. We showed how type
he
king 
anbe performed modularly, without limiting the expressiveness of (publi
) multi-methods.In parallel, we showed how two existing type system, Hindley-Milner and ML≤, �t into our framework.We also extended the ML≤ type system, by motivating and formalizing the introdu
tion of kinds and kinding
onstraints for typing homogeneous or partially polymorphi
 methods.Finally, we formalized some aspe
ts of the translation of our system into pra
ti
e, in parti
ular the
ompilation of our high-level language into a monomorphi
ally-typed byte
ode language, and the algorithmsneeded to implement 
onstraint impli
ation in the presen
e of kinds. We also presented how we 
hose todesign the Ni
e language to implement these ideas.Experien
e using Ni
e has brought up new 
hallenges that 
an motivate extensions of our work. Someof them have been sket
hed in this dissertation, like the type-safe handling of null values in Se
tion 13.2.1.In pra
ti
e, a di�
ulty arises from the fa
t that imported Java methods do not have these nullness typeinformation. The user 
an expli
itly retype su
h methods to add that information, provided it 
an be inferredfrom the do
umentation of the method. In the absen
e of su
h retyping, the 
ompiler has to resort to eithera safe bet (possibly null return types, but non-null method arguments), whi
h is likely too restri
tive forpra
ti
al use be
ause it results in many false typing errors, or a more lenient default that does not guaranteenullness safety a
ross imported method 
alls. It would be interesting to investigate how mu
h of this nullnessinformation 
ould be inferred by a stati
 analysis of imported method 
ode.Another 
hallenge is the support of stati
 method overloading, in parti
ular while preserving type in-feren
e. This feature allows several unrelated methods to have the same name and the same number ofarguments1. Note that the disambiguation is performed at 
ompile-time based on the stati
 types of thearguments, whi
h makes this feature orthogonal to runtime dispat
h. For instan
e, suppose there are twomethods foo of types int→ void and String→ void, and 
onsider an expression of the form λx....foo(x)....If the part of the expression pre
eding the 
all foo(x) does not further 
onstraint x, it is not possible tode
ide at that point what is the expe
ted type of x and whi
h method foo is 
alled. A simple solution is toreport an ambiguity error, whi
h 
an be solved by adding a type annotation to the de
laration of x. However,it would be interesting to 
onsider other solutions that 
an resolve the ambiguity when it is possible based1This is of pra
ti
al important for Ni
e, sin
e Java does have stati
 method overloading, and therefore the 
ompiler has todeal with this situation at least for imported methods. For this reason, it was also natural to allow stati
 overloading for Ni
emulti-methods. 141



on the rest of the expression and the 
ontext in whi
h the whole expression is used, and to see how thesesolutions 
an be �t into our presentation.A fundamental property of the ML≤ type system is that related type 
onstru
tors have the same varian
e.In pra
ti
e, this entails that sub
lasses must have the same number of type parameters as their parents2.This turns out to be restri
tive in pra
ti
e. For instan
e, one 
ould want to assert that the type Integer isa subtype of List < Boolean > by 
onsidering integers as a list of the bits in their binary representation.Conversely, it 
ould also be useful to introdu
e in a sub
lass a new type parameter. We believe it might bepossible to extend ML≤ to support su
h situations by keeping tra
k of the 
onditions on type parametersfor type 
onstru
tor orderings to hold. These 
onditions would be
ome additional premises in the theMIntro rule. Additionally, 
onstru
ted monotypes should in general 
ontain open lists of type parametersto a

ommodate for variable type 
onstru
tors, as introdu
ed in rule VElim.Closer to our original topi
, our modular type
he
king system for multi-methods does not apply dire
tlyto non-publi
 and �plugin� multi-methods. In those situation, it should be investigated how to integrateother works on modular multi-methods with stri
ter modularity 
riteria, as dis
ussed in Se
tion 15.2. Thisaspe
t is also of pra
ti
al importan
e for the Ni
e language.

2Thankfully, this does not rule parametrized 
lasses out sin
e there is no need for a root an
estor 
ommon to all 
lasses.142



Con
lusionNous avons e�e
tué une présentation modulaire d'un langage 
omplet et de son système de types. Cetteorganisation nous a permis de 
onsidérer indépendemment les extensions du langage et du système de types.Cette possibilité est utile pour la présentation d'un système 
omplexe, puisque 
ela permet de ne avoir àfaire la présentation et la preuve de 
orre
tion du système en un seul blo
, les rendant plus digestes. Deplus, 
ela premet de re
her
her des extensions du système sans refaire tout le travail.En parti
ulier, nous avons présenté l'orientation objet ave
 multi-méthodes 
omme une extension d'unnoyau bien 
onnu, le lambda-
al
ul ave
 
onstantes. La preuve de 
orre
tion de 
ette extesion a pu être faireen prouvant simplement l'auto-rédu
tion et le lemme de progrès pour les multi-méthodes elles-mêmes.Nous avons formalisé un système de modules pour notre langage à multi-méthodes, et nous avons montré
omment le typage peut être e�e
tué modulairement, sans limiter l'expressivité des multi-méthodes (tout dumoins des multi-méthodes publiques).Parallelement, nous avons montré 
omment deux systèmes de types existants, Hindley-Milner et ML≤,peuvent être intégrés à notre système. Nous avons aussi étendu ML≤ en motivant et formalisant l'introdu
tionde kinds et de 
ontraintes de kinding pour typer les méthodes polymorphes homogènes et le méthodespartiellement polymorphes.En�n, nous avons formalisé 
ertains aspe
ts de l'implémentation de notre système, en parti
ulier la
ompilation de notre langage de haut niveau vers un langage byte
ode typé monomorphe, et les algorithmesné
essaires à l'implémentation des kinds. Nous avons aussi présenté les 
hoix de 
on
eption du langage Ni
e.L'utilisation de Ni
e a permis de dé
ouvrir de nouveaux dé�s qui peuvent motiver des extensions de notretravail. Certains ont été esquissés dans 
ette dissertation, 
omme le traitement statiquement sûr des valeursnulles dans la se
tion 13.2.1. En pratique, une di�
uté supplémentaire résulte du fait que les méthodes Javaimportées ne fournissent pas d'information sur leur traitement des valeurs nulles. L'utilisateur de Ni
e peutexpli
itement �retyper� 
es méthodes pour ajouter 
ette information quand elle peut être devinée grâ
e aux
ommentaires de do
umentation. En l'absen
e de tels retypages, le 
ompilateur doit soit supposer le 
as leplus restri
tif (type de retour possiblement nul, mais arguments non-nuls) pour dé
ouvrir toutes les erreurspotentielles, mais aussi signaler de nombreuses fausses alertes au point d'être inutilisable, soit être plusa

omodant, perdant alors la guarantie de sûreté des valeurs nulles lors des appels de méthodes importéesnon-retypées. Une alternative interessante à explorer serait d'inférer 
ette information à partir d'une analysestatique du 
ode des méthodes importées.Un autre dé� 
onsiste à permetre la sur
harge statique des méthode, en parti
ulier tout en 
onservantl'inféren
e de types. Cette fon
tionalité permet à des méthodes sans rapports d'avoir le même nom etnombre d'arguments3. Remarquons que la désambiguation est e�e
tuée à la 
ompilation sur la base destypes statiques des arguments, 
e qui rend 
ette fon
tionalité orthogonale au dispat
h dynamique. Parexample, supposons avoir deux méthodes foo des types int→ void et String→ void, et 
onsidérons uneexpression de la forme λx....foo(x).... Si la partie de l'expression pré
édant l'appel foo(x) ne 
ontraint pas
x, il n'est pas possible de dé
ider à 
et endroit du type de x et de quelle méthode foo est appelée. Unesolution simple est de signaler une erreur d'ambiguité, qui peut être résolue par le programmeur en ajoutantune annotation de type à la dé
laration de x. Toutefois, il serait intéressant de 
onsidérer d'autres solutions3Ce
i est important en pratique pour Ni
e, puisque Java in
lus la sur
harge statique. Le 
ompilateur Ni
e doit don
 traiter
e 
as, au moins pour les méthodes importées. Il était don
 naturel de permettre la sur
harge statique pour les méthodes Ni
eaussi. 143



qui pourraient résoudre l'ambiguité quand 
'est possible en utilisant le reste de l'expression et le 
ontextedans lequel l'expression entière est utilisé, et de voir 
omment 
es solutions peuvent être intégrées à notresystème.Une propriété fondamentale du système de types ML≤ est que les 
onstru
teurs de types d'une mêmehierar
hie ont la même varian
e. En pratique, 
ela implique que les sous-
lasses doivent avoir le mêmenombre de paramètres de types que leurs parents4. Cela est limitant en pratique. Par example, on peutvouloir indiquer que le type Integer est un sous-type de List < Boolean > en 
onsidérant la représentationbinaire des entiers. Inversement, il peut aussi être utile d'introduire une nouveau paramètre de type dansune sous-
lasse. Nous pensons qu'il est possible d'étendre ML≤ pour permettre 
es situations en a

umulantles 
onditions sur les paramètres de types sous lesquelles un 
onstru
teur de types est plus petit qu'unautre. Ces 
onditions deviendraient des prémisses suplémentaires dans la règle MIntro. De plus, lesmonotypes 
onstruits devraient 
ontenir des listes ouverts de paramètres de types pour gérer les variablesde 
onstru
teurs de types introduits par la règle VElim.Plus près de notre sujet initial, notre système de types modulaire pour les multi-méthodes ne s'appliquepas dire
tement au méthodes non publiques ou présentes dans des �plugins�. Pour 
es situations, il seraitutile d'intégrer d'autres travaux sur les multi-méthodes modulaires ayant des 
ritères de modularité plusstri
ts, 
omme nous l'avons argumenté dans la se
tion 15.2. Cet aspe
t a une importan
e pratique pour lelangage Ni
e.

4Heureusement, 
ela n'empê
he pas les 
lasses paramètrées d'exister puisqu'il n'y pas pas besoin d'y avoir une 
lasse ra
inean
être de toutes les autres. 144
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