Ecole des Mines de Paris
Thése en vue de I'obtention du diplome de docteur en informatique

Typage modulaire des multi-méthodes
Modular typing for multi-methods

Daniel BONNIOT

Cette thése a été soutenue le 18 novembre 2005
Le jury était constitué de

Frangois BOURDONCLE

Pierre COINTE

Roberto D1 Cosmo

Jacques GARRIGUE (rapporteur)
Didier REMY (directeur)
Manuel SERRANO (rapporteur)

Résumé

Cette thése présente un systéme de typage statique pour les langages & multi-méthodes avec la particularité
de pouvoir étre effectué modulairement, sans nécessiter la connaissance du programme entier. Nous montrons
également comment concilier les multi-méthodes avec un langage noyau & la ML avec sous-typage, tout en
préservant l'inférence de types pour le langage noyau, seul le type des méthodes devant étre déclaré.

Notre présentation est elle aussi modulaire. Nous posons tout d’abord un systéme de types algébrique,
qui comprend un langage noyau avec constantes et des types entiérement abstraits. Un langage peut étre
construit par choix des constantes et du langage des types ainsi que de leur relation d’ordre. Nous pouvons
dés lors identifier des conditions sous lesquelles le langage résultant est statiquement sir. Cela nous permet
d’étudier plus facilement des extensions dans deux directions différentes: pour 'expressivité des constructions
du langage et pour la richesse du langage de type, tout en partageant une partie de la preuve de sireté.

Dans la premiére direction, nous formalisons nos multi-méthodes comme une facon de définir des con-
stantes du langage. Dans la seconde, nous présentons un raffinement du systéme de types ML< en rajoutant
des contraintes de kinding, qui permettent d’exprimer de type de méthodes “partiellement polymorphes”,
c’est & dire dont le type & une précision intermédiaire entre un celle d’un type monomorphe et celle d’un
type polymorphe contraint classique, d’'une maniére modulaire.

Enfin, nous étudions le défi classique du “probléme des expressions” pour valider la pertinence de nos
propositions et les comparer aux solutions existantes. Nous donnons également un apercu de la mise en
oeuvre de l’ensemble de ces idées par la conception et I'implémentation d’un langage complet, Nice.

Summary

This thesis presents a static type system for languages with multi-methods. Typing can be performed
modularly, with the knowledge of the whole program. We also show how to mix multi-methods with a core
language a la ML with subtyping, while preserving type inference for the core language: only method types
have to be declared.

Our presentation is modular as well. We first define an algebraic type system that includes a core language
with constants and fully abstract types. A language can be built by chosing constants and a language of
types with an ordering. We identify conditions that guarantee the resulting language is statically safe. This
presentation makes it possible to study more easily extensions in two different directions: for the expressivity
of the language constructs and for the preciseness of the type language, while sharing a part of the safety
proof.

In the first direction, we formalize our multi-methods as a way to define constants for the core language.
In the second one, we present an evolution of the ML< type system by adding kinding constraints that allow
to express the type of “partially polymorphic” methods, that is, whose type’s precision lies between that of
a monomorphic type and that of a bounded polymorphic type, in a modular fashion.

Finally, we study the classical challenge of the “expression problem” to validate the interest of our propo-
sitions and compare them to existing ones. We also give an overview of the practical aspect of all those ideas
with the design and implementation of a complete language, Nice.

Remerciements

Je remercie Didier Rémy pour son encadrement lors de cette thése. Sa vaste connaissance du domaine et
sa rigueur scientifique m’ont été indispensables pour réaliser ce travail.

Je suis trés reconnaissant & Frangois Bourdoncle de m’avoir fait découvrir le domaine de recherche des
systémes de types pour les langage & multi-méthodes. Par sa vision, il a su me communiquer I’enthousiasme
qui a rendu cette recherche passionnante.

Je remercie vivement Jacques Garrigue et Manuel Serrano qui ont bien voulu étre rapporteurs de
cette thése. Je leur suis trés reconnaissant pour les encouragements et les remarques précises qu’ils ont pu
faire sur ce travail.

Je remercie également Pierre Cointe et Roberto Di Cosmo qui ont eu la gentillesse de participer a
mon jury.

Je suis grandement redevable de toute 'équipe Cristal de 'INRIA Rocquencourt, qui m’a accueilli,
soutenu, et offert de nombreuses occasions d’élargir mes connaissances du domaines et d’affiner mes propo-
sitions.

Je remercie tout particuliérement Frangois Pottier qui, & de multiples reprises, a bien voulu relire mes
articles, et dont les remarques éclairantes ont eu une grande influence sur mon travail.

Contents

I Fondations

1

I1

Algebraic type system

1.1 Type algebra
1.1.1 Sub-algebras
1.1.2 Example

1.2 Corelanguage L
1.2.1 Interpretation L
1.2.2 Progress

1.3 Instantiating the algebraic type systemo oo

Type algebras

2.1 The Hindley-Milner type system
2.1.1 Instantiation of the framework L0 Lo
2.1.2 Simplification L
2.1.3 Example
2.1.4 Beyond Core-ML

22 MLc . o
2.2.1 Typestructure 0 e e e e e e
2.2.2 Constraints
2.2.3 Constrained types e
2.2.4 Instantiation of the framework oL

Object-orientation

Classes

3.1 Object instantiation L

3.2 Field access in classes

Generic functions

4.1 Exampleo e e e

4.2 SYNEaxX e

4.3 Semantics e

4.4 Type-checking e

Super

5.1 Super in class-based languages L

5.2 Super in multi-method languages L
5.2.1 Dylano
5.2.2 Cecil e

5.3 Formalization L

21

23
23
25
25
26
30
31
32

33
33
33
39
39
40
40
41
41
44
44

51

53
54
55

57
57
58
58
59

5.3.1 Typing. . . . o o e e e 66

54 Example 66

6 Kinds 69
6.1 Introduction 69
6.2 Typing homogeneous operations 70
6.3 Partially polymorphic functions L 73
6.4 Using kinds to type partially polymorphic functions 75
6.5 Closed-world formalization 75
IIT Modularity 77
7 Modular type algebras 79
7.1 MLc .o 79
7.1.1 Variantsof ML< 79

7.1.2 Original ML< 00 80

8 Open generic functions 83
8.1 Syntax and semantics e 84
8.2 Modular type-checking 85
8.3 Early detection of errors L 86
8.4 Type inference for open generic functions L. 87
85 MLc . o o e 88
8.6 ML< multi-methods 88
8.6.1 Syntax 88

8.6.2 Type-checking e 89

8.6.3 Examples 90

8.6.4 Semantics 91

9 Super in a modular setting 93
9.1 Formalization 93
9.2 Consequences of the precocity rule 94

10 Modular kinds 97
10.1 The open world problem 97
10.2 Open-world formalization e 98
10.3 Language L 102
10.4 Conclusion e 103
IV Practice 105
11 Code generation 107
11.1 Monomorphic bytecode language oL 107
11.1.1 Type checking o 109

11.2 Monomorphic instances of polytypes 110
11.2.1 Type Constructors o oo e e 110

11.2.2 Constrained polymorphic types 111

11.3 Compilation L 112
11.3.1 Types . . o o o e 112

11.3.2 Programso 113

12 Typing kinds
12.1 Constraint decomposition e
122 Core ML< o

12.3 Adding

kinds

13 The Nice language

13.1 Syntax

13.1.1 Classes o o o
13.1.2 Methods o e
13.1.3 Kinds o e
13.2 Type checking
13.2.1 Option types e
13.3 Code generation L

14 The expression problem

14.1 Base .

14.2 Data extension L e e e
14.2.1 Linear extension
14.2.2 Combining independent extensions

14.3 Operations extensions o i e
14.3.1 Linear extensions L e e e e
14.3.2 Tree transformer extensionso
14.3.3 Combining independent extensions L L.
14.3.4 Binary methods L

14.4 DiSCUSSION v v v ot e e

14.5 Comparison with polymorphic variants

15 Related work

15.1 Core .

15.2 Modular multi-methods e

15.3 Kinds

16 Conclusion

11

121
121
121
122

125
125
125
125
126
127
127
128

129
130
130
130
131
131
131
132
132
132
134
134

137
137
138
139

141

12

Introduction

On peut définir la programmation comme l'activité humaine consistant & produire un programme a partir
d’une spécification. Dans cette définition, un programme est une description formelle d’une tache exécutable
par un ordinateur. Une spécification est une description de plus haut niveau qui spécifie une tache. Les
spécifications peuvent étre plus ou moins formelles, depuis une description vague comme “un programme
pour lire des courriers électroniques” jusqu’a une description compléte du comportement du programme.
Nous insistons sur le fait que la programmation est réalisée par des étres humains. Ont pourrait en effet
étre tenté d’appeler spécification une description formelle mais de haut niveau qui peut étre exécutée par
un ordinateur, par exemple quand un programme peut en étre extrait automatiquement. Cependant, on
peut dans ce cas voir la spécification elle-méme comme un programme. Elle a été écrite sur la base d’un
description préexistante de plus haut niveau, qui est ce que nous appellerons la spécification. Le fait que
les programmes soient écrits par des humains est important car cela conditionne les critéres a utiliser pour
évaluer la conception des langages de programmation.

Il est bien connu que tous les langages de programmation généralistes sont équivalents, dans le sens ou
pour tout programme écrit dans 'un de ces langages et effectuant une certaine tache, et pour tout autre
langage, il existe un programme dans ce langage qui effectue la méme tache. Cependant, cela ne rend
pas caduque l'idée d’améliorer les langage existants, ou d’en créer de nouveaux. Simplement, on doit se
focaliser sur la conception de langage qui rendent plus facile la programmation pour les programmeurs.
Nous identifions quatre critéres qui vont dans ce sens.

1. Les programmes doivent satisfaire leur spécification. En particulier, I’exécution d’un programme ne
devrait jamais atteindre un état invalide ou il “plante” ou doit étre interrompu avant d’avoir achevé sa
tache. Un langage qui a la propriété de streté statique permet de garantir qu'un certain programme
ne va jamais conduire & une telle situation. De plus, un langage dont les programmes peuvent étre
annotés de propriétés vérifiables statiquement (types, assertions logiques, ...) permet plus facilement
de vérifier que le programme satisfait la spécification, éventuellement dans une forme affaiblie. Plus
ces propriétés sont riches, plus elles peuvent fidélement exprimer la spécification.

2. 11 doit étre “simple” d’écrire des programmes. La simplicité étant difficile & formaliser, ce critére est
difficile & évaluer. Typiquement, la possibilité d’écrire des programmes de fagon concise (en pouvant
omettre les opérations de bas niveau) et la facilité pour d’autres programmeurs de comprendre les
programmes sont des signes de simplicité du langage. Quand une spécification formelle existe, la
simplicité peut étre caractérisée par un faible écart entre celle-ci et le programme.

3. Puisque les grands programmes sont écrits par des équipes de programmeurs, il doit étre possible de
les écrire modulairement. Cela veut dire que la tache principale doit étre décomposable en taches
plus petites, implémentés dans des parties de programme appelées modules. Chaque module doit étre
implémentable avec une connaissance minimale des autres modules dont il dépend.

4. Pour éviter du travail inutile, il doit étre possible de partager des modules d’utilité générale entre
différents programmes [26]. Ce critére découle du précédent mais le dépasse de deux fagons. D’une
part, la réutilisation est souvent difficile car chaque programme peut avoir besoin d’un comportement
différent de ce que le module partagé propose, ou encore le programme contient des cas additionnels &

13

ceux traités par le module partagé. D’autre part, puisque ce module partagé est développé indépen-
damment des programmes client, on ne peut pas supposer qu’il est possible de modifier le module pour
les besoins spécifiques du programme. Le langage doit donc offrir des mécanismes pour adapter et
étendre les modules importés.

Notre objectif général dans cette thése est d’identifier des situations ot ces critéres ne sont pas bien
respectés par les langage de programmation actuels, de proposer des mécanismes permettant de traiter ces
situations, de prouver que ces mécanismes ont des bonnes propriétés et d’illustrer comment ils peuvent étre
utilisés en pratique.

Dans le domaine de la recherche en langages de programmation, la base la plus généralement acceptée
est le Meta-Langage (ML) de Robin Milner. La théorie de ce langage est bien maitrisée, ce qui en fait
une base idéale pour proposer des extensions. De plus, il a de bonne propriétés, comme la possibilité
d’inférer les types et de manipuler les fonctions comme des valeurs de premiére classe. En conséquence, de
nombreux langages de recherche actuels sont des extensions de ML. Toutefois, cette recherche a un impact
réel mais limité sur les langages de programmation les plus utilisés dans 'industrie informatique. Basés
traditionnellement sur le paradigme impératif, ils ont dans ces derniéres années été étendus pour inclure
le paradigme de D'orientation objet. Cette extension a été motivée par le besoin de mieux permettre la
conception de systémes & grande échelle et de fournir plus de richesse d’expression. Ces objectifs auraient
pu étre atteints en utilisant le paradigme fonctionnel de ML, quoique d’une maniére différente. Cela n’a
probablement pas eu lieu car 'orientation objet pouvait plus facilement étre présentée comme une extension
de la programmation impérative (le premier langage orienté objets trés largement répandu, C++, est une
extension pure du langage C). Il est de toutes fagons intéressant de comparer comment les approches orientées
objets et fonctionnelles propose de résoudre les méme problémes, et comment elles répondent & nos quatre
critéres. Cela peut en effet inspirer la création de nouveaux langages ou de nouveaux paradigmes qui
répondent mieux a ces critéres.

Multi-méthodes

1l est reconnue que la programmation comporte deux aspects: la définition d’opérations et la définition de
structures de données [19]. Un paradigme de programmation doit donc comporter des fagons d’exprimer ces
deux aspects. Le paradigme fonctionnel utilise principalement les types sommes (unions) et produits comme
structures de données, et les fonctions définies par pattern-matching pour les opérations. Le paradigme
orienté objets offre les classes comme moyen de structurer les données, et les méthodes pour opérer sur celles-
ci. Toutefois, ces deux paradigmes introduisent une asymétrie entre ces deux aspects. Dans un programme
de style fonctionnel, les structures de données peuvent étre définies indépendamment des fonctions, alors
que I’écriture des fonctions par pattern matching requiert la connaissance de tous les cas du type de donnée
concerné. A I'inverse, dans le paradigme orienté objets, les méthodes sont définies localement a une classe
indépendamment des autres définitions de classes, alors que les classes doivent inclure la liste de toutes leurs
méthodes.

Cette asymétrie est problématique lorsque l'on considére nos deux derniers critéres de modularité et
d’extensibilité. Pour poursuivre le dualisme ci-dessus, nous devons donc & la fois pouvoir définir de nouvelles
opérations sur des structures de données existantes et définir de nouvelles structures rentrant dans le champ
des opérations existantes. Dans le paradigme fonctionnel, la définition de nouvelles fonctions est triviale.
Néanmoins, 'extension des types sommes n’est pas possible puisque cela rendrait invalide les fonctions
existantes définies par pattern matching sur ces types: elles n’auraient pas de branche pour les nouveaux
cas. A Dinverse, en programmation orientée objets, ’extension des structures de données revient & écrire de
nouvelles classes, ce qui est au coeur du paradigme, alors que la définition de nouvelles méthodes pour les
classes existantes n’est pas autorisée.

Le fait que chacun de ces paradigmes privilégie un aspect différent explique pourquoi ils sont vus comme
antagonistes. Toutefois, comme le montre la question de la modularité, les deux choix ont des inconvénients.
Il est donc intéressant de chercher a résoudre ce conflit. Cela suppose de faire en méme temps des opérations
et des définitions de structures de données des concepts de premiére classe, définissables indépendamment

14

I'un de l'autre. Cela nécessite l'introduction d’un troisiéme concept: I'implémentation d’une opération pour
un certain type de données. Ce nouveau paradigme est apparu initialement dans le langage CLOS, avec
l'usage d’une terminologie orientée objets (méthodes et classes). De telles méthodes sont alors appelées
multi-méthodes. Par rapport a l'orientation objet traditionnelle, celle nouvelle approche ajoute un aspect
de la programmation fonctionnelle: la possibilité d’ajouter de nouvelles opérations définies par “pattern-
matching” sur plusieurs arguments. Toutefois, cette approche n’avait jusqu’ici jamais été présentée dans un
contexte incluant d’autres aspects de la programmation fonctionnelle, comme le polymorphisme générique
et l'inférence de types. De plus, un défi additionnel est d’effectuer la vérification de types de programmes
avec multi-méthodes d’une fagon modulaire. C’est I'un des objectifs principaux de cette thése.

Kinds

Un autre aspect de notre travail est de montrer 'intérét et de formaliser une extension de systémes de
types dans le but de mieux respecter notre premier critére de typage statique fort. Nous présentons deux
situations qui se présentent dans la pratique avec l'interaction du polymorphisme et du sous-typage, et
nous proposons une solution unique pour traiter ces deux cas. Le premier cas, déja mentionné par [32],
est le typage des méthodes homogenes, c’est & dire, des méthodes qui acceptent plusieurs types (mais pas
tous) comme arguments, tout en n’acceptant de les mélanger dans le méme appel. Un exemple typique est
I'opérateur de comparaison less, qui peut étre appliqué & deux chaines de caractéres, deux nombres entiers,
deux dates, etc, mais pas & deux valeurs de différents types, non plus qu’aux valeurs de types n’ayant pas
d’ordre naturel, comme le composants graphiques. Le second cas, introduit dans cette thése, est apparu
au cours de notre pratique de langages avec multi-méthodes et basés sur le systéme de types polymorphes
contraints ML< [6]. Nous avons remarqué que de nombreuses méthodes sont partiellement polymorphiques:
leurs types ont une précision intermédiaire entre un type monomorphe et un type polymorphe contraint.
Nous proposons de traiter ces deux situation en introduisant une notion de kind, c’est a dire, une propriété
que certains types possédent. Un avantage supplémentaire de notre solution est qu’elle est modulaire dans
le sens ou il est possible d’ajouter dans une hiérarchie de classes existantes de nouvelles classes possédant un
certain kind sans changer le type des opérations qui concernent ce kind.

Présentation modulaire

Pour formaliser nos réponses a ces défis, nous devons définir un langage complet les incorpore de facon
cohérente, et prouver ses propriétés. Nous attachons une attention spéciale & la maniére de présenter cette
formalisation. Puisque le paradigme fonctionnel est mieux compris théoriquement que le paradigme orienté
objets, notre approche est essentiellement de partir d’'un noyau fonctionnel et d’ajouter ’orientation objet,
c’est & dire les définitions de classes et de multi-méthodes. Toutefois, nous ne nous basons pas directement
sur Core-ML. Une raison pour ceci est que le systéme de types de Hindley et Milner ne contient pas le
sous-typage atomique, qui est nécessaire & notre approche de 'orientation objet. De plus, la combinaison
du polymorphisme paramétrique et du sous-typage atomique donne lieu & de nouveaux défis de typage.
Ceux-ci peuvent étre relevés en enrichissant encore le systéme de types. Il est probable que de nouvelles
extensions deviennent nécessaires par la suite. Ces extensions peuvent prendre la forme soit de nouvelles
opérations dans la sémantique du langage, de nouveaux types, ou des deux en méme temps. En conséquence,
une présentation monolithique directe aurait deux inconvénients. D’une part & cause de sa taille: elle serait
difficile & comprendre. Mais surtout, la conception d’extensions deviendrait de plus en plus complexe puisque
chacune nécessiterait une nouvelle présentation du systéme entier et une nouvelle preuve de correction.

Au contraire, nous choisissons de rechercher une présentation aussi modulaire que possible. Ainsi, dans
la premiére partie (chapitre 1), nous présentons un systéme de types algébriques. Il comprend un langage
noyau avec constantes, et ces types sont purement abstraits. Ce noyau permet de construire un langage
complet en choisissant les types concrets et les constants d’expressions, qui doivent vérifier certaines propriétés
garantissant la correction du langage. Celle construction nous permet d’étudier plus tard indépendamment
nos propositions de systémes de types (en particulier avec les kinds) et ceux concernant les mécanismes de

15

langage (orientation objet, multi-méthodes et leur typage modulaire). Dans le chapitre 2, nous montrons en
particulier que deux systémes de types existants, celui de Hindley et Milner d'une part et ML< d’autre part,
peuvent étre exprimés comme des instances de notre systéme de types algébriques.

Dans la seconde partie, nous présentons les concepts orientés objets dans ce cadre: les classes dans le
chapitre 3, les multi-méthodes dans le chapitre 4, et les appels aux implémentation précédentes de méthodes
(“super”) dans le chapitre 5. Dans le chapitre 6, nous montrons l'intérét d’une extension originale des types
ML< pour typer plus précisément certaines méthodes grace a I'ajout de kinds.

La troisiéme partie concerne la modularité. Dans le chapitre 8, nous montrons comment les déclarations
de méthodes peuvent étre faites dans un cadre modulaire, et comment les typer, indépendamment de ’algébre
de types. Nous appliquons ensuite cette approche dans le cas de I’algébre de types ML<. Le chapitre 9 traite
de l'interaction entre appel aux méthodes antérieures et modules. Le chapitre 10 formalise notre systéme de
kinds dans un cadre modulaire.

Mise en pratique: le langage Nice

En marge de cette présentation théorique, j’ai implémenté un langage généraliste complet fondé sur le
principes présents dans cette thése. Dans la quatriéme partie, nous explorons certains aspects révélés par
cette mise en pratique. Le chapitre 11 décrit une compilation de notre langage vers un langage de bas niveau,
avec typage monomorphe, semblable au bytecode Java. Nous prouvons la correction de cette compilation. Le
chapitre 12 décrit comment notre systéme de type avec kinds peut étre implémenté. Le chapitre 13 présente
le langage Nice, en détaillant les différences entre la syntaxe utilisée dans cette thése et celle implémentée
concrétement. Dans le chapitre 14, nous étudions le cas classique du “probléme des expressions”. Nous y
proposons une solution utilisant notre systéme avec multi-méthodes modulaires, et nous la comparons avec
d’autres solutions. Enfin, nous comparons différents aspects de notre travail avec dans travaux antérieurs
dans le chapitre 15.

16

Introduction

We may define programming as the human activity consisting in turning a specification into a program. In
this context, a program is a formal description of a task that can be executed automatically by a computer.
A specification is a higher-level description that specifies a task. Specifications can vary in formality, from
a vague description like “a program to read emails” to a complete description of the program’s behavior.
For the sake of clarity, we insist the programming is performed by humans. One could be tempted to also
call specification a formal but high-level description that can be executed by a computer, for instance if
a program can be automatically derived from it. However, we can then view such a specification itself as
a program. It must have been written from a preceding, higher-level description of the task, which is the
one we will call the specification. The fact that programs are written by humans is important because it
conditions the criteria that should be used to evaluate the impact of programming languages design.

It is a well-known fact that all general purpose programming languages are equivalent, in the sense that
for any program written in one of those languages and performing a certain task, and for any other language,
there exists a program in that language that performs the same task. However, this does not mean that
the idea of improving existing programming languages — or to create new ones — is pointless. Rather,
programming languages should be designed to facilitate programming. We can identify four criteria.

1. Programs need to correctly implement the specification. In particular, the execution of a program
should not reach an invalid state where it “crashes” or needs to be stopped before having finished its
task. A language that has the property of static safety makes it possible to guarantee that a certain
program will never run into this situation. Moreover, a language whose programs can be equipped
with statically enforceable properties (types, logical assertions, ...) makes it easier to automatically
check that the program conforms with (a possibly weakened form of) the specification. The richer
those properties are, the more closely they can express the specification.

2. Tt should be possible to write programs in a “simple” way. Since simplicity is difficult to formalize, this
criteria is difficult to evaluate. Typically, conciseness (by not needing to specify low-level operations)
and the ease with which programs can be understood by other programmers are indicators of simplicity.
When a formal specification exists, simplicity can be characterized by a small gap from the specification
to the program.

3. Since large programs need to be written by teams of programmers, it should be possible to write
programs modularly. That is, the main task should be decomposable into smaller ones that can
be implemented as program parts called modules. Each module should be implementable with only
minimal knowledge about the other modules it depends on.

4. To save efforts, one should be able to share generally useful modules between different programs [26].
This criteria builds on the previous one but goes beyond it for two reasons. First, reuse is often
difficult because each program might need a slightly different behavior in a certain case than what the
the shared module offers, or the program includes specific cases in addition to those present in the
general module. Second, since the reused module was developed independently of the client programs,
one cannot assume that it is possible to modify the shared module to accommodate for the specific
needs of the program. Therefore, the language should offer mechanisms to customize and extend an
imported module.

17

Our general motivation in this thesis is to identify situations where these criteria are not met by current
programming languages, to propose language features to handle those situations, to prove that these features
have good properties and to illustrate how they can be used in practice.

In the domain of programming language research, the most widely accepted basis is Robin Milner’s
Meta-Language (ML). The theory of this language is well-understood, which makes it an ideal basis to build
extensions upon. Furthermore, it has appealing properties, like the ability to infer types and to manipulate
functions as first class values. Therefore, many current research languages are extensions of ML. However,
this research had a real but limited impact on the mainstream programming languages. Traditionally based
on the imperative paradigm, those have in the recent years been extended to handle the object-oriented
paradigm. This extension was motivated by the need to better support the design of large systems and
to provide more expressiveness. These goals could also have been met by using the function paradigm of
ML, although in a different way. It probably did not happen that way because object-orientation could
be more easily presented as an extension of imperative programming (the first mainstream object-oriented
programming language, C++, was backward compatible with C). In any case, it is interesting to compare
how object-orientation and functional programming propose to solve similar problems, and how they meet
our four criteria. Ultimately, this can help devising new languages or paradigms that better meet those
criteria.

Multi-methods

It has already been recognized that the activity of programming has two main facets: defining operations and
defining data structures [19]. Therefore, a programming paradigm must provide ways to express these two
aspects. The functional paradigm mainly uses sum and product types as its data structures, and functions
defined by pattern-matching on data-types as its operations. The object-oriented paradigm provides classes
to structure data, and methods to operate on it. However, both paradigms introduce an asymmetry between
the two aspects. In a functional program, data-types can be defined independently of functions, while
functions need knowledge about the data-type constructors. Conversely, in the object-oriented paradigm,
methods are defined locally to a class, while classes include the list of all their methods.

This asymmetry is problematic when it comes to our last two criteria, modularity and extensibility.
Following the above dualism, we need both to define new operations on existing data structures and to
define new data structures to be handled by existing operations. In the functional paradigm, defining new
functions is straightforward. On the other hand, extending existing data-types is not possible since it would
break existing functions defined by pattern matching on this type: they would miss the new cases. Conversely,
extending data structures amounts to writing new classes, which is precisely the object-oriented paradigm,
while defining new methods on existing classes is not allowed.

The fact that each paradigm privileges a different aspect explains why they are viewed as the two major
competitors. However, as the modularity issue shows, both choices carry inconveniences. Therefore it is
interesting to see how the conflict can be resolved. It involves making both operation and data definitions
first-class, toplevel operations. This creates the need for a third concept: the implementation of an operation
for a certain data type. This new paradigm initially appeared in CLOS, using object-oriented terms like
methods and classes. Such methods are called multi-methods. Compared to traditional object-orientation,
this new approach adds one aspects of functional programming: the possibility to add a new operation,
defined by “pattern-matching” on multiple arguments. However, this approach had not yet been presented
in a setting that includes more aspects of functional programming, like generic polymorphism and type
inference. Furthermore, an additional challenge is to perform the type-checking of programs with multi-
methods in a modular fashion. This is one of the main goals of this thesis.

Kinds

Another aspect of our work is to motivate and formalize a type-system extension to improve on the first
criteria of stronger static checking. We present two typing challenges that arise in practice from the interplay

18

of polymorphism and subtyping, and we propose a single solution to solve them both. The first challenge,
which has already been pointed out [32], is the typing of homogeneous methods, that is, methods that accept
several (but not all) types for their arguments, while these types cannot be intermixed. A typical example is
the comparison operator less, which can be applied to two strings, two integers, two dates, etc, but not to two
values of different types, and neither to types that have no canonical ordering like graphical widgets. The
second challenge, introduced in this thesis, has arisen from our experience with programming in languages
with multi-methods and based on the polymorphic constrained type system ML< [6]. We found out that
many useful methods are partially polymorphic: their types lie in precision in between a monomorphic and
a bounded polymorphic type. We propose to handle those two situations by introducing the notion of kind,
that is, a property that some types possess. An extra benefit of our solution is to be modular in the sense
that new classes with a certain kind can be added to an existing class hierarchy without changing the type
of the operations that act on types of that kind.

Modular presentation

To formalize our solutions to these challenges, we need to define a complete language that incorporates them
in a coherent way and to prove its properties. We take special care in the way we expose this formalization.
Since functional programming is better understood theoretically than object orientation, our approach is in
essence to start from there, and to add object-oriented features, that is, class definitions and multi-methods.
However, we will not base our work on Core-ML. One reason is that Hindley and Milner’s type system
does not include atomic subtyping, which is necessary for our approach of object-orientation. Furthermore,
the combination of generic polymorphism and object-oriented subtyping gives rise to new typing challenges.
Those can be solved by enriching the type system further. The need for other extensions is likely to arise.
These extensions could take the form of either new operations in the semantics of the language, different
types, or both at the same time. Therefore, a direct presentation would have two drawbacks. First because
of its size: it would be very hard to comprehend. Second and probably more important, the task of designing
the extensions would become increasingly complex, as each one would essentially need a new presentation of
the whole system and a new proof of its correctness.

Instead, we chose to experiment with a presentation that is as modular as possible. Therefore, in the
first part (Chapter 1), we present an algebraic type system. It includes a core language with constants,
and its types are fully abstract. This core allows a real language to be built by choosing both concrete
types and expression constants, which must verify some properties that guarantee the soundness of the full
language. This construction allows us to study independently later on our proposals concerning type systems
(in particular kinds) and those concerning language features (object-orientation, multi-methods and their
modular typing). In Chapter 2, we show in particular that two existing type systems, Hindley and Milner’s
and ML«, can be expressed as instances of our core type system.

In the second part, we present object-oriented features in this framework: classes in Chapter 3, multi-
methods in Chapter 4, and calls to previous method implementations (super calls) in Chapter 5. In Chapter 6,
we motivate an original extension of ML< types to type more methods, with the addition of kinds.

In the third part, we focus on modularity. In Chapter 8, we show how to declare methods in a modular
setting, and how to typecheck them, independently of the type algebra. We also instantiate this feature in the
case of the ML< type algebra. Chapter 9 discusses the interaction of super calls with modules. Chapter 10
formalizes our system of kinds in a modular setting.

Theory into practice: the Nice language

In parallel, T have implemented a full general-purpose programming language founded on the theory exposed
in this dissertation. In the fourth part, we explore some of the aspects involved in this effort of putting this
theory into practice. Chapter 11 describes a possible compilation of our language to a monorphically typed,
lowlevel bytecode language similar to the Java bytecode, and proves the correctness of this compilation.
Chapter 12 describes how the type system with kinds can be implemented. Chapter 13 introduces the

19

Nice language, detailing the differences between the syntax used in this document and the concrete syntax
implemented. In Chapter 14, we study the classical ezpression problem. We propose a solution using our
system with multi-methods, and we compare it with other solutions. Finally, we compare the different
aspects of our work with related work in Chapter 15.

20

Part 1

Fondations

21

Chapter 1

Algebraic type system

We present type-checking, type inference and soundness proofs for a core functional language. Instead
of exposing the syntax and structure of types, we treat them as an abstract structure with three visible
operations, following the structure of expressions: the construction of functional types, the application of
one type to another, and the let binding of a type variable in a type. Note that this application is not the
application of a type constructor to a type. It is a meta-operator that, given the type of a function f and
the type of an argument v, returns the type of the expression f v. For instance, assume f and v have types
int — bool and int respectively. We shall give the expression f v the type (int — bool) int. That is to
say that (int — bool) int is the type of the results of a function of type int — bool applied to a value of
type int.

Since we want to reason about the construction of types, we shall distinguish the algebraic types, which
are provided by the instantiation of the framework, and the syntactic types, which are constructed by our
type system on top of the algebraic types. The instantiation of the system must provide an interpretation of
these syntactic types by providing a subtyping relation. Following up on the above example, we may assume
for instance that algebraic types are ground types built over the constants int and bool and the arrow
type constructor. That is int, bool, int — bool are algebraic types'. Conversely, (int — bool) int is a
syntactic type that is equivalent to bool, while (int — bool) bool is equivalent to the error syntactic type.

1.1 Type algebra

The algebraic type system is parameterized by a type algebra. To define it, we first introduce the notion of
syntactic types.

Syntactic type T u=
Algebraic type a

Type variable | ¢

Functional type | Atr

Application type | 77

Let type | let tber in T
Error type | E

Figure 1.1: Syntactic types

IThey happen to be also syntactic types, which contain all algebraic types, see Figure 1.1.

23

Definition 1 (Syntactic types) Given an arbitrary set A, whose elements are denoted by a and called
algebraic types, and given an infinite set of type variables denoted by t, the set of syntactic types over A,
written S(A), is defined by the grammar for syntactic types T of Figure 1.1.

Informally, S(A) contains the expressions 7 of a small calculus (similar to Core-ML) built over an infinite
set of type variables ¢ and over constants a of A. Additionally, an error type E is distinguished. Note that
syntactic types are really a piece of syntax. In particular, there is no §-reduction on syntactic types. However,
we will see in Section 1.2.1 that a parallel can be drawn between syntactic types and lambda-expressions.
In the following, we use “type” as a shorthand for syntactic type.

In the type At.7, A acts as a binder of variable ¢ with scope 7. In the type let ¢ be 74 in 7, let
acts as a binder of variable ¢ with scope 7o. The set of free variables of a type 7 (Definition 2), written
FV(7), and the capture-free substitution of type 7 for type variable ¢ in type 79 (Definition 3), written
7o [t < 7], are defined as usual. Syntactic types are equal up to a-conversion. That is, we do not distinguish
between At;.7 and Ato.7 [t1 < t2] when t3 does not belong to FV(7). Similarly, let ¢; be 74 in 75 and
let ty be 7 in 7 [t; « to] are the same type when t5 does not belong to FV (72).

Definition 2 (Free variables of a syntactic type) The set of the free variables of a syntactic type is
defined inductively by:

FV(a) 0
Fv) = {tt
FV(Xt.r) = FV(r)\{t}
FV(rn) = FV(n)UFV(r)
FV(let t be 74 in) = FV(m)U (FV(TQ) \ {t})
FVE) = 0

Definition 3 (Substitution) The substitution of type T for type variable t in type 7o, written 7o [t — 7],
is defined inductively by:

alt —T1
te—71 = T
t'jte—r1] = t (t' #1)

= (nft 7)) (nft—r1])
= let t; be ([t 7]) in ([t 7]) (1 #t,t1 € FV(7))
E

=
o
ot
~
=
o'
o
fn
—
- >
SCNG
S S
S~— S~—
T e T e = =
\]

]
]
]
| = Mu(ri[t—7) (t1 #t,t1 FV(71))
]
]
]

For functional and let types, the side condition can always be satisfied by renaming the bound variable.

It is easy to check that Definition 3 and Definition 2 are valid, since they do not depend on the name
chosen for the bound variable of functional and let types. Furthermore, the substitution can be extended to
a total function by renaming of the bound variables whenever the side conditions are not satisfied.

The interest of syntactic types lies in representing the possible ways in which the types of expressions
of a programming language can be combined to form the type of a larger expression. Syntactic types need
to be interpreted, so as to provide information about the corresponding expressions. This interpretation is
provided by a type algebra.

Definition 4 (Type algebra) A type algebra A is a couple (A, <), where A is a set of algebraic types,
and the relation < is a pre-order on S(A) such that the following four azioms are satisfied:

i. (Error) The type E is a mazimal element. That is, for all type 7, 7 <E holds. Moreover, for all type
7 and type variable t, E<E 7T, E<7TE and E <1let ¢t be E in 7 hold.

24

ti. (Covariance) Syntactic types are covariant. That is, for all types T, 7/, 10, and type variable t, if 7/ <1
holds, then 1o [t <« 7'] < 79 [t «+ 7] holds.

13i. (Reduction) For all types T, 7' and type variable t, 7 [t — 7'] < (M.7) 7/
tv. (Let) For all types T, 7 and type variable t, 7' [t — 7] < let t be 7 in 7’

We discuss the interpretation of these axioms in the next section, where an expression language is intro-
duced. In particular, the maximality of E is motivated before Definition 8, and a parallel is drawn between
these axioms and the reduction rules for the expression language in Section 1.2.1.

When 71 < 75 holds, we will say that 7 is a subtype of 5. Two syntactic types 71 and 75 are equivalent
if both 7y < 75 and 79 < 77 hold, in which case we write 71 = 7. When 71 = 79 does not hold, we will write
71 # To. The relation > is the symmetric relation of <. The predicate 71 < 75 holds when 71 < 75 holds but
71 > 7o does not hold. Similarly, 7, > 7 holds when 7 > 75 holds but 71 < 75 does not hold.

Note that while we don’t specifically require a subtyping relation for the algebraic types, they can be
compared by the restriction of < to the set of algebraic types A. When there is ambiguity about the type
algebra in which syntactic types are compared, we write A = 71 < 75 instead of 71 < 7.

1.1.1 Sub-algebras
We show that a subset of a type algebra is also a type algebra.

Theorem 5 (Sub-algebra) Let (A, <) be a type algebra, and A’ be a subset of A. Then (A’,<) is a type
algebra.

Proof of theorem 5

First, by Definition 1, since A’ is a subset of A, S(A’) is a subset of S(A). Therefore <, which is a pre-order
on S(A), is also a pre-order on S(A’). Finally, all four conditions on < in Definition 4 hold for all types in
S(A), so they do hold in particular for those in S(A’). B

1.1.2 Example

Let us build a type algebra, based on the following simple monomorphic type system with atomic subtyping
and function types. The algebraic types A are defined by the grammar a ::= int | float | a — a. These
types are ordered as usual, by the smallest relation < that verifies:

’ /
as < Gy a; < a2

int < float 7 7
a, — ajy < ag — a1
We must provide a pre-order on S(A) that verifies the axioms of Definition 4. To this end, we introduce
an auxiliary definition. We define a translation (-) of the elements of S(A) to sets of algebraic types, which
maps syntactic types to the set of types they denote.

(@) = {d']a=<d}
{ty = A
E) = 0
(m m2) = {a1|3az € (m), a2 — a1 € (1)}
(M.1) = {axs—a1|az € Ajay € (T[t — az])}
(let t be 71 in 7o) = {az|3a1 € (11),a2 € ([t — a1])}

For instance, (int) = {int,float} and (A\t.t) = {a — a | a € A}. Therefore, the translation of (At.t) int
is {int, float}.

The order on syntactic types is defined in the following way: 71 < 7 holds if and only if (71) D (12).

We can now show that (A4, <) is indeed a type algebra. The relation < is a pre-order on S(A) since D is
reflexive and transitive. Moreover, it satisfies the axioms of Definition 4:

25

1. (E) = (. Therefore, for all t and 7, (1) 2 (E), and (E 7) = (T E) = (let t be E in 7) = (). That is,

T<E,E<E7,E<7EandE <1let ¢t be E in 7 hold.

2. Covariance is proved by induction on the structural size of 9. We need to prove that 7o [t « 7'] <
7o [t < 7], provided that 7/ < 7. For the case 79 = At;.71, we can assume w.l.0.g that ¢; is different
from ¢ and not free in 7 nor in 7/. Therefore (At;.71) [t «— 7] = M1.(m1 [t < 7]) and (Mt1.71) [t «—
7' = M1.(11 [t < 7']). For as — ay in (Mty.71 [t < 7]), by definition of the translation, a; € (ry [t «—
T][t1 < ag]). Since t; # t and ¢ is not free in 7, 7y [t «— 7| [t1 < a2] = 71 [t1 < ag][t < 7]. Since
71 [t1 « ag] has a smaller size than At;.71, we can apply the induction hypothesis, and (7 [t; <
ag] [t — 7)) C (1 [t1 « a2][t — 7']). Again, 7 [t; < a2|[t — 7'] = 7 [t « 7] [t1 < a2]. Therefore
ay € (11 [t « 7' [t1 < a2]). That is, as — a1 € (M1.71 [t « 7']). Thus, Aty.71 [t — 7] < M7 [t < 7.
The case of let types is similar, and the other cases are straightforward.

3. We now prove an auxiliary property: the translation sets are upward-closed. That is, for all algebraic
types a and o/, and syntactic type 7, if a € (r) and a < o/, then @’ € (7). The proof is by induction
on 7. All cases are immediate except for functional types. For all a in (At.7), by definition of the
translation, a is of the form as — a1 where aq € (7 [t < as]). By hypothesis a < o’ and by definition
of <, o’ is of the form a}) — a} with af < a2 (1) and a1 < @} (2). By (2) and the induction
hypothesis, a] € (7 [t < ag]) (3). Furthermore, it follows from (1) that a5 < as holds. Therefore,
by the covariance axiom proved above, 7 [t « a}] < 7[t « ag]. That is, by definition of subtyping,
(Tt < ab]) 2 (T [t < az]). Therefore, (3) implies a} € (7 [t < a}]). That is, a’ € (At.7), which proves
the property. This property implies in particular that for all algebraic type a and syntactic type 7, if
a € (1), then a > 7 (4).

We may now prove the reduction axiom: for all types 7, 7/ and type variable ¢, (A\t.7) 7/ > 7 [t — 7/].
Let a; be in ((At.7) 7). Then there exists ag in (7/) such that as — ay € (At.7). That is, a1 € (7 [t —
as]). Since as € ('), by (4) we have that ay > 7. So by covariance, 7 [t < az] > 7 [t < 7']. That is,
(Tt « as]) C (7 [t — 7']). Therefore, a; is in (7 [t « 7’]), which shows the property.

4. For all types 7, 7" and type variable ¢, let ¢ be 7 in 7" > 7'[t «+ 7]. Let a2 be an element of
(let t be 7 in 7’). Then by definition, there exists a; in (71) such that as € (72 [t < a1]). By (4),
a1 > 71. So by covariance, 7 [t < a1] > 7o [t « 71]. That is, (12 [t < a1]) C (ra [t « 71]). Therefore,
ag is in (72 [t < 71]), which shows the property.

It is interesting to see in this algebra the meaning of Covariance (Definition 4.ii). In particular, type
application is covariant on both arguments. This is not in contradiction with the contra-variance of the —
algebraic type constructor on its first argument. For instance, float — int < int — float. Therefore,
it is required by Covariance (Definition 4.ii) that (float — int) int < (int — float) int. This indeed
holds, since in the translation, ((float — int) int) is {int,float} and {(int — float) int) is {float}.

1.2 Core language

Expression e == xz|Ar.e|ee|let x be e in e]c

Constant ¢ == C|f

Value v o= Az.e
| Cuop.ovp (n < arity(C))
| for..o, (n < arity(f))

Figure 1.2: Language syntax

We consider the set of Core-ML expressions, recalled in Figure 1.2. Lambda abstractions Az.e and let
expressions let x be e; in e bind they argument z in their body e, and are considered equal modulo

26

renaming of x. These expressions are parameterized by a set of constants ¢. Each constant comes with
an algebraic type written constant-type(c), and with a positive integer arity written arity(c). Constants are
either data constructors C or operators f. A constant ¢ applied to n arguments is a value when n is less
than arity(c), or ¢ is a data constructor and n is arity(c). Thus, an operator f applied to exactly arity(f)
arguments is not a value (and therefore it must be reduced).

The semantics of expressions is defined in Figure 1.3. This notion of reduction encompasses both call-by-
value and call-by-name. A deterministic restriction is presented in Section 1.2.2. The and -LET reduction
rules are standard. The (possibly non-deterministic) reductions of an operator f are defined by the set of
(arity(f) +1)-tuples R(f) used by Rule OP. Rule CTXT allows reductions to occur inside expressions, except
in the body of a let-expression or in the body of a function. Note that it does not change semantics whether
contexts have depth one as defined here or an arbitrary depth; it is always possible to apply CTXT several
times to obtain reductions at an arbitrary depth inside an expression.

Evaluation context £ == [le|e]|let x be [] in e
B B-LET
(A\z.e) e — ez « €] let m7; be e; in ey — eg [r1 « €1]
Op CTXT
m (617 ...,6n,€) S R(f) € — 6/
e Ele] — [

Figure 1.3: General semantics

VAR type(x) ty

Cst type(c¢) = constant-type(c)

Lam type(Az.e) = MAt,.type(e)

App type(e1 e2) = type(er) type(es)

LET type(let z1 be ey in e3) = 1let t,, be type(e;) in type(es)

Figure 1.4: The typing function

We define a function computing the syntactic type of any expression. Instead of using a type environment,
we associate to each free variable x of the expression a distinct free type variable ¢,. This typing function is
defined recursively in Figure 1.4. Expression variables are mapped to their associated type variables (Rule
VAR). Rule CsT gives Constants their declared type. Note that it is valid to use constant-type(c) as a
syntactic type, since the grammar of Figure 1.1 implies that algebraic types are also syntactic types. The
type of a lambda abstraction Ax.e is the syntactic functional type At,.7, where 7 is the type of e (rule LaMm).
Since syntactic types are equal modulo a-conversion, we show in Proposition 7 that the type of a lambda
abstraction does not depend on the choice of its parameter name. The type of an application e; es is the
syntactic application of the types of e; and es (rule App). Finally, in Rule LET, the type of a let-expression
let 27 be e; in ey is the type that binds ¢, to type(e1) in type(ez). Again, this type does not depend on
the choice of the name x; by alpha-conversion of let types.

We prove a substitution lemma that describes the properties of the typing function. It says that substi-
tution commutes with the typing function. An interpretation of this result is that the type of an expression
is a function of the type of all its parts. Moreover, because of the covariance of type algebras (Definition
4.ii), that function is covariant in all its arguments.

27

Lemma 6 (Substitution)
For all variable x and for all expressions e and ¢’,

type(e [z «— €']) = type(e) [t, — type(e’)]

Proof of lemma 6 (Substitution)

The proof is by induction on e.

case

case

case

case

case

case

e=ux
By definition of the typing function, type(z) is t,. Therefore, type(z) [t, < type(e’)]is t. [t. < type(e')],
which by Definition 3 is equal to type(e’).

By definition of substitution, = [x « ¢’] = ¢’. Therefore type(x [z < €']) is also equal to type(e’), which
proves the property.

e=2a" with 2/ #z
By definition of substitution, 2’ [z «— ¢€'| = a’. Therefore type(z’ [z — €']) = type(z’) = t,/. Since
7' is different from z, this implies t,» # t, and therefore ¢, is in turn equal by Definition 3 to
ter [t < type(e’)].

e=c
This case is similar to the case e = 2.

e = \xy.e1

By a-conversion on e, we can assume without loss of generality that x; # x (1) and that 27 ¢
FV(e) (2).

Let T be type((Axi.e1) [x « €']). By definition of substitution, (1) and (2), we have (Azy.e1) [z «—
€'l = Ax1.(e1 [z « €']). Therefore, T is equal to type(Az1.(e1 [z < €])), which by Rule LAaM is equal
to Ay, .type(er [x «— €]).

By induction hypothesis, type(e; [z « €']) is equal to type(e;)[t. <« type(e¢’)]. Therefore,
Mo, type(er [x — €]) is equal to M., .(type(er) [tz < type(e’)]), which by Definition 3 with (1) is
equal to (Atg,.type(e1)) [tz < type(e’)]. Since by Rule LAM, type(Ax;i.e;) = A, .type(e1), and we
finally have T' = type(\x1.e1) [t < type(e’)], which finishes the proof of this case.

€ = €1 €9
By definition of substitution, (e; e2) [x «— €'] = €1 [z — €] ea [x — €'].

This case is then a mere application of the induction hypothesis type(e; [z «— €']) = type(e;) [tz —
type(e’)] (1) for i = 1,2, combined with the definition of the typing function for application types.

type((e1 [z — €]) (ez [z — €T]))

= type(e; [z — €]) type(e; [z «— €]) (Aprp)
= (type(er) [tz — type(e')]) (type(ea) [tz type(e’)]) (1)
= (type(er1) type(ea)) [tz < type(e)] (Definition 3)
— type(er e2) [t — type(e’) (APr)

e =1et x1 be e; in es

By a-conversion, we can assume without loss of generality that z1 # x (1) and 21 € FV(¢') (2).
Therefore, by definition of the substitution, (let 27 be e; in ey)[z «— €] = let x1 be e[z «—
€] in egfz — €'].

type(let z1 be ey [r «— €] in ey [z — €'])

= let t,, be type(er [x < €']) in type(es [z «— €']) (LET)
= let t,, be type(er)[t. < type(e’)] in type(ea) [t. < type(e’)] (Ind. Hyp.)
= (let t,, be type(ei) in type(ez)) [t» < type(e’)] (Definition 3 with (1))
= type(let x; be ey in eq)[t, — type(e’)] (LET)

28

Proposition 7 Let © and ' be distinct variables and e an expression such that 2’ is not in FV(FE). Then
type(Ax.e) = type(Aa’.e [z «— 2']).

Proof of proposition 7

By the definition in Figure 1.4, type(Az.e) = At,.type(e) and type(Az’.e [x «— a']) = At .type(e [z « 2']). By
Lemma 6 (SUBSTITUTION), type(e [z < a']) is equal to type(e) [t, < t,]. Therefore, type(Az’.e [z «— 2']) is
equal to At,.(type(e) [tz < t1v]). Since ' is not free in e by hypothesis, ¢,/ is not free in type(e). Therefore,
by alpha-conversion, At,.(type(e) [tz < t./]) is equal to At,.type(e), which proves the property. B

Since typing is done by a function, it associates exactly one type to every expression. Therefore, there
is no notion of generalization or instantiation. Instead, in a type algebra with polymorphic types, types
are always generalized as much as possible, and the syntactic types bound to by let types correspond to
polymorphic types. In particular, this allows a let-bound value to be used polymorphically.

In most type systems, an expression is well-typed when it can be assigned some type according to the
typing rules, and ill-typed expressions are those that can be assigned no type. In our framework, the typing
function is independent of the concrete type system, that is the type algebra. Therefore, the typing function
is more naturally defined as a total function that assigns a syntactic type to every expression. Ill-typed
expressions are characterized by the fact that their type is equivalent to the error type. This convention is in
agreement with the intuition that smaller types are inhabited by more values than greater types. A natural
extension is to introduce an error type that is maximal (as required by Definition 4.i) and inhabited by no
value. Therefore, ill-typed expressions are those whose type is inhabited by no values, that is, whose type is
equivalent to the error type.

Definition 8 (Well-typed expression)
An expression e is well-typed if and only if type(e) Z E.

To ensure type soundness, we assume that the following requirements on constants are satisfied:
Requirement 9 (Constants) Let n be arity(f).
i. If fuy ... v, is well-typed then there exists an expression €' such that (v1,...,v,,€") belongs to R(f).
ii. If (e1,...,en,€") belongs to R(f), then type(f ey ... e,) > type(e)
5i. An expression of the form C vy ... v, is never well-typed if p > arity(C)

The first requirement guarantees that an operator has enough reductions to cover all of its legal arguments.
The second one requires that all operator reductions lead to expressions with smaller types. Finally, a data
constructor must not be applicable to more values than its arity, since no rule would guarantee that such an
expression reduces to a value.

The type system verifies subject reduction with respect to the semantics of Figure 1.3. That is, along
the paths of reduction, the type of expressions always get smaller.

Theorem 10 (Subject reduction)

For all expressions e and ¢’,

/
e — €

type(e) > type(e’)

Although this theorem is standard, its proof is not. It can be done by using the typing functions and the
two requirements on type algebras. This is mere calculation on types, as opposed to the creative reasoning
usually required. This simplification is possible because we have a calculus of type expressions and because
a part of the proof is abstracted away in Reduction (Definition 4.iii). The proof is thus short and easy to
check step by step. It should furthermore ease automatic proof checking.

Proof of theorem 10 (Subject reduction)

The proof is by induction on the derivation proof of the reduction.

29

case Op
This case is exactly covered by Requirement 9 (CONSTANTS).

case [§

type((Az.e) €’)

= type(Az.e) type(e’) (App)
= M,.type(e) type(e’) (LAm)
> type(e) [tz < type(e’)] (Definition 4.iii)
= type(elx «— €']) (Lemma 6)

case (-LET

type(let x1 be e; in eg)

= let t,, be type(e1) in type(es) (LET)
> type(es) [tz, < type(er)] (Definition 4.iv)
= type(es [z1 — e1]) (Lemma 6)

case CTXT
In this case, e = E[e;] with e; — €]. So, by induction hypothesis, type(e}) < type(e1) (1). We then
reason by case on the form of £.

case £ =[] ez
type(e} e2)
= type(e}) type(ez) (APP)
< type(ey) type(ez) (Definition 4.ii with (1))
= type(e; e2) (App)
case £ = e ||
This case is similar to £ =[] ea.

case £ =let z7 be [| in e

type(let z; be €} in ey)

= let t,, be type(e}) in type(es) (LET)
< 1let t,, be type(er) in type(ez) (Definition 4.ii with (1))
= type(let 7 be e in e) (LET)

1.2.1 Interpretation

In most type systems, expressions are directly assigned a type. In our system, they are instead assigned a
syntactic type, which is then interpreted in a type algebra. In this section, we present an intuition about
the significance of these syntactic types.

One can note that there is a strong correspondence in structure between the syntactic types 7 and the
expressions e of the core language:

Tu=1t|a| M1 |77 | let t be 7 in T
ex=2a|c| A Xe] ee|let x beeine

Intuitively, the typing function returns a syntactic type that reflects the structure of the program. It
only approximates constants to their defined types. This parallel is natural if one considers types as an

30

abstraction of expressions, where the type of an expression provides partial knowledge about this expression.
Thus, the typing function that maps an expression to its (principal) type is an abstraction function.

Because of this parallel, the subject reduction theorem can be proved after imposing properties on types
that follow the reduction of expressions. Thus, the property iii of Definition 4 (Reduction) at the level of
types corresponds to the S-reduction rule for expressions:

Aty > Tt 1)

Similarly, property ii of Definition 4 (Covariance) correspond to the reductions CTXT, and property iv
of Definition 4 (Let) corresponds to the (-let reduction rule:

let t be 7 in 7/ > 7[t— 7]
let 2 be e in ¢ — e[t €]

However, one should not think that this presentation is merely postponing all the proof requirements
to the type algebra. Important parts of the proof are done in the framework, as shown by Lemma 6
(SuBsTITUTION) and Theorem 10 (SUBJECT REDUCTION). Furthermore, the remaining proofs in the type
algebra are done at a higher level of abstraction, since they do not need to refer to expressions anymore.

1.2.2 Progress

We chose so far to present semantics with a notion of reduction that encompasses both call-by-value and
call-by-name. Our framework can therefore be easily adapted to use these two semantics while preserving
Theorem 10 (SUBJECT REDUCTION), since it is easy to see that they have fewer reductions than the reduction
defined in Figure 1.3. Furthermore, it is straightforward to impose a deterministic evaluation order by
restricting the set of evaluation contexts £. In this section, we present a call-by-value semantics with left-
to-right evaluation order. It is defined in Figure 1.5.

Evaluation context Ecgv || == [le|v]|let = be [] in e
B B-LET
(Ax.e) v —cpy €[z — V] let x1 be vy in es —cpy €2 [x1 < v1]
Or CTXT
7o R (v1, ..., Un,€) € R(f) e —cpy €
1 e
" Ecavle] — Ecavle’]

Figure 1.5: Call-by-value semantics

Theorem 11 (Progress) If an expression e is closed and well-typed then either e is a value, or there exists
an expression € such that e —cgy €.

Proof
The proof is by induction on e.

case € =T
This case is impossible because x is not closed.

case ¢ = ¢
Then by definition e is a value.

31

case e = \z.¢/
Then e is a value.

case ¢ = let 1 be ey in ey
By property i of Definition 4 (Error), the expression e; must be well-typed, otherwise e would not be
well-typed. Therefore, by induction hypothesis, either e; is a value, in which case e reduces by CTXT,
or e; reduces, in which case e reduces by S-LET.

case € = €1 €2
By APP, e; and eq are well-typed. By induction hypothesis on ey, there are two cases. If e; —cpy €],
then by CTXT, e — ¢y €] e2, which proves the desired property. Otherwise, e; is a value vy. In this
case we apply the induction hypothesis to es. If ea —cgy €5, then by CTXT e —cgy v1 €5, which
proves the property. Otherwise, es is a value vo. We now proceed by case on v1. By Figure 1.2, there
are three cases:

case v; = \r.¢}
Then e reduces by J.

case vy = C vf ... v}, with n < arity(C)
By hypothesis, e = C v} ... v, v2 is well-typed. So by Requirement 9 (CONSTANTS), n + 1 <
arity(C'). Hence e is also a value.

case v; = f v} ... v], with n < arity(f)
If n 4+ 1 = arity(f), then since e = f v] ... v),_; v, Requirement 9 (CONSTANTS) imposes that
there exists an €’ such that e —cgy €’. Otherwise, n + 1 < arity(f), so e is a value.

B We can therefore present a type soundness result, which is a trivial consequence of Theorem 10 (SUBJECT
REDUCTION) and Theorem 11 (PROGRESS):

Theorem 12 (Soundness)
Let e be a well-typed expression. FEither all reductions of e are infinite, or there exists a value v such that
e — ¢y ... —cpv U and v is well-typed. Furthermore, type(e) > type(v).

Proof of theorem 12 (Soundness)

Let’s assume that there exists a finite reduction of e, that is e —¢g, €’ and €’ /—cgy. Theorem 10 (SUBJECT
REDUCTION) shows that type(e) > type(e’). Furthermore, since ¢’ /—cgy, Theorem 11 (PROGRESS) shows
that ¢’ is a value. B

1.3 Instantiating the algebraic type system

The algebraic type system contains two degrees of freedom, that can be used to build type systems for
various programming languages.

First, a domain A for (algebraic) types must be provided together with a pre-order < on S(A) such that
(A, <) is a type algebra. Given an expression e, our framework computes the syntactic type type(e). Typa-
bility and type-checking are decidable if < is decidable, by applying the following definitions, respectively:
the expression e is well typed if type(e) < E and it has algebraic type a if type(e) < a. Regarding type
inference, the syntactic type type(e) can not be considered as a satisfactory type for an expression e, since it
is roughly as large as e. On the other hand, it is often possible to provide a partial function that simplifies
syntactic types into another set (for instance algebraic types). In that case, the composition of the typing
function and that translation function performs type inference. We present in the next section two detailed
instantiations: the Hindley-Milner type system and the ML< type system. Both instantiations support type
inference. This shows that our system is general enough to express complex and various type systems, while
factoring out a substantial part of the soundness proofs.

The second parameter of our framework is the set of operators, which can be used to model a complete
language by providing data constructors and operators that satisfy Requirement 9 (CONSTANTS). In Part II,
we use this facility to model a realistic object-oriented language with classes and multi-methods.

32

Chapter 2

Type algebras

2.1 The Hindley-Milner type system

As an example, we show here that Hindley-Milner type schemes form a type algebra. Our framework can
thus be used to present the type system of ML with a novel and concise proof of its correctness.

The syntax for Hindley-Milner types is recalled in Figure 2.1. Type variables are denoted by « as usual in
ML, while types are denoted by 6 (rather than 7 so as to avoid confusion with syntactic types). Type schemes
are considered equal modulo renaming of bound type variables and removal of quantified type variables that
do not occur in the type, and reordering of quantified type variables.

Base type ¢t == int|bool]|...
Type 0 == 1]|0—0|«
Type scheme o == VYa.f

Figure 2.1: Type syntax

2.1.1 Instantiation of the framework

To instantiate the framework, we first define the set of algebraic types HM as the set of type schemes. We
then provide a pre-order on S(HM) — the set of syntactic types built on HM — that verifies the requirements
of Definition 4. As in the example of Section 1.1.2, we do so in two steps. First, we translate syntactic types
into a suitable form in which they can be compared and second we provide the ordering on the translated
form. However, it would not be sufficient to translate syntactic types to type schemes, since that would
incur a loss of information. For instance, consider the syntactic type (int — bool) ¢. Its natural translation
would be the type bool. However, we also need to keep track of the information that the syntactic type
variable ¢ is constrained to be equal to int. Therefore, we define constrained type schemes in Definition 13
as triples Va|C.0 where C' is a set of equalities of the form 6; = 6. We call HMC the set of constrained type
schemes. The translation of type (int — bool) t can then be defined as V|t = int.bool, which retains the
desired information on ¢.

Therefore, we will form a type algebra based on HMC'. Since HM can be seen as a subset of HMC by
using empty constraints, this will induce by Theorem 5 (SUB-ALGEBRA) a type algebra on HM.

Definition 13 (Constrained type schemes) A constrained type scheme is a triple written Va|C.0 where
Va.0 is a type scheme, and C' is a set of equalities of the form 61 = 05.

Definition 14 (Translation of Hindley-Milner types) Given a syntactic types T in S(HMC), its trans-
lation (1) into a constrained type scheme is defined by induction in Figure 2.2.

33

(t) =Val|C.0
(Va|C.0) = Va|C.0 (t)y = V0|0.0 (E) = Va|int = bool.« (A7) =Vao|C.ar — 0

(1) = Vau|Cy.0, (12) = Vaia|Cy.02
(7'1 7‘2> = Va15204|01 UCyU {91 = 0y — a}_a

0% €a1752701702791792

(11) = Vau|C1.60, (12) = Vaia|Cy.0,
<1et t be 71 in 7'2) ZV@1@2|01 U Cy.04

t € FV(TQ)

(let t be 71 in 7o) = (na [t «— (11)]) te FV(m)

Figure 2.2: Translation for Hindley-Milner

The choice of the names of bound type variables does not matter, since constrained type schemes, like
syntactic types, are equal up to a-conversion. The translation of the error type is a constrained type scheme
with an unsatisfiable constraint, which we arbitrarily chose to be int = bool. The translation of \t.7 is
basically (t) — (7), except that generalization on ¢ is done immediately.

It should not be surprising that unification occurs during type application. In particular this fact makes
explicit that in the usual ML rule

T'key:7—1 I'Fey: T

I'kejeq: 7

the two occurrences of 7 in the premises amount to an equality constraint between two a priori different
types.

The translation function distinguishes let types depending on whether the bound type variable occurs in
the body. In let ¢t be 71 in 7o, if ¢ does not appear free in 75, we need to make sure that the constraints
generated by the translation of 71 is copied in the resulting translation. Otherwise, it could miss the fact
that 71 and 7 impose incompatible constraints on a free type variable. This is for instance the case in
let t be (int — int) ¢y in (boolean — boolean) t; (which correspond to the expression let x be 1+
Zo in not x).

We are now able to define the order on S(HMC) in the following way. We shall denote ground substi-
tutions by p, and write p(C') if for each §; = 65 in C, p(6;) is syntactically equal to p(62). For two ground
substitutions p; and ps, and a set of type variables @, we will say that p; and ps are equal on @, which we

write p; = po, if for all type variable a in @, p;(a) = p2(a).

Definition 15 (Ordering of constrained type schemes)
Let Yai|C1.01 and VYais|Ca.02 be two constrained type schemes. Let @ be FV (Vap|Ch.01) U FV (Vas|Ca.02).
By a-conversion, we assume that & and @y are disjoint from @.

The relation Vo, |Cy .01 < Vaia|Ca.02 holds if and only if for all ground substitution ps with domain @Uds

such that p2(Cs) holds, there exists a substitution p1 with domain @U@y such that py a p2, p1(C1) holds,
and p1(61) = p2(62).

We will say that two constrained type schemes are equivalent if each one is smaller than the other.

Definition 16 (Order on S(HMC)) Let 71 and 1o be two syntactic types of S(HMC). The relation
71 <mmc T2 holds if and only if (11) < (m2) holds.

In this section, we shall use < to denote <p3;c when that does not lead to ambiguities.
It is worth noting that the relation 7 <pgyc 72 always holds if the constraint in the translation of 7 is
not satisfiable. Since the error type is maximal, this means that syntactic types that generate unsatisfiable

34

constraints are equivalent to the error type. Therefore, values of these types are not well-typed. For
instance, the translation of the syntactic type (int — int) bool is V{}|bool < int.int. Since the constraint
bool < int is not satisfiable, we have (int — int) bool = E.

We can now assert that we have formed a type algebra in the sense of Section 1.1.

Theorem 17 (HMC) The couple (HMC,<puc) is a type algebra.

By Theorem 5 (SUB-ALGEBRA), this implies that Hindley-Milner type schemes also form a type algebra.

Corollary 18 (HM) The couple (HM,<ppn) is a type algebra, where, for any type Vai.01 and Vas.0s in
S(HM), Va,.0; < Vas.0s iff Vay |601.0 <pye Vas|62.0.

The proof is given below. It only needs to deal with technical properties of the pre-order we introduced.
This fact shows that we indeed achieved to factorize substantial parts of the soundness proof.

We define a size function on syntactic types, designed so that the size of a type is smaller than the
size of its components and so that size(let t; be 7 in 7o) > size(rz [t1 < 71]). Note that for all type T,
size(r) > 1.

Definition 19 (Size of a syntactic type) Given a syntactic type T, and a function f from type variables
to integer numbers, we define sizes(T) by structural induction on T, with:

sizes(a) 1
sizep(t) = 1
sizef(Mt.7) = 14 sizefpini(7)
sizep(m T2) = sizes(m) + sizep(72)
sizef(let t; be 71 in T2) = sizes(T1) +sizes i, sive, (r)(T2)
sizef(E) = 1

Given a syntactic type T, we define size(T) as sizep(T), where 1 is the constant function mapping all type
variables to 1.

Proof of theorem 17 (HMC)

Let us first prove property i of Definition 4 (Error). Since the constraint of (E) is unsatisfiable, 7 < E
always holds by Definition 15. Furthermore, the constraint in the translation of 7 E and E 7 includes the
constraint of (E), so it is also unsatisfiable, and these two types are indeed greater than E. It is also the
case of let ¢ be E in 7: when ¢ does not appear in 7, the unsatisfiable constraint in (E) is directly copied
into the constraint set of (let ¢ be E in 7); when ¢ appears in 7, a straightforward induction show that
the unsatisfiable constraint appears in (7 [t — E]).

e We now prove property ii of Definition 4 (Covariance). We therefore assume 71 < 7 . We prove that
7 [t < 1] < 7 [t < 72] by induction on 7.

case 7 =1
We need to prove 7, < 7o, which is the hypothesis.

casse T=EorT=aor 7=t with ¢ #1¢
The result is immediate since by Definition 3, both 7 [t «— 71] and 7 [t < 7] are equal to 7.

case T =Ty T}
By Definition 3, for ¢ = 1,2, 7[t «— 7] = (0 [t «— 7)) (7§ [t < m]). For i = 1,2, let Va,;|C;.0;
be (1o [t «— 7)), B; be FV(Va;|C;.0;) and 3 be 3, U By. Let also Vai|CL.0: be (1)t «— 7)),
B, be FV(Va,|C!.0}) and, B be B, UB,. We can assume w.l.o.g. that the @; and @, are all
pair-wise disjoint (3) and disjoint with 3 U 3. Then, by Definition 14, (o[t « 7]) () [t —
7)) = Va,aia|C; U CLU{0; = 0 — a}.«, where « is fresh, that is o ¢ @;a) (4). Note that

35

we are able to choose to share the same «a in both translations by a-conversion on constrained
type schemes. Let pa be a substitution such that po(Cy U Ch U {02 = 05 — a}) holds (5). Since
p2(C2) holds by construction, by the induction hypothesis 79[t «— 7] < 79[t < 72] (that is

Vap |Ch.01 < Vas|Cy.02) and Definition 15, there exists p; such that p; 5 p2 (6), p1(C1) holds (7)

and p1(61) = p2(62) (8). Similarly, p2(C4%) holds, so there exists p| such that p} Z p2 (9), pi(CY)
holds (10) and p/ (0]) = p2(05) (11). Since @; and @) are disjoint by (3), we define the substitution

p with:
yEa =op1(y) (12)
P €ay =y (13)
] YeBUB —pa(y) (14)
a = p2(a) (15)

This substitution verifies p a2 p2 by (14). In particular, p(a) = p2(a). By (14), (6) and (9), p

agrees with all of py, p} and py on variables in BUB/ (16). Furthermore, p(C4) holds since p1(Ch)

a1

holds by (7) and p =" p; by (12) and (16). Similarly, p(Cs3) holds by (10), (13) and (16). Finally,
p(01) = p1(61) by (12) and (16), and p1(61) = p2(62) by (8). By (5), p2(62) = p2(0; — «), which
is by definition ps(05) — pa(a). By (11) pa(6) = p(01) and by (13) and (16) pi(601) = p(6").
By (15) p2(a) = p(«). Therefore, p2(05) — p2(c) is equal to p(#;) — p(c). This shows that p
satisfies 6 = 0] — «. Therefore, by Definition 15, (1o 7)) [t — 1] < (70 7)) [t — T2].

case 7T = \y.7
We can assume w.l.o.g. that ¢y is different from ¢, and not free in 7 nor 7. For i = 1,2,
let V@l|6‘191 be (TO [t — Ti]>, Bi be FV(V@ACZGZ) and B be Bl U BQ- Then by Definition 14
(Moo [t «— 7]) = Yaou,|Ci. oy — 0;. Let pa be such that py(Cs) holds. By the induction

hypothesis 9 [t < 71] < 79 [t < 72|, there exists p; such that py g p2 (1), p1 (_Cl) holds (2) and
p1(61) = p2(02) (3). First, (1) implies in particular that p; is equal to ps on 3\ {ay,}. Second,
p1(C1) holds by (2) Third,

p1(ay, — 01)
= pilas,) — p1(01)
= palag,) — p1(01) (1)
pa(ai,) — p2(02) (3)
= pa(ay, — 02)

Therefore)\to.TO [t — 7'1] <)\to.’l'o [t — 7'2].

case 7 = let ty be 79 in 7} with ¢ty € FV (7))
We can assume w.l.o.g. that ¢y is different from ¢ (1) and not free in 71 (2) nor in 7 (3). Therefore,

(let to be 79 in 7)) [t < 71]

= let ty be 79[t < 7] in T\ [t — 7] (Definition 3)
= 15[t — 7] [to — (70 [t «— 7])] (Definition 14 and 16)
= 7oto = (o[t —=n]][t 7] ((1) and (2) and ¢ & (70 [t — n]))

By induction hypothesis on 79, 79 [t < 71] is smaller than 7 [t «+ 72]. That is, by Definition 16,
(10 [t « 71]) is smaller than (7 [t <+ 72]).

Therefore, by induction hypothesis on 7, 7 [to < (70 [t < 71])] is smaller than 7 [ty « (70 [t —
72])]-

The type 7 [to < (70 [t « 72])] has a smaller size than 7 since (79 [t < 72]), being an algebraic
type, has size 1 by Definition 19. Therefore, we can apply the induction hypothesis, which implies
that 7 [to «— (70 [t < T=])] [t « 7] is smaller than 7 [ty <« (70 [t < 72])] [t < T2]. Furthermore,

36

70 [to < (10 [t —)] [t — 7]

= 7ot = 72][to — (0 [t — 72])] ((1) and (3) and t & (70 [t < 72]))
= let ty be o[t —] in 7 [t «— 7] (Definition 14)
= (let tg be 79 in 7)) [t — 7] (Definition 3)

case 7 = let ty be 79 in 7} with o & FV (7))

We can assume w.l.o.g. that ¢y is different from ¢ and not free in 71 nor in 7. By Definition 3,
T[t«— m] =1let ty be [t < 7] in 7} [t — 7).

For i = 1,2, let Va;|C;.0; be (1o [t « 7:]), B; be FV (Va;|C;.0;) and 3 be 3,UB,. Let also Ya&,|C!.0,
be (7§ [t — 7)), B; be FV (Va;|C}.0;) and, B be Bll UB; We can assume w.l.o.g. that the @, and
@, are all pair-wise disjoint (1) and disjoint with 3 U B/.

Then, by Definition 14, (let ty be 7y [t « 7] in 7} [t — 7]} = Va,@,|C; U CL.0;. For any sub-
stitution pg such that pa(C2 U CY%) holds, by construction, p2(Cs) holds. By induction hypothesis,
7o [t < 7] is smaller than 7y [t < 72] That is, by Definition 16, (79[t < 71]) is smaller than

(1o [t < 72]). Therefore, by Definition 15, there exists p; such that py Ll p2 (2), p1(C1) holds (3)

and p1(61) = p2(62). Similarly, p2(C%) holds, so there exists pj such that p} Z p2 (4), pi(CY)
holds (5) and p)(0]) = p2(05) (6). By (1), we can define the substitution p that agrees with p; on
@, (7), with p} on @} (8), and with all of p1, p} and ps on other variables (9), which is possible by

’

(2) and (4). Therefore, p il p2. Furthermore, p(C1) holds by (3), (7) and (9), and p(C7) holds
by (5), (8) and (9). Finally, p(8]) = p1(6;) by (8) and (9), and p/ (0]) = p=2(05) by (6). Therefore,
by Definition 15, (let ¢ty be 79 in 7)) [t «— 1] < (let ¢y be 79 in 7)) [t — 7]

e We now prove property iii of Definition 4 (Reduction): for all types 7, 7/ and type variable ¢, (At.7) 7/ >
7 [t < 7']. The proof is by induction on the size of 7 as defined in Definition 19.

case 7T = \y.7T
We can assume w.l.o.g. that ¢g is different from ¢ and not free in 7/. Therefore, by Definition 3,
(Mo.10) [t — 7] = Ato.(10 [t < 7']). Since size(rg) < size(Atg.70), we can apply the induction
hypothesis, which shows that 79[t «— 7] < (M.79) 7’ (1). Since property ii of Definition 4
(Covariance) is already proved, we can apply it to (1) and to the type Atg.t; where ¢; is a fresh
type variable. This shows that Ao.(70 [t < 7']) < Ato.((At.79) 77) holds. Thus, it only remains
to show that Ato.((Mt.10) 7)) < (At.Mg.79) 7" holds. Let Vay|Co.0p be (10) and V&' |C”.6" be ().
Then by Definition 14, ((At.Ato.70) 7') = Va@ oo, ap|C’' U Co U{ar — (g, — bp) = 0" —
a}.a and (Mo.(M.19) 7)) = Vo'@ ara,@o|C' UCo U {ay — 0y = 0 — o'}y — /. We
need to show that the latter is smaller than the former. For any substitution p, that satisfies
C'UCyU{ar — (g, — 0p) = 0 — a} (2), let p1 be pa + {a/ — p2(6p)} (3). Then by (3),
p1(o, — ') = pa(ay, — 0p) and p2(o, — 6p) = p2() by (2). Furthermore, p; satisfies ¢’ UCy
by (2) and (3). Finally, py satisfies a; — 0y = 0’ — o since pa(ar) = p2(0’) by (2) and since
p1(6o) = p2(o) = p1(a’) by (3).
case T = let ¢; be 7y in 7o where t; € FV(12) (1)

We can assume w.l.o.g that ¢; is different from ¢ (2), and does not belong to FV(7') (3).

By Definition 14, (1) = (m2 [t1 <« (m1)]). That is, 7 = 72 [t1 « (71)]. By Definition 14, ((r1)) =
(11), so by Definition 16, (11) = 71. So, by property ii of Definition 4 (Covariance) which we
have already proved, 5 [t; < (71)] = 72 [t1 < 71]. Therefore, again by property ii of Definition 4
(Covariance), (At.7) 7" = (At.12 [t1 < 71]) 7. By Definition 19, 75 [t; < 71] has a smaller size than
let ¢t; be 71 in 7. Therefore, we can apply the induction hypothesis, and (At.72 [t1 < 71]) 7' is
greater than 7 [ty «— 71] [t < 7'], which by (2) and (3) is equal to 72 [t < 7| [t1 < 71 [t < 7]]. By
property ii of Definition 4 (Covariance), this type is equivalent to 72 [t « 7'] [t1 « (71 [t — T']}].
Since t; belongs to FV(72) by (1), this type is by Definition 14 and Definition 16 equivalent to

37

let t; be 7y [t < 7'] in 7o [t < 7’]. This shows the property, since by Definition 3, this type is
equal to (let ¢; be 71 in 7o) [t «— 7'].

case 7 = let {; be 71 in 7o where t; & FV (1)

We can assume w.l.o.g that ¢; is different from ¢ (1), and does not belong to F'V (7') (2).

By Definition 3 with (1) and (2), 7[t « 7] = 1let ¢ty be [t « 7] in ®[t
7']. By applying the induction hypothesis to 74 and 7, and by property ii of
Definition 4 (Covariance), let t; be 7 [t <« 7'] in o[t <« 7] is smaller than
let t; be (At.7q) 7/ in (At.72) 7. It remains to show that let ¢; be (At.71) 77 in (At.72) 7/
is smaller than (At.let ¢; be 71 in 72) 7/. To this end, we compute their translations. Let
Va1 |Cy.01 be (1), Yaia|Co.05 be (12) and Va&'|C”.0" be (/). Since 7’ appears several times, we also
define Va”'|C".0" as an a-converted copy of (7'). That is, there exists a substitution p’ renaming
the variables @” such that p'(@”) =@, p/(0”) = 0', and p'(C") = C’. Then by Definition 14,

(let t; be (At.71) 7' in (M) 7)) = Vajaearaprd@ @’ apap|CrUC UC U C"U
{ay =01 =0 — ag, ay — 0= 0" — aj}.q
((Mt.let t; be 7 in) 7)) = Vajaea@ag|CLUCUC" U{ar — 02 = 0" — ap}.ap

For every substitution py that satisfies C; UCo UC' U{ay — 6 = 0 — g} (8), let p1 be
(p20p') + {ao — p2(61), 0 — p2(62),cr +— (p20p')(0)}. Then by definition of p; and (3),
m(CiuCuC’ul”"U{as — 61 =0 — ag, ap — 03 = 0" — af}) holds, and p;(af) is equal
to p2(02), which is equal to pa(ag) since po satisfies oy — 03 = 6" — . So by Definition 16,
let t; be (At.71) 7/ in (At.72) 7’ is smaller than (At.let ¢; be 71 in 72) 7.

case 7T = 1T1 T2
Similarly, it follows from induction hypothesis applied to 71 and 75 and from Definition 4.ii that
(M)) (M) 7') > (11 72) [t < 7']. Tt remains to show that ((At.71) 7/) ((At.72) 7') is
smaller than ()\t.(Tl TQ)) TI. Let V61|Cl.91 be <T1>, V@2|Cg.92 be <T2> and V@’|C’.9’ be <TI>.
Since 7/ appears several times, we also define Va”’|C”.0"” as an a-converted copy of (/). That is,
there exists a substitution p’ renaming the variables @ such that p'(@”) = @', p/(8”) = ', and
P (C") = C". Then by Definition 14,

Vaasarap @@’ /6" 8|CL U CT U Cy U C"'U

{as = 01=0 = p1,ap —0=0"— [, 51 = 2 — B}.0
V@lagatalaoﬁ|01 UuCyuC'U

{Oét — 3= 6 — ag, 0 = 0 H5}-040

(Mtem) 1) (M) T7)) =

(M(m) Ty =

For every substitution py that satisfies C; UCo UC' U{ay — 5= 0" — ap,0; = 63 — S} (1),
let p1 be (p2op') 4+ {B1 — p2(01), P2 — p2(02),ar — p2(0’)}. Then by definition of p; and (1),
/)1(01 uc'ucy,ucC”u {at -0, =0 — b1, ap — Oy = 9" — B2,01 = (B2 — ﬁ}) holds and
p1(B) is equal to pa(f), which is equal to p2(ag) since by (1) pq satisfies oy — 8= 6’ — ap. So
by Definition 16, ((At.71) ') ((At.72) 7') is smaller than (At.(7 7)) 7.

case T =1
Let V&'|C".0" be (7'). Since 7 =t, 7 [t «+ 7'] is equal to 7" by Definition 3. Therefore,

(t[t —7'])
=)
va'|C' .o
= Vadou|C'U{aw =0}y
= ((\tt))

casseT=EorT=cor7=1#1
Let Va&|C.0 be (1) and Va&'|C".¢" be (7). Since F'V (1) is empty, 7 [t < 7'] is by Definition 3 equal

38

to 7. Therefore, (1 [t <« 7']) = (1) = Va|C.0. Furthermore, ((\t.7) ') = Vaa'ay|C U C" U {ay =
0').0.

The inequality Var|C.0 < Vaa' a|CUC'U{a; = 0'}.0 is trivial: for all ps such that po(CUCU{ar =
0'}), take p; = p2 since then p1(C) and p1(0) = p2(f). Note that the reverse inequality does not
hold as soon as C’ is not trivial.

e Finally, for property iv of Definition 4 (Let), we need to show that for all types 7, 7/ and type variable
t, 7' [t— 7] <let t be 7 in 7’

If ¢ belongs to F'V(72), then by Definition 14, let ¢ be 7 in 79 = 7 [t « (m)]. Furthermore,
(11) = 71 by Definition 16 since trad[(r)] = (7). Therefore, by property ii of Definition 4 (Covariance),
To [t < (m1)] is equal to 7 [t < 7], which proves the property. If ¢ does not belong to FV(r),
let Vap|C1.01 be (1) and Vas|Cq.02 be (12). Then (o[t « 71]) = (12) = Vas|Cs.05. Furthermore,
(let ¢t be 71 in 7)) = Vay@z|Cy U Cy.05. For any substitution py such that pa(Cy U Cs) holds, take
p1 = p2. Then p1(C1) holds, and py(62) = p2(f2), so let ¢t be 71 in 7o > 7 [t < t1] holds.

2.1.2 Simplification

By definition, 71 = 7 if 7 < 7 and 7o < 77. This provides an opportunity for type simplification. Let us
write mgu(C') a most general unifier of a constraint C. That is, mgu(C) is a substitution that satisfies C,
and such that for all substitution p that satisfies C, there exists a substitution p’ such that p = p’ o mgu(C).

Lemma 20 (Simplification) Let Va|C.0 be a constrained type scheme. Let ' be mgu(C)(0), @ = an
FV(0') and C' the set of constraints {mgu(C)(01) = mgu(C)(02)} for all {61 = 03} in C such that mgu(C)(61)
is different from mgu(C)(02). Then Va|C.0 is equivalent to Va'|C'.6/

Proof

First we prove that Va|C.0 is smaller than Va'|C’.0’. For all py that satisfies C, take p1 = p2 o mgu(C'). For
all 01 = 05 in C, there are two cases. If mgu(C)(6;) is equal to mgu(C')(02), then ps o mgu(C)(0;) is equal to
p2 o mgu(C)(02). Otherwise, mgu(C)(01) = mgu(C)(h2) belongs to C’ by definition of simplification. Since
pa satisfies C’ by hypothesis, ps o mgu(C)(61) is equal to p2 o mgu(C)(f2). That is, p; satisfies 6, = 0.
Second, we prove that Va&|C.6 is greater than Va'|C".¢’. For all py that satisfies C, since mgu(C') is a most
general unifier of C, there exists p; such that ps = p; o mgu(C'). For each constraint of C’, it is by definition
of simplification of the form mgu(C)(01) = mgu(C)(02) where §; = 02 belongs to C. Therefore it is satisfied
by p1, since by hypothesis on py that it satisfies 1 = 63, p; o mgu(C)(61) is equal to p1 o mgu(C)(62). W
Using this simplification, we can infer the type of expressions.

Corollary 21 (Principal type for Hindley-Milner) Let e be a closed expression. Then the principal
type of e is V&' .0', where (type(e)) = Va|C.0, 0/ = mgu(C)(0) and @ =an FV(0').

2.1.3 Example

As a first example, let us consider the typing of (Az.z) 1. By the rules of the algebraic type system, this
expression has syntactic type:

type((Az.x) 1)

type(Az.x) type(1)

= (AMg.type(z)) int

= (Mty.t;) int

This type can now be translated to a constrained type scheme. We first translate each side of the
application: (\t;.t;) = Vou, |0. o, — a4, and (int) = int, . The system of constraints generated by the

39

application is therefore oy, — «;, = int — «, and the considered expression has the constrained type
scheme Vo, o|{ oy, — a4, = int — a}.«c. By Lemma 20 (SIMPLIFICATION) this type simplifies to int, {).
As a second example, let us now consider the expression let id be Ax.x in Ayz.z (id 1) (id false).

type(let id be Az.x in Ayz.z (id 1) (id false))
= let tjg be Mgty in Myt..t. (tiq int) (¢ bool)

By Definition 14, its translation is:

(let t;q be Mg.ty in Atyt..t. (tiq int) (¢;q bool))
= (Atyts.t. (tig int) (tia bool) [tig — You, |0.ce,])
(AMtyto.t. (Vou,|0.aq,) int) ((Voy,|0.04,,) bool))
= Vojopazogon, o o, |
{o, = ay, = int — a1, @, — @z, = bool — an, ap, — (, — @4,) = a1 — Q3,3 = Qg — Q4 }.04

The most general unifier of that constraint maps a1, ay, and oy, to int, a2, a4, oz, and oy, to bool
and ag to bool — bool. Therefore, by Lemma 20 (SIMPLIFICATION), this translated type is equivalent to
bool, which is consequently the type of the expression, as expected.

2.1.4 Beyond Core-ML

So far, we have only considered features of Core-ML. A real language usually has more features. Data-
types and pattern matching can be added easily as in ML. Each data-type declaration can be considered
as syntactic sugar for the introduction of a new base type name, constructors for the different cases and a
matching operator. Pattern-matching can then be seen as syntactic sugar for the application of the matching
operator, including matching arbitrarily deep structures, default cases and textual ordering of the branches.

Exceptions and references could also be added to the core language. However, references are not a simple
instance of the framework, but require an extension to the framework. As for ML, one could augment
the semantics with a global store, and provide references via primitives; this would also require restriction
of polymorphism to values. This restriction can be handled in the type algebra, through the translation
function defined in this section to instantiate the framework. That is, given the primitive operator ref of
type Va. a — ref «, we can modify our translation function so that type variables that appear inside a ref
type constructor are not present in the quantifiers. Therefore the typing part of the framework can be left
untouched. It would actually be interesting to study how could the semantics itself be made a parameter of
our system, so that features requiring specific semantics could be added without modifying the framework
at all.

2.2 ML

ML< [5, 6] is a rank-1 polymorphic constrained type system. It has been developed to type an extension
of ML with multi-methods and object-orientation. The ML< type system is especially adapted to type an
object-oriented language because:

e constraints allow to model atomic subtyping, which can express the “sub-class” relationships;
e (parametric) polymorphism allows to define generic classes and operations;

e its open-world properties fit well with separate compilation of program modules that can define new
types.

However, the whole ML< system requires type annotations on lambda-expressions and thus lacks type
inference. Furthermore, the presentation in [5, 6] is ad-hoc and rather unusual, making it difficult to study.

40

Therefore, in this section, we focus on the type system itself. We observe that ML< types form a type
algebra that can be used with the algebraic type system of Section 1. We shall use this instance in Section 8.6
to model multi-methods as a concrete instantiation of the generic functions of Chapter 8.

We first recall the definition of the ML< type system. The, we show in Section 2.2.4 how it can be
considered as an instance of the algebraic type system.

2.2.1 Type structure

Type-checking in ML< is done with respect to a type structure 7. The syntax for type structures is given in
Figure 2.3. A type structure is a partially ordered set C of type constructor constants ¢y . Type constructors
can be in sub-typing relation, written 7 F ¢y < ¢|,. Type constructors are annotated by their variance
V. A variance is a tuple over {®, S, ®}, which stand for co-, contra-, and non-variant type parameters
respectively. Only type constructors of the same variance can be in sub-typing relation. That is, ¢y, < c§/2
implies V7 = V5.

Type structure 7T == (C,<X)
Single variance v o= B 6 ®
Variance V =7

Type constructor constant c¢y € C

Ground monotype 09 = cy[0]

Figure 2.3: Type structure syntax

A ground monotype 69 is built by the application of a type constructor ¢y to a list of ground monotypes
09, and is written cy[09]. In particular, if ¢y is a nullary type constructor, then cy[] is a ground monotype.
In that case, we will omit the brackets and denote this monotype by c¢y. We require that monotypes built
on type constructors respect the arity of their variance: in cy [@], the number of elements in 69 must match
the arity of variance V.

We will omit the annotation on type constructors when it is obvious from the context. We assume
the existence an arrow type constructor — (g) used to represent functional types. As usual the arrow is
contra-variant on its domain and co-variant on its codomain.

Definition 22 (Variant subtyping) The notation (01,...,0n) <(u, .0, (01,...,0,) stands for the set
(61 <u, 01) U ..U (0, <y, 07,), where:

01 <g b0y = {61 <05}
01 <g b2 = {02<0y}
01 <g b2 = {01 <02,0, <0y}

Definition 23 (Ground subtyping) We write 7 = 09 < 09 the subtyping on ground monotypes. The
relation T & ¢y [09] < ¢4, [09] holds if and only if T+ cy < ¢}, and for all 0 <0 in 09 <y, 0’9, T < .

For instance, the ML< type structure corresponding to the example of Section 1.1.2 is T =
({int(y, float(), — (o)}, {int < float}). It then follows from Definition 23 that, for instance, 7
float — int < int — float.

2.2.2 Constraints

The syntax for constraints and monotypes is given in Figure 2.4. Monotypes are similar to the ground
monotypes defined in Section 2.2.1, with the addition of type constructor variables and monotype variables.

41

Type constructor variables can stand for type constructor constants while monotype variables can stand for
arbitrary monotypes. It is possible to quantify over these two flavors of variables. For instance, assuming
a covariant list type constructor, a syntactically valid constraint implication is Vig,u. tg < list Au <
int | tg(u] < list[int].

Type constructor oy n=

Type constructor constant cy

Type constructor variable |ty

Monotype 0 =

Monotype variable t

Constructed monotype | ovif)
Constraint K u= 0<0|oy <oy
Variable list 9 on= |ty
Constraint implication VY. R’y E Ra

Figure 2.4: Constraint syntax

For convenience, we will freely consider constraint sets as conjuncts of constraints, by writing true for the
empty set of constraints, k1 A ko instead of k1 U ko, and allow x to denote a set of constraints. Therefore, we
have in particular that k1 A k1 is identical to k1, that k1 A ko is identical to ko A k1, and that kK1 A (k2 A K3)
is identical to (k1 A K2) A K3.

We now define the notion of constraint implication with the predicate 7 F V¥. k1 = ko, which reads
“in type structure 7, for all ¥, constraint x, implies constraint xo”. For the intuition, it is important to
note that the universal quantification over 9 applies to both x; and k5. This predicate is defined as the
least predicate verifying the axioms of Figure 2.5. This definition is equivalent to the original presentation
of ML< [5].

Often, the type structure can be left implicit and we will simply write Vd. k1 = ka.

Intuitively, the relation V. k1 = ko holds if, for every valuation of the variables in ¢ such that r; is
satisfied, there exists a valuation of the other variables such that ks is satisfied. However, it would not be
desirable to have that property in a closed-world setting. For instance, in a type structure with a single type
constructor A, the relation V¢. t < A = A < ¢ should not hold, although the only known valuation for ¢ is A.
Otherwise, it would become impossible to define a subclass of A in a different module. In Chapter 7, we
will formally consider modular type-checking, which involves extending type structures while preserving the
soundness of some previously type-checked code. In particular, Definition 55 is a semantic interpretation of
this constraint implication. We will also characterize how the constraint language can be extended to make
the type system more expressive, and list the properties that must hold for such extensions to be valid.

TRANS states that constraint implication is transitive. TRIV states that a constraint implies any subset
of itself. VARINTRO states that a given constraint x is implied by any constraint obtained by instantiation of
variables of k not in the quantified set ©. Intuitively, this is correct since for every valuation of the variables
in ¥ such that o(k) is satisfied, x can indeed be satisfied by instantiating its variables using o. The next
four rules deal with monotypes, as emphasized by the prefix M in their names. MREF and MTRANS state
the reflexivity and transitivity of monotype subtyping. MINTRO and MELIM express the relation between
subtyping of constructed monotypes and subtyping of their components, as in Definition 23. The next three
rules state the properties of type constructors: the ordering of type constructors is reflexive and transitive,
and ordering of ground type constructors can be used when it is present in the context 7. Finally, VELIM
states that the constraints are structural: if a type variable is comparable to a constructed monotype, then
it must have the same shape. That is, it is built on a type constructor of the same variance.

As an illustration, let us prove that the constraint implication V¢. int — int <t v > u <tAu <
float holds in the example type structure defined above.

By CSTRUCT we have Vt. int — int < ¢t | int — int < ¢t A int < float. Furthermore, applying
VARINTRO with o being the substitution that maps u to int and leaves all other variables unchanged, we

42

TRANS Triv VARINTRO MR
VY. K1 = ke VY. ko = K kK Ck Vied o(t)=t FE
VY. k1 E kK3 V. k= K V. o(k) E K V. klERAD<O
MTRANS MINTRO _ _ MELm .
0<0er 0<0"ex ov<o¢y,er O<y0 Ck ov]o] < o 0] € K
VY. klERANO <O V. k= kA dv[0] < ¢ [0] VO.kERA Gy <@y AO <y 0
CR CTRANS CStrUCT
e v <Py €r Py <PV ER cv<dyeT
V. k= kA Qy < oy V. k= kA oy < o VY. kE K Acy <y
VELIM _ .
t<o¢vl@lerort>¢ylller ¢ fresh ¢ fresh
VI k= kAt = ¢ [t]

Figure 2.5: Axioms of constraint implication

have V¢. int — int <t Aint < float = v — u <t Au < float. Finally, we can apply TRANS to get the
desired implication.

Since many proofs will include chains of implications linked by the transitivity rule, we will often write
them in a more condensed form by leaving the use of transitivity implicit. For instance, the above proof can
also be written as:

Vt.

int — int <t
E int — int <t¢tAint < float (CSTRUCT)
E u—u<tAu<float (VARINTRO with o = id 4+ {u +— int})

We will use the following three properties, which are proved in [5].
The first one shows that it is always possible to make the set of quantified variables of a constraint
implication smaller:

Lemma 24 (VE)
V. k= K ¥ C
V' kK

Proof of lemma 24

The only rules in which quantified variables sets play a role are VARINTRO and VELIM. For VARINTRO,
the condition Vt € ¥ o(t) = t trivially implies V¢ € ¢ o(t) = t when ¥ is a subset of ¥. Therefore
VY. o(k) | & holds when V. o(k) = & holds. Similarly, for VELIM, the freshness condition on ¢}, and ¢’
is only weakened by using a smaller qualified set of variables. A structural induction for the case TRANS
finishes the proof. B

Conversely, one can add quantified variables that do not appear on the right hand side of the implication:

Lemma 25 (VI)
V. kK FV()NY =0
Vi, 9. kK

Lemma 25 can be proved by noting that since x’ has no free variable in 1, it is possible to modify the
proof of V1. k = k' so that it does not introduce any variable in ¥, after a renaming of . Therefore, there
is also a proof of V¥, ¥'. k = K.

43

It is possible to combine two implications by conjunction, provided that all the common variables of the
right hand sides are quantified over:

Lemma 26 (Conjunction)

VO k1 E K V0. ko = Kb
V. k1 A ko | kY A K

FV (k1) NFV(ky) C Y

The sketch of the proof is the following. First, if k1 and ko share variables not in 1J, these can be
renamed in k2. This ensures together with the hypothesis FV (k) N FV (k%) C ¢ that we can now assume
the derivations of V9. k1 | &} and V9. ko |= kf only share variables in ¢ (1). Then we check that for every
step of the proof of V&. k1 | k], we can add k2 to both sides of the implication. This is only non-trivial in
the case of an application of VARINTRO. In that case, we want to prove V¥. o(k) A k2 = k A k2. But since
we could suppose (1), o must leave ko invariant. So this is equivalent to V). o(k A k2) = K A k2, which
is another instance of VARINTRO. We have thus proved V. k1 A ko |E k] A k2. Similarly, we can prove
VY. kY A ke = k) A k), which finishes the proof.

2.2.3 Constrained types

A MLc< type is a constrained monotype, as defined in Figure 2.6. The ML< type VV.x = 0 is well-formed
if and only if V(. true = holds, that is, if the constraint « is satisfiable.

Type T == Vi.k=10

Figure 2.6: Constrained types
We can now define a partial order on ML< types.

Definition 27 (Subtyping in ML)
Let 71 be V91.k1 = 01 and 12 be Vio. ko = 0. , then T =1 <ML. T2 holds. T+ 7 <ML. T2 holds if and
only if the constraint implication

TI—VFV(Tl),FV(TQ),t. Ko N\ Oy <t ':Hl N0 <t
holds for a fresh variable t.

Informally, this definition can be interpreted as follows: given an arbitrary value for the type variables in
the context (corresponding to VFV (71), FV(12)), for any monotype ¢, if there is a ground instance of type
7o that is a subtype of ¢ (that is ko A 65 < t), then there is a ground instance of type 7 that is a subtype of
t. Therefore, 71 is a more precise type than 7o, that is to say that 7 < 7.

For instance, in the example type structure defined page 41, it is true that Vu.u < float = u — u <
int — int. This amounts to the constraint implication V¢. int — int <t | u < float A u — u < ¢, which
was proved to hold in Section 2.2.2.

Subtyping and well-formedness have been proved decidable in [5].

2.2.4 Instantiation of the framework

We now show that ML< types form a type algebra. The set of algebraic of types MLS is the set of ML< types
denoted by 7. We have to define the pre-order on S(MLS). Since ML< types already include constraints,
they are powerful enough to represent all syntactic types. Formally, we define a translation function from
S(MLS) to MLS and use it to lift the subtyping relation to S(MLS).

44

(1) =V0.k =0

Vi.k=0)=Vd.k=0 (t)=VD.t t (E)=Vtt<t—ot=t
(V0. = = 6) " (t) = V0. true = (E) = - A7) =Vt k=t — 0

(r1) = V1. k1 = 0 (T9) = V9. Ky = 0y
(11 T2) = V01,00, t. k1 Aka A0y < (02 — t) =t

t € 19171927FV(KZl),FV(HQ),FV(Hl),FV(OQ)

t1 € FV
(let t1 be 71 in 7o) = (1 [t1 < T1]) ')

(1) =V1. 51 = 61 (T2) = V2. Ky = O
(let t; be 71 in 7o) = V1,09 k1 A Ky = 0o

t1 € FV(TQ)

Figure 2.7: Translation for ML<

Definition 28 (Translation of ML< types) The translation function (-) from S(MLS) to MLS is defined
by cases in Figure 2.7.

Algebraic types translate to themselves. The translation of a type variable is an unconstrained type,
whose monotype component is the type variable. The translation of E is an arbitrary ill-formed ML< type.
By Definition 27, any type whose translation is ill-formed is equivalent to E. The translation of a lambda
type is generalized over the type of the argument. Since ML< types are equal up to a-conversion, the
definition is independent of the choice of a name for the bound type variable, which must not appear in
. The translation of an application type is done by constraining the monotype of the function to be a
subtype of an arrow type whose domain is the monotype of the argument. By a-conversion, we assume
that ¥, and J5 are disjoint and we choose a ¢ that does not appear in any of them. We translate let types
differently whether the bound type variable appears free in the body of the type or not, for the same reason
as in the translation for Hindley-Milner in Section 2.1. In the case where it does appear free, we define the
translation of let ¢; be 71 in 7o as the translation of 7 [t; < 71]. This definition is well founded thanks
to Definition 19. Moreover, we show in Lemma 32 that we can equivalently define it as the translation of
T2 [tl — <T1>].

Definition 29 (Order on S(MLS)) Given a type structure T, for all syntactic types 71 and 1o in S(MLS),
T =71 <7 holds if and only if T & (11) <mw. (72) holds.

This definition allows to identify syntactic types 7 to their algebraic translation (r) and to use the
meta-variable 7 for both.

Given a type structure 7, we can now built a canonical type algebra based on 7. We will write A(7)
for the couple (S(MLS), T F - < -). Our main result in this section is that A(7) is indeed a type algebra.

Theorem 30 (ML-Sub) For all type structure T, A(T) is a type algebra.

Before proving this theorem, we first characterize the ML< types that are the result of the translation of
a syntactic type.

Lemma 31 (Translation) Let 7 be a syntactic type, in which t possibly appears free, and (1) be V9. k = 0.
Let ¥ be a variable list, k' be a ML< constraint and 0" be a ML< monotype. Then Vo, t,9 . kAk'NO" <t =0
is greater or equal to V9,0 . k[t — 0| ANk = 0]t — 0'].

Informally, this lemma states that the translation of syntactic type variables always occurs covariantly
in the ML< translated type.

45

Proof of lemma 31 (Translation)

Let 99 be FV(V,t, .k Ak'ANO <t =0)UFV(VI, . k[t — @] ANK = 0]t — 0']. Then the proposition is
by Definition 29 and Definition 27 equivalent to: Vutdy. kAN <tANO <u k[t — VAR AO[t — 0] <u
for a fresh u. We prove a generalization of this implication quantified by w1, for an arbitrary superset 1 of
¥, by induction on the size of 7:

casse T=aorT7=t orT=E
The type variable t is not free in 7, so it does not appear in s nor in 6. Therefore this is a simple
application of the TRIV axiom.

case T =1
That is to say that 0 =t and k = true. We have to prove Vudj. &' A0’ <t At < wu = r" A0 < wu, which
is an instance of MTRANS.

case T = \1.71
Let (71) be V1. k1 = 01. Then by Definition 28, (A\t;.71) = V1,t1. 51 = t1 — 61. By induction
hypothesis, Vu/'9). k1 A" NG <t N0 <u' =ri[t —0)AK N0t — 0] <, so by Lemma 25 this
also holds Vu/9{u"u. By Lemma 26 with v = u” — v’ we get Vu'O(u"u. k1 AK'ANO <t Au=u"—
AN <u ER[t—OIANEANu=1u"—u N0 [t — 0] <u (1). Therefore,

Yudyu'u.
KIAKE N <tNt; — 0, <u
E rm AN <thu=u"—-u Ad <t; N0 < (VELIM, MELIM)
E rit—0IANEANu=u"—u A" <ty NO [t —0]<u (1)
E rki[t—0IANEANt1 =0 [t—0]<u —u=u (MINTRO)

We conclude by applying Lemma 24.

case 7T =1T1 T2
Let <T1> be V1. k1 = 01 and <T2> be V5. kg = 05. Then by Definition 28, <T> = Vi, 2, v. kK1 Ak A0 <
(62 — v) = v. By induction hypothesis on 7, and 72, for i = 1,2, Vu;,. k; ARLAO <tNO; <u; =
Ki[t — 0N ANK' NO; [t — 0] <, for arbitrary ¥} and «}. In particular, we apply this hypothesis with
i=1,0] =wdjand K} = ko [t «— O'|AK Auy = 03[t «— 0'] — t; Aty < u and remove the quantification
on u; by Lemma 24 (RQ) (1) and with i = 2, ¥, = ud and k) = &' A0 <tAO1 = ug — ur Ak1 Aug <
t1 Aty < wu and remove the quantification on us by Lemma 24 (RQ) (2). Therefore,

Vudy.
KiIAKa AR N <tANOL < O =t ANt <u

Ko AE NG <tNO <tABOx <y

': ANOL = us —uit A1 Aup <ti] ANt <u (VELIM’ MELIM)

- Kot — OTAK NG <tANOg[t — 0] <ug 2)
/\91: u2ﬂu1/\m/\u1§t1/\t1§u
Kot —O'TAK NG <tNO < (O3]t — 0] — t7)

= ARy AL < (MINTRO)
Kot —OTAK NG <tANb <w

= ANv= (02t — 0] —t1) N1 ANt1 <u

- Kot — @'V ANK ANky[t — 6] (1)
N[t — 0] <v= (0]t —0]—t)Nt1 <u

): (/il/\/ﬁg/\(gl < 6o —>t1)[t<—9l]AHIAt1 <u (MTRANS)

(VARINTRO with v +— O [t « 0] — t1)

case 7 = let t; be 74 in 7o where t; & FV (1)
Let (1) be V1. k1 = 01 and (12) be V2. ko = 65. Then by Definition 28, (1) = Vi1, ¥s. k1 Ak = 0.
Let uq and ug be fresh variables. By induction hypothesis on 74 and 7o, for i = 1,2, Yu,9(. ki Ak, A0 <

46

tANO; <wui =Rt — OV AR NO; [t — 0] <u; for an arbitrary ;. By MREF on ¢; and VARINTRO on
Uy, Yugdh. ki Aa ARAO <tAOs <ul=ri ArRa AR NG <tAO <unbp <uy

By induction hypothesis on 7, removing the quantification on u; by Lemma 24,
V’LLQ19/O

KiIARKaAK NO <tANOy <us ANO; <y
): /il[t<—9/ /\@/\ﬁ’/\@’gt/\eg§u2A91[t<—9’]§u1

]
E rt—0]AR AR NY <tAOy <wus (TRr1v)
E Rkt — @Akt —OAR NO[t — 0] < g (Ind. Hyp. 2)
E (kAR [E—0TAK N0t — 0] <ug

case T = let t; be 7y in 7o where t; € FV(12)
Then by Definition 28, (1) = (2 [t < 71]), so the property is true by induction hypothesis.

|
Proof of theorem 30 (ML-Sub)

e We first prove property ii of Definition 4 (Covariance). We therefore assume 7 < 75 and we prove
that 7 [t « 7] < 7 [t < 72]. The proof is by induction on the size of 7, using the axioms of constraint
implication. The cases of algebraic types, type variables and the error type are trivial.

case T = \ty.7y

We can assume w.l.o.g. that to is different from ¢ (1) and not free in 7 (2) nor in 7’ (3).
Therefore, by Definition 3, (Mo.70) [t < 7] = Ao.(70 [t < 7]) and (Mo.70) [t «— 7] = Ao.(70 [t —
7']). By induction hypothesis, we have 7o [t «— 7] < 79[t « 7] (1). Let Vd1.51 = 61 be
(1o [t < 7]) and VI]. K| = 0] be (7o [t — 7]). (1) is therefore by Definition 29 and Definition 27
VF,ui. k1 A0y <uyp = k) N0y <wuy, where F is FV (g [t < 7]) U FV (79 [t < 7']). By Lemma 25
applied to fresh variables u and ug, we have VF,u,ug,us. k1 A1 < uy = &4 A0y < wuy. Then
by Lemma 26 with the trivial implication VF, u, ug,u1. © = ug — u1 = u = ug — uy, we have
VE, u,up,ur. k1 ANy <ug Au= ug — ur E kY A0 < up Au = ug — uy. Finally, we apply
Lemma 24 to get VE \ {to},u. k1 A0y <ug Au= upg — u; Er] A0 <up Au= upg — uy (4).
We can now prove the desired property: Atg.7o [t < 7'] < Mo.79 [t < 7]. By Definition 29 and
Definition 27, this amounts to:

VZ?\{tO]’au

m/\toﬂﬁgu
': K1 Atg > ug N\ 01 <ui Au= Ug — U1 (VELIM, MELIM)
E kiAto>uoN0] <up Au= ug—u (4)

E kiANtg—0]<u (MINTRO)
case 7T =Ty T2
By Definition 3, (11 m)[t « 7] = ([t — 7)) (=t < 7]) and (11) [t — 7] = ([t —

7)) (12 [t <= 7']). Let Y. k1 = 61 be (11 [t — 7)), VI]. K| = 0] be (11 [t — 7]), V2. k2 = 02 be
(12 [t — 7]), and V. K, = 04 be (75 [t — 7]), and let Fy, F{, F5 and Fj be the free variables of
Tt — 7], m[t — 7], 72 [t < 7], and 72 [t — 7'] respectively. We can assume w.l.o.g that the
bound variables 91, ¥}, Y2 and 9% are all disjoint from each other and from Fy U F| U Fy U F}
(1). We need to prove (11 [t «— 7']) (12 [t — 7']) < (71 [t < 7]) (72 [t < 7]). By Definition 29 and
Definition 27, this amounts to VFy, Fa, F|, Fy u. k1 Aka AO1 < O m t At <vER] ARLAD <
0 — tAt <.

VFl,FQ,Fll,FQI,U.
m/\ng/\t?lg ogﬂt/\tS’U
): KiNKa NOL <OL N0 < Oy —tANE<0 (MREF)
): KiNKaANOL <uig Aup < Oy —tALt<w (VARINTRO with uy I—>91)
): f<a1/\fi2/\91§u1/\u1:uQ—>u’2/\92§uQ/\u’2§t§v (VELIM,MELIM)

47

We reference this implication as (2). We now use the induction hypothesis, which is 7y [t « 7] <
T [t « 7] and 7o [t < 7] < 72 [t <« 7']. By Definition 29 and Definition 27, this amounts to
the constraint implications VFy, Fy,u1. k1 A6y < uy = k) A 0] < ug, and VEy, Fi ug. ko Ay <
us | kG A 04 < uy. In the first implication, the variables appearing in the right hand side are
either the free variables F| of Vd|.x}| = 6}, which are already quantified over, or the bound
variables ¢}, which are disjoint from ¥}, F» and F} by (1). The same argument applies the second
implication. Therefore, we can extend both implications to VFy, Fa, Fy, F3, u1, us, u by Lemma 25.
Furthermore, we can apply Lemma 26, which shows that VFy, Fo, F|, F}, u1,ug, u. k1 A k2 A 61 <
up A Oy < ug = kY A KL AL < uf AGL < ulf holds. We apply once again Lemma 26 with the
implication VFy, Fo, Fy, Fy, w1, ug,u. ug = ug — ub Auh <t At <ufu = ug — ujp Aubp <
t At < u, which is an instance of TRIV. Using Lemma 24, this gives us the next step in our main
proof, namely:

VFl,FQ,Fll,FQI,U.

K1 AKa A0 <up Aup = ug = uh ANy <ug Auby <tAE<w
E RIARLAG <upAup = ug = uhb A0 <ug Aub <tAt<w
E KIARLAN <upAup =05 —tAt<w (MINTRO)
E RKIARLANG < 0, —tAt<wv (MTRANS)
By transitivity with (2), this shows the desired property.

case T = let ty be 79 in 7 with tg € FV (7))
We can assume w.l.0.g. that ¢ is different from ¢ (1) and not free in 7’ (2) nor in 7 (3). Therefore,

(let ty be 79 in 7)) [t « 7']

= 1let ty be 7ot « 7] in ([t « 7'] (Definition 3)
= 15[t — T [to — 10 [t — T']] (Definition 28)
= Tolto — 7] [t = 7] ((1) and (2))
< 7t — 1o [t — 7] (Induction hypothesis)
= nolt —=7]to =7t —7]] ((1) and (3))
= let ty be Tt « 7] in 7} [t < 7] (Definition 28)
= (let tp be 79 in 7)) [t < 7] (Definition 3)

Note that we can apply the induction hypothesis on 7 [ty < 7o] since by Definition 19 it has a
smaller size than 7.

case T = let ty be 79 in 7} with tg & FV (7))

We can assume w.lo.g. that ¢y is different from ¢ (1) and not free in 71 (2) nor in 7
(3). We suppose that 71 < 7o, and we must prove that (let to be 79 in 7)) [t «— 7] <
(let tp be 79 in 7)) [t < 72|. By Definition 3 with (1), (2) and (3), for i = 1,2, 7[t «
Ti] = let ty be T [t «— 7] in T\[t <« 7). Let, for i = 1,2, ¥9,.k; = 0; be (o[t — T7i])
and V9;. k; = 6] be (7} [t < 7;]). We can assume w.l.o.g. that the 9J; and 9} are all pair-wise dis-
joint (4). Let ¥ be FV (7 [t <« 11])UFV (10 [t — 72]) and ¥ be FV (7§ [t — T1|)UFV (1§ [t < 72]).
Then by Definition 28, (let ¢ be 79[t «— 7] in 7)[t «— 7)) = V99, ki A K, = 0. By the
induction hypothesis 7o [t «— 71] < 79 [t — T2], Vud. ko A Oy < u = k1 A6y < u. By Lemma 24,
V9. ko Ay < u |E k1 A6y < u. So by VARINTRO and TRIV, VJ. ko = k1. Furthermore,
by the induction hypothesis 7() [t «— 7] < [t « 7], Yu'O'. kh N0, < W = & A0 < .
For every variable in ¢ that does not belong to 1, it does not appear in k; since ¥ includes
the free variables present in k1, and the bound variables are different by (4). Furthermore, the
same reasoning is valid for variables in ¢ that do not belong to ¢/, and u’ is fresh. So, by
Lemma 25, Vo' (9 U). ke |E k1 and YU/ (YU Y). kh A0, < v |E k) A O] < u/. Therefore,
by Lemma 26 (CONJUNCTION), Vu/(9 U¥'). ko Ak A0Y < ' |= k1 Ay NG < /. That is,
(let tg be 79 in 7)) [t < 71] < (let typ be 79 in 7)) [t « 7).

e Let us prove property iii of Definition 4 (Reduction): (At.7) 7/ > 7 [t « 7']. Let V. x = 6 be (1) and

48

V' k' = 0" be (7). If t appears in 7, then (7 [t «— 7']) is VO, 0. k[t «— O') Ak = 0]t — ¢'], otherwise
(Tt 7)) is V. Kk = 0.

((MtT) 1)
= Vot, Y vk AANt—0<0 —v=w (Definition)
Vo6, Y 0.k AR AN <tANO<v=0 (MELM for —)
VO, 6LV kAR AN <t=10

By Lemma 31 (TRANSLATION), V3, ¢, 9. k Ak’ A0 < t = 0 is greater or equal to V9, ¥ . k [t — O'|AK' =
Ot — 0.

If ¢ appears in T, this type is equal to (7 [t « 7']). Otherwise, t does not appear in k nor 6, so this type
is equal to V,¢'. k A k' = 0, which is by TRIV greater or equal to V. k = 6, which is ([t < 7]). So
the inequality holds in both cases.

e Finally, property iv of Definition 4 (Let) is straightforward. If ¢ belongs to FV(r2), then by Def-
inition 28 and Definition 29, let ¢t be 71 in 79 = 7ot « 7). Otherwise, let V¥1.k1 = 64
be <T1> and Vis. ko = 03 be <T2>. Then <T2 [t — t1]> = <T2> = Vi¥s. ko = 65. Furthermore,
Vt. k1 A ko Aly <t = ko Ay < tis a direct instance of TRIV, so let ¢ be 71 in 7 > 7o [t « 7]

holds by Definition 29.

|

In practice, the definition in Definition 28 of the translation of let ¢; be 71 in 75 where ¢; is free in
To as the translation of 7 [t; < 71] is problematic, because it implies that 7 must be translated multiple
times, for each occurence of ¢; in 75. We now show that this can be avoided.

Lemma 32 (Efficient translation of let types) Let ¢t1 be a type variable, and 11 and 7o two syntactic
types of S(MLS). Then the ML< types (12 [t1 < T1]) and (T2 [t1 < (T1)]) are equivalent.

Consequently, using (72 [t1 < (71)]) in the translation leads to an identical type algebra.
Proof of lemma 32 (Efficient translation of let types)

By Definition 28, ((71)) = (71). So by Definition 29, (71) = 71. Therefore, by Theorem 30 (ML-SUB) and
property ii of Definition 4 (Covariance), (12 [t; < 71]) = (72 [t1 < (71)]) holds. B

49

50

Part 11

Object-orientation

51

Chapter 3

Classes

In this chapter we present an extension language for the declaration of classes. Our classes are tagged
extensible records of fields. They do not contain methods, since methods can be declared independently, as
formalized in Chapter 4. This removes the need to distinguish subtyping from subclassing, even in presence
of covariant specialization of methods [11]. Therefore, we only describe how class declarations declare object
creation and field access operators. Most of the original aspect of the work lies in the typing of multi-methods
described in Section 8.6. However, it should be possible to fit other approaches to object-orientation in our
framework.

We tackle the general case of multiple inheritance, which includes single inheritance as a subcase. Classes
can be parameterized by types. Therefore, each class does not define a type, but a type constructor with the
same name. Classes come with a signature that describes its number of type parameters and the variance of
each of them: respectively &, & and ® for co-, contra- and non-variant type parameters. A class can only
inherit from classes with the same variance. We shall thus often leave the variance annotations implicit. For
instance, a class listg[t] defines a type constructor with one covariant type parameter.

Class declarations list the set of fields of the declared class. We use integers to label fields for the ease of
the presentation, but using names instead would raise no problem. The concrete syntax for the declaration
of a class C of variance V is:

class Cy[t] extends C1, ...,Cp, {1: Fi(t),....,p: Fp(t)}

where each F; is a function mapping the type parameters ¢ to monotypes. If a value has type Cy[0] (and
therefore is an instance of class Cy by Requirement 38), then F;(©) is the type of its 0 field.
For instance, lists can be defined by an abstract class 1ist and two subclasses, the empty list nil and
the non-empty list cons:
class listgt] { }
class nilg[t] extends list { }
class consg|t] extends 1list { 1:¢,2: 1list[t] }

Field types are monomorphic: they can only depend on the type parameters of the class. This restriction
arises from the fact that we want field access operators to have a rank-1 polymorphic type, that is, with all
quantifiers at the front of the type. Otherwise, if we could define class C[t] { 1:Vu. w — t } , then the type
of the field access operator would be V¢. C[t] — (Vu. u — t), of rank 2. Note that, unlike in the encoding
of classes as extensible records of fields and methods, this restriction does not prevent methods from being
polymorphic, since methods are not class members (see Section 4).

A class declaration can be interpreted as a partial definition for an ML< type structure, as introduced
in Section 2.2. It introduces a new type constructor for the class, as well as subtyping between this new
constructor and the type constructors corresponding to its super-classes.

Definition 33 (Partial type structure) The partial type structure induced by a class declaration, noted
TS(class Cy[t] extends C4, ...,Cy, ...), is the couple ({Cy},{Cy < C1,...,Cy < Cp}).

53

In a program, which typically includes several class declarations, the type structure is the union of all
partial class structures. We formalize the notion of program in Chapter 4.

Definition 34 (Type structure) Given a set of class declarations Cy,...,Cy, let (¢;,0;) be TS(C;). The
induced type structure TS(Cy, ...,Cp) is (Ui, ci, (Ui, 0i)*), where * is the reflective and transitive closure
of relations.

For instance, the type structure defined by the list hierarchy is
({1ist,nil, cons}, {nil < list,cons < list})

For a class declaration to be valid, its field types must respect the variance of the class. For instance,
since consglt] has variance @, it can have a field with type ¢, but not with a type of the form ¢ — @ for
some monotype 6, since ¢ appears contra-variantly in that type. Without this restriction, we could define a
class class badg[t] { 1:t — bool } . By covariance, a value of type bad[int] could be used in a context a
value of type bad[float] is expected. However, this context could fetch the field, and expect it to be of type
float — bool, while the value might only be of type int — bool, which is not a subtype of float — bool
by the contra-variance of —. Similarly, if we formalized mutability, a class with a covariant type parameter
could not have a mutable field of that type. The general condition is formalized in the following requirement:

Requirement 35 (Fields) Let C be a class declared by class Cy[t] extends Cy,...,Cp, {1 : Fi(t),....p :
F,(t)}. Then, the following ML< implication must hold for all i in 1..p:

Vit i<y T EF{) <F({)

3.1 Object instantiation

We shall now see how class declarations implicitly add constants to the core language. Each class declaration
introduces a new data constructor whose arity is equal to the number of fields of instances of C, including
the fields defined in the super-classes of C. We can therefore represent an object as the application of a new
data constructor to a value for each field in a given, arbitrary order.

We use ordered lists to represent the super-classes and the fields of classes. We shall write [x1, z2, ..., ;]
for the list of n elements, in order x1, then x5, until z,,. We shall write + for list concatenation. That is,
[T1, ooy @n] + (Y1, ooy Y] 18 [X14 ooy Ty Y1y ovy Y] Given two lists Ly and Lo, we shall write Ly \ Lo for the list
that has all elements of Ly that do not appear in Lo. Finally, we write e for the duplicate-free concatenation
of lists. That is, Ly e Ly is defined as Ly 4+ (La \ L1). It follows that e is associative: (L; e Ly) e L3 is the
same list as L1 e (Ly @ L3), and can therefore be simply written as L, Lo e Ls.

Definition 36 (Super-class and field lists) Let C be a class declared by
class Cy[t] extends Cy,...,Cp, {1: Fi(),...,p: F,(1)}.
sc(C) =sc(Cy) esc(Cy) o ... 05¢(Chy) o [C]
Fields(C) = [F1, ..., F})
AllFields(C) = Fields(D1) + ... + Fields(D,,) where [D1, ..., D] = s¢(C)
The use of e avoids listing a class twice if it is inherited through two different paths.
We will need to compute the first index of the fields declared by a class C' in the ordered list of all fields

of a subclass €’ of C. We will compute this index as shift(sc(C"), C), where shift(C, C) is defined inductively
by case on the first element of the first parameter:

shift([Cy, Ca, ..., Cp],O) = 0 (C1=C)
shift([Cy, Ca, ..., Cp], C) |Fields (C1)]| + shift([Cy, ..., Cy],C) (C1 # C)

The shift meta-operator verifies the following lemma:

54

Lemma 37 (Shift) Let C' be an element of sc(C’), [Fi, ..., Fp] be Fields (C), and i be an integer in 1..p.
Then

AllFields(C")shits(se(c),0)+i = Fi

The data constructor new C' is used to create object values by application to field expressions of the
expected type. Let [FY,..., F}] be AllFields(C'), then

constant-type(new C) = Vi. F{(t) — ... — F, (t) — C[t]
For instance, the instantiation operators for the list hierarchy have the following types:

constant-type(new nil) = V¢.nil[{]
constant-type(new cons) = V¢. t — list[t] — cons]t]

A class C can also be declared abstract in order to assert that no object is built on this class. In this
case the operator new C' is not introduced.

Below, we require that new C' is the only data constructor that may create an object with a type
constructed on C', as formalized by the following requirement.

Requirement 38 (Class type) Let C be a class of variance V. Let t be a list of fresh type variables of
length arity(V'). Let v be a value of type V0. 5, = 0,. Then if true =k, A0, < C[t] holds, v is of the form
new C' vy ... v, with n = |AllFields(C")| and C € sc(C).

The constraint implication true |= , A 8, < C[t] holds when there exists monotypes § and an instance
of the type of v which is a subtype of C[0]. In particular, it follows that the field access operators of class C,
which we define in the next section, can be applied to v. Requirement 38 will allow us to state in Lemma 39
that this is only possible for object instances, created by new.

This requirement does restrict the expressiveness of objects but simply rules out faulty data constructors
that would have an object type without being an object of class C. In turn, this would prevent field access
operators from being total on their domain. Without Requirement 38, one could for instance define a data
constructor null with type Vt.t. The value null would therefore be usable anywhere any object is expected,

but there would be no possible meaningful reduction for the application of field access operator to null.

3.2 Field access in classes

Object values are built by instantiation of classes. Symmetrically, it is necessary to be able to de-
construct these objects by accessing the values of their fields. To this end, each class declaration
class Cy[t] extends Ci,...,Cp, (1 : Fi(t),...,p : Fy(t)) defines p field access operators for each field de-

clared in C'. The operator that accesses the ith field declared in class C' is written C.i. It has the following
type:
constant-type(C.i) = Vi. C[t] — Fi(t)

For instance, the field access operators for the example list hierarchy have the following types:

constant-type(cons.1) = Vt. list[t] — ¢
constant-type(cons.2) = Vt. list[t] — list(t]

Lemma 39 (Field access) Let C be a class, C.i be a field access operator of class C, and v be a value such
that C.i v is well-typed. Then v is of the form mew C' vy ... v, with n = |AllFields(C")| and C € sc(C').

95

Proof of lemma 39

Let VU. k = 6 be type(v), let V be the signature of class C' and ¢ be a list of type variable of length arity(V).
By Definition 27 and the hypothesis that C.i v is well-typed, the type Vi,9.x A 0 < C[t] = F;(1) is well
formed. That is, the constraint implication true = k, A 6, < C’[t] holds. Therefore, by Requirement 38
(CLASS TYPE), v is of the form new C’ vy ... v,, where n = |AllFields(C")| and C € sc¢(C’). B

In order to define the reduction rule for the field access operator C.i, we use the shift meta-operator
defined in the previous section.

- U
C.i (new C ey ... €n) — Eshift(sc(C7),C)+i

Note that, by Lemma 39, C.i (new C’ e; ... e,) can only be well-typed if C’ is a subclass of C. This
ensures that shift(sc(C”), C) is well-defined.
Next, we show that the field access operator is soundly defined.

Theorem 40 (Field access soundness) Given a type structure and a set of operators such that Require-
ment 35 and Requirement 38 are fulfilled, let C.i be a field access operator. Then the two following properties
hold:

e if C.i v is well-typed, then there exists a value v’ such that C.i v — v'. Furthermore, v is of the form
new Cl V1 ... Un and v = Ushift(sc(C/),C)-i-i;
o if
type(C.i (new C' vy ... v,)) =T

then there exists ' such that
type(Vspift(sc(cr),c)+i) =T and 7' < T

Proof of theorem 40 (Field access soundness)

e By hypothesis, C.i v is well-typed. Therefore, by Lemma 39 (FIELD ACCESS), v is of the form
new C’ vy ... vy, where n = |AllFields(C’)| and C € sc(C’"). So by the reduction rule for field
access, the expression C.i v reduces t0 Vspifi(se(cr),c)+i-

e We omit here the annotation by variance V. Let V4, . k,; = 6,, be type(v;) for j in 1..n and V. Fy(t) —
.. — F,(t) — C'[t] be type(new C"). Therefore, by App and Definition 28:

type(new C' vy ... v,) = VD, . Ky, A Oy, < Fj(t) = C'[t]
with j ranging from 1 to n. Let £ and 7' be distinct fresh monotype variable lists of length arity(V).
Then by Figure 1.4 and Definition 28, type(C.i (new C’ vy ... v,)) = folﬂvj K, Ny, < Fi(E)ANC'[E] <
C[f]= F/(¥) (5).
Let s be the integer shift(sc(C’),C) +i. We claim that the type V.. ks = 05 of v, is a subtype of
(5). By Definition 27 this amounts to:

VT
Koy A By, < F(T) (j ranging from 1 to n) AC'[f] < CF|AF/(T) <t
= ko, Aoy < FL@)AC'[[] < CIE]AF!(T) <t (TRIV, keeping only j = s)
=k, Aoy < FIOAC'H]] <CE)AF/(F)<t (Lemma 37: F, = F/)
= ko, Aoy <F/ONE<T AFI(T)<t (MELIM)
= ko, Aoy < FID) < FIF) <t (Requirement 35, Lemma 26)
E kp, AOeg <t (MTRANS)

Restriction to V¢ by Lemma 24 concludes.

56

Chapter 4

(zeneric functions

Multi-methods are less popular than mono-methods used in single-dispatch languages (C++ [41], Java [25],
OCaml [40], ...). Nevertheless, they have been studied and used in several programming languages (CLOS
[4, 23], Dylan [21], Cecil [13, 14], ...). However, their type-checking in the presence of polymorphic types, in
a decidable and modular way that preserves type inference on ML expressions is still an issue.

In this section, we present a formalization of generic functions in our framework. Generic functions are
operations that can select different behavior depending on the type of their arguments. They capture the
essential properties of multi-methods, while being more general, by abstracting over the type algebra used
to typecheck them. Thus they are a good framework to formalize type-checking and modularity. In this
section we only present the type-checking aspect. We handle modularity in Chapter 8.

4.1 Example

For this example we assume a type algebra that has bounded polymorphic types. As this example is only
meant to support intuition, we deliberately remain informal. Base types include int, float, and num such
that int < float < num. Type num is abstract in the sense that it has no direct instance. Conversely, int
and float are concrete.

In order to motivate the introduction of generic functions, assume given two monomorphic functions
opp_float and opp_int that compute the unary minus function on floats and integers. We would like
to define a function that computes the opposite of any number. The function opp float could be used,
because an integer can be considered as a float by subsumption. However, in that case the result has type
float, while we know statically that it is int. Bounded polymorphism allows to give it the more precise type
Vt < num.t — t. However, opp _float cannot be given this type since it always returns a float. Furthermore,
the only function with this type that can be written in Core-ML is the identity on num.

What we need is a generic function construct that pattern matches on the runtime-type of its arguments.
In our example:

generic opp : Vit <num.t —1t = float = opp'_float
int = opp_int

The intent is that one of the implementations of the generic function will be selected and applied, at
runtime, depending on the runtime type of the argument. Each implementation branch consists of a list of
patterns to declare the types it handles and of an expression that implements the generic function in that
case. There must be one pattern for each argument of the generic function. In the example above, the
lists of patterns of each implementation have a single element, respectively float and int, since the generic
function has only one parameter. No implementation is needed for num since it is an abstract type.

57

4.2 Syntax

The syntax for programs with generic functions is:

Generic function G 1= genericg : 7 =1,..7,
Implementation 1T 1= T =e

Class C == classCextendsC { ..}
Declaration D == G|C

Program P == letrec Dine

where 7 belongs to a language of patterns. A pattern represents the set of types that belong to that pattern,
as defined by the binary predicate 7 € . Both the set of patterns and this predicate are left abstract at this
stage. A semantics for programs with generic functions is first defined in Section 4.3; then in Section 4.4
we state type-checking rules and express the property that these abstract components must verify so as to
ensure type soundness. We provide a concrete instance of generic functions in Section 8.6.

4.3 Semantics

We need to define the reduction rules for generic function operators. To this end, we formalize what it means
for a pattern to match a tuple of types in the following definition:

Definition 41 (Pattern matching) A pattern T matches (71, ...,7,) if for all i in 1..n, 7, € m; holds.
We also define an ordering on patterns. A pattern is smaller than another one if it matches more types.

Definition 42 (Pattern ordering) A pattern 71 is smaller or equal to a pattern o, written T < To, if
for all types (11, ...,) such that To matches (71, ...,7,), T1 matches (T1, ..., Tn).
A pattern 71 is smaller than a pattern Ty, written T < To, if T1 < 7o holds and To < T does not hold.

We order implementations based on the order of their patterns.

Definition 43 (Implementation ordering) An implementation Ty = ey is smaller than (respectively
smaller or equal to) a pattern To = es if T1 is smaller than (respectively smaller or equal to) Ta.

Intuitively, smaller implementations are more precise, because they are applicable to less types.
The declaration genericg : 7 =71 = e1,...,Tp = ¢, introduces an operator g in the language, with
constant-type(g) = 7. The reduction rules for this operator are defined by:

7; matches (type(vi), ..., type(vy,))
(V1 ety Un,y €5 01 . v) € R(g)

Hence, we have defined an operator that fits the general framework of Section 1. In particular, the derived
rule obtained by combination with the reduction rule for operators OP is then:

7; matches (type(vy), ..., type(vy,))

guvy ..Uy —> €; V1 ... Up

Note that the semantics is possibly non-deterministic since several implementations might match a given
tuple of arguments. For instance, consider the generic function

float,float = ...
generic add : V¢ < num. (t,t) -t = float,int = ...
int,float = ...

The addition of two integers could be handled by the second and the third implementation, and, by symmetry,
there is no reason to choose one rather than the other. In practice, it is often desirable to enforce a

o8

deterministic behavior. This can be achieved by requiring that generic functions are not ambiguous. This
requires that for each possible call there exists a most specific matching implementation. Reduction then
happens unambiguously by selection of the most specific implementation. This aspect is well-known from
the study of multi-methods [28, 2, 13, 6], and is orthogonal to type-soundness.

The semantics is typed in the sense that the types of the values are used in the definition of the reduction
rule. However, this does not mean that expressions have to carry a type at run-time. In opposition to
dynamic values (values carrying runtime types on which type matching can be performed, as in [30, 1]),
types involved here are not static types carried at runtime, but runtime types. In the general case, reduction
can therefore require the computation of the runtime types, which can be costly in term of performance.
However, depending on the actual language of patterns that is used, reduction might also be performed
without actually computing the types of the arguments. For instance, in an object-oriented language, object
values may carry the class of which they are an instance. Therefore, if one can decide whether a type matches
a pattern solely considering the class on which the type is built, reduction can be implemented without any
runtime type computation. This is indeed the case for multi-methods, as can be seen in Section 8.6.

Note that since generic functions are operators, they are made available globally to the whole program
by rule CsT. They can therefore appear in generic function bodies, so that generic functions are globally
mutually recursive. In particular, this allows for polymorphic recursion. This does not lead to undecidability
of typechecking since types of generic functions are declared and not inferred.

4.4 Type-checking

Given a program P containing the class declarations Ci,...,C,, we place ourselves in the type structure
TS(Cy,...,Cy) as defined in Definition 34.

We now present a static type system to detect errors in programs with generic functions. Thanks to our
general soundness result, Theorem 12, this reduces to proving that generic functions define operators that
satisfy Requirement 9 (CONSTANTS). Informally, the type of a generic function introduces two requirements
on its implementations, corresponding to the “subject-reduction” and “progress” parts of the requirement for
operators.

Firstly, it can be seen as a specification that every implementation must meet. However, since the patterns
restrict the domain of the arguments, this type can be specialized, taking into account the information in
the patterns. Thus, we require a notion of restriction of a type to a list of patterns, and we demand that
each implementation has a subtype of the restriction of the generic type to the implementation’s patterns.
For instance, the restriction of the type V¢ < num.t — ¢ of opp to pattern float is float — float. A
particular case arises when the restricted type is the error type E. Since E is maximal, the above requirement
is trivially satisfied. However, this situation corresponds to an implementation that would never be used
(which is why no condition is needed on the type of the implementation to ensure type safety). Therefore, it
makes good sense to additionally require that the restricted type is not E. For instance, an implementation
of opp with pattern string would be rejected, since string is not a subtype of num.

Formally, we assume given a total function restrict. The type restrict(7, T) defines the restriction of a type
7 to a list of patterns 7. It must satisfy the following requirement:

Requirement 44 (Restriction) For all types 7, 7; (i = 1..n) and patterns T,

T; € T; (Z = 1..7’L)

restrict(7,) T4 .. Tn < T T1 .. Tp

Ag an example, we give possible definitions for restrict and € in the monomorphic type algebra of Sec-
tion 1.1.2. Patterns are in this case simply algebraic types denoted by a. A type belongs to a pattern if it
is a subtype of that pattern. That is, a € a’ holds iff @ < a’. The restriction of a functional type to a list
of patterns is the functional type whose domain is the list of patterns and whose codomain is the original
codomain. That is, restrict(a,b;...b,) is by — ... — b, — a¢ when a is of the form a; — ... — a,, — ag and
b; < a; holds for all i from 1 to n; it is E otherwise. Tt is easy to check that Requirement 44 (RESTRICTION)

59

is satisfied by these definitions. The rationale for the definition of restrict is that when a generic function of
type a1 — ... — a, — ag is applied to values of types b;...b,, it needs to be implemented by a function of
type by — ... — b, — ap.

We can now define the validity of a generic function declaration, and of an implementation.

Definition 45 (Valid implementation) An implementation T = e is valid for type 7 if
1. restrict(r,7) # E

2. type(e) < restrict(7,T)

Definition 46 (Valid generic function) The declaration of a generic function gemeric g : T
Ly, ... Iy is valid if for all i, the implementation Z; is valid for type T.

Condition (1) in Definition 45 prevents from using patterns that are incompatible with the domain of the
generic function and that would therefore never be used. This condition is not mandatory but makes good
sense. Conversely, condition (2) is essential to ensure subject-reduction.

Now, we consider the second requirement on the implementations of a generic function, which is necessary
to fulfill the Requirement Requirement 9.7, that is the “progress” part. To this end, one can notice that the
type of the generic function determines its domain. The implementation branches, taken together, must cover
this domain. Back to the introductory example, the generic function opp must possess an implementation
for any non-abstract subtype of num. It is indeed not necessary that an implementation exists for types that
have no runtime values. We therefore define run-time types and covered generic functions:

Definition 47 (Runtime type) A type 7 is a run-time type if there ezists a value v such that type(v) = 7.

Definition 48 (Covered generic) A generic function genericg : 7 =71 = e1,..Tp = €, is covered
if for all run-time types T1,..., 7, such that T 71 ... T, # E, there exists an index i such that T; matches
(Tl, ...,Tn).

Chambers and Leavens present an efficient algorithm for testing coverage (and non-ambiguity, to ensure
determinism) in [16], which is applicable in our context. Therefore, we do not address this point.
It is now possible to express a sufficient condition for programs with generic functions to be sound.

Theorem 49 (Generic functions) The operators defined by valid and covered generic functions satisfy
Requirement 9 (CONSTANTS).

The first part of Requirement 9 (CONSTANTS) is directly implied by Definition 48 of covered generic
functions together with the reduction rules. The second part is a consequence of Definition 45 of a valid
implementation, using Requirement 44 (RESTRICTION) on the restriction operator.

Proof of theorem 49 (Generic functions)

Since generic functions are operators, we need to prove parts ¢ and i of Requirement 9 (CONSTANTS).

i. By hypothesis, g v ... v, is well-typed, so by Definition 47 each type(v;) is a runtime type. So, by
Definition 48, there exists an implementation m...m, = e such that, for i from 1 to n, type(v;) € m;.
Therefore, by definition of reduction rules, g vy ... v, — e vy ... v,

ii. Let I be an implementation 7T = e such that 7 matches type(v1)...type(vy,), and 7, be constant-type(g),
the declared type of g. We need to prove that type(e vy ... v,,) is a subtype of type(g vy ... vy,).

type(e vy ... vp)

= type(e) type(v1) ... type(vn) (ArP)
< restrict(ry, m) type(vi) ... type(vn) (validity of I and Covariance (Definition 4.ii))
< 74 type(v1) ... type(vy,) (Requirement 44 and Covariance (Definition 4.ii))
= type(g vy ... vp) (ApP)

60

|

A program let rec m in e is well-typed if every generic function G is valid and covered, and if e is
well-typed. The result of the program is the evaluation of e. By Theorem 12 (SOUNDNESS) and Theorem 49
(GENERIC FUNCTIONS), e reduces to a value v such that type(v) < type(e).

We formalize type-checking for modular programs with generic functions in Chapter 8.

61

62

Chapter 5

Super

5.1 Super in class-based languages

Super is a construct that allows to reuse an existing implementation of a method inside another implemen-
tation of the method in a sub-class.

In the following example written in Java, a method performing side-effects (and therefore returning void),
starts with performing the possible side-effects of the existing implementation.

class A {
int x;
void print(OutputStream s) {
s.print(x);
}
}

class B extends A {
int y;
void print (OutputStream s) {
super.print(s);
s.print(y);
}

Here, super.print means the implementation of method print in the super-class of the current class.
In particular, it is not mandatory to use the same name as the current method. It is therefore possible to
call another method, implemented in the super-class. That is, in the body of a method f in class B, it is
possible to use super.g. This semantics is tightly coupled with single-dispatch, in that it relies on the fact
that dispatch is only made on the first argument only.

5.2 Super in multi-method languages

5.2.1 Dylan

The Dylan language features multi-methods. It allows to call a more general method from a method, with
the next-method keyword. A higher-level description of its semantics is: next-method calls the method
that would have been called if the current method had not existed. This call can fail at runtime in case of
ambiguity, for the same reasons as for method calls. Dylan allows such failures at runtime, which is probably
unavoidable given the possibility in Dylan to add method implementations at runtime.

The following program is the translation in the syntax of Dylan of the example of Section 5.1.

63

define class <A> (<object>)
slot x;
end class <A>;

define class (<A>)
slot y;
end class ;

define generic print (a :: <A>);

define method print (a :: <A>)
format-out ("%d\n", a.x);
end method print;

define method print (b ::)
next-method () ;
format-out ("%d\n", b.y);

end method print;

Besides the syntactic differences with the code in the previous section, the main point to note is that a
call to next-method does not specify a method name. One way to interpret this fact is that next-method
is a high-level construct specifying how an implementation of a method is related to the implementations it
overrides, while super in the previous section is a lower-lever construct specifying a special way to perform
dispatch for a certain method call.

Furthermore, the next-method statement does not specify arguments. This is possible since, by default,
next-method is called with the same arguments as the current method. It is possible in Dylan to pass
other arguments. The specification requires that the new arguments lead to the same sequence of applicable
methods as the original arguments. Otherwise, the semantics is undefined. The underlying problem is that
dispatch has already been performed. In particular, by passing arguments with greater types, they might
not be compatible with the called method, even though they are compatible with the generic function. This
case is illustrated in the following example:

define class <A> (<object>)
slot x, init-value: O0;
end class <A>;

define class (<A>)
slot y, init-value: O;
end class ;

define class <C> ()
end class <C>;

define generic print (a :: <A>);

define method print (a :: <A>)
format-out ("%d\n", a.x);
end method print;

define method print (b ::)
next-method () ;
format-out ("%d\n", b.y);

end method print;

64

define method print (c :: <C>)
next-method (make (<A>));
end method print;

In the implementation of print for class C, next-method is called with a newly built instance of class
A. However, the method called is the implementation of print for class B. That method can not handle the
instance of class A that it receives in this call, which will provoke an error at runtime.

5.2.2 Cecil

Cecil features the resend keyword. While serving the same role as next-method in Dylan, it is better
in two ways. First, it is possible to explicitly resolve ambiguities by directing the call: every argument of
the current method specialized for a class C can be specialized in the resend to an ancestor of class C. For
instance, if a class C has two super-classes B1 and B2 that are both subclasses of class A, the implementation
of a method for class C can specify that a resend targets the implementation of that method for either
B1 or B2. Second, Cecil restricts passing a different argument than the original one to the case where that
argument is not specialized. This allows to give a safe formal semantics in every case, unlike in Dylan.

The reference manual of Cecil includes typing rules for resend. However, they do not take into account
polymorphic types, which are presented later as an extension. Furthermore, they require the explicit typing
of every method implementation. In particular, the type of resend is the declared return type of the
implementation that it calls.

5.3 Formalization
The syntax of method implementations is extended to allow the following notation:
implementationn 7 = A\x;...z,.e(super)

where e(super) is an expression that can contain one or more occurrences of the super keyword.
This notation is syntactic sugar for:

implementationm 7 = \z;...z,.e(super,, = ¥1 ... T,,)

We define the target of super as the most precise implementation of m that is less precise that the
current implementation, or L if such implementation does not exist. The ordering of implementations is
defined in Definition 43.

Definition 50 (Target of super) Let m be a method, and T be a list of patterns. Then
target(super,,) = max {7’ = ¢’ € implementations(m) | ¥ < 7}

If there is no implementation of m with patterns less precise than 7, or none that is a maximum, the max
is undefined, and target(super,, --) is L. In that second case, the use of super is ambiguous, and therefore
results in a typechecking error.

One can then define the semantics of super:

Definition 51 (Reduction of super) Let m be a method, and T be a list of patterns. If target(super,, =)
is T = ¢/, then super,, ~ — €.

The semantics of super is therefore completely specified by the target(-) predicate.

65

5.3.1 Typing

The type given to super,, - is the restriction of the type of m to the patterns of the target implementation:

Definition 52 (Type of super) Let m be a method, and T be a list of patterns. Then the type of super,, -
is defined by:

E f t t —)=1
constant-type(super,, =) = . _ Zf arget(super,, z) - ,
’ restrict(constant-type(m),7) if target(super,, =) =7 = e
Theorem 53 (Super) For any well typed method m and list of patterns T, the operator super,,
Requirement 9 (CONSTANTS).

verifies

Proof of theorem 53 (Super)

1. Since super,, - is well-typed by hypothesis, target(super,, -) is well defined by Definition 52. Let
then 7 = ¢’ be target(super,, —). By Definition 51, super,, - — ¢’.

2. Let ™ = ¢ be the implementation target(super,,~). The only reduction rule for super is
super,, - — ¢’. In this case, we have by Definition 52 type(super,,) = restrict(type(m),7) (1).
Since m is well typed, the implementation @ = ¢’ must be valid by Definition 46. That is, by Defini-
tion 45, type(e’) < restrict(type(m),7). This shows, together with (1) that type(e’) < type(super,,)
holds.

5.4 Example

Let us see how super can be used in practice, and how the typing rules and the target resolution are applied.
We consider a class hierarchy that models buttons in a graphical user interface toolkit:

class Button {
String text;

// A closure executed when the button is pressed.
() — void action;

3

void draw(Button);

draw (Button this) { ... }

void clicked(Button);
clicked(Button this) {
(this.action) ();

class ImageButton extends Button {
Image image;

3

draw(ImageButton this) { ... }

class OnOffButton extends Button
{

66

boolean disabled;
}
clicked(0On0ffButton this) {
if (! this.disabled)
super;

The On0ffButton class adds to the Button class the ability to deactivate the button. The use of super
in the clicked method on a OnOffButton allows to abstract over the behavior of the parent class. If the
parent was modified, this modification will also affect the sub-classes.

The target of super in clicked (On0ffButton is clicked(Button). Since the method is monomorphic,
the type of super is simply the type of the method.

Suppose now that we want to use a button that has both an image, and the ability to be deactivated,
and that we want to monitor clicks, for instance to count them:

class MyButton extends ImageButton, OnOffButton {
int nbClicks;

}

clicked(MyButton this) A
this.nbClicks = this.nbClicks + 1;
super ;

}

The set of implementations that are less precise than clicked(MyButton) contains both
clicked(Button) and clicked (On0ffButton). Since the latter is more precise than the former, the target
of super is clicked (On0ffButton).

Subclassing is sometimes presented as similar to a textual copy of the implementations of the parent
class that are not redefined in the child class. According to this presentation, one could be worried that the
target resolution gives priority to the implementation inherited from OnOffButton over the one inherited
from Button through ImageButton. However, the redefined implementation has priority because it indicates
that the implementation that it replaces is not wanted in the concerned case. Thus, clicked(Button) is
not valid for class On0ffButton since it does not take into account the activation state. It is therefore
not valid either for the subclass MyButton, and so must not be considered in the resolution of the target.
This corresponds exactly to the notion of most precise implementation, which is used for the dispatch of
method calls. Indeed, the same reasoning about the invalidity of overridden implementations also justifies
the semantics of dispatch.

67

68

Chapter 6

Kinds

6.1 Introduction

This chapter illustrates how the type system can be extended by augmenting the language of constraints
of ML<. We present two typing challenges that arise in practice from the interplay of polymorphism and
subtyping, and we propose a single solution to solve them both.

The first challenge, which has already been pointed out [32], is the typing of homogeneous methods,
that is, methods that accept several (but not all) types for their arguments, while these types cannot be
intermixed. A typical example is the comparison operator less, which can be applied to two strings, two
integers, two dates, etc, but not to two values of different types, and neither to types that have no canonical
ordering like graphical widgets.

The second challenge, introduced in this thesis, has arisen from our experience with programming in
languages with multi-methods and based on the polymorphic constrained type system ML< [6]. We found out
that many useful methods are partially polymorphic: their types lie in precision in between a monomorphic
and a bounded polymorphic type. For instance, considering the hierarchy Integer < Rational < Float,
and the inverse operation z — %: the type Float — Float is correct for inverse, but it is too coarse since it
does not show that the inverse of a Rational is a Rational; on the other hand, the type VT < Float. T — T,
which would correctly map a Rational to a Rational, is incorrect because the inverse of an integer might
not be an integer but a rational in general. Our solution is to give inverse the type Va. v : Field = a — a,
meaning that for every class « that can be given the mathematical structure of a field, the inverse operation
maps « to an a. Since integers do not form a field, but a mere subset of the field of rational numbers, our
type indeed specifies that the inverse of an Integer is a Rational. Indeed, the best instantiation for « is
then Rational. In our proposal Field is not a type but a kind, that is, a property that some types possess.
An extra benefit of our solution is to be modular in the sense that new classes with the kind Field can be
added to an existing class hierarchy without changing the type of the inverse operation.

In this thesis, we propose an extension of ML< with kinds that allows to typecheck both homogeneous
methods and partially polymorphic methods.

In Section 6.2 and Section 6.3, we present several typing challenges that motivate the introduction of kinds
in type systems with subtyping; in Section 6.5, we propose a simple solution that however fails to achieve
separate type-checking of modules; In Chapter 10, we will show that kinds interact well with modular
typechecking: new classes can be added in the domain of an existing method without changing the type of
the method. Moreover, our extension of ML< also preserves all the essential properties of the system.

We start by examining several challenging type-checking situations of practical importance. Through-
out this chapter, we consider type systems with nominal subtyping. Specifically, our examples use class
declarations to declare new type names, for which subtyping is determined by the inheritance hierarchy.

69

6.2 Typing homogeneous operations

We first consider the problem of typing homogeneous operations. Homogeneous operations are a specific sort
of binary (or n-ary) operations, characterized by the shape of their domain. They accept several types as
arguments. However, values of different types cannot be mixed in the same call [32]. For instance, consider
the comparison operator less. Its type must express two properties. First, only some types have a natural
ordering. Therefore, comparing graphical widgets should not be possible. Second, even for comparable types
like strings, integers, or dates, it should be ill-typed to mix any two of these types in a call: deciding whether
a string is smaller than an integer does not make sense in general. We shall examine how it is possible (or
not) to express this requirement in several type systems.

Monomorphic type system

The following program is an attempt to type less in a monomorphic type system, using Java syntax.

abstract class Comparable {
boolean less(Comparable other);

}

class String extends Comparable {
boolean less(Comparable other)
{ /* compares a string to a Comparable */ }

}

class Date extends Comparable {
boolean less(Comparable other) { ... }
}

A monomorphic type system cannot prevent the intermixing of arguments of different types. Conse-
quently, it is necessary to handle the case where a String is compared with an arbitrary value of type
Comparable. Typically, this is done by runtime type inspection. In this case, it would be possible to return
false, but since the comparison of a String and, say, a Date never makes sense, it is probably better to raise
a runtime exception if values of different “kinds” are compared. Our aim is precisely to statically rule out
these cases.

Monomorphic type system with multi-methods

Because we are still using an inexpressive type system, we cannot express the homogeneity of less. However,
a first improvement is that the ability to dispatch on several arguments allows for the separate definition of
comparison on pairs on objects of the same “kind”, while with mono-methods, each specialized version of less
had to handle an arbitrary (second) argument.

abstract class Comparable {}
boolean less(Comparable, Comparable); /* Multi-method */

less (Comparable s1, Comparable s2)
{ throw new Error("Trying to compare objects of unrelated classes"); }

class String extends Comparable;
less(String s1, String s2) { ... }

class Date extends Comparable;
less(Date d1, Date d2) { ... }

70

The declaration of the less multi-method makes any couple of two subclasses of Comparable valid ar-
guments. The default implementation less(Comparable, Comparable) is therefore needed to handle the
invalid cases. In the valid implementations, both arguments are statically known to be instances of subclasses
of the concerned class.

F-bounded polymorphic type system

F-bounded polymorphism [8] extends bounded polymorphism by allowing the bound of a variable to refer
to the type variable being bound. It offers the following solution to type homogeneous operations [32].

abstract class Comparable<T> {
boolean less(T other);

}

class String extends Comparable<String> {
boolean less(String other) { ... }

}

class Date extends Comparable<Date> {
boolean less(Date other) { ... }
}

The idea is that x.1less(y) is well typed only if x has type Comparable<T> for some T, and y has type
T. It is therefore possible to make sure the operation is homogeneous by declaring class String extends
Comparable<String> and class Date extends Comparable<Date> only, so that, for instance, Date is not
a subtype of Comparable<String>

We shall now propose our solution to this typing problem. The comparison of our system with F-bounded
polymorphism will be made in Section 15.3.

Introducing kinds

Between the monomorphic type (Comparable, Comparable) — boolean for less, which is too loose, and the
F-bounded polymorphic type VT < Comparable<T>. (T,T) — boolean, which is unintuitive, we could have
considered the simpler bounded polymorphic type VT < Comparable. (T,T) — boolean. However, this does
not work: it is in fact equivalent to the monomorphic type, since intuitively, T can be instantiated by the
type Comparable.

In fact, String and Date share the property of being comparable, without having a common super-
type. Therefore Comparable should not be a type, but a property possessed by some types. In other words,
Comparable is a kind. We shall write Date : Comparable or Date implements Comparable to express
that Date is a type of kind Comparable. We first present our solution informally.

kind Comparable;
<T : Comparable> boolean less(T, T);

class String implements Comparable {
boolean less(String other) { ... }
}

class Date implements Comparable {
boolean less(Date other) { ... }
}

Since T can be instantiated to either String or Date, pairs of strings or pairs of dates can be compared.
Furthermore, no valid instantiation for T is a super-type of both String and Date, which prevents intermixing.

71

The type VT : Comparable. (T,T) — boolean therefore fulfills the two desired properties for less. In addition,
we believe it is less involved than the F-bounded solution.

Inheritance without intermixing problem

Kinds are also appropriate to typecheck more complex cases of homogeneous operations. For instance,
Litvinov [32] argues that it is sometimes useful to have a class inherit from another, while not allowing
homogeneous operations to accept intermixing the super and the subclass (typically, Points are ColorPoints
when it does not makes sense to compare one of each class).

We present here their solution, which is to parameterize both classes and use F-bounded quantification.
We use our own syntax when it eases the comparison.

class PointF<Pt extends PointF<Pt>> {
int x = 0; int y = O0;
int area() = this.x * this.y;

eqPoint (PointF<Pt> other);
eqPoint (PointF other) = this.x == other.x && this.y == other.y;

}
class Point is PointF<Point> {3}

class ColorPointF extends PointF {
Color color;
eqPoint(ColorPoint other) = super && this.color == other.color;

}

class ColorPoint is ColorPointF<ColorPoint> {}

Since type parameters are invariant, ColorPointF<ColorPoint> is mot a subtype of PointF<Point>.
Therefore, mixed calls to eqPoint are not well-typed. On the other hand, the area method can as desired
be used for both Point and ColorPoint.

Our solution, using kinds, is instead to create a common superclass AbstractPoint containing the features
to inherit (the x and y fields), and two classes Point and ColorPoint that implement the kind Comparable.
Since AbstractPoint does not implement Comparable, intermixing is prevented.

kind Comparable;
<T : Comparable> boolean eqPoint (T, T);

abstract class AbstractPoint

{

int x = 0; int y = O0;

int area() = this.x * this.y;

eqPoint (Point other) = this.x == other.x && this.y == other.y;
}

class Point extends AbstractPoint implements Comparable {

}

class ColorPoint extends AbstractPoint implements Comparable {
int color = 0;
eqPoint(ColorPoint other) = super && this.color == other.color;

}

Both versions solve the problem as expected: they only allow comparing instances of the same class.

72

void test () {
eqPoint(new Point (), new Point ());
eqPoint (new ColorPoint(), new ColorPoint());
//eqPoint(new ColorPoint(), new Point()); // Type Error
}

Our approach avoids again the “fake” and cumbersome parameterization. Furthermore, the addition of
the class AbstractPoint allows to make obvious the fact that a ColorPoint is not a Point. In the F-
bounded version, this fact is not immediately apparent: one must actually try to prove the subtyping —and
fail— to conclude that it does not hold. We believe that this makes F-bounded quantification too complex
for a widespread use in programming languages.

6.3 Partially polymorphic functions

So far, we used kinds to describe a common property of unrelated types. One question immediately follows:
how do kinds interact with subtyping? Given a class A of kind K and a subclass B of A, should then B
always be of kind K7 Actually, a function of type VT : K. T — T can always take an argument whose type
B is a subtype of type A of kind K, since by subsumption the argument is also of type A. However, using
subsumption, we can only conclude that the type of the result is A. Conversely, if B itself was of kind K, then
we could type the application by instantiation of T by B, which would give the result the more precise type
B.

In this section, we shall show that it is sometimes desired to have the less precise result type: many
functions have type that are more precise than A — A, but less precise than VT < A. T — T. We call these
functions “partially polymorphic”, and now give several examples.

Numerical operations

Consider the following numerical hierarchy:

Float
class Float {...}
class Integer extends Float {...} Integer
class Int32 extends Integer {...}
class BigInt extends Integer {...} /////\\\\\
Int32 BigInt

What is the type of the addition on numbers? The sum of two floats is a float, the sum of two integers is
an integer, the sum of a float and an integer is a float. More generally, the type of the sum of two numbers
is their least upper bound (1).

The monomorphic type system and the Hindley-Milner type system do not allow to capture all possible
types described by (1) in a single type expression. This explains why arithmetic operators are usually treated
apart. However, as we shall see below, this situation also occurs with user defined types, for which ad hoc
typing is not possible. With bounded polymorphism, it is possible to type plus with VT < Float. (T,T) — T.
This expression correctly captures all possible types described by (1).

However, this type is, in a way, too precise: we don’t want the sum of two Int32 to be an Int32, but just
an Integer, because this sum can overflow, in which case the result should be a BigInt. Thus, we refine (1),
by requiring that the type of the sum always be above Integer: the type of the sum of two numbers is the
upper bound of Integer and of their least upper bound (2). However, bounded polymorphism can not capture
all types described by (2) anymore. Intuitively, (2) constrains a type variable with both an upper-bound and

73

a lower-bound, while bounded polymorphism only allows upper-bounds. Conversely, (2) can be expressed in
a constrained polymorphic type system with the type expression VInteger < T < Float.(T,T) — T.

However, this type has the disadvantage that it can only be given once one knows the complete numerical
hierarchy. Suppose we now want to subclass Float with two implementations that differ with respect to
the number of bits used to store the float — Float32 and Float64. Since the new classes are not above
Integer, the previous type given to plus asserts that the sum of two Float32 may be any Float. It seems
legitimate to specify that addition of two floats does not change their representation, but this cannot be
expressed. Tuning the type using more constraints to match the requirements needs a complete knowledge
of the type hierarchy. Therefore, this approach prevents extending the type hierarchy in a flexible way, that
is, a modular development of classes. Furthermore, even when the complete hierarchy is known, typing plus
would require disjunctive constraints, like VT. Integer < TV Float32 < TV Float64 < T = (T,T) — T.

We call partially polymorphic the functions that behave like plus with respect to types: their types is
living somewhere in-between monomorphic types and fully bounded polymorphic types. We believe that
they occur rather frequently. Therefore, it is an important issue to handle them appropriately. Please, note
that the above situation is very similar to the typing of numerical operators in Java [25]: the sum of two
float is a float, the sum of two int is an int, but the sum of two short (or byte) is an int. Java handles
this situation by ad hoc typing rules. Let us give a few more examples.

User defined methods

A similar situation occurs with the typing of, for instance, the negation operator — on boolean algebras. This
shows that partial polymorphism occurs not only in possibly predefined functions, but also in user defined
code. Consequently, this rules out ad hoc or non-modular solutions that do not solve the general case.

Indeed, what is the type of this negation operator with respect to a hierarchy that includes both the
algebra of booleans and the algebra of binary decision diagrams (BDD) ?

BooleanAlgebra

Boolean BDD

/TN

One Zero Conditional

The type BooleanAlgebra—BooleanAlgebra is very imprecise. It would lead to a big loss of typing
information, for instance by having not (x < y) be an expression of type BooleanAlgebra, given two integers
x and y. The polymorphic type VT < BooleanAlgebra. T — T is not correct, since the negation of a constant
BDD instance of class One is not a One but a Zero; an union type like VT.Boolean < TVBDD < T= T — T
is correct and precise, but disallows the introduction of a new boolean algebra and thus breaks modularity.
Furthermore, the introduction of disjunctions in constraints would significantly increase the complexity of
the type-checking.

As a last example, consider a hierarchy representing a source program tree inside a compiler or an
interpreter. If the source language distinguishes between expressions and statements, it makes sense to
declare that class Expression is a subclass of class Statement because an expression can be considered as
a statement that computes and then forgets a value. Many useful functions take a statement and possibly
auxiliary arguments, and return a statement: the resolution function that replaces identifiers with a reference
to their definition, optimization functions, a macro-expansion function, etc. None of these functions are
fully polymorphic: name resolution maps identifiers, represented by some class in the hierarchy, to variable
definitions, which are of a different class; macro-expansion replaces macro-calls by their definition, which
may be arbitrary expression. On the other hand, typing these functions as monomorphic is too coarse: since
only expressions are accepted at certain places in a syntax tree (for instance, as the right-hand-side of an

74

assignment) it is useful to reflect in the type of these functions that expressions are mapped to expressions
and not to arbitrary statements.

6.4 Using kinds to type partially polymorphic functions

Let us try to find a common solution for all these situations. Since the problem of finding a satisfactory type
to these functions seems difficult to solve, it might be that the problem itself is not formulated properly. Let
us reconsider the boolean algebra situation. A Conditional is indeed a subclass of BDD, because any value
of type Conditional is a BDD. However, a value of type BDD is not itself a BooleanAlgebra. It is the set
of all BDDs that forms a boolean algebra. Therefore, BooleanAlgebra is not a super-type of BDD, it is a
property of the type BDD.

This situation already occurred in Section 6.2, and motivated the introduction of kinds. This new example
additionally involves the interaction of kinding with subtyping. The property of forming a boolean algebra
is not true for an arbitrary subset of all BDDs. For example, neither the sets of all Conditional BDDs nor
the two single-element subsets containing respectively One and Zero are boolean algebras. Thus, it is crucial
that kinding is not inherited. All these observations can be summarized as follows: The property of forming
a boolean algebra is represented by the kind BooleanAlgebra. Class BDD is of kind BooleanAlgebra. Class
Zero is a subclass of BDD, and is not of kind BooleanAlgebra. The operation not, for any class T of kind
BooleanAlgebra, takes a parameter of type T and return a value of type T. This translates naturally to the
following declarations:

kind BooleanAlgebra;
<T : BooleanAlgebra> T not(T);

class BDD implements BooleanAlgebra;
class Zero extends BDD;

class Boolean implements BooleanAlgebra;

Numerical operations can be typed in a similar way. We introduce the kind Num to express the property
of being a number and give the type VT : Num. (T,T) — T to plus. This type captures all properties of plus
described above. In particular, all forms of integers equivalently. The type Int32 does not have kind Num.
Hence, the “best” solution for T when plus is applied to an Int32 is “T=Integer”. Thus, the only guarantee
for the return type is to be below Integer.

Kinds can also be viewed as an open set of classes with names. This approach allows for new classes
to be added to a kind without having to modify the type of methods operating on the classes of this kind.
One reason that makes this solution more modular than an approach based on disjunctive constraints is that
whenever we introduce a new class in the numerical hierarchy, we are able to determine its behavior relatively
to the kind Num. Additionally, we believe that the types are also shorter to write, easier to understand, and
easier to handle in a type-checking algorithm.

This solution also gives an arguably more intuitive type to plus. We believe this is an important issue
to ensure that powerful type systems can be used in wide-spread programming languages. Using kinds, the
type can be explained in simple words: “plus has type (T,T)—T for every numerical class T”. In our view,
Int32 is not a numerical class (that is, a class of kind Num), but an implementation of a numerical class.

6.5 Closed-world formalization

We present a first attempt to formalize a type system with kinds. In this section, we will make the closed-
world assumption. That is, we will consider that type-checking is made for whole programs only, so that
there is no difference between the type structure in which an expression is type-checked and the global type-
structure of the running program. This has two purposes. First, it allows the use of simpler typing rules,

75

that are useful for an intuitive understanding of types involving kinds. Second, it serves as a motivation for
the more complex rules of Chapter 10, where typing will take place in an open world. Hence, results in this
sections are subsumed by Chapter 10.

We extend in Figure 6.1 the ML< type algebra of Section 2.2. Type structures now also include a set
K of kinds, and a new relation denoting kinding (¢y : K). Constraints include kinding constraints. In the
previous examples, we used the notations VI < 6.0’ and VT : K. ¢ as shorthands for VT.T < 6§ = 6" and
VT.T : K = ¢ respectively.

Type structure T == (C,K,<,:)
Constraint k u= 0<0|ov <ov|ov: K

Figure 6.1: Extensions to ML<

A type can be interpreted as the upward-closing of the set of its ground instances that satisfy the
constraint. Given a type, we define its denotation as:

den(Va.® = 0) = {0, 30. 0(0) < 0" and (%) hold}

where ¢’ ranges over ground types and o ranges over mappings from type variables to ground types. Each
constraint in o (%) is of the form 6; < 6, or 6 : K and can be readily interpreted as true or false in the type
structure.

For instance, the type of plus in Section 6.3, VT.T : Num = (7,7T) — T is denoted by the upward closing
of set { (Float,Float) — Float, (Integer,Integer) — Integer}. In particular, the closure contains
super-types of the above two types that describe how any pair of two types is mapped to a result type:
(Float, Integer) — Float, (Int32,Int64) — Integer, ... This corresponds to our intuition of the type
behavior of the addition.

Given this interpretation of types, it is easy to define sub-typing and type-checking. Type 7 is a subtype of
7o if den(72) C den(7y). Instantiation and generalization rules ensure that an expression has the polymorphic
type 7 if and only if it has all the monomorphic types in the denotation of 7.

This formalization is only correct and safe in a closed-world. Therefore, it could be used to type-check
entire programs, but not program modules taken separately. We present in Chapter 10 a variation on the
theory that accommodates with modular type-checking. We provide there a complete formalization and
proofs, and a comparison with related work.

76

Part 111

Modularity

7

Chapter 7

Modular type algebras

When a program is made of modules, it must be possible to typecheck each module independently. Further-
more, a module can import another module and add class declarations, which modifies the type structure of
the type algebra. It must therefore be possible to guarantee that code typechecked in the original algebra is
still well-typed in the new algebra.

To this end, we define the notion of a type algebra extension.

Definition 54 (Type algebra extension) A type algebra (A’, <') is an extension of a type algebra (A, <)
if and only if A C A’ and for all syntactic types 71 and 1o in S(A) such that 71 < 1o holds, 1 <’ 15 also
holds.

Note that the condition that A is contained in A’ ensures that S(A) is contained in S(A’), which in turn
makes the inequality 7 <’ 75 well-formed.

7.1 ML-

We now give conditions that guarantee that an ML< type algebras is an extension of another. Since we
present a variant of ML< in Chapter 10, we first formalize the possibility to create a variant of ML< by
extending the constraint language.

7.1.1 Variants of ML«

A variant of ML< can extend, compared to the original version of Section 2.2,
e the syntax of constraints;
e the set of axioms defining constraint implication;
e the notion of type structure 7.

Furthermore, for enabling modular typing, we assume given a transitive predicate allowing to state that
a type structure 7’ is an extension of another type structure 7, written 7' > 7.

The only condition required for a variant of ML< is that the axiomatization of constraint implication
be correct and complete, as we define below in Definition 55. Indeed, we already proved in Section 2.2 that
ML< is a type algebra. This proof uses only the axioms of constraint implication, which are also present in
the considered variant of ML<. Therefore, the proof remains valid, and the variant is also a type algebra. On
the other hand, the axiomatization is extended, and must therefore be proved again correct and complete.

79

Definition 55 (Correction and completeness) A ML< aziomatization = is correct and complete if the
following property holds: for all type structure T , variable list ¥ and constraints k1 and ko in T, the constraint
implication V9. k1 |= Ko is provable if and only if for all extension T' of T, for all ground substitution oy

such that T't o1(k1), there exists a ground substitution oo such that oo KA o1 and T'+ o9(k2).

The notation o4 A 0o means, as in Section 2.1, that substitutions o; and oy are equal for all elements of
9.
In correct and complete axiomatizations, one can offer an interpretation of subtyping between polytypes.

Corollary 56 (Interpretation) Let 71 and 1o be two closed types. Then 11 < 1o holds in a type structure
T if and only if in every extension T' of T, for every ground instance 0 of o in T’ there is a ground
instance 01 of 71 such that T' + 61 < 0.

Proof of corollary 56 (Interpretation)

Let Vi¥1.k1 = 601 be 1, and V5. ko = 0> be 17o. By Definition 27, 71 < 75 is equivalent to the constraint
implication Vt. ko A O <t |= k1 A1 <t where t is a fresh variable, that is not free in k1, k2,601,602 (1).
By Definition 55, this constraint implication is equivalent to

VT' > T Noy | T'F o1(ke A s < t),

Joo | T+ 09(k1 Ay < t) and 09(t) = o4 (t) (7.1)
On the other hand, the target proposition is:
VT'> T No | T+ o(ka), 7o)

do’ | T'F o'(k1) and T' F o' (01) < o(62)

Since all constraints are evaluated in the extension structure 7', we may leave 7’ implicit.

Let us prove that 7.1 implies 7.2. For 7’ > T and o such that 7' F o(k2) (2), let o1 be o+{t — o (62)} (3).
Since o(k2) holds by (2), 01(02) = o(02) by (1) and o1(t) = o(f2) by (3), the premise o1 (k2 A by <t) of 7.1
holds. Therefore, by 7.1, there exists a substitution oy such that oa(k1 A6y < t) (4) and o2(t) = 01(t) = o(62)
(5) hold. One can therefore take o’ = o4, since o2(x1) holds by (4) and o3(61) < 02(t) = o(f2) holds by (4)
and (5).

Conversely, for given 7/ > 7 and oy such that o1(k2 A 62 <t (6), we have in particular by hypothesis
01(k2). Therefore, by 7.2, there exists o’ such that o’(x1) holds (7) and ¢’(01) < o1(02) holds (8). Let o
be o' + {t — o1(t)} (9). We then have o2(k1) by (7) and (1). Furthermore, o2(0; < t) is equivalent by (9)
and (1) to o/(01) < o1(t), which is true by transitivity on (8) and hypothesis 1(62) < o1(¢) (6). B

Theorem 57 (Extension of a ML-Sub type algebra) If an ML< type structure 7' is an extension of
a type structure T, then the type algebra A(T') is an extension of A(T).

Proof of theorem 57 (Extension of a ML-Sub type algebra)

By corollary 56 (INTERPRETATION), in every extension 7y of 7, for every ground instance 6’ of 7’ in 7
there is a ground instance 6 of 7 such that 7y = 6 < #’. Every extension of 7’ is also an extension of 7
since extension is transitive. Therefore this also holds for every extension of 7’. Therefore by corollary 56
(INTERPRETATION) 7/ 7 < 7'. B

7.1.2 Original ML<

In particular, the original version of ML< defined in [5] has a correct and complete axiomatization. In that
setting, the extension of a type structure is defined in the following way:

Definition 58 (Extension of a ML-Sub type structure) A type structure 7' is an extension of T if
all type constructors of T are in T’ and if for all type constructors ¢y and co of T, T' F c1 < co if and only
Zf 7T+ C1 S Co.

80

These conditions correspond to the usual extension of the type structure found in object oriented system
for a module importing other modules: the existing types are not modified, but new types can be freely
added.

The proof that the original version of ML< verifies Definition 55 is done in the ML< report [5].

81

82

Chapter 8

Open generic functions

Tt has already been recognized [19] that the activity of programming has two main sides: defining operations
and defining data structures. The functional paradigm mainly uses sum and product types as its data
structures, and functions defined by pattern-matching on data-types as its operations. The object-oriented
paradigm provides classes to structure data, and methods to operate on it. However, both paradigms
introduce an asymmetry between the two concepts. In a functional program, data-types can be defined
independently of functions, while functions need knowledge about the data-type constructors. Conversely,
methods are defined locally to a class, while classes include the list of all their methods.

This asymmetry is problematic when it comes to modular programming, that is, programming reusing
pre-compiled libraries, without changing them [26]. Following the above dualism, modular programming is
thus both defining new operations on existing data structures and defining new data structures to be handled
by existing operations. In the functional paradigm, defining new functions is straightforward. On the other
hand, extending existing datatypes is not possible since it would break existing functions defined by pattern
matching on this datatype, which would miss the new cases. Conversely, extending data structures in an
object-oriented setting amounts to writing new classes, while defining new methods on existing classes is not
allowed.

In Chapter 4, all implementations of a generic function had to be syntactically present together with the
definition of the function. This is similar to pattern matching in a functional language, and thus fails in the
same way to provide support for modular programming. The solution is to open generic functions, so that
implementation branches can be defined independently, which brings back symmetry. An open generic opp
can thus be defined as:

generic opp : V¢ <num.t — ¢
implementation opp float = opp_float
implementation opp int = opp int

If the new type of complex numbers, subtype of num, is added in a different module that imports the above
one, a new implementation of opp can —and must— be provided:

implementation opp complex = ...

We illustrate the two situations encountered with modular programming by taking the example of a small
programming language implementation. The structure of this implementation is presented in Figure 8.1.
Modularity is expressed by the fact that declarations are grouped inside modules. Each module is represented
by module NAME {...} and is typically written separately from other modules.

83

module CORE {
abstract class Expression {}
class Apply extends Expression
{ f : Expression, arg : Expression }

generic eval : Expression — Expression
generic print : Expression — String

implementation eval Apply = ...
implementation print Apply = ...

}

module NUMERIC imports CORE {
class IntegerLiteral extends Expression ...

implementation eval IntegerLiteral = ...
implementation print IntegerLiteral = ...

}

module COMPILER imports CORE and NUMERIC {
generic compile : Expression — Code

implementation compile Apply = ...
implementation compile IntegerLiteral = ...

}

Figure 8.1: Programming with open generic functions

8.1 Syntax and semantics

The syntax for programs with open generic functions is:

Generic function G = genericg : T

Implementation 7 = implementationgT = ¢

Class C == classCextendsC {..}
Declaration D = G|T|C

Module M = module M imports M; let rec D
Program P == M;evale

A module module M imports M’;let rec D declares a module with name M that imports the modules
whose names are in the list M’. A program Mg; M;...M,; eval e consists of a main module M, additional
modules M;...M,, that can be imported by My, and an expression e which expresses the desired behavior
of the program.

Since modules can be considered independently, they refer to each other — in their import lists — by name.
Therefore, we need a way to map a module name to its definition. We will call module repository a function
from module names into modules. We can associate a module repository to each program:

Definition 59 (Module repository) Let P be the program Mg; Mi..My; eval e. For i from 0 to n, let
M; be the name of module M;. The module repository for P, written repository(P), is then the function
{MO = Mo, aMn — Mn}

84

A natural semantics of a program P is defined by translation into the generic functions of Chapter 4.
The generic functions found in all modules are reconstructed by grouping the implementations with their
respective declarations.

Definition 60 (Closure of a modular program) Let P be the modular program Mo; My..M,,; eval e
and let R be repository(P). The closure P is the non-modular program let rec (classes(My)) U
generics(Mg, My...M,,) in e, written closure(P), where

classes(module M imports My...My;let rec G | T | C) =C U |J;_, classes(R(M;))

generics(module M imports M;...M,;let rec G |Z |C, My...M,,)

{genericg : 7 =J|_,implementations(g, M;) | genericg : 7 € G} UJ!_, generics(R(M;), Mo...M,,)}
declarations(module M imports M;let rec G|Z |C) =G

implementations(g, module M imports M;let rec G |T | C)

{7 = e | implementationg 7= e € I}

The program can then be evaluated as before. The advantage of open generic functions is that programs
can now be decomposed into modules, and that modules can be typechecked separately.

8.2 Modular type-checking

A module type-checks if all its implementations are valid according to Definition 45. Since this definition is
independent of other implementations, modules can be type-checked separately.

Formally, we need to define the aspects of a module that are relevant for type-checking other modules.
These can be divided in two: the declarations of classes, which affect the type-algebra in which type-
checking occurs, and the implementations of generic functions, which are needed to check the coverage and
non-ambiguity of generic functions.

Definition 61 (Module signature) B
Let M be the module module M imports M, ..., M,;let rec D, and let R be a module repository. The
type signature of M in R is

typesig(M, R) = classes(M) U J-_, typesig(R(M;))

The generic function signature of M in R is

gensig(M, R) = declarations(M) U {g 7 | implementationg 7 = e € D} UJ;_, gensig(R(M;))

Finally, the signature of M in R is the union of both:
sig(M, R) = typesig(M, R) U gensig(M, R)

Basically, the signature of a module erases the body of method implementations and keeps only toplevel
declarations. It is apparent from this definition that the imported definitions are searched recursively in the
signature of imported modules.

We require a function that associate to a type signature S a type algebra A(S). Given a module M, we
then define the associated type algebra A(M) as A(typesig(M)). To guarantee type-safety, we require that
this algebra is an extension of the algebras of all imported modules.

85

Requirement 62 (Module import) Let M be a module that imports modules My, ..., M,,. Then, for
all i from 1 to n, the type algebra A(M) must be an extension of the type algebra A(M;), as specified by
Definition 54.

Definition 63 (Type correct module)

Let module M imports My, ..., M,; let rec D be a module M. Module M is type correct if every imple-
mentation implementation g T = e in D is valid for T (as specified in Definition 45) in the type algebra
A(M), where T is the declared type of g in sig(M).

The following coverage condition is similar to Definition 48, except that it can now be checked using only
the information contained in the signature of modules.

Definition 64 (Coverage)
A generic signature GS is covered in a type algebra A if for all generic g : T in GS, for all run-time types
Tiy .y Tn 0 A such that T 7 ... 7, # E, there exists an implementation g T in GS such that T matches

(Tl, ...,Tn).

Theorem 65 (Modular type-checking) Let P be the program Mgo; My..M,,; eval e and R be
repository(P). The equivalent non-modular program closure(P) is well-typed if

o cvery module in My...M,, is type correct;
o e is well typed in A(My);
e and gensig(Mo, R) is covered in A(My).

The proof relies mainly on the fact that the type algebra associated with the whole program is an
extension of the type algebra of every module, in which their code is typechecked.
Proof of theorem 65 (Modular type-checking)

By Theorem 49 (GENERIC FUNCTIONS), we only need to prove that every generic function in closure(P) is
covered and valid.

First, the type algebra A(My) is the same as that of closure(P) since by Definition 60 and Definition 61
they have exactly the same classes. Let generic g : 7 = 73,...Z, be a generic function in closure(P) (1) and
let 71, ..., 7, be run-time types in A(My) such that 7 7y ... 7, # E (2). By (1) and Definition 60, there exists
a module M transitively imported by Mj such that generic g : 7 belongs to the generic declarations of
M. Therefore, by Definition 61, generic g : 7 belongs to gensig(My, R). By hypothesis, gensig(My, R) is
covered in A(My). Therefore, by Definition 64 and (2), there exists an implementation g 7 in gensig(Mo, R)
such that 7 matches (71, ...,7,) (3). By Definition 61, there exists a module M’ transitively imported by
M and there exists an expression e such that implementation g T = ¢ belongs to the declarations of M’.
Therefore, by Definition 60, T = e is an implementation of g in closure(P) that matches (71, ...,7,) by (3).
This shows by Definition 48 that generic function g is covered in closure(P).

We also need to prove that an implementation of a generic function g that is valid in a module M is
valid in a program P that contains that module. Let Mg be the main module of P. Let the implementation
be T = e, 7 be type(g), 7’ be restrict(7,7), and 7. be type(e). Since M is type correct by hypothesis, the
implementation is valid by Definition 63. Therefore, by Definition 45, 7. < 7" holds in A(M). By applying
Requirement 62 (MODULE IMPORT) to the chain of imports from P to M, A(M,) is an extension of A(M).
Therefore, by Definition 54, 7 < 7/ also holds in A(My), and the implementation is valid for the whole
program P. &

8.3 Early detection of errors

Checking coverage and non-ambiguity must be done for the (whole) program, that is when all the imple-
mentations and types are known. It is therefore necessary to postpone these checks until the whole program

86

is known. However, this scheme for checking coverage is problematic because it leaves much freedom about
the module in which to define a certain implementation. This is arguably a problem from the software-
engineering point of view. For example, it would be possible in our compiler example of Figure 8.1 to omit
the implementation of eval in module NUMERIC. At the point of linking the modules together, the coverage
test would fail for eval. Solving this failure would amount to adding the missing implementation. But since
it logically belongs to module NUMERIC, this solution breaks modularity by forcing the update of an already
compiled module.

Therefore, we believe it is a good design to check coverage in every module. This check is done in the
typing context made of all declarations present in this module and all the modules it imports transitively.
Thus, apart from errors local to the module, the coverage test can only fail when a module imports a generic
function, and defines new types in its domain without providing the corresponding implementation, or when it
imports two modules leading to the same situation. These are indeed the situation where an implementation
logically belong to this module. The error can then be solved locally by including this implementation in
the module, without breaking any existing code. This coverage testing scheme also enforces an intuitive
organization of code:

e when a module extends an existing data structure, it must define the implementations for all the generic
functions that operate on this data structure;

e when a module defines a new generic function, it must define its implementations for all the data
structures in its domain.

The list of all generic functions and data structures is drawn from the typing context defined at the beginning
of this paragraph. An example of the first point is the implementation of eval in module NUMERIC; the
implementations of compile in module COMPILER illustrates the second point.

Additionally, the location where a method implementation is placed can be further constrained even in
the case where it could have been omitted. This is done by requiring that the implementation is written as
early as possible, instead of being delayed to client modules. This requirement is formalized in the following
definition. In addition to improving the organization of programs, this rule is important in the presence of
super calls, as we illustrate in Chapter 9.

Definition 66 (Precocity rule) An implementation implementation g ™ = ... is not valid in a module
M if g and T are visible together in a single module imported by M.

Furthermore, it is possible to make the coverage test unnecessary, at the price of a loss of generality
for generic functions. A well-known case is mono-methods, used in object-oriented languages with single
dispatch. These methods select an implementation based on the runtime type of a distinguished “receiver”
argument. Furthermore they are always defined together with the class for which they provide an imple-
mentation. The coverage test then reduces to checking that an implementation is present if none is inherited
from the parent classes—which could happen if the parents are abstract. This check can therefore be done
with the sole knowledge of the class definition and of its parents. In our presentation, this corresponds
to restrict implementations to only one pattern on the first argument. It is then sufficient to check that
whenever a new type is defined, all necessary implementations are also provided. More elaborate restrictions
for multi-methods are studied in [33].

8.4 Type inference for open generic functions

It is an open problem to infer types for the generic functions of Chapter 4. However, we claim here that it does
not make sense to try to infer types for open generic functions. In short, the idea is that inference requires the
knowledge of the implementation of the function. For open generic functions, only some implementations
might be known in a module. The type inferred might then be too precise to capture the intent of the
functions, which would either prevent proper implementation in client modules, or break modularity by
requiring the imported module to be re-type-checked.

87

As a degenerate case, it is perfectly legal to declare an open generic function with no implementation
at all. This makes sense if the function operates on a hierarchy rooted at an abstract class, with no known
subclasses. That is to say that the module could only contain:

generic g

How can we possibly infer a type for g7 If we choose Vt.t, one will not be able to implement ¢ in a client
module. Conversely, we could pick an arbitrary type for g, but it would in general not match the usage of
the generic. One possibility would be to infer the type from the usage of ¢ in the current module. But it
could happen that ¢ is not used either, in which case the problem remains. Consequently, we believe that it
is natural for users to declare the types of generics, since they are toplevel definitions exported to the clients
of the module and since their type is therefore the specification of their behavior.

8.5 ML

In this section, we show that ML< is an appropriate type algebra for the modular typechecking of multi-
methods. To this end, we need to define the type algebra associated to a module, and show that it meets
Requirement 62 (MODULE IMPORT).

An ML< type-structure is associated to each module M with

Tv = ({C | class C ... € typesig(M)},{C1 < Cy | class C; extends ..., Cy, ... € typesig(M)})
The type algebra A(M) associated to module M is then simply the ML< type algebra based on 7j,;.

Lemma 67 (Module import in ML-Sub) If module M imports module M’, then Th, is an extension
Of TM/.

Proof of lemma 67 (Module import in ML-Sub)
By Definition 61, all type constructors (classes) of M’ are in M, and the sub-constructor relations over type
constructors are preserved. Moreover, every new sub-constructor declarations concern new type constructors.
Therefore, by Definition 54, T is an extension of Thy. Theorem 57 (EXTENSION OF A ML-SUB TYPE
ALGEBRA) then shows that A(M) is an extension of A(M’'). B

The proof of Requirement 62 (MODULE IMPORT) is a direct consequence of this lemma and Theorem 57
(EXTENSION OF A ML-SUB TYPE ALGEBRA).

8.6 ML< multi-methods

We present here multi-methods as a particular case of open generic functions. Multi-methods are generic
functions whose patterns match values depending on the class these values are an instance of. We therefore
define a language of patterns to express such matching. Furthermore, we define the restriction predicate
restrict(-, -) that guarantees the type-correctness of multi-methods in the case of the ML< type algebra.

8.6.1 Syntax

The abstract syntax for a multi-method declaration is the same as for open generic functions. However, for
clarity, we replace the generic keyword by method:

method m : 7,

Method implementations are identical to generic function implementations, prefixed by the implementation
keyword.

88

Patterns, the € predicate and the restriction function remain to be defined. The language of patterns is
defined by:
T ou= _ |QC | #C

The intent is that the pattern _ matches any expression. The pattern QC matches any instance of either
class C or of one of its subclasses. This means that an implementation with pattern QC can also be used
for sub-classes of C', which is usual in object-oriented languages. On the other hand, the pattern #C' only
matches instances of class C. This pattern is necessary to implement some polymorphic multi-methods, for
which no implementation can have a precise enough type to be valid for any subclass. We shall illustrate
this situation with an example in Section 8.6.3. Definitions 68 and 69 formalize this informal presentation
of patterns.

8.6.2 Type-checking

We define multi-methods as an instance of open generic functions by providing the matching and restriction
predicates, and we check that they meet their requirements.

Definition 68 (Pattern constraint) For any pattern 7 and type 7 we define the pattern constraint 7(7)

by:
_ (V.k=0) = true
QCV9.k=10) = rAO<CI
#ONMI.k=0) = wAO=CT

where T are lists of fresh type variables of length arity(C).
Definition 69 (Matching) The relation T € m holds if and only if true = 7(7) holds.
Definition 70 (Restriction) The restriction

restrict (V. k = 61 — ... = 0, — 0, 71...mp)

is equal to
Voti..ty. k Nt; < 6; /\7Tz(tz) =t — ... > t, — 0

and restrict(7, m1...m,) is the error type E if T is not a functional type of textual arity n.

Note that if restrict(r,7) is not well-formed it is equal to E by Definition 27 and the fact that E is
maximal.
We can then prove that the Requirement 44 (RESTRICTION) holds:

Lemma 71 (Restriction)
1..n)

— / /
=T Ty - Ty,

miem (i

restrict(Tp,, T) T4 ... Th

Proof of lemma 71 (Restriction)
Let 7, be V. k = 01 — ... — 0, — 0, and 7/ be VI;. k] = 0.
By Definition 70 and App:
restrict(7,, ™) T, = VOt k At < 0 Ami(t) ANRLAGL <t =0
T T4 oo T =YV K NO, < 0; NK, =0
The proof of 7,,, 71 ... 7}, < restrict(7y,, m;) 7/ is straightforward:
Vt.

Ii/\tigei/\ﬂ'i(ti)/\ﬁg/\egSti/\egt
E kANOL<O,ANELANO<t (MTRANS)

89

Conversely, restrict(Tp,, ;) 7/ < Ty 71 ... 7), holds because:

Vt.
KNGO, <0, NKLANO <t
E AN <ONELAT(O)NO, <O0.NO <t (1] €m)
': KAt S@Z/\n;/\m(tz)/\% <t; N0 <t (VARINTRO:tiHQQ

|

Therefore, we can apply Theorem 49 (GENERIC FUNCTIONS), which shows that valid and covered multi-
methods verify Requirement 9 (CONSTANTS). Using Theorem 65 (MODULAR TYPE-CHECKING), the type
soundness of modular programs with valid and covered multi-methods is therefore guaranteed.

8.6.3 Examples

This section illustrates the implementation and typing aspects of multi-methods. Firstly, we consider the
definition of a generic method equals for structural equality of values. We assume given a function identical
for testing reference equality, to handle the general case, and a record type Point with a component z.

method equals : Vt. t — ¢ — bool

implementation equals _ _ = identical

implementation equals QPoint QPoint =
Ap.\q. equals p.x q.x

The first implementation is valid since identical has type Vt. t — t — bool. The second implementation
is valid since it has inferred type Point — Point — bool and calculation in the ML< type algebra shows
that:

restrict(Vt. ¢ — t — bool, @Point @QPoint)

=Vt t1,t0.t1 <t Aty <tAt; <Point Aty < Point = t; — t5 — bool
= Vti,ts.t1 < Point Aty < Point = t; — ts — bool

= Point — Point — bool

We can now implement the opp example of Chapter 4 in the concrete case of multi-methods with:

method opp : V.t <num= t — ¢
implementation opp #float = opp_float
implementation opp #int = opp_int

This illustrates that # patterns are useful to implement methods with precise types like opp, which could
not be implemented using @ patterns: if we try to use pattern @Qfloat we find:

restrict(Vt.¢ < num = ¢ — ¢,@Qfloat) = Vt.t < float = ¢t — ¢

It would thus be invalid to use pattern @float with a function that returns a float. That would be unsound
indeed, since this implementation could be called with a strict subtype (say rational) of float, in which
case opp’s type requires that the result be type rational. On the other hand,

restrict(Vt. ¢t < num = ¢ — ¢, #float) = float — float

The reason why the implementation with pattern #float is sound is that this pattern does not match the
strict subtypes of float. The coverage test will therefore ensure that an implementation exists for any such
subtype, and each of these implementations will be required to return a result of the same type.

The # patterns are also useful outside base type and operators. Consider the case of a generic container
hierarchy. Container classes List, Vector, etc, derive from an abstract Container class. It is natural to

90

define functional operations on containers that return the same kind of container as their argument. These
can be implemented using # patterns, and not by @ patterns:

method map : Vi, u,c < Container. (c[t], t — u) — c[u]
implementation map #List _ = ..new List...
implementation map #Vector _ = ..new Vector...

8.6.4 Semantics

The semantics is implied by the matching relation, as defined in Chapter 4. We can now follow up on
the discussion about the fact that this semantics depends on types. With the patterns described in this
section, only the head type constructor is needed to specify reductions. In an object-oriented language, this
tagging information is already commonly present at run-time. It corresponds to the new_C data constructor
of Chapter 3. Multi-methods can thus be implemented without run-time typing.

Furthermore, it is not fundamental to give an eager semantics. The patterns presented in this section
only require the head type constructor to be known in order to choose the method implementation. Object
fields could therefore be computed lazily. This is much similar to the semantics of pattern matching in lazy
languages, which would make the introduction of such multi-methods fit well in lazy languages.

Algorithms for efficient reduction of multi-method operators (that is, implementation of multiple-
dispatch) can be found in [17, 15, 20].

91

92

Chapter 9

Super in a modular setting

In Section 5, we formalized the semantics of super in a whole program. In particular, the definition of the
target of a super call uses the set of implementations of a method. As soon as a program has more than one
module, it is possible that this set is not completely known in the current module. It is therefore relevant
that the target be resolved in the current module. We therefore start by formalizing the semantics of super
in a modular setting.

9.1 Formalization

The super keyword defined in Section 5 was annotated by the method it relates to and by the patterns of
that method’s implementation in which it appears. We now additionally add an annotation for the module
in which it appears. The definitions of its target and its semantics are then modified to specify that the set
of implementation of the method is taken from that module’s signature, as defined in Definition 61.

Definition 72 (Modular target of super) Let m be a method, T be a list of patterns, M a module and
R a module repository. Then the target of super,, = \, in R is

target(super,, =) = max {7 = €' € gensig(m, R) | T <7}

Again, if there is no implementation of m with patterns less precise than 7, or none that is a maximum,
the max is undefined, and target(super,, -) is L. In that second case, the use of super is ambiguous,
and therefore results in a typechecking error.

One can then define the semantics of super:

Definition 73 (Modular reduction of super) Let m be a method, T be a list of patterns and M a mod-
ule. If target(super,, = () is T = €', then super,, = \ — €.

The type given to super,, - r(is the restriction of the type of m to the patterns of the target implemen-
tation:

Definition 74 (Modular type of super) Let m be a method, T be a list of patterns, and Mbe a module.
Then the type of super,, = v is defined by:

E if target(super,, - »4) = L

constant-type(super;, = v) = { restrict(constant-type(m),7') if target(super,, =) =T = ¢’

Theorem 75 (Modular super) For any well typed method m, module M and list of patterns T, the op-
erator super,, — \, verifies Requirement 9 (CONSTANTS).

93

The proof is mostly identical to the non-modular version. The only difference lies in the fact that typing
inequality guaranteed by the validity of the method implementation is known in the type algebra associated
with the module declaring the implementation. One has to use the argument that the type algebra of the
whole program is an extension of that type algebra.

Proof of theorem 75 (Modular super)

1. Since super,, - 1 is well-typed by hypothesis, target(super,, - 1) is well defined by Definition 74.
Let then 7' = ¢’ be target(super,, = 1,). By Definition 73, super,, - ,, — €.

2. Let @ = €' be the implementation target(super,, - \(). Let Mg the main module of the program.
Let (Ao, <o) be the type algebra A(My) and (A1, <;) be the type algebra A(M).

The only reduction rule for super is super,, = \, — e’. In this case, we have by Definition 74
type(super,, -) = restrict(type(m),7) (1). Since m is well typed, the implementation 7 = ¢’
must be valid by Definition 46. That is, by Definition 45, type(e’) <; restrict(type(m),7). By Re-
quirement 62 (MODULE IMPORT), A(My) is an extension of A(M). Therefore, by Definition 54,
type(e’) <o restrict(type(m), 7). This shows, together with (1) that type(e’) <o type(super,, = \()
holds.

B

In practice, the choice to resolve the target in the signature of the occurring module only is convenient for
the purpose of separate compilation, since the super call can be resolved to the specific target implementation
which is known at the time the module is compiled. This choice also ensures that no ambiguity error for
super calls arises when combining independent modules together, which could be the case if the target of
the call was resolved taking into consideration the whole program.

9.2 Consequences of the precocity rule

It is interesting to note that many cases where the resolution of the target of a super operator would be
different in the non-modular program are in fact ruled out by the precocity rule (Definition 66). That is,
when an implementation is omitted although it could have been defined, but it is present in another module,
as in the following example:

module MO {
class A

}

module M1 imports MO {
method m : A -> void
implementation m QA = eA;

}
module M2 import MO {
class B extends A

}
module M1’ imports M1,M2 {
class C extends B
implementation m @C = eC; // super in eC refers to m QA

}
module M2’ imports M1,M2 {
implementation m @B = eBj;

}
program imports M1’ ,M2’°

94

This situation is ruled out by Definition 66. The implementation of m for class B is incorrect in module
M2’ because of the precocity rule. Indeed, it could have been done in module M1’, where both m and B are
visible.

95

96

Chapter 10

Modular kinds

In Chapter 6, we have motivated the introduction of kinding constraints, and presented a formalization that
works in a closed-world setting. In this chapter, we argue that this formalization is not suited to modular
typechecking and we propose a revised solution that supports modular programming.

10.1 The open world problem

Rules of Section 6.5 were designed with a closed-world assumption. They are indeed sound in a closed
world. However, we now show with a simplistic example that using the same rules in an open-world would
be unsound.

module M1 {
interface
kind K
class A : K
method f : <T : K> T->T
implementation
f @A = fun x -> (new A)

module M2 imports M1 {
interface
class B : K
var b : B
implementation
let b = M1.f (new B)

That is, if we typecheck the module M1 in its type structure with a single class A implementing K and
then typecheck M2 in the type structure induced by M1 (since it is imported by M2) and M2, both modules
typecheck successfully. However, taken as a whole, the program would fail. This shows that new rules have
to be given for typechecking in an open world.

Indeed, in module M1, the implementation of £ @A must be a subtype of restrict(VT : K. T — T,QA),
which is by definition VX, T. X < A, X <T,T: K = X — T. Its denotation is { A — A} since the only
class implementing the kind K is A. The type of fun x -> (new A) is VU. U — A, so its denotation includes
A — A and it is a correct implementation for £ @A. In module M2, the type of £ which is known from the
interface of M1 to be VI.T : K = T — T can now be instantiated to B — B since B : K. Therefore b has

97

indeed type B and the module M2 is well typed. However, M1.f (new B) reduces to (fun x -> (new A))
(new B), which reduces to (new A), which is not of type B. Subject-reduction does not hold.

The problem obviously comes from the closed-world assumption: in M1 we assumed that the only class
implementing K is A, however that is not true in the client module M2. There are at least two possible places
where an error could have been reported. As a first solution, the declaration of class B in module M2 could
be invalid. However, this requires knowledge of the implementation of module M1: if we had written £ @A
= fun x -> x, class B would raise no problem. Therefore, this first solution is non-modular, and we rule it
out. Our solution is instead to take the open-world assumption. The implementation of f in module M1 will
then be declared incorrect on the ground that a subclass of A of kind K might be declared later. Formally,
this amounts to the fact that VU. U — A is not a subtype of VX, T. X <A X <T,T: K= X —T.

Is it still possible to implement method f at all? The identity function is a correct implementation.
However, it might indeed be the case that a new object must be returned. This is possible using our # pattern.
Had module M1 implemented f with £ #A = fun x -> (new A), this implementation would indeed have a
subtype of restrict(VT : K. T — T,#A), which is by definition VX, 7. X = A X <T.T: K = X — T,
that is VI"A < T,T : K = A — T. This implementation would be sound because it is only applicable to
instances of class A. The coverage test would require that an implementation be provided for B. The use of
patterns gives the flexibility of the first solution. It retains modularity by using only information from the
patterns of the method implementations contained in imported modules, which have to be present in module
signatures in order to be able to implement the coverage test of multi-methods.

However, it might be tedious to use # patterns in certain cases, as it prevents to share the same imple-
mentation for several classes. For instance, it might be known by design that no subclass of A can be of kind
K. In that case, it would be useful to be able to declare this fact, and consequently allow to implement f
homogeneously for A and all its subclasses, using the @A pattern. To support this situation, we introduce the
possibility to add abstracts annotations: class C abstracts kind K if no subclass of C is allowed to have kind
K. This is especially useful to reason in an open-world setting, since it tells us about all possible subclasses
of C, even those that might be declared in other, unknown modules. In our previous example, class BDD
abstracts BooleanAlgebra, and class Integer abstracts Num.

Let us consider how to use this information for typechecking. We reuse module M1 from the previous
example, adding class A abstracts K so that the implementation of £ becomes legal. The restricted type
of £ to @A is, by definition, VX, T. X < A, X <T,7T: K = X — T. We would like its constraint to imply
A < T. Consequently, VU. U — A would be a subtype of the restricted type, and the implementation would
typecheck. Note that this can be done safely only if we know that no subclass of A will ever have kind K,
which is exactly what the declaration class A abstracts K ensures. Otherwise, an object ¢ of such a class
C could be passed to £, and f(c) would have static type C (by instantiating T to C), while this expression
would reduce to new A of type A, thus breaking subject-reduction.

For each kind K, we will define the view of class C for kind K, and write it viewg(C). The class viewg(C),
if it exists, must a class to which type C is mapped when viewed as an instance of kind K. In particular,
viewg (C) is always a superclass of C and always implements kind K. In that case, and under the assumptions
X <C,X <T,T: K, we want to be able to conclude that viewg(C) < T. We formally define views in
the next section, and show that this conclusion is indeed valid. In our example, viewg(4) is A itself and the
implementation of £ typechecks.

A fruitful way to look at views is that they define, for each kind, an abstract view of the class hierarchy. For
instance, kind Num defines a view of the numerical classes where Int32 and BigInt are mapped to Integer.
This view is more abstract than the original hierarchy because it hides the details of the implementation
of Integer. Note that viewyu,(Float) does not exist, since Float does not abstract Num. This leaves the
possibility to extend the hierarchy with a new subclass of Float that implements Num.

10.2 Open-world formalization

In this section we formally present an extension of ML< with kinds. We use the framework introduced in
Chapter 7 to show that this extension leads to a modular type algebra.

98

As in Section 6.5, type structures include a set of kinds, a partial order on kinds and predicates for
implementation and abstraction of kinds by classes, and constraints include the implementation of a kind by
a type constructor.

Type structure T == (C,K,<,:,)
Constraint K 0<0|dv <ov |oy: K

A kind is a name in K that represents a characteristic shared by a set of classes. In a sense, kinds are
the type of classes (technically speaking, of type constructors).

When a class C has the characteristic of a kind K, we will say that it implements this kind, and write
C : K. If a class C abstracts a kind K, written C :: K, no subclass of C is allowed to implement that kind.
While in many cases classes that abstract a kind also implement it, there is no technical reason to enforce
this property.

It is also possible to express that a kind K’ extends kind K, written K’ < K. This states that whenever
a class implements K’, it also implements K. If we interpret views as an abstraction relation, K’ is then
more abstract than K. We assume the existence of a kind called Top that is a super-kind of all other kinds,
implemented by every class and abstracted by every final class.'

We impose three requirements on type structures to ensure the coherence of kind annotations:

Requirement 76 (Kinds) A type structure (C,K, <,:,::) is valid if:
1. for all kinds X and K' such that X' <K, for all class C, if C : K’ then C : K.
1. for all kinds K and X' such that X' <X, for all class C, if C :: K then C :: K.
1. for all kind K, for all classes C and C' such that C*> < C, if C:: K then C’ :: K.

The first requirement simply expresses the notion of kind extension. The second requirement is the dual
of the first one. Since no subclass of C can implement X (C :: K), it follows from the first requirement that no
subclass of C can implement K’. The third requirement saturates the abstracts annotations: since no subclass
of C can implement K (C :: K), this is in particular true for any subclass C’ of C. Therefore, we might as well
require C’ to abstract K. Note that a concrete programming language would therefore not require abstracts
annotations to be repeated on all subclasses, but would infer the annotations automatically.

We can now define views.

Definition 77 (View) If a class C abstracts kind K and if there exists a class C' such that, for all class C”
below C, C' is the lowest class above C" implementing K, then the view of class C for kind K, written viewg(C),
is the class C'. Otherwise, viewg(C) = L.

A particular case concerns final classes. When C is a final class, then viewg(C) is the least class above
it that implements K. The intuition here is that since C is final, it cannot have sub-classes, so there is no

difficulty to satisfy the downward-closing property of £, . For instance, with a final class NativeFloat
below Float, we would have NativeFloat om, Float.

Definition 78 (Type structure extension) A type structure 7' extends a type structure T if the follow-
ing conditions are respected:

1. the conditions of Definition 58
2. ifcy : K inT, thency : K in T’
3. ifcy K inT, thency : K inT'

I Top is special in the sense that we do not want the user to have to assert the above properties, but is has no special
treatment in the theory. It can thus been seen as syntactic sugar.

99

4. if K <K' inT, then K <K' inT’
5. if viewg (cv) = ¢, in Twith ¢, # L, then viewg (cy) = ¢}, in T’
We now introduce new axioms to deal with kinds.

Definition 79 (Constraint implication with kinds) The constraint implication relation = is the least
relation that satisfies the azioms of Figure 10.1 and of Figure 2.5.

v K <cy €k < ¢y ErR v K Er
TrivIMP v ABs v < o v — i in viewg (ev) # L
V. klErAcy t K VY. k= k Aviewg (cy) < ¢y
by =dy €k ov:Kcr oy K' €k K <K
EQIMmp 7 ExTIMmP
V. klE RNy K V. kE KAy : K

Figure 10.1: Axioms for kinds

The main axiom, ABS, defines how views augment the constraint implication relation. When a class ¢y
has a view for kind K, and there exists a type constructor ¢y below both ¢y and a type constructor ¢},
that implements K, then we can conlude that viewg (cy) is below ¢},. This axiom is correct because of the
minimality condition in Definition 77.

Using the framework of Chapter 7, we just need to prove the correction and completeness of this axiom-
atization, as defined by Definition 55. By Theorem 57 (EXTENSION OF A ML-SUB TYPE ALGEBRA), this
ensures that extensions of the type structure lead to extensions of the type algebra.

Theorem 80 (Correction and completeness of the axiomatization of kinds) For all type structure
T, variable list 9 and constraints k1 and ko in T, the constraint implication ¥Y9. k1 |E k2 holds if and only
if for all extension T' of T, for all ground substitution o1 such that T' + o1(k1), there exists a ground

substitution oo such that oo A o1 and T+ o2(k2).

Proof of theorem 80 (Correction and completeness of the axiomatization of kinds)

We first consider soundness, that is, the “if” part of the proposition. The original proof of [5] is by case
on the axioms. Since we only strengthened the requirements on type structures, the proofs for the existing
axioms carry on unchanged. We thus only need to prove that the newly introduced axioms are also sound.

For all axioms, we choose 03 = 01, and we write it 0. By Definition 78, all the hypotheses on the type
structure 7 are also valid on 7”.

case TRIvIMP
By hypothesis, o(k) holds in 7’. Furthermore, ¢y : K in 7, and thus also in 7’ by Definition 78.
Therefore, o(k A ¢y : K) holds in 77.

case ABS
Since by hypothesis viewy (cy) # L in 7, viewg (cy) has the same value in 77 as in 7’ by Definition 78.
By hypothesis, class o(¢},) verifies o(¢f,) > o(¢y), and o(¢v) < ¢y. By Definition 77, viewg (cy) is
the least such class in 7”. Therefore view (cv) < o(6},).

case EQIMmP
This is trivial, since < is a partial order over the type constructors of 7”.

case ExTIMP
K’ < K holds in 7’ by Definition 78. By hypothesis, o(¢v) : K'. So by Requirement 76.1, o(¢y) : K.

100

We now prove completeness, that is, the “only if” part of the proposition. As in [5], we first consider the
case where k1 is a well-formed constraint in base form, that is without constructed monotypes. In that case,
we can construct a specific extension of the type structure 7', which assigns a constant to every variable
in . We shall prove that 7! extends 7 and that for all ¥-closed constraint &, the constraint implication
V4. k1 = & holds if and only if & holds in 7. This corresponds to lemma 18 in [5]. The rest of the proof is
then unchanged, from their lemma 19 to 21, which proves completeness.

Let us define 7'. Let V! be the set of V type constructors in 7 and of V type constructors variables in
9. Let T be the set of type variables in 1. We define partial orders < and equivalence relations = on 7'
and all V! by:

t<t o Ve Et<t

ov <@y o V. k1 Eov < o
t=t & t<tandt' <t

v =¢y © oy < ¢y and ¢y < oy

We build the type structure 7! by adding to 7 a constant type constructor for each equivalence class of
V1 and T!. Noting [¢y] the class of ¢y, we define 71 with:
[pv]: KinT! & VYd.kEoy: K
[¢v]:: Kin T' < there exists ¢y in 7 such that Vd. k1 = ¢y < cy and cy 2 K hold in 7
K'<KinT' & K <KinT
These definitions do not depend on the choice of ¢y in its equivalence class thanks to axioms EQIMP and
CTRANS.
Let us check that 7' is a type structure. By definition, the relations < are partial orders. For Require-
ment 76 (KINDS):

i. By hypothesis, K’ < K and [¢y] : K’ hold in 7. That is, by definition of 7', K’ < K and
V9. k1 | ¢y : K" hold in 7. Therefore, by EXTIMP, V¥. k1 = ¢y : K hold in 7. That is, by definition
of 71, [¢y] : K holds in 7.

ii. By hypothesis, K’ < K and [¢y] :: K hold in 7!. That is, by definition of 7!, K’ < K and there
exists a class ¢y in [¢y] such that ¢y :: K hold in 7. Since Tis a type structure, by Requirement 76
(KINDS), ey :: K holds in 7. Therefore, by definition of 71, [¢y] :: K’ holds in 7.

iii. By hypothesis, [¢},] < [¢v] and [¢y] :: K hold in 7', That is, by definition of 7!, V0. r1 | ¢}, < ¢v
holds in 7(1), and there exists a class ¢y such that V9. k1 = ¢y < ¢y (2) and ¢y 2 K hold in 7(3).
By Lemma 26 (CONJUNCTION) with (1) and (2), V4. k1 |= ¢, < ¢v A ¢y < ¢y holds in 7. Therefore,
by CTRANS and TRIV, V4. k1 |= ¢}, < cy holds in 7. Therefore, by (3) and definition of 71, [¢y] :: K’
holds in 7.

Let us now check that 7! is an extension of 7, up to the [] quotient, as defined in Definition 78.
1. True by CSTRUCT.

2. If ey : K in 7, then by TRIVIMP V4. k1 |= ¢y : K holds in 7. Therefore, [cy] : K holds in 7.
3. By definition of abstraction in 71, since ¢y belongs to [cy]

4. By definition of 71

5. By hypothesis, viewg (cy) exists and is ¢, in 7. Therefore, by Definition 77, ¢y abstracts K. That
is, [ey] abstracts K in 7'. Moreover, for all [¢y] such that [¢yv] : K and that there exists [¢]]
such that [¢,] < [¢v] and [¢],] < [cv], we have to prove that [¢},] < [¢y]. We have by hypothesis
V. k1 | @) < ¢v i K A @), < cy. Therefore, by ABS, V9. k1 = ¢}, < ¢v. That is, [¢}] < [¢v] in T
Therefore, view ([cv]) is [¢}/] in 7.

101

It now remains to prove that for all ¥-closed constraint «, x holds in 7! if and only if V9. k1 = & holds
in 7. First, suppose V4. 1 = k. By construction, x1 holds in in 7. Furthermore, we have proved that 7!
is an extension of 7. So we can apply the soundness property, which proves, since is 1J-closed, that x holds
in 7. For the converse proof, we proceed by induction on the structure of &.

case Kk = ¢y < ¢,
By hypothesis, « holds in 7. That is, [¢v] < [¢},]. Thus by definition of < in 71, V9. k1 = ¢y < ¢}

case k =0 <06
By hypothesis, # < ¢’ in 7'. So by Definition 23, § = ¢y[0] and ' = ¢, [0'], with ¢y < ¢}, and
0 <y 0 holding in 7. So by definition of < in 71, V9. k1 = ¢v < ¢}, and by induction hypothesis
and Lemma 26 (CONJUNCTION), V9. k1 |= 6 <y 0'. So, again by Lemma 26 (CONJUNCTION), V9. K =
by < ¢ A0 <y 0. Therefore, by MINTRO, V9. k1 =0 < 0.

case K = ¢y : K
By hypothesis, ¢y : K holds in 7. So by definition of 71, V¥. k1 = ¢y : K.

case Kk = K} A\ K)
By induction hypothesis, V4. k1 = &} and V9. k1 |= k5. So by Lemma 26 (CONJUNCTION), V9. k1 |=
/ /
K1 N\ Ky,

|

The extension of ML< with kinds has been used as a type system of our programming language Nice.
This has been very useful to spot interesting typing situations and check how they can be solved using
kinds. A note on syntactic details is given in Appendix 13 to enable the reader to experiment with our
implementation. We could also verify that type-checking can be implemented efficiently.

10.3 Language

In this section, we briefly describe a complete programming language that supports kinds. We base our
presentation on the generic framework of Chapter 1, thus illustrating its interest for factoring a large part
of the presentation and the proofs. This framework is extensible in two directions. First, an arbitrary type
algebra — a language for types equipped with a subtyping relation — can be used, provided it meets four
simple requirements. Second, new operators can be defined to add features to the language. In particular,
multi-methods can be defined as operators.

For the type algebra, we take the extended version of ML<, as defined in Section 10.2. In particular,
type constraints include kinding constraints. For operators, we can simply reuse the multi-methods defined
in Chapter 8. Their expressivity is automatically augmented by the possibility to include kinding constraints
in their types. Additionally, the surface language needs to include the possibility to declare new kinds, and
to declare that a class implements an existing kind. These declarations have no evaluation semantics, but
create the type structure in which subtyping is defined. The syntax for programs with multi-methods and
kinding constraints is:

Declaration G == genericg: T

Implementation T = implementationg 7= ¢

Class C = classCextends C { ...}

Kind K = kind K

Kinding KZ := class C implements K

Module M = module M imports M;let rec G |Z |C|K | KT
Program P == imports M eval e

Interestingly, there is no need to add specific rules to check the kind implementation declarations. They
come as a particular case of multi-method typechecking and coverage test: if class C implements K and

102

method £ has type <T : K> T -> T, then the coverage test will check that there exists an implementation
of £ that matches class C. Additionally, each implementation will be forced to be type-correct.

Since Theorem 80 (CORRECTION AND COMPLETENESS OF THE AXIOMATIZATION OF KINDS) holds, the
modular typechecking scheme of Chapter 8 is sound for these programs.

10.4 Conclusion

In Chapter 6, we have identified the need to augment the expressiveness of type systems with polymorphism
and nominal subtyping to handle two typing situations that occur in practice. Our solution is to introduce
kinds that describe a property that types can declare to possess.

In this chapter, we have proposed an extension of the ML< type system that implements that solution
while preserving the main properties of the system. The resulting system achieves modularity, since it allows
modules to be type-checked independently and new classes to be added in a hierarchy containing partially
polymorphic methods. We have implemented this type system in the Nice programming language, showing
in particular that type-checking remains tractable.

103

104

Part IV

Practice

105

Chapter 11

Code generation

11.1 Monomorphic bytecode language

We define in this chapter a target language for compiling our high-level language with classes and multi-
methods. One goal is to show how our language can be compiled to a low-level stack language that is explicitly
typed and includes the verification of code before running it. This is useful, since such low-level languages
are becoming common, in particular with Java bytecode [31] and the Common Language Infrastructure.

However, many features of these languages are not necessary for this presentation. For instance, since
their dispatch is limited to one argument, it will be necessary to express multiple dispatch with more primitive
operations. Therefore, we can ignore single dispatch for the sake of simplicity. We choose to formalize a
subset of the Java bytecode. This choice makes the presentation more practical by allowing compilation to
an existing and widespread architecture. Furthermore, it stays valid for similar targets that include the same
subset of features that we use.

Bytecode type T ==
Class name C
Array | T
Variable name T
Method name m
Bytecode expression B =
load x

| storexz in B

| callm

| castT

| iftrue B else B

| instanceof C

| exactinstanceof C

| true|false

| new(C

| field C.i
Sequence | B;B
Bytecode value V u= true|false|V;new C
Function definition F := static method m(T z):T {B;return}
Class definition D = class C extends C' { T field; }

Figure 11.1: Bytecode

107

The syntax of bytecode types, bytecode expressions and function definitions is given in Figure 11.1.
Since all methods are static, only one type of call is used, which corresponds to invokestatic in the JVM.
Therefore, we simply call it call. The fact that store has an explicit scope enables us to express more
simply a reduction semantics. This scope corresponds to the lifetime associated to local variables in the
JVM.

The objects that are instances of a class C' are represented by a sequence of values for each field followed
by the operator new C. This corresponds to pushing the values of the fields on the stack before calling the
new C' operator.

The bytecode expression exactinstanceof C'is not part of the JVM. However, it can be emulated easily,
for instance by using the instructions to retrieve the class of the value, then to get the name of that class
and to compare it with the name of class C. This corresponds to the bytecode

call Object.getClass;call Class.getName; name0£fC; call Object.equals

where name0£C is the fully qualified name of C.
We denote by C the types of the bytecode language. They correspond exactly to class names. They are
ordered by the subtype ordering, which is declared by the heritage relation on classes.

true;iftrue By else By, — B; false;iftrue By else By — By

m declared with static method m(Ty x1,...,T, x,) : T {B;return}

Vis.;Vyp;call m — Vi, ...V, store o, in ... store x1 in B

class C' extends C
V:new C'; cast C — V;new C’

V;store z in B — B[(load z) « V]

class ¢’ extends C class C’ does not extend C
V:new C'; instanceof C' — true V:new C'; instanceof C' — false
' #C

V;new C; exactinstanceof C' — true — y -
V;new C"; exactinstanceof C' — false

Bl —>B£
Bi; By — B{; By

Vi;...;Vpinew C'; field Ci — Vianito(se(c?),C) 44

Figure 11.2: Bytecode semantics

A reduction semantics on these expressions is given in Figure 11.2. We do not try to model side effects.
The generalization to references is indeed orthogonal to our focus, which is the implementation of multi-
methods and the translation of polymorphic code into verifiable monomorphic code. Therefore, we do not
need an evaluation environment. Furthermore, we suppose for the sake of simplicity that every expression
variable has a different name, in order to avoid explicit renamings.

The first reduction expresses that a true value followed by an iftrue operator reduces to the first branch.
A function call reduces, when arguments are evaluated to values, to the expression storing the values in the
formal parameters and evaluating the body of the function. Store expressions reduce by substituting the
value for instances of loads for the corresponding variable in the body of the store expression. A cast C
expression reduces provided that the instance is built on a subclass of C. Since we are interested in compiling
type-safe programs to bytecode, we are only interested in showing that casts never fail. In that setting, it
is sufficient to let the unsuccessful case be stuck, since we don’t model exceptions. The instanceof and
exactinstanceof expressions reduce accordingly to the class upon which the value is built. The reduction

108

of field accessed requires the computation of the rank difference of the field between the declaring super-class
and the class the value is an instance of. This rank difference is defined as in Section 3.2 using the shift
operator. The list of fields declared by a class, Fields(_), as well as the full list of fields, AllFields(), are
also used in this section. Finally, sequence expressions reduce if their prefix reduce.

11.1.1 Type checking

The bytecode is submitted to type-checking before being executed. Figure 11.4 defines the I'; S + B : S’
relation, which infers the bytecode types S’ on the stack after evaluation of a bytecode expression B, given
a type environment I and the types S on the stack before the evaluation.

class C extends C’ c<c c'<c” T<T
c<c c<c” T <T'

Figure 11.3: Subtyping

Dz:T;SFB:S
I';S8, T+ storez in B: S’

I'z:T;Skload x: S, T

m declared with static method m(Ty 1, ..., Ty, @) : T {...} Viel.n T <T;
;8 17,..,T) - call m : S, T

I‘;SI—Bl:S,Tl F;S"BQZS,TQ
(TQSTlZT) or (T1§T2:T)

;8T Fcast T :85,T -
I'; S,booleant iftrue By else By : S, T

I'; S, T+ instanceof C : S,boolean I'; S, T F exactinstanceof C': S,boolean

AllFields(C) =Ty, ...,T, Vi T] < T;

I'; S+ true: S,boolean I'; SF false: S,boolean ST, T Fnew C:5.C

c'<c Fields(C) =Ty, ...,T, I;8+DB;: S ;8 FBy: S
I';8,C' - field Ci: S, T; IS FB;By: S”

Figure 11.4: Type checking

A load expression pushes the type of the loaded expression on the type stack. The expression store
x in B produces the same type stack as the expression B in the context where x has the top type of the
incoming stack. A function call pops the types of the arguments and pushes the return type, provided that
the argument types are subtypes of the declared parameter types. The expression cast T' changes the top
type to T. An iftrue expression requires the top type to be boolean, and pushes the type produced by
either branch provided it is greater than the one of the other branch. instanceof and exactinstanceof
pop an arbitrary type and push the boolean type. true and false push the boolean type. The expression
new C pushes type C provided the types on top of the stack are subtypes of the corresponding field types.
A field access expression field C.i pops a subtype C’ of C' and pushes the type of the i*" field of class C.
Finally, a sequence Bj; By produces the same stack as By produces with the incoming stack being the one
produced by Bj.

109

11.2 Monomorphic instances of polytypes

The type system defined in the previous section is very limited compared to ML<. In particular, it does not
include type constructors, functional types and polymorphic constrained types. ML< types must therefore
be translated into bytecode types, in parallel with the translation of high-level expressions into bytecode
expressions. This translation must verify the following constraints:

e the generated bytecode must have the same semantics as the source program;
e the generated bytecode must be well-typed according to the bytecode type system;

e as far as possible, the translation must allow fast execution of the generated bytecode.

The second point is debatable. One could also choose not to respect the bytecode type system and
rely on the possibility of some virtual machines to switch off bytecode verification. Supposing the source
program was well-typed, the first point still ensures that no error will occur at runtime. However, the user of
a released compiled program would not have any guarantees that the program is safe. Furthermore, virtual
machines can suppose that the executed bytecode is verifiable. It is therefore possible that they perform
some optimizations that become incorrect on non-verifiable bytecode. Therefore, it seems that this approach
would require a modified bytecode format, together with a modified virtual machine to execute it. In that
case, the format could as well include other features, such as multiple dispatch. While this approach is also
interesting, we do not explore it here.

In this section, we motivate our choices for the translation of ML< types into bytecode types, before for-
malizing that translation in Section 11.3. We first consider types build by the application of type constructors
to other types, before tackling the more difficult case of polymorphic constrained types.

11.2.1 Type Constructors
Parameterized classes

The translation of a parameterized class definition is done by erasure, as in Pizza [37]: a non-parameterized
bytecode class is defined, whose fields have the bytecode translation of their type.

The translation of a type C[f] constructed on a parameterized class C' is simply C.

Functional types

Lambda-abstractions are compiled into objects that contain the captured variables of the environment and
a final method with a canonical name (apply) that represents the function. A functional type is therefore
translated into a bytecode interface type that declares a method apply with one argument for each argument
of the lambda-abstraction.

At first sight, one could want to declare in this interface type the bytecode type of the arguments and the
return type of the function. This would allow the bytecode of the lambda-expression and of its calls to use
a better approximation of their type, therefore avoiding in some cases to need a cast. However, this would
make impossible the direct use of a functional expression as parameter of a higher order function, as soon
as the bytecode type of this expression is not exactly the one expected. It would in particular be the case
for polymorphic functions and for functions whose domain is larger, or whose codomain is smaller, than the
expected type. These cases are valid in ML< but would not be in the bytecode, since it has only invariance
rules for the type of methods in subclasses. For instance, given types C < B < A, type B — B would be
translated into an interface containing the method B apply(B), and a value of type A — C would consist of
an instance of a class with a method C apply(A). However, that latter class cannot be made to implement
the interface. Therefore, in the bytecode, the value cannot be used directly where type B — B is expected,
even though that is valid in the source language.

One could consider adding a cast towards the expected functional interface type. This cast would only
succeed if the class of the functional value explicitly declares implementing this interface. This is impractical:

110

for a value of type VI. T' — T, this would amount to implementing the functional interface type of every
type occurring in the program. Besides the sheer number of those, this would pose a problem for separate
compilation.

Another solution is to insert problematic functional value inside another one declaring the expected
functional interface type, redirecting calls to the original function and cast the result to return the expected
type. This solution has a runtime cost of one closure creation for every functional value passed as an argument
with a different type, plus one indirection and a cast per call of this functional value.

A simpler solution for functional types is to use only one interface per arity, every parameter and return
type being Object. The runtime cost is of one cast for each argument and for the return type per call,
except when used polymorphically. Compared to the previous solution, this one is advantageous if lambda-
expressions are often polymorphic and have typically few arguments. Furthermore, it avoids the creation
of numerous functional interface types, each one incurring a cost at its first use in the virtual machine.
Furthermore, it is ideal in the case where casts can be deactivated when the bytecode is trusted, since typing
guarantees that they will not fail.

Only this last solution has been implemented. A comparison of the two approaches on concrete examples
would be necessary to conclusively decide which one is most efficient.

Arrays

Arrays are the only parameterized types in Java bytecode. They are covariant, which imposes a runtime
verification during writes inside arrays, possibly failing with an ArrayStoreException. In Nice, arrays
are invariant. Typing is therefore more restrictive (although polymorphism allows to express naturally
polymorphic functions on arrays, provided they respect their types). By translating a ML< array type to
the bytecode array type whose elements are the translation of the type parameter, the bytecode type system
is therefore automatically respected. Furthermore, generated programs never lead to runtime errors while
writing arrays elements because of the type of the element.

11.2.2 Constrained polymorphic types

Indeed, those types represent in general a set of monomorphic type instances that are equivalent to no single
monomorphic type. The translation is therefore only an approximation. Our goal is to find an optimal
monomorphic approximation for any polytype.

Example

Let f be a function of type VI' < A. T' — T, where A is a class that has a subclass B. We need to find
a bytecode type for the domain D and the codomain C of f. The choice of those two types is constrained
both by the bytecode implementation of the function and by the call sites of f.

Two requirements have to be met, since they originate from reasoning on the runtime types of values.
Ignoring them would lead to a possible cast error at runtime. Firstly, the values returned by f might be
instances of both A and B. The bytecode codomain must therefore verify C' > A (and C' > B, but this last
requirement is weaker than the previous one). Secondly, the argument passed during a call to f can be an
instance of A or B, which constraints the domain with D > A.

Two other contexts show what bytecode type is expected, and therefore allow to know what precise value
to choose for C and D to minimize the number of casts: the code of f is typed under the hypothesis T' < A,
and T is the type of the parameter of f. Therefore, all the operations done on this parameter must be valid
for T'= A. If we choose D = A, we therefore guarantee that no cast is necessary in the code generated for
f- On the other hand, the value returned by a call to f can in general be used with type 7', instantiated
for this particular call, either in A or in B. Since the choice of the codomain is constrained by C' > A, we
cannot, avoid a cast for the case T'= B. On the other hand, by choosing C' = A rather than C' = Object,
we avoid a cast in the case T' = A.

This example suggests that the optimal valid translation for a polymorphic function is obtained when
choosing the greatest instance of the type parameters. We shall now formalize and prove this rule.

111

11.3 Compilation

11.3.1 Types

A closed monotype is translated by erasure into a bytecode type. Only array types are parameterized by the
type of their components.

Definition 81 (Erasure for monomorphic types) Given a ground monotype 0, its erasure BC(0) is
defined by:

Array type BC(Array[0]) = BC(9)]]
Constructed monotype BC(cy[m]) = BC(cy) (cv # Array)
Function type BC(6; — 02) = Fun

where ¢y — BC(cy) is a one-to-one mapping from type constructors to bytecode class names, and Fun is a
class with a single method Object apply(Object).

Lemma 82 (Covariance of the bytecode translation) Let 0 and 0’ be two ground monotypes such that
0 <. Then BC(0) < BC(¢).

Proof of lemma 82 (Covariance of the bytecode translation)

If either 6 or 0" are function types, then both are since §# < ¢’ holds. Therefore, both of their translations
are Fun, and the result holds.
Otherwise, let 6 be ¢y [0] and ¢ be ¢}, [5/]. By Definition 23, since 6 < ¢’, we have ¢y < ¢}, and § <y 0.

case ¢, = Array
Since Array is a final class and since ¢y < Array, we also have ¢y = Array. Furthermore, Array
has signature V' = (®) (that is, it is an invariant type constructor), so § = 6’ = 6. Thus, BC(0) =
BO(®') = BC(6o)])

case ¢}, is a class different from Array
Since ¢y < ¢, cy is also a class different from Array. Therefore, BC(§) = cy and BC(0') = ¢}, .
Furthermore, the type constructors verify ¢y < ¢f,, so the bytecode classes also verify BC(cy) <
BC(cy).

|
The translation of polymorphic type is done by instantiation into the most general monotype. For method
types, the domain and the codomain are translated independently.

Definition 83 (Erasure for polymorphic types)

BC(0) mub {BC(c(0)) | o(x)}
BC(Vt.k = 0) = BC,(0)
dom;(Vt.x = 01 — ... - 0, — 0) = BC,(0;)
codom(Vt.k = 01 — ... - 0, — 0) = BC,(0)

where mub is a function mapping a set of bytecode types to one of their minimal upper bounds.

For a set of bytecode types, Object is always an upper bound. With multiple inheritance, there can be
several minimal upper bounds. For our purposes, it does not matter which one is chosen, since any upper
bound would be correct. The minimality just helps keeping the bytecode type as informative as possible,
and potentially reduces the number of casts needed inside the implementation of methods.

This computation is stable by extension of the set of types, so it is compatible with separate compilation.
Indeed, the new bytecode types are always smaller than the existing ones, since only subclasses of existing
classes can be added. Thus, by Lemma 82 (COVARIANCE OF THE BYTECODE TRANSLATION), they do not
modify the result of the computation of the minimal upper bound.

112

11.3.2 Programs

The goal of this section is to define a translation BC(-) from source programs of Chapter 4 into bytecode
that verifies the following theorem. We use a call-by-value semantics.

Theorem 84 (Compilation) Let p be let rec D in e and BC(p) be its bytecode translation. If p is well-
typed, then BC(p) is a well-formed bytecode program. Furthermore, let v be a value such that e — v and
Ty = type(v). Then BC(e) — BC(v) and the bytecode value BC(v) has bytecode type BC(1,).

Definition 85 (Bytecode translation) Given an expression e, we define its translation BC(e) by case
on e. For a variable x, its translation is load x.

Given the expression let x1 be e; in eo, let V. kK1 = 01 be type(er) and
V.60 = 0y be type(let x1 be e; in es). Then BC(let 7 be e; in es) is defined as
B(C'(e1); cast BC,,(01);store x; in BC(es).

A lambda-abstraction Ax.e is translated into an object with a single method:
new Fun(){ Object apply(Object x) { BC(e) }}.

For an application of the form ¢ ey ... e,, where ¢ is an operator of arity n, its translation is
BC(e;); cast dom;(type(c)); BCoau(c), where

BCcan(m) = callm
BCCa”(new C) = new C
BCCa”(C.’i) = field C.i

Functional constants that are mot directly applied to all of their arguments are compiled in their eta-
expansed form. Let n be arity(c) and p be a number, with 0 < p < n. Then BC(c e1 ... €,) is equal to
BC(Azpi1...Tn.C€1...6p, Tpy1...Tn).

An application e1) where el 18 not a constant 18 translated into
B(C'(e1); cast Fun; BC(e3); call Fun.apply.

Finally, BC(true) is true and BC(false) is false.

For a method definition method m : 7 (7.1, ..., Min) = AT1...Ty.€;, its bytecode translation is

static method m(domi(7) a1, ...,domy(7)) : codom(T)

{
BCr, ,(load x1); BCr, ,(load x3); and;...; BCr, , (load x,); and; iftrue BC(e;)
else ...
else BCr, .,

else BC(ep);
cast codom(T); return

(load x1); BCr,_, ,(load x2); and;...; BC.

Tp—1,n

(load x,); and; iftrue BC(ep—1)

where
BCac(B) = B;instanceof C
BCyc(B) = B;exactinstanceof C'
BCa (B) = true

For a class declaration class C[t] extends Ci,...,Cp, {f1: F1(t), ..., fp : F, (1)}, its bytecode translation
8
class C extends C1, ..., Cy, { BCpye(Fi(1)) f15.s BCpye(Fp(t)) fpi }
For compiling methods, we suppose that the implementations are ordered with respect to the specificity

of patterns. That is, such that for all numbers ¢ and j, i < j = 7; £ m;. This is always possible, since the
source program is well-typed, while two equal patterns would lead to an ambiguity error.

113

For let expressions, we cast the bound value to be of type BCj,(01). It would be correct to cast it to be
of type BCy, (61) instead. However, since ks is the constraint for the whole expression, it is a superset of k1,
as can be checked in Definition 28. Therefore, BC,;, (f1) is a more precise (that is, smaller) bytecode type,
which takes into account the way the bound variable is used in the body of the let expression. By giving a
more precise bytecode type to x1, this potentially reduces the number of casts needed in the translated body.
At the same time, this initial cast is guaranteed to succeed since the whole source expression is well-typed,
as we show in the proof of Theorem 84 (COMPILATION).

We can observe that many casts can be erased, as soon as the bytecode typing ensures that the expression
on the stack has a subtype of the desired type. This happens often in practice®, both in fully monomorphic
code and in fully polymorphic code. Casts are only necessary at the border between these two kinds of code,
that is, when a value with a known monomorphic type is passed to a polymorphic function and the result of
the call is used with its statically known monomorphic type.

In our translation, casts are performed before method calls and before storing the value of a let-bound
variable. It would be possible to place them differently. For instance, one could cast the result of method
calls and of loads, which would guarantee that the types on the stack are always as precise as they can be.
The translation we chose has two advantages. Firstly, it easily guarantees that bytecode is well-typed, since a
cast is inserted if necessary before each checked instruction, that is method calls and field accesses. Secondly,
this translation reduces the number of casts that are needed. For instance, if the result of a method call is
not used, no cast is performed. On the other hand, if this result is bound by a let to be used several times,
the cast is made before the binding, to avoid a possible cast at each use.

We assign methods a return type which is the monomorphic approximation of their codomain. This
requires in general a cast before the return instruction since the implementation of the method can use
polymorphically typed functions, which entails a loss of typing information. Alternatively, one could give all
methods a return type of Object (and thus avoid the cast) and rely on the other casts to be performed as
needed. This would reduce the number of casts when the result is not used with a specific type, but would
increase it if the cast inside the method was redundant and the approximation was sufficient for the way
the result was used. Furthermore, our solution has the advantage of giving methods a more intuitive type,
which is useful when looking at the generated code or using it in a call from a different language using the
same bytecode.

For classes, the translation of field types is, given Definition 83, a minimal upper bound of the translation
of all possible instantiations for the class type parameters. This implies that the type parameters, if they
appear at all in the translated type, are translated to the bytecode type Object.

Lemma 86 (Bytecode pattern test) Let v be a well-typed value and 7 be a pattern. Then v € m holds if
and only if BCr(BC(v)) —* true holds.

Proof of lemma 86 (Bytecode pattern test)
The proof is by case on 7. Let type(v) be Vi. k = 6.

case m = QC'
Then v € m amounts to true = k A < C[t]. Therefore, by Requirement 38 (CLASS TYPE), v =
new C’ v; ... v,, where C’ is a subclass of C' (1). Thus, BC(v) is BC(v1);...; BC(v,,);new C’. Thus,
BC(BC(v)) is BC(v1);...; BC(v,);new C’; instanceof C. So, by the semantics of Figure 11.2 and
(1), BC(BC(v)) — true.

Conversely, if BC(v); instanceof C' — true, then by Figure 11.2 BC(v) = Vi;...; V,;; new C’ where C’
is a subclass of C. Therefore v is of the form new C’ vy ... v,. By definition, constant-type(new C’) =

Vt. F{(t) — ... — F/.(t) — C'[t] where [F},...,F!] = AllFields(C"). So by APP, 0 is of the form C’[¢’].
Let V be the variance of C' and C” and t be a list of arity(V) fresh type variables. Then,

n the source code of the compiler for Nice, from 90 to 95% of the casts theoretically needed are unnecessary for this reason.

114

true

K (v is well-typed)

kNC' < C (C" subclass of C)

KANC' <CAY <yt (MREF)

KANC' <CAt <yt (VARINTRO with o(f) = t/)
Kk AC'[t] < OTf (MINTRO)

o

That is to say that v € QC holds.

case m = #(C
Then v € 7 amounts to true = kA6 = C[t], and therefore in particular true E & A 0 < C[i].
So by Requirement 38 (CLASS TYPE), v = new C’ vy ... v,, where C’ is a subclass of C. Since
true = kA0 = C[t], C" is actually equal to C. So BC(v) is equal to BC(v1);...; BC(v,,);new C.
Furthermore, BC(BC(v)) = BC(v1);...; BC(v,);new C;exactinstanceof C. So, by the semantics

of Figure 11.2, BC(BC(v)) — true.

Conversely, if BC(v); exactinstanceof C' — true, then by Figure 11.2 BC(v) = Vi;...; Vi;new C. So
v is of the form new C' vy ... v,. By definition, constant-type(new C') = Vt. F1(t) — ... — F,(t) — C[{]

where [F1, ..., F,,] = AllFields(C). So by APP, 6 is of the form C[t]. Let V be the variance of C and ¢/
be a list of arity(V) fresh type variables. Then,

true

K (v is well-typed)

KAC =C (CREF)

kNC=CAt=yt (REF)

kANC =CAt=yt (VARINTRO with o(t/) =1)
v (MINTRO)

T

kACt] = C[t']
That is to say that v € #C holds.

case T =

Then by definition BC,(BC(v)) = true.

Conversely, true = true, therefore v € .

|
We prove special properties about values. Firstly, we show that the type of a value is special in that the
bytecode translation of all its instances are the same bytecode type.

Lemma 87 (Value types) Let v be a value of type 7, = Vi, ky = 6,,. Then for all ground substitution o,
BC(o(6y)) is equal to BC (7).

Proof of lemma 87 (Value types)

Tt is sufficient to show that the type BC(0(6,)) does not depend on o. By Definition 83, this will show that
that type is BC(7,). The proof is by case on v.

case v = true,v = false
Then 7, is Boolean. Therefore, for all substitution o, BC(0(6,)) is Boolean.

case v = new C vy ... vy,
Then 7, is Vi1, ..y tn. k1 A b1 < t1, .oy in A0 < t, = CJt1,...,t,]. Therefore, for all substitution o,
BC(o(6y)) is BC(C).

115

case v = Ax.e
By Definition 28, for any o, o(6,) is a functional type. Therefore, by Definition 81 and Definition 83,
BC(o(6,)) is the bytecode type Fun.

|

We now show that in a well-typed application of a function to values, the bytecode translation of the type
of the values is a subtype of the translated domain of the function. This implies that no cast will be needed
to translate the application itself, which will be used to show in Lemma 89 (VALUES) that the translation of
a value is a bytecode value.

Lemma 88 (Bytecode application) Let e vy ... v, be a well-typed expression. Let T by the type of e and,
for all i from 1 to n, 7, be the type of v;. Then, for all i from 1 to n, BC(7y,) is a subtype of dom;(T)

Proof of lemma 88 (Bytecode application)

Let V. k = 01 — ... — 0, — 0 be 7, and V0, k,;, = 60, be 7,,. Since e vy ... v, is well-typed, the constraint
KAy, A B, < 0;is satisfiable. Let therefore o be a ground substitution such that og(kAky,; A 0, < 6;) holds
(2). By Lemma 87 and (2), BC(7,,) is equal to BC(0o(6y,)). Furthermore, by (2), 0q(0y,) < 0o(6;) holds.
Therefore, by Lemma 82 (COVARIANCE OF THE BYTECODE TRANSLATION), BC(0o(0y,)) < BC(0¢(6;))
holds. By Definition 83 and since oq satisfies x by (2), BC(00(6;)) must be smaller than the upper bound
BC,,(0;), which is also dom;(7). That is, by transitivity, BC(7,,) is a subtype of dom;(7). B

We now show two further properties of values. Firstly, the translation of a source value is a bytecode
value. Secondly, subtyping on polytypes must be preserved by translation, if the smaller type can be the type
of a value. This property is required so that a polymorphic value can be used directly as an expression of a
less general type. This corresponds in particular to the observation made in Section 11.2.1 about functional
types. For instance, this property would be violated if VI'. T — T was translated into object with a method
of type Object — Object and String — String was translated into an object with a method of type
String — String.

Lemma 89 (Values) Let v be a well-typed value of type 7,. Then BC(v) is a bytecode value whose bytecode
type is BC (7).
Furthermore, for all type T such that 7, < T, BC(7,) is smaller than BC(T).

Proof of lemma 89 (Values)
The proof is by induction and case on v.

case v = true,v = false
Then type(v) = Boolean, and BC(v) is by definition a bytecode value of type boolean = BC(Boolean).

Furthermore, let 7 such that Boolean < 7. By corollary 56 (INTERPRETATION), every instance 6 of T
verifies Boolean < 6, so by Lemma 82, BC'(Boolean) < BC(#). Therefore, BC'(Boolean) < BC(T).

case v = new C vy ... Uy,

By induction hypothesis, each BC(v;) has bytecode type BC'(type(v;)). Since v is well-typed, Lemma 83
(BYTECODE APPLICATION) shows that BC(type(v;)) is a subtype of dom;(7r). Therefore, in Defini-
tion 85 for BC'(v), the casts are redundant, and BC(v) is equal to BC(vy);...; BC(vy,);new C, which
is a bytecode value of bytecode type C.

By definition, constant-type(new C) = Vt.Fi(t) — .. — F,(t) — C[t] where [F},..,F,] =
AllFields(C'). Let type(v;) be ¥,,.ky, = 6,,. Then by APp, 7, = type(new C v1 .. v,) =
Vi, . kv, A Oy, < Fi(f) = CTf]. Therefore, by Definition 81 and Definition 83, BC(r,) = C.

Let 79 = Vo.50 = 6y be a type such that 7, < 79. Let &’ be ky, A0, < F;(). By corollary 56
(INTERPRETATION) for every ground substltutlon o such that o(ko), there exists o’ such that o "(K")
and o'(C[t]) < o(6y). So by Lemma 82, BC(c'(C[t])) < BC(c(bp)). Furthermore, BC(o'(C[t])) is
always equal to C' by Definition 81. So C < BC(c (90)) holds for all . Thus, by Definition 83,
BC(1,) = C < BC(1).

116

case v = Ax.e
By Definition 28, Definition 81 and Definition 83, BC(7,) is Fun. By Definition 85, BC'(v) has bytecode
type Fun as well.

Furthermore, for all type 7 such that 7, < 7, 7 is also a functional type by MELIM, and therefore
BC(r) = BC(7,) = Fun.

|
The following lemma shows that the bytecode translation is a morphism for substitution.

Lemma 90 (Bytecode substitution) For all expression e, value v and variable x, BC(e[x «— v]) =
BC(e) [1load x «— BC(v)] holds.

Note that the validity of this lemma lies in the fact that x is bound by a let and therefore is not modified in
BC(e).

Proof of lemma 90 (Bytecode substitution)

The proof is by induction on e.

case € =X

Then BC'(e) [load x «+ BC(v)] = (load) [Lload 2 — BC(v)] = BC(v) and BC(e [z « v]) = BC(v).

case e =z’ with 2/ # x
Then BC(e)[load x <« BC(v)] = (load z')[load & « BC(v)] = load 2’ and BC(e[x «— v]) =
BC(2') = load z'.

case e = cej ... e, with arity(c) =n
Let 7 be type(c).

BC(e) [load = «— BC(v)]

BC(€}) [Load x «+— BC(v)]; cast dom;(7); BCcau(c) (Definition 85)
= BC(e} [z — v]);cast dom;(7); BCcau(c) (Induction hypothesis)
= BC(c (e} |z —]) ... (e}, [x — v])) (Definition 85)
= BC((cé) ...e)) [x —v])

/

case ¢ = e1 eo with e not of the form cef ... ¢,

BC((e1 e2) [Load x «— BC(v)]

= (BC(e1);cast Fun; BC(e2); call Fun.apply) [load z <« BC(v)] (Definition 85)
= BC(e1)[load x «— BC(v)]; cast Fun; BC(e2) [load x «— BC(v)]; call Fun.apply

= BC(e; [z « v]); cast Fun; BC(ey [x < v]); call Fun.apply (Ind. hyp.)
= BC(ej [z v]ex[x] (Definition 85)
— BC((er ea) [— v])

case e = let 2’ be e; in ey

BC(e)[load x «— BC(v)]
= (BC(ey);cast BC,,(01);store 1 in BC(e3)) [Load 2 — BC(v)] (Definition 85)
= BC(e1)[load x « BC(v)]; cast BCy,(61);

store x; in BC(eq) [load z «+ BC(v)]
= BC(ey [z « v]);cast BC,,(61);store x1 in BC(ez) [x « v] (Induction hypothesis)
= BC(let 2/ be ey [x < v] in ey [z« v]) (Definition 85)
= BC((let 2’ be e1 in eg)[x «— v])

117

case e = \z’.¢/

By alpha-conversion, we can assume that 2’ is different from x (1).

BC(e)[load x « BC(v)]

= (new Fun(){ Object apply(Object x') { BC(¢') }})[load x « BC(v)] (Definition 85)
= new Fun(){ Object apply(Object x') { BC(¢’) [load x « BC(v)] }})

= new Fun(){ Object apply(DbJ ect x') { BC(e/ [z —]) }}) (Induction hypothesis)
= BC(\.(e [x — v])) (Definition 85)
= BC((\".¢') [z —v]) (1)

We can now prove our main result.
Proof of theorem 84 (Compilation)
Tt is sufficient to show that BC(e) — BC'(v). Indeed, by Lemma 89 (VALUES), we then have that BC(v)
has type BC(type(v)).

The proof is induction on the length of the reduction, and by case on e.

case

case

€=

By Lemma 89, BC'(v) is a bytecode value, so BC'(v) — BC(v).

e=cey ...el, with arity(c) =n

Since e is well-typed, all e} are also well-typed by property i of Definition 4 (Error). Therefore, we
know by subject reduction that, for all 7 in 1..n, there exists a value v; such that ¢; — v;. Let 7 be
type(c), and 7, be type(v;).

By induction hypothesis, we know that BC(e;) — BC(v;). Therefore,

BC(cé] ... e)
= BC(e});cast domi(7);...; BC(el,); cast dom,(7); BCcan(c)
— BC(vy);cast domq(7);...; BC(vy); cast domy,(7); BCeanl(c)

Since ¢ vy ... v, is well-typed by Theorem 10 (SUBJECT REDUCTION), we can apply Lemma 88
(BYTECODE APPLICATION), which shows that, for all i, BC(7,,) is a subtype of dom;(T) (1).
Therefore, all the cast succeed, and BC(vy1); cast dom(7);...; BC(vy,); cast domy, (7); BCoan(c) —
BC(Ul);...;BC(’UH);BCCQH(C).

We now reason by case on c.

case ¢ = new C
Then e — v/ = new C vy ... vy,.
By definition, BC(v1);...; BC(vy,); BCeau(c) = BC(v1);...; BC(vy,);new C. This expression is
equal to BC(new C vy ... v,), since by (1) the casts are redundant. This shows that BC/(e)
reduces to BC(v').

case c =Cu
Then, field access operators being unary, we have n = 1. By Theorem 40 (FIELD ACCESS SOUND-
NESS), ¢ — v;hi&(sc(c)yc,)ﬂ, with €] — new C’ v} ... v/,. Therefore, by induction hypothesis,
BC(e}) — BC(new C’ v} ... v,), which is equal to BC(v});...; BC(v},);new C’ by Definition 85,
since Lemma 83 (BYTECODE APPLICATION) shows casts in BC(new C’ v] ... v},) are redundant.
So BC() — BC(v});...; BC(v),);new C’; field C.i, and by the reduction for field, BC(e) —

BC(shlft (sc(C), C’)Jrz)

case c=1m
Since m vy ... v, is well-typed, we know by subject reduction that there exists a value v" and an
index I such that

My . Uy — (AT1...Tp.€1) V1 oo Uy — €1 [T1 — V1] [Ty — 0] — 0

118

case ¢ = e1 eo with e not of the form ce) ... e

where m 7T; = Ari...r,.e; is the most precise implementation of m such that 7; matches
(v1,...,v,). Let 7 and V¥.k = 0; — ... — 0,, — 60" be the type of m. Let 7/ be the type of
v’
The semantics of the bytecode given in Figure 11.2 then implies that:

BC(v1);...; BC(vy,); call m
— BC(v1);store 7 in ...BC(v,);store x, in

BCy, ,(BC(load x;)) ;iftrue BC(e;);cast codom(r)

— BCr, ;(BC(vj));iftrue BC(e;) [load x1 « BC(v1), ..., load x, «+ BC(v,)];cast codom(T)

We know that 7; matches (v1,...,v,). Since the patterns are ordered by specificity, we know
furthermore that for all j strictly smaller than I, (7 1, ..., 7) does not match (v1,...,v,). So by
Lemma 86, the first test that succeeds is for the index I. Therefore, BC(v1);...; BC(vy)call m
reduces to BC(ey) [Load z1 «— BC(v1), ..., load x, « BC(vy,)]; cast codom(T).

Since ey [x1 «— v1,...,x, — v,] — v, we know by induction hypothesis that BC(ej [z «—
Uiy ey T < Up]) — BC(v'). Moreover, by Lemma 90, BC(ef [z1 < v1,..., [« x]p]vn) =
BC'(ey) [Load 1 « BC(v1), ..., load z, <« BC(vy)]. Therefore,

BC(ey) [load x1 < BC(v1), ..., load x,, « BC(v,)]; cast codom(r) — BC(v'); cast codom(r)

It remains to be shown that this last cast succeeds. By Definition 28, the type of m vy ... v,
is 7¢ = V99y.k A Ky Ay, <0; = 0. By Theorem 10 (SUBJECT REDUCTION), we know that
7/ < 74 holds. Furthermore, by Definition 27 and TRIV, it is easy to see that 7, < V. k = 0'.
Therefore, by transitivity, 7/ < Vi9.x = ¢’. So, by Lemma 89, BC(v’) has type BC(7’), and
BC(7') < BC(VY.k = 0"). By Definition 83, BC (VY. k = 6') is equal to BC, ('), which is also
codom(7). That is, BC(v') has a smaller bytecode type than codom(r), so the cast succeeds.
Thus, BC(m ¢} ... e},) — BC(v').

n

!/
n

Then by Definition 85, BC(e; e2) is equal to BC(eq); cast Fun; BC(ez); call Fun.apply.

By Theorem 10 (SUBJECT REDUCTION), we know that there exists values v; and vy such that
e1 — vy, ea — vg, and vy vy is well typed (1). Therefore, by induction hypothesis, BC'(e;) —
BC(v1) and BC(e2) — BC(vz). Therefore, BC(e1);cast Fun; BC(e2);call Fun.apply —
BC'(v1); cast Fun; BC(v3); call Fun.apply.

We now reason by case on v. By (1), v1 must be a functional value. There are therefore two cases:

case v = \z].¢}
Then, by Definition 85, BC(v;) is new Fun(){ Object apply(Object x}) { BC(e}) }}.
Therefore, the cast succeeds, and BC(v;);cast Fun; BC(v2);call Fun.apply reduces to
new Fun(){ Object apply(Object x}) { BC(e}) }}; BC(v2); call Fun.apply, which reduces to
BC(vq);store o} in BC(e}), which reduces to BC(e})[load zj «— BC(v3)]. By Lemma 90
(BYTECODE SUBSTITUTION), this last expression is equal to BC(€} [z} < v3]). Since e reduces to
vy vo which reduces to €] [z} < vs], the property holds in this case.

case v; = c v ... v, with 0 < p < arity(c)

Let n be arity(c). Then, by Definition 85, BC(v1) is
new Fun(){ Object apply(Object xp41) { BC(Azpi2..Tn.c v7 o v, Tpr1 . Tn) }H.
Therefore, the cast succeeds, and BC(v;);cast Fun; BC(v2);call Fun.apply reduces to
new Fun(){ Object apply(Object xp41) { BO(ATpia..Tn.c v ... v, Tpy1..7,) }}; BCO(v2);
call Fun.apply, which reduces to BC(AZpi2..Tn.c V] ... v, Tpi1..7p)[load Tpp1
BC(v2)]. By Lemma 90 (BYTECODE SUBSTITUTION), this last expression is equal to

BC(AZpto..Tp.C V] oo V) Tpi1..Tn [Tps1 « v2]), that is BO(ATpy2...Tn.C V] .o V), V2 Tpyo..Tn.
By Definition 85, this is equal to BC(c v} ... v, v2). We therefore have shown that BC(e) reduces

119

to BC(c vy ... vj, v2), with e reducing to ¢ vy ... v, va. If ¢ v} ... v} vy a value, the property

is proved. Otherwise, by Theorem 10 (SUBJECT REDUCTION), there exists a value v such that

3

vl .. U; v9 reduces to v. Since e is not of the form c ¢y ... e,, there has been at least one step of
reduction. Therefore, we can apply the induction hypothesis to ¢ v{ ... vj, va, which shows that

BC(c vy ... v, v2) reduces to BC(v), which finishes the proof.

case ¢ =let x1 be ey in ey
We know by subject reduction that there exist values v; and v such that let z; be e; in ey —
let x; be v in ey — eg w1 «— v1] — v.

Let 7 and V1. k1 = 61 be type(ey), Let 7o and Via. ko = 02 be type(let x; be e; in es), and 7,
and be type(vy). We therefore have 7,, < 71 (1) by Theorem 10 (SUBJECT REDUCTION). By definition,
BC(let 1 be e; in e3) = BC(ey);cast BCy,(01);store x; in BC(e2). By induction hypothe-
sis, BC(e1) — BC(v1) and BC(v1) has type BC(7,,). Therefore, BC(let z1 be e; in e3) —
BC(v1); cast BCy,(61); store z1 in BC(e2).

We now show that the cast succeeds. By Definition 28, constraint x; is included in ko: this is immediate
from the definition if z; is not free in e, and follows from a straightforward induction otherwise.
Therefore, by TRIv, the constraint implication VFV (1), FV (72),t. ko A 61 < t = k1 A1 < t holds.
That is, by Definition 29 and Definition 27, type Vi}1.x1 = 67 is a subtype of Vih1¥s. ko = 0.
Therefore, by transitivity with (1), we have 7,, < Vi)195.42 = 6. By Lemma 89, this shows that
BC(7y,) < BC(V9192. k2 = 61) holds. Furthermore, BC(Vi)192. ko = 61) is equal to BCy,(61) by
Definition 83. Therefore, BC(7,,) is a bytecode subtype of BC),(01). This shows that the cast always
succeeds, and
BC(let 1 be e; in eg) — BC(v1);store 1 in BC(es)

By definition, BC(v1);store 21 in BC(e3) — BC(eq2)[load z1 «— BC(v1)]. By Lemma 90,
BC(e3) [Load x1 «+ BC(v1)] is equal to BC(ez [x1 < v1]). By induction hypothesis, BC(eq [11 < v1])
reduces to BC(v). Therefore, by transitivity, we have BC'(let 1 be e; in e3) — BC(v).

120

Chapter 12
Typing kinds

In this chapter, we consider the algorithms used to perform type-checking in our constrained type system,
based on ML<.

Type-checking is needed in two places. First, in the core language of Section 1, where type are inferred,
we need to check that the resulting types are well-formed. As defined in Section 2.2, a type V9. k = 6 is
well-formed if the constraint implication V. true = x holds.

Second, when type-checking multi-methods as in Section 4, we need to check that for each method
implementation, the restriction of the method type to the patterns is well-formed, and that the inferred type
of the implementation is below that restricted type. This second condition amounts to checking subtyping
between polytypes, which is defined in Section 2.2 as a certain constraint implication.

Therefore, we only need to be able to decide constraint implication. We will present algorithms to do so
in this chapter. First, we recall that constraints involving constructed monotypes can be decomposed into
atomic constraints, on which the implication is decided. Then, we briefly summarize the existing techniques
used to decide implication on atomic constraints in core ML<. This corresponds to the system presented in
Section 2.2. In the last section, we present a new algorithm to decide constraint implication, in the presence
of kinds, as defined in Section 10.2.

12.1 Constraint decomposition

MLc< is a structural type system. That is, an inequality between monotypes always follows from their having
the same shape, and their sub-components being related. This is formalized in the variable elimination rule
of constraint implication, which we recall here:

t<oviflerort>oyldler ¢,1 fresh

VE =
e V0. k= R AL = Gy

A consequence of this rule, proved in [5], is that every constraint implication problem can be reduced
to a simpler problem, involving only constraints on atoms: type constructors and type variables. We will
therefore only consider the decision of constraint implications where atomic constraints are either of the form
oy < ¢y or of the form ¢ < ¢.

12.2 Core ML<

Given the constraint implication V. k = «’, one can construct a model of k. That is, the set of constant
type constructors and type variables in x is equipped with the partial pre-order < induced by the constraint
k and, for the constant constructors, by the implicit type structure 7. The constraint implication then holds
if there exists a substitution o from the variables of £’ to the model, such that o(x’) is true in the model.

121

This problem is NP-complete, as (implicitly) shown in [43]. However, it is possible to find algorithms
that are only polynomial in practice, similarly to the situation of type inference for ML. An algorithm is
sketched in [5], and is the basis of the implementation made by Alexandre Frey for the language Jazz. This
implementation was also used as a basis for the implementation in the Nice compiler.

The essence of the algorithm is that each variable in «’ is assigned a domain, which is a set of possible
mappings of that variable into the model. The domains can be reduced, by using the inequalities in k and &/,
and their consequences by transitivity. For instance, if ¥’ contains the constraint ¢y, < ¢y, then the domain
of ty can be reduces to only those values in the model that are smaller than ¢y. This can in turn be used
to reduce the domain of other variables that are in relation with ¢y,. If this reduction leaves at least one
domain empty, then the implication does not hold. If all domains have size one, then a solution was found.
Otherwise, it is necessary to pick one variable with a domain of cardinal at least 2, fix the mapping of that
variable to each value in the domain in turn, and restart the reduction process. If that leads to a failure, it
is necessary to backtrack and choose a different mapping for that variable inside its domain. If at least one
attempts succeeds, then we have found a solution. If all attempts fail, the constraint implication does not
hold.

12.3 Adding kinds

This algorithm can be extended to implement the system defined in Section 10.2. In this context, the implicit
type structure 7 contains, besides the subtypings between constant constructors, the implementations and
abstractions of kinds of these constants. Furthermore, we now deal with constraint implications where
constraints are taken from the grammar ¢y < ¢y |t <t |ty : K.

As before, given such a constraint implication V. k |= &/, we first construct a model of x. That is, the
set of constant type constructors and type variables in k is equipped with the partial pre-order < induced
by the constraint x and, for the constant constructors, by the implicit type structure 7. Furthermore, each
type variable ¢y in x is made to implement a kind K if and only if x contains the constraint ¢y : K or the
constraint ¢y : K’ with some kind K’ that extends kind K. Note that this closely matches the construction of
the extended type structure 7' in the completeness proof of Theorem 80 (CORRECTION AND COMPLETENESS
OF THE AXIOMATIZATION OF KINDS). The only difference in that, in the proof, ¢y, is made to implement
K if k implies ty : K. We cannot directly apply that definition here, as this would require a way to decide
constraint implication, which is precisely what we are constructing. However, our restricted definition of the
kinds that ¢y implements in the model is sufficient. Indeed, the only other way in which s could imply that
ty implements another kind K’ is by application of axiom EQIMP. In that case, tyy would be equivalent to
another element ¢y in the model, which implies that their domains would be the same. Any implication of
ty implementing K’ would therefore also follow from ¢y implementing K’.

Second, we compute the domains of each variable in x’, reducing them as before by using the constraints
in k. We can further reduce the domains by noticing that if &’ constaint ¢y, : K, then the mapping of
ty must be a constant of the model that implements /K. The main issue is to be able to apply axiom
ABS to deduct further constraints on the variables. For this, we need to compute views, as defined in
Definition 77. However, a naive approach would have a prohibitively high complexity, since the definition
involves simultaneous quantification over four type constructors. Fortunately, it is possible to significantly
reduce the amount of work to be done.

First, by condition 5 of Definition 78, we know that the view of constant type constructors is independent
of the possible extensions to the type structure. Therefore, it is possible to compute those views only once,
in the module where the type constructor is introduced, and not in every module of the program.

Second, if viewg (cv) = ¢}, then it follows from Requirement 76 (KINDS) and Definition 77 that, for all
clr below cy, viewg (cf,) is also ¢f,. Furthermore, in the ABS axiom, the requirement is that the variable
is below the origin of the view. If we used viewg(c{,) = ¢}, to apply that axiom, we could as well use
viewg (cy) = ¢, since the variable is also below ¢y by transitivity. Therefore, we can limit the computation
of views to maximal values for the origin.

Algorithm 1 defines the function COMPUTE _ VIEW, which computes views. In particular, the auxiliary

122

function SET_ VIEW is used to implement the second optimization: if the type constructor that abstracts the
kind can be the origin of the view, then we can stop the computation. Otherwise, we compute it recursively
for each of its direct sub-constructors.

Algorithm 1 Computation of views
procedure COMPUTE_ VIEWS
for all K € Kinds do
for all C that abstracts K do
SET_ VIEWS(C, K)
end for
end for
end procedure

procedure SET_VIEWS(C, K) > Computes view i (C”) for a minimal set of C” below C.
Require: The type constructor C abstracts K
min «— L

for all C’ that implements K do
if C <’ then
if min = L or C' < min then
min — C’
end if
else
if 3Cy such that Cy < C and Cy < C’ then
min «— L
break
end if
end if
end for
if min # L then
viewg (C) «— min
else
for all C” directly below C do
set_ views(C”, K)
end for
end if

end procedure

Given that this computation is done, we can now use Algorithm 2 to complete the model of k by repeated
application of the ABS axiom.

Note that the iteration is needed because the consequence of the application of an instance of ABS can
create the conditions for another instance to be applicable. This is the case in the following contrived example.
Given the hierarchy of Figure 12.1, the two kinds K7 and K5, and that B abstracts and implements K; and
A abstracts and implements Ko, we consider the constraint implication VI. T : K1,T: Ko, D <TE A<T.

By definition, viewg, (D) is B and viewg, (C) is A. It is not directly possible to conclude that A < T.
However, by ABs for kind Ky, VI. T : K1,T : Ko, D < T |= B <T. Since C' < B, by transitivity we have
VI.T: Ky, T:Ky,D<T}E C<T. This in turns allows to apply ABS on K3, and to conclude that the
implication holds.

123

Algorithm 2 Applying the ABS axiom
procedure SATURATE _ABS > Finds all consequences of the ABS axiom.
repeat
for all K € Kinds do
for all C such that viewg (C) # L do
for all D below C' do
for all D’ above D that implements K do
add viewg (C') < D’ in the model
end for
end for
end for

end for
until nothing changed
end procedure

D Cc

Figure 12.1: Example hierarchy

124

Chapter 13

The Nice language

The theoretical results of this dissertation have been used as the foundation for implementing a complete,
general-purpose language called Nice. The motivation for this practical work was three-fold. First, it serves
as a proof of concept by showing that the system can be implemented with a reasonable amount of work and
deliver acceptable performance. Second, since the implementation is available freely!, it allows users to write
real programs in Nice when they decide its properties provide them with a benefit. This also contributes to
popularizing those features that are not present in most mainstream languages, for instance multi-methods.
Finally, this concrete use in turn generates feedback that is inspiring for pointing out new research themes.

13.1 Syntax

This section lists the differences between the concrete syntax used in this document and the Nice language.
This should be sufficient to read the real Nice programs presented in the next chapter. A general difference
is that the syntax of Nice follows the syntactical tradition of Algol (and therefore also of C, Java and other
languages) by placing the type of a variable before its name, and similarly for fields and for the return type
of a method.

For more details, one can refer to the online version of the user manual at http://nice.sf.net/manual.
html.

13.1.1 Classes

The syntax for classes is close to the one presented in Chapter 3. The only difference is that field types
precede their names and that field declarations are terminated by the ; character, in the syntactic tradition
of Algol [36]. Furthermore, type parameters are listed between angle brackets, like C++ [41] template
parameters and Java 1.5 type parameters.

class C<T> {
Typel fieldl;
Type2 field2;
}

13.1.2 Methods

Nice is a language with multi-methods. Therefore, methods can be declared outside classes, at the package
level. It keeps the distinction between method declaration and method implementation. Method imple-
mentations dispatch on their arguments by specialization of the class of arguments. The return type does

IThe implementation is licensed under the GNU General Public License, and can be downloaded from the website http:
//nice.sf.net, which also includes a user manual, links to mailing lists devoted to Nice and further information useful to users
of the language.

125

not need to be written, since it is computed as the specialization of the method type for the specialized
arguments. Compared to Chapter 8, the keywords method and implementation are dropped. Furthermore,
types are written as in C and Java.

For implementations, a pattern can be absent, in which case it refers to the pattern “_”, which matches
any value.

ReturnType methodName (ParamTypel paraml, ParamType2 param2);

methodName (parami, param2) { ... }
methodName (C1 paraml, C2 param2) { ... }

When a method has type parameters, they are introduced in front of the declaration between angle
brackets.

<T> T id(T);

While this syntax for methods would be sufficient, it looks quite unfamiliar to programmers used to
traditional object-oriented syntaxes. A design choice for Nice has been made to also offer more traditional
syntax when possible. The motivation of this decision is to facilitate the transition and to help programmers
focus on the new features instead of struggling to learn a new syntax for the existing features. The traditional
notation for declaring methods inside classes (respectively abstract interfaces) is therefore also allowed as
syntactic sugar for declaring a multi-method with a first parameter named this belonging to the current
class (respectively to a class implementing the current abstract interface). Similarly, the alike keyword is
supported as syntactic sugar for the the type of this, which is implicitly quantified as a subtype of the current
class (respectively a type implementing the current abstract interface, see next section). Similar syntactic
sugar is also provided for implementing a method inside a class. Finally, it is possible simultaneously declare
a method a provide its default implementation.

For instance, the following declarations use the syntactic sugar.

class C {
C m() = this;
}

class D {
m() = new C();
}

They are equivalent to the following de-sugared version.

class C {}
C m(C);
m(C this) = this;

class D {}
m(D this) = new C();

13.1.3 Kinds

Because this feature has not yet been popularized, finding a good terminology remains to be done. Nice has
been modeled after Java for most of the syntax. Kinds are created with the keyword abstract interface.
The rationale is that a kind is similar to an interface in describing some facilities that a class must possess
to implement the kind. However it is “abstract” because it is not itself a type; in particular the type of a
variable can not be an abstract interface.

Using most the syntax described in this chapter, one can give the concrete Nice syntax of the solution
with kinds in Section 6.2.

126

abstract interface Comparable {
boolean less(alike);

}

class String implements Comparable {
less(String other) { ... }
}

class Date implements Comparable {
less(Date other) { ... }
}

13.2 Type checking

Nice’s type system is the based on the extension of ML< with modular kinds formalized in Chapter 10.2 and
implemented following the algorithms presented in Chapter 12. The implementation of the constraint solver
was based on Alexandre Frey’s implementation for the Jazz language, extended in particular for the support
of kinds.

13.2.1 Option types

The type system includes another extension for safe handling of the null value which is present in Java and
many other languages with references. The null value is usually supposed to be of the special “bottom” type,
meaning that it can be used in all contexts where a reference is expected. However, most operations fail at
runtime when applied to the null value, for instance when accessing a field. We extended the type system
to make it possible to prevent such failures statically. Because of time constraints, we do not formalize this
extension in this dissertation but briefly present it in this section.

Our extension makes it possible to distinguish between types that include the null value and those that
do not. Technically, we introduce two unary type constructors, ? (for “maybe”) and ! (for “surely”). Therefore,
instead of the single type String for character strings, we use !String that only allows real strings, and
?String that also allows the null value?. We make ! smaller than ?, which implies that !String is a subtype
of 7String. We also make those two type constructors covariant. This system can therefore be implemented
using the standard version ML<, with ! and ? being normal type constructors. This can therefore be viewed
as a layer about ML<, and does not need changes in the core constraint implication solver.

To achieve type safety, we simply disallow operations on possibly null values. More precisely, we give
those operations function types with domain types prefixed with the ! type constructor. For instance, given
a class C with a field of type !String, the field access method has type !C — !String. We can then give the
null constant the polymorphic type VT.7T without breaking type safety.

To make use of values with types constructed on 7, we need to differentiate between the null and non-null
case, and to be able to use the value with the corresponding type constructor on ! in the second case. It
would have been possible to provide a ML-style matching operator to that effect, binding the value to a
new name in the second case. However, it feels more natural to make use of the existing style in languages
including null, which is to use tests of the forms x == null and x ! = null to distinguish the two cases.
Therefore, we incorporated in the high-level typechecker rules to recognize such tests and take them into
account, which amounts to performing a static dataflow analysis on local variables. Basically, inside a branch
running when x ! = null succeeds or when x == null fails, and provided that x is not captured by a closure
assigning a possibly non-null value to it, x can be assumed non-null. Such information can be merged at the
points where branches join.

2To avoid making the syntax of types heavier, we allow the non-null case, which we consider is the most frequent by far, to
be the default, so that the ! type constructor is optional. Thus String is a synonym for !String. For clarity, we keep ! explicit
in this section.

127

Note that this type system feature is only superficially similar to ML’s option type, defined with type
a option = None | Some of a. A first difference is that ML option types can be nested, as in string
option option. A valid value of this type is Some(None). We only want to handle values that are either
null or a normal reference, and therefore syntactically disallow consecutive occurrences of ! and 7. This
allows to represent these values without any overhead, null being simply a specific value different from
any reference. Furthermore, since !String is a subtype of 7String, the user can directly use a non-null
string where a possibly null one is expected. In ML, the user has to manually wrap it using the Some data
constructor.

13.3 Code generation

The Nice compiler generates Java bytecode [31] as formalized in Chapter 11. This choice makes it possible
to execute Nice programs with good performance on any computer architecture for which a Java Virtual
Machine exists. Furthermore, it allows to make use of the many Java libraries in Nice programs. The
compiler automatically assign Nice types to existing Java classes, fields and methods, requiring no special
effort to start using such these existing libraries. Furthermore, it is possible to explicitly “retype” them
by assigning them arbitrary Nice types when it is necessary, in particular when that can result in a more
precise type than what is possible to express in the Java type system. Nice code is also compiled in a way
that makes it easier to use from Java code. Thus, multi-methods are compiled as instance methods of the
class of (the erasure of) their first argument whenever possible, that is if the class is also generated from
Nice code. This makes it possible to call the method in Java with the standard x.foo(y) syntax, instead
of someArbitraryClass.foo(x,y). Furthermore, this even allows overriding a Nice multi-method in Java
code, although this obviously can only be done for specializing on the first argument. All in all, this makes
projects mixing Java and Nice code as simple as possible, which is important for some users who have an
important existing code base in Java and want to extend it in Nice without first translating their whole
project into Nice.

128

Chapter 14

The expression problem

The expression problem is a classical “expressiveness benchmark” for programming languages. It can be
described as the following situation. Given recursively defined datatypes and operations on those datatypes,
we want to be able to extend datatypes by defining new cases and operations by adding new ones. Solving
this problem is very important in practice, since it is essential to enable modular and extensible programming
for large programs, as identified in our third and fourth criteria in the introduction of this thesis. We base
this chapter on the presentation in [38], which proposes the following requirements:

1. Possibility to define both new datatypes and new operations;
2. Strong static type safety;

3. No modification of existing code nor duplication;

4. Separate compilation;

5. Independent extensibility: it should be possible to combine independently developed extensions so that
they can be used jointly.

Their review of existing solutions shows that no previous solution meets all these requirements. The
functional approach makes it easy to add new operations, but impossible to add new datatypes without
modifying existing code. Dually, the classic object-oriented approach makes it easy to add new datatypes,
but impossible to add new operations without modifying existing code. Variants of the Visitor pattern are
also available, but they either lack type safety [27, 39] or require defaults [44]. Defaults are required to be
able to handle all possible future extensions, which is in practice often impossible to do in a semantically
correct way, which forces the programmer to resort to runtime failure. The possibility to use multi-methods
with required default implementations for external multi-methods [18] is also considered. It matches all
criteria apart from this requirement for defaults.

Two solutions are proposed [38] and implemented in the SCALA language, using traits. The first solution is
based on the object-oriented approach. By leaving some types abstract until the program is closed, it allows
to define new operations in extensions. Dually, the second solution is based on the functional approach.
By giving an abstract type for the visitor used, which is specified when the program is closed, it allows to
define new datatypes. Thus, both solutions allow extension in the direction that was previously impossible,
although stays more verbose and less straightforward than the natural one in each approach.

We will now present a solution to this expression problem using our multi-methods. In particular, we will
show that our single solution unifies the object-oriented and the functional approach, since both directions
of extension are identically simple. We do not require default implementations. In Section 14.4, we show
that our solution has the same modularity properties as either solution in [38].

In Section 14.5, we review another proposal to solve the expression problem written in the OCaml
language, and we compare it with our proposal.

129

14.1 Base

At the core of the expression problem is the base package that defines an abstract class Exp for expressions,
and a method eval that takes an expression and returns an integer. It also defines a concrete subclass Num.

package base;

abstract class Exp

{

int eval();

class Num extends Exp

{

int value;

eval() = value;

Unlike other solutions, no special hindsight is needed to make this framework open for future extension.
This package can be imported an used in a program, without any particular work to “close” it.

package base.test;

import base;

void main(String[] args) {
let e = new Num(value: 7);
println(e.eval);

}

14.2 Data extension

14.2.1 Linear extension

We define a simple extension of base by adding a new datatype for representing the addition of two expres-
sions.

package plus;

import base;

class Plus extends Exp

{
Exp left;
Exp right;

eval() = left.eval + right.eval;

Independently, we can define another extension adding negation.

package neg;
import base;

class Neg extends Exp

{

130

Exp term;

eval() = - term.eval;

14.2.2 Combining independent extensions
Those two independently developed extensions can be combined, simply by importing both.

package plusneg;
import plus;
import neg;

14.3 Operations extensions

Adding new operations is equally simple. It is sufficient to define a multi-method for the operation, and to
implement it for the known datatypes.

package show;
import base;

String show(Exp);

show(Num e) = e.value.toString;

Note that Plus and Neg are not known in this package, and therefore no other implementation of show
is required. We do not need to give show a default implementation either.

14.3.1 Linear extensions

We can adapt independently developed extensions of base so that they support the show operation. To this
end, we simply import the corresponding packages, and add the required implementations for method show.

package showplusneg;
import show;
import plusneg;

show(Plus plus) = plus.left.show + "+" + plus.right.show;
show(Neg neg) = "-(" + neg.term.show + ")";

Note that if we omitted these implementations, the compilation of package showplusneg would have
resulted in a compile-time error because of the coverage test for method show.
We can use this extended version in a program to uses both show, Plus and Neg.

package showplusneg.test;
import showplusneg;

void main(String[] args) {
let e = new neg.Neg(term: new plus.Plus(left: mnew base.Num(value: 7),
right: new base.Num(value: 6)));
println(e.show + " = " + e.eval);

}

131

14.3.2 Tree transformer extensions

It is equally easy to add new operations that return an expression. For instance, we define a method double
that return a number similar to the argument except that all Num leafs have their value doubled.

package doubleplusneg;
import plusneg;

Exp double (Exp);

double (Num num) = new Num(value: num.value * 2);
double (Plus p) = new Plus(left: p.left.double, right: p.right.double);
double (Neg neg) = new Neg(term: neg.term.double);

In [38], this case requires defining abstract factory methods to create the new objects to be returned,
and to instantiate those factory methods in the main program. This comes from the fact that they need to
create new versions of the type Exp in each extending package. In our model, there is only one type Exp,
and object creation does not pose any problem. An advantage of their solution is that it allows to refer to
“the version of type Exp that only supports plus and neg but not show” even in a program that uses show
in other parts. However, it is not clear how useful this is in practice. The downside of this distinction is
that it becomes possible to get errors when trying to mix different versions of type Exp, which is likely to be
confusing for the programmer.

A program using method double can be written directly:

package doubleplusneg.test;
import doubleplusneg;

void main(String[] args) {
let e = new Plus(left: new Neg(term: new Plus(left: new Num(value: 1),
right: new Num(value: 2))),
right: new Num(value: 3));
println(e.double.eval);
}

14.3.3 Combining independent extensions

We now put it all together by combining all previous extensions. Again, this is a simple question of importing
the right packages. There is no need to explicitly plug the pieces together.

package doubleplusneg.test;
import doubleplusneg;
import showplusneg;

void main(String[] args) {
let e = new Plus(left: new Neg(term: new Plus(left: new Num(value: 1),
right: new Num(value: 2))),
right: new Num(value: 3));
println(e.double.show + " = " + e.double.eval);

}

14.3.4 Binary methods

Binary methods are methods whose implementation depends on the type of more than one of their arguments.
They are hard to implement in a class-based language, whose methods are asymmetric between their first

132

argument and the other. Unsurprisingly since we use multi-methods which are by design symmetrical in all
their arguments, handling binary methods can be done very naturally.

For instance, we define a method for testing the structural equality of two expressions.

package equals;
import base;

boolean equal (Exp el, Exp e2);

// Default implementation
equal (el, e2) = false;

equal (Num el, Num e2) = el.value == e2.value;

Note that we give a default implementation of equal returning false. This is not required and we could also
not provide it, and instead provide implementations for all combinations of parameters. However, this would
require a large number of implementations. Indeed, it is clear that most expressions are not structurally
equal. It is therefore more practical to define the default as false and handle the few interesting cases
explicitly.

We can now consider implementing equal in the context where Plus and Neg are defined.
package equalsplusneg;
import plus;
import neg;
import equals;

equal (Plus el, Plus e2) =
equal (el.left, e2.left) && equal(el.right, e2.right);

equal (Neg el, Neg e2) =
equal (el.term, e2.term);

We can use all the features together in a test program:
package equalsshowplusneg;
import equalsplusneg;

import showplusneg;

void main(String[] args) {

let terml = new Plus(new Num(value: 1), new Num(value: 2));
let term2 = new Plus(new Num(value: 1), new Num(value: 2));
let term3 = new Neg(new Num(value: 2));

print (terml.show + "=" + term2.show + "7 ");

println(terml.equal (term2));

print (terml.show + "=" + term3.show + "7 ");

println(terml.equal (term3));

Note that although equal is a method defined at toplevel, it can be used as well using the “dot” notation

which is usual in object-oriented languages.

133

14.4 Discussion

A crucial point to ascertain is whether our solution is satisfactory from a modularity point of view. This
question is covered by two of the five requirements of the problem. First, it must be possible to separately
typecheck and compile the packages containing the independent extensions. Second, it must be possible to
combine those extensions to use them jointly. We now argue that both points are satisfied by our module
system in general. It is therefore in particular the case of our solution to the expression problem.

Ag formalized in Chapter 8, we can typecheck modules independently based on the interfaces of their
imported modules. Furthermore, we have shown that the typechecking of method implementations done in
their module does not need to be duplicated, since it implies validity in the context of the whole program.
This is true even in the presence of polymorphic types thanks to the fact that method implementations are
checked with an open-world assumption. It is indeed possible that the typechecking of a module importing
several other modules fails solely because of the content of those modules, but only because some method
implementation is missing. This situation could arise in package showplusneg of Section 14.3. Package
showplusneg imports package show, which defines a multi-method show whose domain contains the abstract
class Exp without implementing show for Exp. That is, the show method does not have a default imple-
mentation in package show. This is valid in the context of package show since Exp is abstract. In parallel,
package plusneg defines concrete subclasses Plus and Neg of Exp without knowledge of method show. When
importing both packages, an implementation of show for Plus and Neg is required. This requirement is
not a technicality required because of the use of multi-methods. It is fundamentally expressing that after
independently developing two extensions that are not orthogonal, one needs to explicitly specify how they
interact. In the solution using traits of [38], this requirement is exactly the same: trait ShowPlusNeg must
define how the new classes Plus and Neg implement the show operation. A similar situation occurs when
two modules M1 and M2 contain ambiguous implementations. In that case, a more precise implementation in
M is sufficient to resolve the ambiguity'.

In general, it is always possible in our system to combine valid independently developed modules by pro-
viding the adequate method implementations. Indeed, method coverage fails if some method implementations
are missing, in which case the missing cases can be added, or if some implementations are ambiguous, in
which case more precise implementations can be added. We argue that this possible requirement of additional
method implementations is acceptable, and even desired. This requirement can only be avoided by restricting
expressivity, which can also have the paradoxical effect of reducing actual static safety. For instance, as is
argued in [34], when multi-methods are required to have a default implementation, it will sometimes happen
that no sensible implementation exists, as with a method area on the abstract class Shape. Therefore, the
default implementation can hardly do something else than fail, for instance by throwing a runtime exception.
This introduces the risk of the program failing at runtime. In contrast, when independently importing the
method area and a concrete class extending Shape, our system will report the need to implement area for
that imported class, which should not be surprising. Similarly, in singly-dispatched languages, it is typical
to simulate multiple dispatch using instance tests or some version of the visitor pattern. However, since the
compiler has no knowledge about these techniques, there is no static guarantee that all cases are covered.

14.5 Comparison with polymorphic variants

Another solution to the expression problem is presented in [24]. That solution indeed meets the five criteria
set at the beginning of this chapter. This result is quite remarkable, given the relatively early date of its
publication and its compatibility with a major general purpose programming language. The solution is based
on the used of polymorphic variants, which are in particular present in the OCaml language [29]. Essentially,
types can consist of lists of variants open for the extension to other variants. This allows for functions that
accept an open set of data cases. Extension of operations can be achieved by creating a new function that

1To make this solution possible when M1 and M2 contain identical implementations, we can refine the notion of method
implementation ordering so that for identical implementations, the one defined in a module M is considered more precise than
the one defined in an any module that M imports. This allows M to contain a disambiguating implementation of m.

134

calls the existing one for the existing cases. This can be made to work even if the function needs to be
recursive, the old function recursively calling the new one. However, this has to be handled explicitly by
adding an additional parameter to all recursive functions, and by closing the recursion explicitly where the
set of data cases completely known.

The solution with polymorphic variants is less general in one aspect: it does not allow the creation of
sub-cases, which is naturally achieved in object-oriented languages (and in particular in our solution) by the
creation of subclasses. In other words, variants allow data extension in width only, not in depth.

Polymorphic variants use structural subtyping, while our solution uses nominal subtyping. Both forms of
subtyping have their strengths and weaknesses. Nominal subtyping is more natural when types are declared
as part of the design of the program, while structural subtyping is more suitable to type inference. With
structural subtyping, types can become large, which can be problem when writing types to the programmer.
On the other hand, it allows for polymorphism over an ad-hoc set of variants that can have been designed
separately, simply by listing those variants in extension. While this is typically not possible with nominal
subtyping, we gain a similar functionality thanks to ours kinds. Indeed, it is possible to declare that several
existing classes or interfaces implements a new kind, effectively allowing the declaration of a method that
accepts any type implementing the kind.

The solution of the expression problem using polymorphic variants requires the programmer to manually
call the existing functions from the new ones. This corresponds in our solution to the multiple dispatch
code that is generated automatically by the compiler. An advantage of writing it by hand is that it allows
the existing functions to exist independently of the new ones, and to write several independent extensions
of the same base function. On the other hand, our model is flat, in that new method implementations are
unconditionally extending the base method. If several different behaviors are needed in the same program,
it is required to add an additional parameter whose value can direct which one is desired. Our flat model
makes is unnecessary to handle recursion explicitly, and makes it possible to let the compiler generate the
dispatch code. The program can therefore be much more concise. This also opens the possibility for the
compiler to generate more efficient dispatch code.

135

136

Chapter 15

Related work

15.1 Core

The A& calculus [12] proposed an extension of the lambda-calculus with functions that dispatch on their
arguments runtime types. They argued that considering methods as first-class elements rather than ob-
ject components significantly simplifies the theory over record based models that require recursive types.
However, this presentation was not aimed at modeling programming languages directly: they did not allow
programmer’s definable base types; the use of the & operator to build methods does not fit directly the
incremental definition of method implementations.

The ML< type system and language [5, 6] is a remarkable attempt at unifying languages with multi-
methods and ML-style type systems. It provided the main foundation on which we built our research.
For comparison’s sake, the instantiation of our algebraic type system with the type language of ML< in
Section 2.2 together with the multi-method extension in Chapter 4 produces a system similar to the whole of
ML<. These presentations used a highly non-standard operational semantics and soundness proofs through
the use of a typed abstract machine, which made the presentation and the proof of the system tedious and
hard to understand. Our work uses a more conventional approach, which consists in describing an untyped
language and untyped small-step semantics, and proving soundness through subject-reduction and progress
lemmas. Another major achievement of this work is to separate the object-oriented part from the core
language, both in presentation and in the proofs. Since the latter part is already well understood, this makes
the study of the theoretical aspects of multi-methods much easier.

We formalize the type-checking of multi-methods, while [5] tackled formally only methods with one
argument, and described how to extend the theory to methods with multiple arguments only informally.
Similarly, open multi-methods and the modularity aspects were not formalized.

We also remove the need to annotate lambda-expressions with their domain, and show that their type
can be inferred. Thus, only top-level declarations of multi-methods require type annotations.We believe that
these top-level annotations are acceptable in a programming language, and that they cannot be avoided
if modular type-checking is needed. Indeed, implementations of methods might not be known when type-
checking of code making use of these methods is performed.

ML< had no notion of #C' pattern. This feature is especially useful with polymorphic multi-methods:
it makes it possible to implement methods of type Vt. t — t or Vi.t < C' = t — t that are not the identity
function but that actually return a newly constructed object. Useful concrete examples include the clone
method, the union method on a hierarchy of collections with the precisetype Vt.t < Collection = (¢,t) — ¢,
etc.

Frey’s doctoral dissertation [22] is an elegant algebraic approach to the typing of an ML-like language
with objects, subtyping and multi-methods. Like our work, it builds on the earlier works on ML< [5]. His
algebraic type system is built on arbitrary monotypes. Polymorphism is handled in extension, which make is
possible to factor a bigger part of the soundness proof than in our system. However, this makes the framework
less general than ours, where potential polymorphism is handled in concrete instances. Frey only formalized

137

a closed-world form of type-checking. In the discussion part, typechecking under the open-world assumption
is proposed as typechecking in all possible extensions. No practical definition is included, since that could
only be done for specific instances of the system. Frey’s language includes local multi-methods, defined
inside expressions, as in [5]. This is more expressive than our language, where multi-methods only appear
at toplevel. On the other hand, this forces multi-methods to be treated as part of the core language, while
we handle them separately as user-defined operators. It is not clear how local multi-methods interact with
modular programming and the open-world assumption. In particular, is it possible to add implementations
to the local methods of an imported module? If so, would such an implementation be able to access the
variables defined in the scope of the local method? If implementations cannot be added to imported local
methods, what specific method coverage rules can guarantee that the method will still be covered in the whole
program? This last problem is similar to the question of guaranteeing that imported (toplevel) methods are
always covered, which is discussed in Section 15.2.

15.2 Modular multi-methods

Multi-methods first appeared in dynamically typed languages — CLOS and later Cecil [14]. While this tainted
multi-methods as “powerful but unsafe”, it also opened up a line of research for devising static type systems
for them. In particular, a full proposal for a statically typed language with multi-methods and modules can
be found in [16], with the motivation of adding optional static typechecking to Cecil. However, the need to
perform coverage and non-ambiguity checks for multimethods based on knowledge for the whole program
has often been seen as a failure to achieve modular typechecking. In this view, modularity is defined as
the guarantee that when modules that have been checked independently — but possibly never imported
together in a single module, even in compiled form — are linked together in the same program, this whole
program is guaranteed to be type-safe. This is indeed impossible to achieve with unrestricted multimethods
as found in [16]. Several trade-offs are possible between fully modular typechecking and full expressiveness
of multimethods [33, 35]. This approach has been implemented with MultiJava [18], a practical language
that extends Java with a restricted form of multimethods that guarantees modular typechecking. The first
restriction is that external methods cannot be declared abstract (that is, lack a default implementation).
The second restriction is that multimethod implementations must either be written in the same module
as the method’s declaration, or it must be declared inside the class declaration of its first argument. As a
compromise to overcome those limitations, Relaxed MultiJava [34] is an extension of MultiJava in which those
restrictions are transformed into compile-time warnings instead of errors. During class loading, immediately
prior to execution, the additional coverage and non-ambiguity tests are performed to detect whether errors
can occur.

Our system supports the general form of multimethods without such restrictions'. In Section 14.4, we
argue that our system is indeed modular. The key is that the main module of the program has knowledge
of the compiled interface of all modules composing the program, and that this information is sufficient
to perform all necessary checks. Furthermore, when method coverage fails, it is always possible to provide
additional method implementations that will make it succeed. Since it is never necessary to modify imported
modules, the modularity requirement is met. This argument applies to the case where the program can be
compiled together before its start. A different situation arises when modules — known in this context as
plugins — can be linked with a running program. It is then obviously too late for a programmer to add
missing method implementations. In this context, we think that the technique presented in [34] of compile-
time warnings combined with runtime checking is very promising, especially as the linking of plugins can in
any case fail for other reasons. Alternatively, if more static guarantees are desired, some form of restricting
expressivity could be used. It would in particular be interesting to investigate whether no restrictions at all
can be imposed on the main program, since it can be supposed to be known by all plugins.

IPerforming coverage checking in each module and enforcing the precocity rule, as defined in Section 8.3, can be seen as a
form of restriction compared to solely performing coverage checking on the whole program. However, those rules are only useful
to help detect errors earlier and to enforce what we believe is a good organization of the program, from a software engineering
point of view. They are optional, and the type safety and modularity results do not depend on their presence.

138

A similar problem arises if one wants to be able to declare methods private to a certain module. In
an unrestricted setting, the declaration of new subclasses might render the implementations of a method
declared in an imported module either incomplete or ambiguous. Although, as said above, this situation
could be handled by adding additional implementations of the method, this is most likely unacceptable when
the method was private to the imported module, since its existence should in that case not be relevant to
client modules. Therefore, in this situation as well, we think it would be beneficial to combine our system
with a form of restriction proposed in [33] for non-public methods.

15.3 Kinds

F-bounded polymorphism [8] has been introduced to extend the record-based structural approach to typing
object-oriented languages. It allows to type binary methods, at the cost of preventing subclasses to be
subtypes. This makes it difficult to compare with our proposal which both guarantees subclasses to be
subtypes and at the same time accepts, for instance, the plus method, which is more complex than a binary
method since it is partially polymorphic. Using F-bounded quantification in conjunction with multi-methods
has been proposed in [32], but it is still an open area of research, in particular with respect to soundness
and decidability.

If we do not consider programming in such record-based language, but focus on the types that can be
expressed with F-bounded polymorphism, we believe that it is possible to encode kinding constraints using F-
bounded quantification, translating a kind K to a parameterized class K<T> and a kinding constraint 7" : K
into T'< K<T>. This is similar to the framework syntactic sugar proposed in [32]. Type-checking in System
F-bounded is also known to be undecidable [3]. This does not preclude of the decidability of F-bounded
quantification in nominal type systems, as found in Pizza [37] or Generic Java [7], but none of these systems
have been proved decidable yet. Furthermore, their type systems cannot handle partially polymorphic meth-
ods using the above encoding, since they prevent a class to implement the same interface twice with different
type parameters. Our proposal does not require recursive constraints; complex constraints can always be de-
constructed into atomic constraints, which simplifies decidability and efficient type-checking. This also makes
quantification over type constructors straightforward, which is crucial for parameterized types. For instance,
given the kind Collection<T>, one can give map the type VC: Collection, T, U. (C<T>, T — U) — C<U>,
which allows C to range over type constructors of kind Collection.

The Abel language [9] has a type system based on [10] that can model object-orientation using kinds and
polymorphic recursive types. These kinds are defined by K ::= Type | K = K | POWER[T], where T is a
type. Type T1 has kind POWER([T%] in fact means that T3 is a subtype of T5. In Abel, one can therefore
simulate bounded polymorphism by kinding the type variable with a POWER kind. Together with recursive
types, this allows for the same solutions as in System F-bounded for the situations presented in this paper,
but with the same problems. Our kinds are very different, since they are generative names, and do not
enforce transitivity. It is essential for our solution that 7' : K and T < T does not imply 77 : K. It might
be possible to extend power kinds to relax transitivity, but to our knowledge it has not been done yet.

Type-classes [42] address the issue of homogeneous functions by defining predicates on types. For instance,
the following Haskell-like code

class Eq t where
== ::t ->1t -> Bool

class Num t where
+ :t ->t ->t

instance Num Int where
== x y = intEq x y
+ xy = intAdd x y

can be expressed with kinds in the following way:

139

kind Eq
== :: <t:Egq> t -> t -> Bool

kind Num extends Eq
+ :: <t:Num> t ->t -> t

class Int implements Num
== @Int Q@Int = intEq
+ @Int @Int = intAdd

An important difference is that our kinds are open: it is not required to define operations syntactically
together with the kind they operate on. This allows for modular definition of orthogonal operations, and
operations that operate on more than one kind. Additionally, type-classes are not mixed with subtype
polymorphism. Therefore they do no raise the question of the interactions between subtyping and kinding as
found in partially polymorphic functions. On the other hand, the possibility to define type-classes inductively
does not have an equivalent in our proposal. This feature is certainly useful, and should be considered in an
extension of our system.

140

Chapter 16

Conclusion

We have given a modular presentation of a complete language and type system. This structure made it
possible to consider independently extensions of the language and of the type system. This possibility is
useful when presenting a complex system, since one does not need to consider and prove the whole system
at once. Furthermore, it helps researching extensions of the system without redoing the whole work.

In particular, we make a presentation of object-orientation with multi-methods as an extension of a core,
the traditional lambda-calculus with constants. The proof of type-safety for this extension could be made
by only proving subject-reduction and progress lemmas for multi-methods themselves.

We formalized a module system for our language with multi-methods. We showed how typechecking can
be performed modularly, without limiting the expressiveness of (public) multi-methods.

In parallel, we showed how two existing type system, Hindley-Milner and ML<, fit into our framework.
We also extended the ML< type system, by motivating and formalizing the introduction of kinds and kinding
constraints for typing homogeneous or partially polymorphic methods.

Finally, we formalized some aspects of the translation of our system into practice, in particular the
compilation of our high-level language into a monomorphically-typed bytecode language, and the algorithms
needed to implement constraint implication in the presence of kinds. We also presented how we chose to
design the Nice language to implement these ideas.

Experience using Nice has brought up new challenges that can motivate extensions of our work. Some
of them have been sketched in this dissertation, like the type-safe handling of null values in Section 13.2.1.
In practice, a difficulty arises from the fact that imported Java methods do not have these nullness type
information. The user can explicitly retype such methods to add that information, provided it can be inferred
from the documentation of the method. In the absence of such retyping, the compiler has to resort to either
a safe bet (possibly null return types, but non-null method arguments), which is likely too restrictive for
practical use because it results in many false typing errors, or a more lenient default that does not guarantee
nullness safety across imported method calls. It would be interesting to investigate how much of this nullness
information could be inferred by a static analysis of imported method code.

Another challenge is the support of static method overloading, in particular while preserving type in-
ference. This feature allows several unrelated methods to have the same name and the same number of
arguments'. Note that the disambiguation is performed at compile-time based on the static types of the
arguments, which makes this feature orthogonal to runtime dispatch. For instance, suppose there are two
methods foo of types int — void and String — void, and consider an expression of the form Ax....foo(x)....
If the part of the expression preceding the call foo(x) does not further constraint x, it is not possible to
decide at that point what is the expected type of x and which method foo is called. A simple solution is to
report an ambiguity error, which can be solved by adding a type annotation to the declaration of x. However,
it would be interesting to consider other solutions that can resolve the ambiguity when it is possible based

IThis is of practical important for Nice, since Java does have static method overloading, and therefore the compiler has to
deal with this situation at least for imported methods. For this reason, it was also natural to allow static overloading for Nice
multi-methods.

141

on the rest of the expression and the context in which the whole expression is used, and to see how these
solutions can be fit into our presentation.

A fundamental property of the ML< type system is that related type constructors have the same variance.
In practice, this entails that subclasses must have the same number of type parameters as their parents?.
This turns out to be restrictive in practice. For instance, one could want to assert that the type Integer is
a subtype of List < Boolean > by considering integers as a list of the bits in their binary representation.
Conversely, it could also be useful to introduce in a subclass a new type parameter. We believe it might be
possible to extend ML< to support such situations by keeping track of the conditions on type parameters
for type constructor orderings to hold. These conditions would become additional premises in the the
MINTRO rule. Additionally, constructed monotypes should in general contain open lists of type parameters
to accommodate for variable type constructors, as introduced in rule VELIM.

Closer to our original topic, our modular typechecking system for multi-methods does not, apply directly
to non-public and “plugin” multi-methods. In those situation, it should be investigated how to integrate
other works on modular multi-methods with stricter modularity criteria, as discussed in Section 15.2. This
aspect is also of practical importance for the Nice language.

2Thankfully, this does not rule parametrized classes out since there is no need for a root ancestor common to all classes.

142

Conclusion

Nous avons effectué une présentation modulaire d'un langage complet et de son systéme de types. Cette
organisation nous a permis de considérer indépendemment les extensions du langage et du systéme de types.
Cette possibilité est utile pour la présentation d’un systéme complexe, puisque cela permet de ne avoir a
faire la présentation et la preuve de correction du systéme en un seul bloc, les rendant plus digestes. De
plus, cela premet de rechercher des extensions du systéme sans refaire tout le travail.

En particulier, nous avons présenté 'orientation objet avec multi-méthodes comme une extension d’un
noyau bien connu, le lambda-calcul avec constantes. La preuve de correction de cette extesion a pu étre faire
en prouvant simplement ’auto-réduction et le lemme de progrés pour les multi-méthodes elles-mémes.

Nous avons formalisé un systéme de modules pour notre langage & multi-méthodes, et nous avons montré
comment le typage peut étre effectué modulairement, sans limiter ’expressivité des multi-méthodes (tout du
moins des multi-méthodes publiques).

Parallelement, nous avons montré comment deux systéemes de types existants, Hindley-Milner et ML<,
peuvent étre intégrés a notre systéme. Nous avons aussi étendu ML< en motivant et formalisant I'introduction
de kinds et de contraintes de kinding pour typer les méthodes polymorphes homogénes et le méthodes
partiellement polymorphes.

Enfin, nous avons formalisé certains aspects de l'implémentation de notre systéme, en particulier la
compilation de notre langage de haut niveau vers un langage bytecode typé monomorphe, et les algorithmes
nécessaires a I'implémentation des kinds. Nous avons aussi présenté les choix de conception du langage Nice.

L’utilisation de Nice a permis de découvrir de nouveaux défis qui peuvent motiver des extensions de notre
travail. Certains ont été esquissés dans cette dissertation, comme le traitement statiquement str des valeurs
nulles dans la section 13.2.1. En pratique, une difficuté supplémentaire résulte du fait que les méthodes Java
importées ne fournissent pas d’information sur leur traitement des valeurs nulles. L’utilisateur de Nice peut
explicitement “retyper” ces méthodes pour ajouter cette information quand elle peut étre devinée grace aux
commentaires de documentation. En ’absence de tels retypages, le compilateur doit soit supposer le cas le
plus restrictif (type de retour possiblement nul, mais arguments non-nuls) pour découvrir toutes les erreurs
potentielles, mais aussi signaler de nombreuses fausses alertes au point d’étre inutilisable, soit étre plus
accomodant, perdant alors la guarantie de sireté des valeurs nulles lors des appels de méthodes importées
non-retypées. Une alternative interessante a explorer serait d’inférer cette information & partir d’une analyse
statique du code des méthodes importées.

Un autre défi consiste & permetre la surcharge statique des méthode, en particulier tout en conservant
I'inférence de types. Cette fonctionalité permet & des méthodes sans rapports d’avoir le méme nom et
nombre d’arguments®. Remarquons que la désambiguation est effectuée & la compilation sur la base des
types statiques des arguments, ce qui rend cette fonctionalité orthogonale au dispatch dynamique. Par
example, supposons avoir deux méthodes foo des types int — void et String — void, et considérons une
expression de la forme Ax....foo(x).... Si la partie de I'expression précédant ’appel foo(x) ne contraint pas
x, il n’est pas possible de décider & cet endroit du type de x et de quelle méthode foo est appelée. Une
solution simple est de signaler une erreur d’ambiguité, qui peut étre résolue par le programmeur en ajoutant
une annotation de type a la déclaration de x. Toutefois, il serait intéressant de considérer d’autres solutions

3Ceci est important en pratique pour Nice, puisque Java inclus la surcharge statique. Te compilateur Nice doit donc traiter
ce cas, au moins pour les méthodes importées. Il était donc naturel de permettre la surcharge statique pour les méthodes Nice
aussi.

143

qui pourraient résoudre 'ambiguité quand c’est possible en utilisant le reste de ’expression et le contexte
dans lequel ’expression entiére est utilisé, et de voir comment ces solutions peuvent étre intégrées a notre
systeme.

Une propriété fondamentale du systéme de types ML< est que les constructeurs de types d’'une méme
hierarchie ont la méme variance. En pratique, cela implique que les sous-classes doivent avoir le méme
nombre de paramétres de types que leurs parents?. Cela est limitant en pratique. Par example, on peut
vouloir indiquer que le type Integer est un sous-type de List < Boolean > en considérant la représentation
binaire des entiers. Inversement, il peut aussi étre utile d’introduire une nouveau paramétre de type dans
une sous-classe. Nous pensons qu’il est possible d’étendre ML< pour permettre ces situations en accumulant
les conditions sur les paramétres de types sous lesquelles un constructeur de types est plus petit qu’un
autre. Ces conditions deviendraient des prémisses suplémentaires dans la régle MINTRO. De plus, les
monotypes construits devraient contenir des listes ouverts de parameétres de types pour gérer les variables
de constructeurs de types introduits par la régle VELIM.

Plus preés de notre sujet initial, notre systéme de types modulaire pour les multi-méthodes ne s’applique
pas directement au méthodes non publiques ou présentes dans des “plugins”. Pour ces situations, il serait
utile d’intégrer d’autres travaux sur les multi-méthodes modulaires ayant des critéres de modularité plus
stricts, comme nous I'avons argumenté dans la section 15.2. Cet aspect a une importance pratique pour le
langage Nice.

4Heureusement, cela n’empéche pas les classes paramétrées d’exister puisqu’il n’y pas pas besoin d’y avoir une classe racine
ancétre de toutes les autres.

144

Bibliography

[1] M. Abadi, L. Cardelli, B. C. Pierce, and D. Rémy. Dynamic typing in polymorphic languages. Jour-
nal of Functional Programming, 5(1):111-130, January 1995. Also appeared as SRC Research Report
120. Preliminary version appeared in the Proceedings of the ACM SigPlan Workshop on ML and its
Applications, June 1992.

[2] R. Agrawal, L. G. DeMichiel, and B. G. Lindsay. Static Type Checking of Multi-Methods. In Proceedings
of the OOPSLA °91 Conference on Object-oriented Programming Systems, Languages and Applications,
pages 113-128, 1991.

[3] P. Baldan, G. Ghelli, and A. Raffaeta. Basic theory of F-bounded quantification. Information and
Computation, 153(1):173-237, 1999.

[4] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, and D. A. Moon. Common
lisp object system specification x3j13. SIGPLAN Notices, 23(Special Issue), September 1998.

[5] F. Bourdoncle and S. Merz. On the integration of functional programming, class-based object-oriented
programming, and multi-methods. Research Report 26, Centre de Mathématiques Appliquées, Ecole
des Mines de Paris, Paris, Mar. 1996.

[6] F. Bourdoncle and S. Merz. Type-checking higher-order polymorphic multi-methods. In Conference
Record of the 24th Annual ACM Symposium on Principles of Programming Languages, pages 302—-315,
Paris, Jan. 1997. ACM.

[7] G. Bracha, M. Odersky, D. Soutamire, and P. Wadler. Making the future safe for the past: Adding
genericity to the Java programming language. In Proceedings of OOPSLA, 1998.

[8] P. Canning, W. Cook, W. Hill, W. Olthoff, and J. C. Mitchell. F-bounded polymorphism for object-
oriented programming. In ACM, editor, Functional Programming Languages and Computer Architecture,
pages 273-280, 1989.

[9] P. Canning, W. Hill, and W. Olthoff. A kernel language for object-oriented programming. Technical
Report STL-88-21, Hewlett-Packard Labs, 1988.

[10] L. Cardelli. Structural subtyping and the notion of power type. In Conference Record of the Fifteenth
Annual ACM Symposium on Principles of Programming Languages, pages 70-79, San Diego, California,
1988.

[11] G. Castagna. Covariance and contravariance: Conflict without a cause. ACM Transactions on Pro-
gramming Languages and Systems, 17(3):431-447, May 1995.

[12] G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded functions with subtyping. In ACM
Conference on LISP and Functional Programming, pages 182-192; 1992. Extended and revised version
in Information and Computation 117(1):115-135, 1995.

145

[13] C. Chambers. Object-oriented multi-methods in Cecil. In O. L. Madsen, editor, Proceedings of the
6th European Conference on Object-Oriented Programming (ECOOP), volume 615, pages 33-56, Berlin,
Heidelberg, New York, Tokyo, 1992. Springer-Verlag.

[14] C. Chambers. The Cecil language: Specification and rationale, version 2.1. Technical report, Department
of Computer Science and Engineering University of Washington, Box 352350, Seattle, Washington 98195-
2350 USA, March 1997.

[15] C. Chambers and W. Chen. Efficient multiple and predicate dispatching. In Proceedings of the 1999
ACM Conference on Object-Oriented Programming Languages, Systems, and Applications (OOPSLA
’99), volume 34(10) of ACM SIGPLAN Notices, pages 238-255, Denver, CO, November 1999. ACM.

[16] C. Chambers and G. T. Leavens. Typechecking and modules for multi-methods. In ACM Transactions
on Programming Languages (TOPLAS), volume 17(9). ACM, November 1995.

[17] W. Chen, V. Turau, and W. Klas. Efficient dynamic look-up strategy for multi-methods. In M. Tokoro
and R. Pareschi, editors, ECOOP °94, European Conference on Object-Oriented Programming, Bologna,
Italy, volume 821 of Lecture Notes in Computer Science, pages 408-431, New York, N.Y., July 1994.
Springer-Verlag.

[18] C. Clifton, G. T. Leavens, C. Chambers, and T. Millstein. MultiJava: Modular open classes and
symmetric multiple dispatch for Java. In OOPSLA 2000 Conference on Object-Oriented Programming,
Systems, Languages, and Applications, Minneapolis, Minnesota, volume 35(10), pages 130-145, 2000.

[19] W. R. Cook. Object-oriented programming versus abstract data types. In J. W. de Bakker, W. P.
de Roever, and G. Rozenberg, editors, Foundations of Object-Oriented Languages, REX School/Work-
shop, Noordwigkerhout, The Netherlands, May/June 1990, volume 489 of Lecture Notes in Computer
Science, pages 151-178. Springer-Verlag, New York, N.Y., 1991.

[20] C. Dutchyn, P. Lu, D. Szafron, S. Bromling, and W. Holst. Multi-dispatch in the Java virtual machine:
Design and implementation. In Proceedings of 6th Usenixz Conference on Object-Oriented Technologies
and Systems (COOTS’2001), San Antonio, USA, January 2001.

[21] Eastern Research Apple Computer and Technology. Dylan, an object-oriented dynamic language. Apple
Computer, Inc., April 1992.

[22] A. Frey. Approche algébrique du typage d’un langage a la ML avec objets, sous-typage et multi-méthodes.
PhD thesis, Ecole des Mines de Paris, 2005.

[23] R. P. Gabriel, J. L. White, and D. G. Bobrow. CLOS: Integrating object-oriented and functional
programming. Communications of the ACM, 34(9):28-38, September 1991.

[24] J. Garrigue. Code reuse through polymorphic variants. In Workshop on Foundations of Software
Engineering, Sasaguri, Japan, November 2000.

[25] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification. Sunsoft Java Series.
Addison Wesley Developers Press, second edition, 2000.

[26] U. Holzle. Integrating independently-developed components in object-oriented languages. In
ECOOP 93, pages 36-56, 1993.

[27] S. Krishnamurthi, M. Felleisen, and D. P. Friedman. Synthesizing object-oriented and functional design
to promote re-use. Lecture Notes in Computer Science, 1445:91-77, 1998.

[28] C. Lécluse and P. Richard. The O2 database programming language. In P. M. G. Apers and G. Wieder-
hold, editors, Proceedings of the Fifteenth International Conference on Very Large Data Bases, Ams-
terdam, The Netherlands, pages 411-422. Morgan Kaufmann, August 22-25 1989.

146

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml system, documentation
and user’s manual - release 3.05. Technical report, INRIA, July 2002. Documentation distributed with
the Objective Caml system.

X. Leroy and M. Mauny. Dynamics in ML. Journal of Functional Programming, 3(4):431-463, 1993.

T. Lindholm and F. Yellin. The Java Virtual Machine Specification, second edition. Addison-Wesley,
1999.

V. Litvinov. Constraint-based polymorphism in Cecil. In Proceedings of the conference on Object
Oriented Programming Systems Languages and Aplications, volume 33(10), pages 388-411, Vancouver,
Canada, October 1998.

T. Millstein and C. Chambers. Modular statically typed multimethods. In Proceedings of the Thirteenth
European Conference on Object-Oriented Programming (ECOOP’99), volume 1628 of Lecture Notes in
Computer Science, pages 279-303, Lisbon, Portugal, June 1999. Springer Verlag.

T. Millstein, M. Reay, and C. Chambers. Relaxed MultiJava: balancing extensibility and modular
typechecking. In OOPSLA ’03: Proceedings of the 18th annual ACM SIGPLAN conference on Object-
oriented programing, systems, languages, and applications, pages 224-240. ACM Press, 2003.

T. D. Millstein. Reconciling software extensibility with modular program reasoning. PhD thesis, Depart-
ment of Computer Science and Engineering, University of Washington, October 2003.

P. Naur, J. W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, H. Rutishauser,
K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden, and M. Woodger. Report on the
algorithmic language algol 60. Commun. ACM, 3(5):299-314, 1960.

M. Odersky and P. Wadler. Pizza into Java: Translating theory into practice. In Conference Record
of the 24th Annual ACM Symposium on Principles of Programming Languages, pages 146-159, Paris,
Jan. 1997. ACM.

M. Odersky and M. Zenger. Independently extensible solutions to the expression problem. In Proc.
FOOL 12, Jan. 2005. http://homepages.inf.ed.ac.uk/wadler/fool.

J. Palsberg and C. B. Jay. The essence of the visitor pattern. In Proc. 22nd IEEE Int. Computer
Software and Applications Conf., COMPSAC, pages 9-15, 19-21 1998.

D. Rémy and J. Vouillon. Objective ML: An effective object-oriented extension to ML. Theory and
Practice of Object Systems, 4(1):27-50, 1998.

B. Stroustrup. The C++ Programming Language. Addison-Wesley, second edition, 1991.

P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Principles of Programming
Languages, Jan 89.

M. Wand and P. O'Keefe. On the complexity of type inference with coercion. In Proceedings of the
fourth international conference on Functional programming languages and computer architecture, pages
293-298. ACM Press, 1989.

M. Zenger and M. Odersky. Extensible algebraic datatypes with defaults. In ICFP ’01: Proceedings of
the sizth ACM SIGPLAN international conference on Functional programming, pages 241-252. ACM
Press, 2001.

147

