
Introduction An automaton An ML implementation Beyond ML Conclusion 1

Towards efficient, typed LR parsers

François Pottier and Yann Régis-Gianas

June 2005

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 2

Introduction

An automaton

An ML implementation

Beyond ML

Conclusion

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 3

In short

This talk is meant to illustrate how an expressive type system allows
guaranteeing the safety of complex programs.

The programs considered here are LR parsers and the type system is
an extension of ML with generalized algebraic data types (GADTs).

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 4

LR parsers

People like to specify a parser as a context-free grammar, typically
in BNF format, decorated with semantic actions.

People like to implement a parser as a deterministic pushdown
automaton (DPDA).

A grammar is LR if such an implementation is possible.

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 5

LR parser generators

There are tools that generate, out of an LR grammar, a program
that simulates execution of the corresponding automaton.

Can one guarantee the safety of the generated program without
requiring trust in the tool’s correctness ?

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 6

What do existing tools produce ?

Yacc, Bison, etc. produce C programs, with no safety guarantee. They
use a union to represent semantic values, and do not protect
against stack underflow.

ML-Yacc or Happy produce ML or Haskell programs, which are typed.
Yet, runtime exceptions still arise when pattern matching fails, so
safety isn’t quite guaranteed. Furthermore, redundant dynamic tests
incur a runtime penalty.

Before showing any code, let’s have a look at a sample grammar and
automaton.

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 7

Introduction

An automaton

An ML implementation

Beyond ML

Conclusion

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 8

A simple grammar

Here is a very simple LR grammar, drawn from the “Dragon Book:”

(1) E{x} + T{y} → E{x + y}
(2) T{x} → E{x}
(3) T{x} * F{y} → T{x × y}
(4) F{x} → T{x}
(5) (E{x}) → F{x}
(6) int{x} → F{x}

The terminals or tokens are +, *, (,), and int. The non-terminals
are E, T , and F . The first four have no semantic value ; the last four
have an integer semantic value.

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 9

S12
...

S11
...

)

S3
...

+

S10
...

<)> F:Int.
...

S9
...

S8
...

Int

F

S4
...

(

S7
...

*

S6
...

*

S5
...

E

Int

T

F

(

Int

T

F

(

S2
... +

S1
...

Int

T

F

(

E

Here is a pushdown automaton that accepts this grammar.

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 10

S12
...

S11
...

)

S3
...

+

S10
...

<)> F:Int.
...

S9
...

S8
...

Int

F

S4
...

(

S7
...

*

S6
...

*

S5
...

E

Int

T

F

(

Int

T

F

(

S2
... +

S1
...

Int

T

F

(

E

S1

StateStackInput Next action
ε shift S4(int) $

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 11

S12
...

S11
...

)

S3
...

+

S10
...

<)> F:Int.
...

S9
...

S8
...

Int

F

S4
...

(

S7
...

*

S6
...

*

S5
...

E

Int

T

F

(

Int

T

F

(

S2
... +

S1
...

Int

T

F

(

E

S4

StateStackInput Next action
S1 (shift S10int) $

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 12

S12
...

S11
...

)

S3
...

+

S10
...

<)> F:Int.
...

S9
...

S8
...

Int

F

S4
...

(

S7
...

*

S6
...

*

S5
...

E

Int

T

F

(

Int

T

F

(

S2
... +

S1
...

Int

T

F

(

E

S10

StateStackInput Next action
S1 (S4 int reduce int → F , goto F) $

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 13

S12
...

S11
...

)

S3
...

+

S10
...

<)> F:Int.
...

S9
...

S8
...

Int

F

S4
...

(

S7
...

*

S6
...

*

S5
...

E

Int

T

F

(

Int

T

F

(

S2
... +

S1
...

Int

T

F

(

E

StateStackInput Next action
S1 (S4 F goto F) $

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 14

S12
...

S11
...

)

S3
...

+

S10
...

<)> F:Int.
...

S9
...

S8
...

Int

F

S4
...

(

S7
...

*

S6
...

*

S5
...

E

Int

T

F

(

Int

T

F

(

S2
... +

S1
...

Int

T

F

(

E

S5

StateStackInput Next action
S1 (S4 F reduce F → T , goto T) $

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 15

S12
...

S11
...

)

S3
...

+

S10
...

<)> F:Int.
...

S9
...

S8
...

Int

F

S4
...

(

S7
...

*

S6
...

*

S5
...

E

Int

T

F

(

Int

T

F

(

S2
... +

S1
...

Int

T

F

(

E

S6

StateStackInput Next action
S1 (S4 T reduce T → E, goto E) $

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 16

S12
...

S11
...

)

S3
...

+

S10
...

<)> F:Int.
...

S9
...

S8
...

Int

F

S4
...

(

S7
...

*

S6
...

*

S5
...

E

Int

T

F

(

Int

T

F

(

S2
... +

S1
...

Int

T

F

(

E

S11

StateStackInput Next action
S1 (S4 E shift S12) $

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 17

S12
...

S11
...

)

S3
...

+

S10
...

<)> F:Int.
...

S9
...

S8
...

Int

F

S4
...

(

S7
...

*

S6
...

*

S5
...

E

Int

T

F

(

Int

T

F

(

S2
... +

S1
...

Int

T

F

(

E

S12

StateStackInput Next action
S1 (S4 E S11) reduce (E) → F , goto F$

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 18

S12
...

S11
...

)

S3
...

+

S10
...

<)> F:Int.
...

S9
...

S8
...

Int

F

S4
...

(

S7
...

*

S6
...

*

S5
...

E

Int

T

F

(

Int

T

F

(

S2
... +

S1
...

Int

T

F

(

E

S5

StateStackInput Next action
S1 F reduce F → T , goto T$

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 19

S12
...

S11
...

)

S3
...

+

S10
...

<)> F:Int.
...

S9
...

S8
...

Int

F

S4
...

(

S7
...

*

S6
...

*

S5
...

E

Int

T

F

(

Int

T

F

(

S2
... +

S1
...

Int

T

F

(

E

S6

StateStackInput Next action
S1 T reduce T → E, goto E$

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 20

S12
...

S11
...

)

S3
...

+

S10
...

<)> F:Int.
...

S9
...

S8
...

Int

F

S4
...

(

S7
...

*

S6
...

*

S5
...

E

Int

T

F

(

Int

T

F

(

S2
... +

S1
...

Int

T

F

(

E

S2

StateStackInput Next action
S1 E accept$

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 21

Introduction

An automaton

An ML implementation

Beyond ML

Conclusion

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 22

Lexer interface

Tokens are made up of a tag and possibly of a semantic value:

type token = KPlus | KStar | KLeft | KRight | KEnd | KInt of int

The lexer provides two functions for looking up and for discarding the
current token:

val peek : unit → token
val discard : unit → unit

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 23

Data structures

The type of states is easily defined:

type state = S0 | S1 | . . . | S11

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 24

Data structures (cont’d)

The stack is made up of pairs of a state and a semantic value
whose type depends on the non-terminal with which it is associated.
This is a linked list of tagged cells.

type stack =
| SEmpty
| SPlus of stack × state
| SStar of stack × state
| SLeft of stack × state
| SRight of stack × state
| SInt of stack × state × int
| SE of stack × state × int
| ST of stack × state × int
| SF of stack × state × int

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 25

Implementation (general structure)

The automaton is simulated by run. Out of the current state, stack,
and (implicitly) token stream, this function either produces a
semantic value for the entire parse or fails.

let rec run (s : state) (stack : stack) : int =
match s, peek() with
| . . . (∗ shift or reduce transitions ∗)
| , →

raise SyntaxError

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 26

Implementation (shift)

A shift transition pushes the current state and the semantic value
for the current token onto the stack, discards the current token,
and changes the current state:

let rec run (s : state) (stack : stack) : int =
match s, peek() with
| . . .
| S9, KStar → (∗ shift S7 ∗)

discard ();
run S7 (SStar (stack, S9))

| . . .

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 27

Implementation (reduce)

A reduce transition pops a number of semantic values off the stack
and exploits them to compute a new one, which is pushed back onto
the stack.

let rec run (s : state) (stack : stack) : int =
match s, peek() with
| . . .
| S9, KPlus → (∗ reduce E{x} + T{y} → E{x + y} ∗)

let ST (SPlus (SE (stack, s , x),), , y) = stack in
let stack = SE (stack, s, x + y) in
gotoE s stack (∗ goto E ∗)

| . . .

Observe that pattern matching is nonexhaustive.

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 28

Implementation (end)

A goto transition examines the state that was popped off the stack
during reduction and changes the current state.

and gotoE (s : state) : stack → int =
match s with
| S0 →

run S1
| S4 →

run S8

Again, pattern matching is nonexhaustive.

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 29

In short

This program is considered well-typed by an ML compiler. Yet, the
compiler warns about nonexhaustive pattern matching, which means
that the absence of runtime failures is not guaranteed.

The problem is to modify the program so that every pattern
matching becomes exhaustive. Suppressing redundant dynamic tests
will lead to a safety guarantee as well as better efficiency.

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 30

Introduction

An automaton

An ML implementation

Beyond ML

Conclusion

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 31

Why are these tests redundant ?

The dynamic tests performed during the previous reduce transition
are redundant because, when the automaton is in state S9, the
stack must be of the form

. . . ? E ? + ? T

The dynamic tests performed during the previous goto E transition
are redundant because, when the automaton is in state S9, the
stack must be of the form

. . . (S0 | S4) ? ? ? ? ?

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 32

The invariant (fragment)

In fact, one can prove that, when the automaton is in state S9, the
stack must be of the form

. . . (S0 | S4) E (S1 | S8) + S6 T

More generally, knowledge of the current state determines a suffix of
the stack...

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 33

The full invariant

Stack State

ε S0

ε S0 E S1

. . . (S0 | S4) T S2

. . . (S0 | S4 | S6) F S3

. . . (S0 | S4 | S6 | S7) (S4

. . . (S0 | S4 | S6 | S7) int S5

. . . (S0 | S4) E (S1 | S8) + S6

. . . (S0 | S4 | S6) T (S2 | S9) * S7

. . . (S0 | S4 | S6 | S7) (S4 E S8

. . . (S0 | S4) E (S1 | S8) + S6 T S9

. . . (S0 | S4 | S6) T (S2 | S9) * S7 F S10

. . . (S0 | S4 | S6 | S7) (S4 E S8) S11

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 34

Towards more precise types

It is easy to manually prove, by structural induction over a run of
the automaton, that the invariant is sound.

For this invariant to be exploited by the compiler, it has to be
explicitly provided and mechanically verified.

The programming language must come with a type system that is
sufficiently expressive to allow encoding the invariant.

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 35

The idea

On must tell the compiler about the correlation between the current
state and the structure of the stack.

To this end, one parameterizes the type state with a type variable α.
The idea is, if the current state has type α state, then the current
stack has type α.

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 36

The structure of stacks

The type stack disappears. The structure of stacks is defined by a
family of parameterized types, which are independent of one another:

type empty = SEmpty
type α cellPlus = SPlus of α × α state
type α cellStar = SStar of α × α state
type α cellLeft = SLeft of α × α state
type α cellRight = SRight of α × α state
type α cellInt = SInt of α × α state × int
type α cellE = SE of α × α state × int
type α cellT = ST of α × α state × int
type α cellF = SF of α × α state × int

(Compare to the original definition.)

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 37

Encoding the invariant (fragment)

The fact that, when the automaton is in state S9, the stack must
be of the form

. . . ? E ? + ? T,

is encoded by assigning the data constructor S9 the type

∀α.α cE cP cT state

and similarly for other states.

Such a declaration is impossible in ML! The type state is a
generalized algebraic data type (GADT).

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 38

The structure of states

type state : ∗ → ∗ where
| S0 : empty state
| S1 : empty cE state
| S2 : ∀α.α cT state
| S3 : ∀α.α cF state
| S4 : ∀α.α cL state
| S5 : ∀α.α cI state
| S6 : ∀α.α cE cP state
| S7 : ∀α.α cT cS state
| S8 : ∀α.α cL cE state
| S9 : ∀α.α cE cP cT state
| S10 : ∀α.α cT cS cF state
| S11 : ∀α.α cL cE cR state

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 39

Implementation (general structure)

The type of run changes: it now accepts an arbitrary state and a
stack whose structure is consistent with respect to that state.

let rec run : ∀α.α state → α → int =
fun s stack →
match s, peek() with
| . . .
| , →

raise SyntaxError

(Compare to the original type.)

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 40

Implementation (shift)

The code for shift transitions is unchanged, but typechecking
becomes more subtle.

let rec run : ∀α.α state → α → int =
fun s stack →
match s, peek() with
| S9, KStar →

(∗ SStar (stack, S9) has type α cS ∗)
(∗ run S7 has type ∀γ.γ cT cS → int ∗)
(∗ Furthermore , α = β cE cP cT, for an unknown β ∗)
(∗ Thus α cS = γ cT cS, where γ = β cE cP ∗)
discard ();
run S7 (SStar (stack, S9))

(Consult the definition of the type of states.)

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 41

Implementation (reduce)

The code for reduce transitions is also unchanged, but pattern
matching is now exhaustive.

let rec run : ∀α.α state → α → int =
fun s stack →
match s, peek() with
| S9, KPlus →

(∗ α = β cE cP cT, for an unknown β ∗)
(∗ Thus stack : β cE cP cT ∗)
let ST (SPlus (SE (stack, s , x),), , y) = stack in
(∗ stack : β, s : β state, x : int, y : int ∗)
let stack = SE (stack, s, x + y) in
(∗ stack : β cE ∗)
gotoE s stack

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 42

Implementation (end)

The type ascribed to gotoE states that at the top of the stack is
a cell associated with the non-terminal E and that the remainder of
the stack must be consistent with state s.

and gotoE : ∀α.α state → α cE → int =
fun s →
match s with
| S0 →

run S1
| S4 →

(∗ run S8 has type β cL cE → int, for every β ∗)
(∗ Furthermore , α = β cL, for an unknown β ∗)
run S8

(Here, pattern matching remains nonexhaustive.)

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 43

In short

We have encoded part of the invariant into data type declarations
and into the types ascribed to run and goto. In fact, the whole
invariant can be encoded.

Then, typechecking involves proving the invariant.

Pattern matching provides type equations with local scope. Shared
type variables allow coordinating data structures.

All this is typical of GADTs.

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 44

Introduction

An automaton

An ML implementation

Beyond ML

Conclusion

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 45

Results

We have obtained a safety guarantee about the generated parser,
without requiring trust in the generator.

The tool that produces the automaton knows the invariant, or thinks
it knows, and produces appropriate data type declarations without
difficulty.

If the tool produces an incorrect program, the latter is rejected by
the compiler.

Trusting the compiler remains necessary, unless of course a certifying
compiler is used.

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 46

Towards more proofs in programs

We have exploited a very expressive type system to prove the safety
of a program.

Proof assistants have allowed this, and more, for a long time. Here,
however, we have remained within the framework of a programming
language equipped, in particular, with a powerful type inference
mechanism and with an extremely efficient compilation scheme.

Narrowing the gap between programming and proving is probably a
worthy (long-term ?) research goal.

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

Introduction An automaton An ML implementation Beyond ML Conclusion 47

References

Slides, draft paper, and prototype implementations of the typechecker
and parser generator are available online:

http: // cristal. inria. fr/ ~fpottier/

http: // cristal. inria. fr/ ~regisgia/

François Pottier and Yann Régis-Gianas Towards efficient, typed LR parsers

http://cristal.inria.fr/~fpottier/
http://cristal.inria.fr/~regisgia/

	Introduction
	An automaton
	An ML implementation
	Beyond ML
	Conclusion

