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In short

This talk is meant to illustrate how an expressive type system allows
guaranteeing the safety of complex programs.

The programs considered here are LR parsers and the type system is
an extension of ML with generalized algebraic data types (GADTs).
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LR parsers

People like to specify a parser as a context-free grammar, typically
in BNF format, decorated with semantic actions.

People like to implement a parser as a deterministic pushdown
automaton (DPDA).

A grammar is LR if such an implementation is possible.
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LR parser generators

There are tools that generate, out of an LR grammar, a program
that simulates execution of the corresponding automaton.

Can one guarantee the safety of the generated program without
requiring trust in the tool’s correctness ?
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What do existing tools produce ?

Yacc, Bison, etc. produce C programs, with no safety guarantee. They
use a union to represent semantic values, and do not protect
against stack underflow.

ML-Yacc or Happy produce ML or Haskell programs, which are typed.
Yet, runtime exceptions still arise when pattern matching fails, so
safety isn’t quite guaranteed. Furthermore, redundant dynamic tests
incur a runtime penalty.

Before showing any code, let’s have a look at a sample grammar and
automaton.
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A simple grammar

Here is a very simple LR grammar, drawn from the “Dragon Book:”

(1) E{x} + T{y} → E{x + y}
(2) T{x} → E{x}
(3) T{x} * F{y} → T{x × y}
(4) F{x} → T{x}
(5) ( E{x} ) → F{x}
(6) int{x} → F{x}

The terminals or tokens are +, *, (, ), and int. The non-terminals
are E, T , and F . The first four have no semantic value ; the last four
have an integer semantic value.
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Lexer interface

Tokens are made up of a tag and possibly of a semantic value:

type token = KPlus | KStar | KLeft | KRight | KEnd | KInt of int

The lexer provides two functions for looking up and for discarding the
current token:

val peek : unit → token
val discard : unit → unit
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Data structures

The type of states is easily defined:

type state = S0 | S1 | . . . | S11
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Data structures (cont’d)

The stack is made up of pairs of a state and a semantic value
whose type depends on the non-terminal with which it is associated.
This is a linked list of tagged cells.

type stack =
| SEmpty
| SPlus of stack × state
| SStar of stack × state
| SLeft of stack × state
| SRight of stack × state
| SInt of stack × state × int
| SE of stack × state × int
| ST of stack × state × int
| SF of stack × state × int
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Implementation (general structure)

The automaton is simulated by run. Out of the current state, stack,
and (implicitly) token stream, this function either produces a
semantic value for the entire parse or fails.

let rec run (s : state) (stack : stack) : int =
match s, peek() with
| . . . (∗ shift or reduce transitions ∗)
| , →

raise SyntaxError
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Implementation (shift)

A shift transition pushes the current state and the semantic value
for the current token onto the stack, discards the current token,
and changes the current state:

let rec run (s : state) (stack : stack) : int =
match s, peek() with
| . . .
| S9, KStar → (∗ shift S7 ∗)

discard ();
run S7 (SStar (stack, S9))

| . . .
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Implementation (reduce)

A reduce transition pops a number of semantic values off the stack
and exploits them to compute a new one, which is pushed back onto
the stack.

let rec run (s : state) (stack : stack) : int =
match s, peek() with
| . . .
| S9, KPlus → (∗ reduce E{x} + T{y} → E{x + y} ∗)

let ST (SPlus (SE (stack, s , x ), ), , y) = stack in
let stack = SE (stack, s, x + y) in
gotoE s stack (∗ goto E ∗)

| . . .

Observe that pattern matching is nonexhaustive.
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Implementation (end)

A goto transition examines the state that was popped off the stack
during reduction and changes the current state.

and gotoE (s : state) : stack → int =
match s with
| S0 →

run S1
| S4 →

run S8

Again, pattern matching is nonexhaustive.
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In short

This program is considered well-typed by an ML compiler. Yet, the
compiler warns about nonexhaustive pattern matching, which means
that the absence of runtime failures is not guaranteed.

The problem is to modify the program so that every pattern
matching becomes exhaustive. Suppressing redundant dynamic tests
will lead to a safety guarantee as well as better efficiency.
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Why are these tests redundant ?

The dynamic tests performed during the previous reduce transition
are redundant because, when the automaton is in state S9, the
stack must be of the form

. . . ? E ? + ? T

The dynamic tests performed during the previous goto E transition
are redundant because, when the automaton is in state S9, the
stack must be of the form

. . . (S0 | S4) ? ? ? ? ?
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The invariant (fragment)

In fact, one can prove that, when the automaton is in state S9, the
stack must be of the form

. . . (S0 | S4) E (S1 | S8) + S6 T

More generally, knowledge of the current state determines a suffix of
the stack...
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The full invariant

Stack State

ε S0

ε S0 E S1

. . . (S0 | S4) T S2

. . . (S0 | S4 | S6) F S3

. . . (S0 | S4 | S6 | S7) ( S4

. . . (S0 | S4 | S6 | S7) int S5

. . . (S0 | S4) E (S1 | S8) + S6

. . . (S0 | S4 | S6) T (S2 | S9) * S7

. . . (S0 | S4 | S6 | S7) ( S4 E S8

. . . (S0 | S4) E (S1 | S8) + S6 T S9

. . . (S0 | S4 | S6) T (S2 | S9) * S7 F S10

. . . (S0 | S4 | S6 | S7) ( S4 E S8 ) S11
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Towards more precise types

It is easy to manually prove, by structural induction over a run of
the automaton, that the invariant is sound.

For this invariant to be exploited by the compiler, it has to be
explicitly provided and mechanically verified.

The programming language must come with a type system that is
sufficiently expressive to allow encoding the invariant.
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The idea

On must tell the compiler about the correlation between the current
state and the structure of the stack.

To this end, one parameterizes the type state with a type variable α.
The idea is, if the current state has type α state, then the current
stack has type α.
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The structure of stacks

The type stack disappears. The structure of stacks is defined by a
family of parameterized types, which are independent of one another:

type empty = SEmpty
type α cellPlus = SPlus of α × α state
type α cellStar = SStar of α × α state
type α cellLeft = SLeft of α × α state
type α cellRight = SRight of α × α state
type α cellInt = SInt of α × α state × int
type α cellE = SE of α × α state × int
type α cellT = ST of α × α state × int
type α cellF = SF of α × α state × int

(Compare to the original definition.)
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Encoding the invariant (fragment)

The fact that, when the automaton is in state S9, the stack must
be of the form

. . . ? E ? + ? T,

is encoded by assigning the data constructor S9 the type

∀α.α cE cP cT state

and similarly for other states.

Such a declaration is impossible in ML! The type state is a
generalized algebraic data type (GADT).
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The structure of states

type state : ∗ → ∗ where
| S0 : empty state
| S1 : empty cE state
| S2 : ∀α.α cT state
| S3 : ∀α.α cF state
| S4 : ∀α.α cL state
| S5 : ∀α.α cI state
| S6 : ∀α.α cE cP state
| S7 : ∀α.α cT cS state
| S8 : ∀α.α cL cE state
| S9 : ∀α.α cE cP cT state
| S10 : ∀α.α cT cS cF state
| S11 : ∀α.α cL cE cR state
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Implementation (general structure)

The type of run changes: it now accepts an arbitrary state and a
stack whose structure is consistent with respect to that state.

let rec run : ∀α.α state → α → int =
fun s stack →
match s, peek() with
| . . .
| , →

raise SyntaxError

(Compare to the original type.)
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Implementation (shift)

The code for shift transitions is unchanged, but typechecking
becomes more subtle.

let rec run : ∀α.α state → α → int =
fun s stack →
match s, peek() with
| S9, KStar →

(∗ SStar (stack, S9) has type α cS ∗)
(∗ run S7 has type ∀γ.γ cT cS → int ∗)
(∗ Furthermore , α = β cE cP cT, for an unknown β ∗)
(∗ Thus α cS = γ cT cS, where γ = β cE cP ∗)
discard ();
run S7 (SStar (stack, S9))

(Consult the definition of the type of states.)
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Implementation (reduce)

The code for reduce transitions is also unchanged, but pattern
matching is now exhaustive.

let rec run : ∀α.α state → α → int =
fun s stack →
match s, peek() with
| S9, KPlus →

(∗ α = β cE cP cT, for an unknown β ∗)
(∗ Thus stack : β cE cP cT ∗)
let ST (SPlus (SE (stack, s , x ), ), , y) = stack in
(∗ stack : β, s : β state, x : int, y : int ∗)
let stack = SE (stack, s, x + y) in
(∗ stack : β cE ∗)
gotoE s stack
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Implementation (end)

The type ascribed to gotoE states that at the top of the stack is
a cell associated with the non-terminal E and that the remainder of
the stack must be consistent with state s.

and gotoE : ∀α.α state → α cE → int =
fun s →
match s with
| S0 →

run S1
| S4 →

(∗ run S8 has type β cL cE → int, for every β ∗)
(∗ Furthermore , α = β cL, for an unknown β ∗)
run S8

(Here, pattern matching remains nonexhaustive.)
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In short

We have encoded part of the invariant into data type declarations
and into the types ascribed to run and goto. In fact, the whole
invariant can be encoded.

Then, typechecking involves proving the invariant.

Pattern matching provides type equations with local scope. Shared
type variables allow coordinating data structures.

All this is typical of GADTs.
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Results

We have obtained a safety guarantee about the generated parser,
without requiring trust in the generator.

The tool that produces the automaton knows the invariant, or thinks
it knows, and produces appropriate data type declarations without
difficulty.

If the tool produces an incorrect program, the latter is rejected by
the compiler.

Trusting the compiler remains necessary, unless of course a certifying
compiler is used.
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Towards more proofs in programs

We have exploited a very expressive type system to prove the safety
of a program.

Proof assistants have allowed this, and more, for a long time. Here,
however, we have remained within the framework of a programming
language equipped, in particular, with a powerful type inference
mechanism and with an extremely efficient compilation scheme.

Narrowing the gap between programming and proving is probably a
worthy (long-term ?) research goal.
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