
1

A Simple View of Type-Secure Information Flow

in theπ-Calculus

François Pottier, INRIA CSFW’15

2

Outline

1. Type-based information flow analysis

2. A modular proof technique

3. Illustration 1:π-calculus under may-testing equivalence

4. Illustration 2:π-calculus under weak bisimulation equivalence (this paper)

5. Conclusion

François Pottier, INRIA CSFW’15

3

Type-based information flow analysis

4

Defining information flow

Consider a sequential programP of one input and one output.P allows (some)

information toflow from its input to its output if varying the former causes the latter to

vary, that is, if the latterdependson the former:

∃xy P (x) 6= P (y)

The negation is callednon-interference(Goguen and Meseguer, 1982):

∀xy P (x) = P (y)

More generally, ifP is a process with one input and≈ is a notion of process

equivalence, then

∀xy P (x) ≈ P (y)

states that there is no flow of information fromP ’s input to “the observer”.

Type-based information flow analysis

5

Language-based (type-based) information flow control

• The system is (viewed as) aprogram,

• whosesemanticsit is easy to reason about,

• making astaticanalysis possible.

• Type-based analyses arecompositional.

• Types can be viewed as aspecificationlanguage.

• This approach yields onlytypedobservational equivalences.

Type-based information flow analysis

6

A modular proof technique

7

A modular proof technique

A type-based information flow analysis can be proved correct as follows:

• define an instrumented semantics, that is, adynamicdependency analysis;

• prove it correct;

• define a type system for it, that is, astaticapproximation of it;

• prove it correct (subject reduction);

• derive a non-interference statement from the above.

The first part is about making dependencies explicit, and need not be concerned with

types. The second part is a standard type preservation argument (albeit for a

non-standard semantics).

A modular proof technique

8

Illustration 1:π-calculus under may-testing

equivalence

9

Dynamic analysis: a labelled π-calculus

A π-calculus where (say) messages are labelled (` ∈ {L, H}):

P ::= 0 | (P | P) | νx.P | !P | x(ỹ).P | ` : x̄〈z̃〉

Operational semantics:

x(ỹ).P | ` : x̄〈z̃〉 → ` •P [z̃/ỹ]

Inspired by Abadiet al.’s labelledλ-calculus (1996). Similar to Sewell and Vitek’s

colouredπ-calculus (1999).

Illustration 1:π-calculus under may-testing equivalence

10

Properties of the labelled π-calculus

A prefix ordering is generated by0 ≤ P . An erasure function is generated by

bH : x̄〈z̃〉c = 0. Then:

Adding more sub-processes does not prohibit existing reductions.

Monotonicity. If P → Q andP ≤ P ′, thenP ′ → · ≥ Q.

Reducts of high-level sub-processes are high-level.

Stability (1). If P → Q, thenbP c → · ≥ bQc.

Corollary:

Stability (*). If P →? Q, thenbP c →? · ≥ bQc.

Illustration 1:π-calculus under may-testing equivalence

11

Static approximation: typing the labelled π-calculus

Let types be given byt ::= 〈t̃〉`. Define a type system which satisfies the following

properties:

Types are preserved by reduction.

Subject reduction. P → Q andΓ ` P imply Γ ` Q.

Messages on channels of low type have low labels.

Barb preservation. If x : 〈〉L ` P andP ↓x, thenbP c ↓x.

Note that this type system guarantees asafetyproperty. Its design is guided by the

labelled semantics.

Illustration 1:π-calculus under may-testing equivalence

12

Non-interference statements

Weak barbs on channels of low type are preserved by erasure.

Non-interference. If x : 〈〉L ` P andP ⇓x, thenbP c ⇓x.

Proof. AssumeP →? P ′ andP ′ ↓x. By subject reduction and barb preservation,

bP ′c ↓x. Furthermore, by stability,bP c →? · ≥ bP ′c. This impliesbP c ⇓x.

Two processes which differ only in high-level components have the same weak barbs on

channels of low type.

Non-interference. If x : 〈〉L ` P, Q andbP c = bQc thenP ≈may Q.

Illustration 1:π-calculus under may-testing equivalence

13

Illustration 2:π-calculus under weak bisimulation

equivalence

14

May-testing vs. weak bisimulation equivalence

The processνy.(y.x̄ | ȳ | H : y.0) only has low barbs atx, so it is may-testing

equivalent to its erasureνy.(y.x̄ | ȳ). Yet they are not bisimilar, since the former may

remain silent forever, while the latter must emit a signal onx.

Thus, under bisimulation equivalence, information may flow between several receivers

on a single channel.

The dynamic dependency analysis, as well as its static counterpart, must then report

more potential dependencies.

Illustration 2:π-calculus under weak bisimulation equivalence

15

Dynamic analysis: the 〈π〉-calculus

The〈π〉-calculus is defined as an extension of theπ-calculus. (Brackets cannot be

nested.)

P ::= . . . | 〈P 〉1 | 〈P 〉2

A 〈π〉-calculus term encodes apair of π-calculus terms. For instance,P | 〈Q〉1 and

〈P | Q〉1 | 〈P 〉2 both encode the pair(P | Q, P).

Brackets encode thedifferencesbetween two processes, i.e. their high-level parts, while

the low-level parts areshared.

Two projectionfunctions map a〈π〉-calculus term to the twoπ-calculus terms which it

encodes. In particular,b〈P 〉ici = P andb〈P 〉jci = 0, for {i, j} = {1, 2}.

Inspired by joint work with Vincent Simonet (POPL 2002).

Illustration 2:π-calculus under weak bisimulation equivalence

16

Semantics

Communication is dealt with bytwo reduction rules: a standard one, and one that moves

brackets out of the way.

x(ỹ).P | x̄〈z̃〉 → P [z̃/ỹ]

M | 〈N〉i → 〈bMci | N〉i | 〈bMcj〉j if {i, j} = {1, 2}
andbMci | N mayreact

The former applies within or outside brackets. The latter leaves both projections

unchanged; it only keeps track of dependencies. Note that it reflects the flow of

information even in theabsenceof communication.

Illustration 2:π-calculus under weak bisimulation equivalence

17

Properties of the 〈π〉-calculus

The〈π〉-calculus encodes valid reductions only.

Soundness.If P → P ′, thenbP ci →? bP ′ci.

The〈π〉-calculus encodes all valid reductions.

Completeness.(simplified) AssumebP ci → Q. Then, there existsP ′ such that

P →? P ′ andbP ′ci = Q.

In short, projection establishes a (weak)bisimulationbetween theπ-calculus and the

〈π〉-calculus.

Illustration 2:π-calculus under weak bisimulation equivalence

18

Static approximation: typing the 〈π〉-calculus

Let types be given byt ::= 〈t̃〉`. Define a type system which satisfies the following

properties:

Types are preserved by reduction.

Subject reduction. P → Q andΓ ` P imply Γ ` Q.

Messages on channels of low type cannot appear within brackets.

Barb preservation. If x : 〈〉L ` P andP ↓x, thenbP c ↓x.

Again, this type system guarantees asafetyproperty. Again, its design is guided by the

semantics of the〈π〉-calculus.

Illustration 2:π-calculus under weak bisimulation equivalence

19

Non-interference statement

Non-interference. If x : 〈〉L ` P , thenbP c1 ≈ bP c2.

One may say that the〈π〉-calculus and its type system are simply a structured

description of the bisimulationinvariant.

Illustration 2:π-calculus under weak bisimulation equivalence

20

Conclusion

21

Conclusion

I have sketched a couple oftwo-stepapproaches to establishing the correctness of a

type-based information flow analysis, separating a purelydynamicanalysis, on the one

hand, and astaticapproximation, on the other hand.

• these approaches yield manageable, modular proofs;

• on the down-side, not all analyses can be decomposed in this way. For instance, the

dynamic analysis may require type information, introducing a circularity.

Conclusion

