A Simple View of Type-Secure Information Flow in the π -Calculus

1

Outline

- 1. Type-based information flow analysis
- 2. A modular proof technique
- 3. Illustration 1: π -calculus under may-testing equivalence
- 4. Illustration 2: π -calculus under weak bisimulation equivalence (*this paper*)
- 5. Conclusion

Type-based information flow analysis

Defining information flow

Consider a sequential program P of one input and one output. P allows (some) information to *flow* from its input to its output if varying the former causes the latter to vary, that is, if the latter *depends* on the former:

 $\exists xy \quad P(x) \neq P(y)$

The negation is called *non-interference* (Goguen and Meseguer, 1982):

$$\forall xy \quad P(x) = P(y)$$

More generally, if P is a process with one input and \approx is a notion of process equivalence, then

$$\forall xy \quad P(x) \approx P(y)$$

states that there is no flow of information from P's input to "the observer".

Type-based information flow analysis

Language-based (type-based) information flow control

- The system is (viewed as) a *program*,
- whose *semantics* it is easy to reason about,
- making a *static* analysis possible.
- Type-based analyses are *compositional*.
- Types can be viewed as a *specification* language.
- This approach yields only *typed* observational equivalences.

Type-based information flow analysis

A modular proof technique

A modular proof technique

A type-based information flow analysis can be proved correct as follows:

- define an instrumented semantics, that is, a *dynamic* dependency analysis;
- prove it correct;
- define a type system for it, that is, a *static* approximation of it;
- prove it correct (*subject reduction*);
- derive a non-interference statement from the above.

The first part is about making dependencies explicit, and need not be concerned with types. The second part is a standard type preservation argument (albeit for a non-standard semantics).

Illustration 1: π -calculus under may-testing equivalence

Dynamic analysis: a labelled π -calculus

A π -calculus where (say) messages are labelled ($\ell \in \{L, H\}$):

$$P ::= 0 \mid (P \mid P) \mid \nu x . P \mid !P \mid x(\tilde{y}) . P \mid \ell : \bar{x} \langle \tilde{z} \rangle$$

Operational semantics:

$$x(\tilde{y}).P \mid \ell : \bar{x}\langle \tilde{z} \rangle \to \ell \bullet P[\tilde{z}/\tilde{y}]$$

Inspired by Abadi *et al.*'s labelled λ -calculus (1996). Similar to Sewell and Vitek's coloured π -calculus (1999).

Illustration 1: π -calculus under may-testing equivalence

Properties of the labelled π -calculus

A prefix ordering is generated by $0 \le P$. An erasure function is generated by $\lfloor \mathbf{H} : \bar{x} \langle \tilde{z} \rangle \rfloor = 0$. Then:

Adding more sub-processes does not prohibit existing reductions. Monotonicity. If $P \to Q$ and $P \leq P'$, then $P' \to \cdot \geq Q$.

Reducts of high-level sub-processes are high-level. **Stability (1).** If $P \to Q$, then $\lfloor P \rfloor \to \cdot \geq \lfloor Q \rfloor$.

Corollary: **Stability (*).** If $P \to^* Q$, then $\lfloor P \rfloor \to^* \cdot \geq \lfloor Q \rfloor$.

Illustration 1: π -calculus under may-testing equivalence

Static approximation: typing the labelled π -calculus

Let types be given by $t ::= \langle \tilde{t} \rangle^{\ell}$. Define a type system which satisfies the following properties:

Types are preserved by reduction. **Subject reduction.** $P \rightarrow Q$ and $\Gamma \vdash P$ imply $\Gamma \vdash Q$.

Messages on channels of low type have low labels. **Barb preservation.** If $x : \langle \rangle^{L} \vdash P$ and $P \downarrow_{x}$, then $\lfloor P \rfloor \downarrow_{x}$.

Note that this type system guarantees a *safety* property. Its design is guided by the labelled semantics.

Non-interference statements

Weak barbs on channels of low type are preserved by erasure. Non-interference. If $x : \langle \rangle^{L} \vdash P$ and $P \Downarrow_{x}$, then $\lfloor P \rfloor \Downarrow_{x}$.

Proof. Assume $P \to^{\star} P'$ and $P' \downarrow_x$. By subject reduction and barb preservation, $\lfloor P' \rfloor \downarrow_x$. Furthermore, by stability, $\lfloor P \rfloor \to^{\star} \cdot \geq \lfloor P' \rfloor$. This implies $\lfloor P \rfloor \Downarrow_x$.

Two processes which differ only in high-level components have the same weak barbs on channels of low type. Non-interference. If $x : \langle \rangle^{L} \vdash P, Q$ and |P| = |Q| then $P \approx_{may} Q$.

Illustration 2: π -calculus under weak bisimulation equivalence

May-testing vs. weak bisimulation equivalence

The process $\nu y.(y.\bar{x} | \bar{y} | H: y.0)$ only has low barbs at x, so it is may-testing equivalent to its erasure $\nu y.(y.\bar{x} | \bar{y})$. Yet they are not bisimilar, since the former may remain silent forever, while the latter must emit a signal on x.

Thus, under bisimulation equivalence, information may flow between several receivers on a single channel.

The dynamic dependency analysis, as well as its static counterpart, must then report more potential dependencies.

Dynamic analysis: the $\langle \pi \rangle$ -calculus

The $\langle \pi \rangle$ -calculus is defined as an extension of the π -calculus. (Brackets cannot be nested.)

$$P \quad ::= \quad \dots \mid \langle P \rangle_1 \mid \langle P \rangle_2$$

A $\langle \pi \rangle$ -calculus term encodes a *pair* of π -calculus terms. For instance, $P \mid \langle Q \rangle_1$ and $\langle P \mid Q \rangle_1 \mid \langle P \rangle_2$ both encode the pair $(P \mid Q, P)$.

Brackets encode the *differences* between two processes, i.e. their high-level parts, while the low-level parts are *shared*.

Two *projection* functions map a $\langle \pi \rangle$ -calculus term to the two π -calculus terms which it encodes. In particular, $\lfloor \langle P \rangle_i \rfloor_i = P$ and $\lfloor \langle P \rangle_j \rfloor_i = 0$, for $\{i, j\} = \{1, 2\}$.

Inspired by joint work with Vincent Simonet (POPL 2002).

Semantics

Communication is dealt with by *two* reduction rules: a standard one, and one that moves brackets out of the way.

$$\begin{aligned} x(\tilde{y}).P \mid \bar{x}\langle \tilde{z} \rangle &\to P[\tilde{z}/\tilde{y}] \\ M \mid \langle N \rangle_i &\to \langle \lfloor M \rfloor_i \mid N \rangle_i \mid \langle \lfloor M \rfloor_j \rangle_j & \text{if } \{i, j\} = \{1, 2\} \\ \text{and } \lfloor M \rfloor_i \mid N \text{ may react} \end{aligned}$$

The former applies within or outside brackets. The latter leaves both projections unchanged; it only keeps track of dependencies. Note that it reflects the flow of information even in the *absence* of communication.

Properties of the $\langle \pi \rangle$ -calculus

The $\langle \pi \rangle$ -calculus encodes valid reductions only. Soundness. If $P \to P'$, then $\lfloor P \rfloor_i \to^* \lfloor P' \rfloor_i$.

The $\langle \pi \rangle$ -calculus encodes all valid reductions. **Completeness.** (simplified) Assume $\lfloor P \rfloor_i \to Q$. Then, there exists P' such that $P \to^* P'$ and $\lfloor P' \rfloor_i = Q$.

In short, projection establishes a (weak) *bisimulation* between the π -calculus and the $\langle \pi \rangle$ -calculus.

Static approximation: typing the $\langle \pi \rangle$ -calculus

Let types be given by $t ::= \langle \tilde{t} \rangle^{\ell}$. Define a type system which satisfies the following properties:

Types are preserved by reduction. **Subject reduction.** $P \rightarrow Q$ and $\Gamma \vdash P$ imply $\Gamma \vdash Q$.

Messages on channels of low type cannot appear within brackets. **Barb preservation.** If $x : \langle \rangle^{L} \vdash P$ and $P \downarrow_{x}$, then $\lfloor P \rfloor \downarrow_{x}$.

Again, this type system guarantees a *safety* property. Again, its design is guided by the semantics of the $\langle \pi \rangle$ -calculus.

Non-interference statement

Non-interference. If $x : \langle \rangle^{\mathsf{L}} \vdash P$, then $\lfloor P \rfloor_1 \approx \lfloor P \rfloor_2$.

One may say that the $\langle \pi \rangle$ -calculus and its type system are simply a structured description of the bisimulation *invariant*.

Conclusion

Conclusion

I have sketched a couple of *two-step* approaches to establishing the correctness of a type-based information flow analysis, separating a purely *dynamic* analysis, on the one hand, and a *static* approximation, on the other hand.

- these approaches yield manageable, modular proofs;
- on the down-side, not all analyses can be decomposed in this way. For instance, the dynamic analysis may require type information, introducing a circularity.