
François Pottier JFLA 2024

Correct,
Fast LR(1)
Unparsing

The Big Picture

characters tokens AST

CST

lex
grow and
interpret

grow interpret

parsing

The Big Picture

characters tokens AST

CST

lex
grow and
interpret

grow interpret

parsing

unparsing

The Big Picture

characters tokens AST

CST

lex
grow and
interpret

grow interpret

parsing

fringedelex

unparsing

The Big Picture

characters tokens AST

CSTdocument

lex
grow and
interpret

grow interpret

parsing

format

render fringedelex

unparsing

The Big Picture

characters tokens AST

CSTdocument

lex
grow and
interpret

grow interpret

parsing

format

render fringedelex

unparsing

?

From ASTs Back to CSTs

Can we automatically generate a translation of ASTs to CSTs?

• No! Semantic actions are arbitrary OCaml code, so cannot (in general) be inverted.

Can we let the user write a translation of ASTs to CSTs?

• No! Some CSTs are not viable and must be avoided.

From ASTs Back to CSTs

Can we automatically generate a translation of ASTs to CSTs?

• No! Semantic actions are arbitrary OCaml code, so cannot (in general) be inverted.

Can we let the user write a translation of ASTs to CSTs?

• No! Some CSTs are not viable and must be avoided.

From ASTs Back to CSTs

Can we automatically generate a translation of ASTs to CSTs?

• No! Semantic actions are arbitrary OCaml code, so cannot (in general) be inverted.

Can we let the user write a translation of ASTs to CSTs?

• No! Some CSTs are not viable and must be avoided.

Not All CSTs Are Viable

expr

expr

INT 1 MUL

expr

expr

INT 2 ADD

expr

INT 3

This CST is not viable: it does not satisfy grow(fringe(c)) = c.

In other words, parsing 1*2+3 does not produce this tree.

In other words, the parser cannot construct this tree.

One should never attempt to print this tree!

Some CSTs Are Viable

expr

expr

INT 1

MUL expr

LPAR expr

expr

INT 2

ADD expr

INT 3

RPAR

Here is a viable CST whose fringe is 1*(2+3).

It represents the same AST as the previous non-viable tree.

This is the CST that we wish to print! Parentheses are necessary in this example.

From ASTs Back to CSTs

Can we automatically generate a translation of ASTs to CSTs?

• No.

Can we let the user write a translation of ASTs to CSTs?

• No. Guaranteeing that a viable tree is obtained
can be difficult and error-prone.
Maintaining this guarantee as the parser evolves
seems difficult as well.

From ASTs Back to CSTs

Can we automatically generate a translation of ASTs to CSTs?

• No.

Can we let the user write a translation of ASTs to CSTs?

• No. Guaranteeing that a viable tree is obtained
can be difficult and error-prone.
Maintaining this guarantee as the parser evolves
seems difficult as well.

From ASTs Back to CSTs

Can we automatically generate a translation of ASTs to CSTs?

• No.

Can we let the user write a translation of ASTs to CSTs?

• No. Guaranteeing that a viable tree is obtained
can be difficult and error-prone.
Maintaining this guarantee as the parser evolves
seems difficult as well.

From ASTs Back to CSTs

To escape this conundrum, we propose to split this step:

• let the user translate an AST to (a description of) a set of possible CSTs;
• generate and/or provide an algorithm that selects a viable CST among this set.

Thus,

• the user deals with the problem of inverting the semantic actions;
• the user indicates where parentheses may be inserted;
• the tool decides where to actually insert parentheses.

A DCST resembles a CST but can contain binary disjunction nodes. It is usually a DAG.

From ASTs Back to CSTs

To escape this conundrum, we propose to split this step:

• let the user translate an AST to (a description of) a set of possible CSTs;
• generate and/or provide an algorithm that selects a viable CST among this set.

Thus,

• the user deals with the problem of inverting the semantic actions;
• the user indicates where parentheses may be inserted;
• the tool decides where to actually insert parentheses.

A DCST resembles a CST but can contain binary disjunction nodes. It is usually a DAG.

From ASTs Back to CSTs

To escape this conundrum, we propose to split this step:

• let the user translate an AST to (a description of) a set of possible CSTs;
• generate and/or provide an algorithm that selects a viable CST among this set.

Thus,

• the user deals with the problem of inverting the semantic actions;
• the user indicates where parentheses may be inserted;
• the tool decides where to actually insert parentheses.

A DCST resembles a CST but can contain binary disjunction nodes. It is usually a DAG.

The Big Picture

characters tokens AST

DCSTCSTdocument

lex
grow and
interpret

grow interpret

parsing

describe

settleformat

render fringedelex

unparsing

Summary of Contributions

Menhir can now:

• generate abstract types of DCSTs
and a DCST construction API
so the user can translate ASTs to DCSTs.

• generate abstract types of CSTs
and a CST deconstruction API
so the user can translate CSTs to documents or strings.

• provide a translation of DCSTs to CSTs
whose correctness is guaranteed,
even if the grammar has conflicts and uses %left, %right, %nonassoc, %prec.

Only viable CSTs can ever be constructed.

Limitations

Two DCST-to-CST translations have been implemented:

• one is fast but incomplete: in certain (unlikely?) situations,
it can fail to find a viable CST even though there exists one.

• the other is complete but can be 15x slower,
due to memoization.

This new facility has no known users yet...

Limitations

Two DCST-to-CST translations have been implemented:

• one is fast but incomplete: in certain (unlikely?) situations,
it can fail to find a viable CST even though there exists one.

• the other is complete but can be 15x slower,
due to memoization.

This new facility has no known users yet...

How Unparsing
Is Used, and

How It Works

An Example Grammar

Here are abstract syntax trees for arithmetic expressions:

type binop = BAdd | BMul (* Binary operators *)

type expr = (* Expressions *)

| EConst of int

| EBinOp of expr * binop * expr

type main = expr AST.ml

An Example Grammar

As usual, the tokens are defined first:

%token<int> INT (* Tokens *)

%token ADD "+"

%token MUL "*"

%token LPAR "("

%token RPAR ")"

%token EOL parser.mly

An Example Grammar

Then, precedence declarations are provided:

%left ADD (* Priority levels: weakest to strongest *)

%left MUL parser.mly

An Example Grammar

Then, an unstratified syntax of expressions is given:

%inline op:

| ADD { BAdd } [@name add]

| MUL { BMul } [@name mul]

expr:

| LPAR; e = expr; RPAR { e } [@name paren]

| i = INT { EConst i } [@name const]

| e1 = expr; op = op; e2 = expr { EBinOp (e1, op, e2) }

main:

| e = expr; EOL { e } [@name eol] parser.mly

The [@name] attributes influence the generated CST and DCST APIs.

The LR(1) Automaton

INT 2

− 0 LPAR 1 expr 3 RPAR 4

main 9 expr 10 ADD 7 expr 8

EOL 11 MUL 5 expr 6

reduce always

reduce always

reduce always

reduce on
ADD, RPAR, EOL

accept always

reduce always

A shift/reduce conflict on MUL in state 8 is resolved in favor of shifting.

A shift/reduce conflict on ADD in state 6 is resolved in favor of reduction.

The Generated DCST API

The generated parser contains this submodule:

module DCST : sig

type expr

type main

val expr_choice: expr -> expr -> expr (* Constructors for [expr] *)

val paren: expr -> expr

val const: (int) -> expr

val add: expr -> expr -> expr

val mul: expr -> expr -> expr

val main_choice: main -> main -> main (* Constructors for [main] *)

val eol: expr -> main

end parser.mli

Translating ASTs to DCSTs

The user exploits the DCST construction API as follows:

let possibly_paren (e : DCST.expr) : DCST.expr =

DCST.expr_choice e (DCST.paren e) (* [e] is shared: a DAG is built *)

let rec expr (e : AST.expr) : DCST.expr =

possibly_paren @@ (* at every node, parentheses may be inserted *)

match e with

| EConst i -> DCST.const i

| EBinOp (e1, BAdd, e2) -> DCST.add (expr e1) (expr e2)

| EBinOp (e1, BMul, e2) -> DCST.mul (expr e1) (expr e2)

and main : AST.main -> DCST.main = function

| e -> DCST.eol (expr e) AST2DCST.ml

An Example DCST

expr?

expr

expr

INT 1

MUL expr?

expr

expr

INT 2

ADD expr

INT 3

expr

LPAR RPAR

expr

LPAR RPAR

The CST That We Expect

expr

expr

INT 1

MUL expr

LPAR expr

expr

INT 2

ADD expr

INT 3

RPAR

DCST to CST Conversion: API

The generated parser contains this submodule:

module Settle : sig

val main: DCST.main -> CST.main option

end parser.mli

DCST to CST Conversion: Key Insights

Suppose you have access to the parse tables.

To check that a CST is viable, run the parser on its fringe.
Verify that the parser succeeds and produces this tree.

• In reality, viability depends on the parser’s state and on the lookahead symbol.

To transform a DCST into a viable CST, run the parser on its fringe.
At disjunction nodes, choose a viable child:

• by trying both children and backtracking (complete; exponentially slow), or
• by trying both children and memoizing shared subgoals (complete; slow), or
• by committing to the first child if it seems apparently viable (incomplete; fast).

DCST to CST Conversion: Key Insights

Suppose you have access to the parse tables.

To check that a CST is viable, run the parser on its fringe.
Verify that the parser succeeds and produces this tree.

• In reality, viability depends on the parser’s state and on the lookahead symbol.

To transform a DCST into a viable CST, run the parser on its fringe.
At disjunction nodes, choose a viable child:

• by trying both children and backtracking (complete; exponentially slow), or
• by trying both children and memoizing shared subgoals (complete; slow), or
• by committing to the first child if it seems apparently viable (incomplete; fast).

DCST to CST Conversion: Key Insights

Suppose you have access to the parse tables.

To check that a CST is viable, run the parser on its fringe.
Verify that the parser succeeds and produces this tree.

• In reality, viability depends on the parser’s state and on the lookahead symbol.

To transform a DCST into a viable CST, run the parser on its fringe.
At disjunction nodes, choose a viable child:

• by trying both children and backtracking (complete; exponentially slow), or
• by trying both children and memoizing shared subgoals (complete; slow), or
• by committing to the first child if it seems apparently viable (incomplete; fast).

DCST to CST Conversion: Key Insights

Suppose you have access to the parse tables.

To check that a CST is viable, run the parser on its fringe.
Verify that the parser succeeds and produces this tree.

• In reality, viability depends on the parser’s state and on the lookahead symbol.

To transform a DCST into a viable CST, run the parser on its fringe.
At disjunction nodes, choose a viable child:

• by trying both children and backtracking (complete; exponentially slow), or

• by trying both children and memoizing shared subgoals (complete; slow), or
• by committing to the first child if it seems apparently viable (incomplete; fast).

DCST to CST Conversion: Key Insights

Suppose you have access to the parse tables.

To check that a CST is viable, run the parser on its fringe.
Verify that the parser succeeds and produces this tree.

• In reality, viability depends on the parser’s state and on the lookahead symbol.

To transform a DCST into a viable CST, run the parser on its fringe.
At disjunction nodes, choose a viable child:

• by trying both children and backtracking (complete; exponentially slow), or
• by trying both children and memoizing shared subgoals (complete; slow), or

• by committing to the first child if it seems apparently viable (incomplete; fast).

DCST to CST Conversion: Key Insights

Suppose you have access to the parse tables.

To check that a CST is viable, run the parser on its fringe.
Verify that the parser succeeds and produces this tree.

• In reality, viability depends on the parser’s state and on the lookahead symbol.

To transform a DCST into a viable CST, run the parser on its fringe.
At disjunction nodes, choose a viable child:

• by trying both children and backtracking (complete; exponentially slow), or
• by trying both children and memoizing shared subgoals (complete; slow), or
• by committing to the first child if it seems apparently viable (incomplete; fast).

The CST Deconstruction API

The generated parser contains this submodule:

module CST : sig

type expr

type main

class virtual [’r] reduce : object

method virtual zero : ’r (* Document construction methods *)

method virtual cat : ’r -> ’r -> ’r

method virtual text : string -> ’r

method visit_expr : expr -> ’r (* Visitor methods *)

method case_paren : expr -> ’r

method case_add : expr -> expr -> ’r

method case_mul : expr -> expr -> ’r

(* ... more visitor methods and case methods ... *)

end

end parser.mli

Translating CSTs to Strings

The user instantiates (just) the virtual methods:

class print = object

inherit [string] CST.reduce

method zero = ""

method cat = (^)

method text s = s

method visit_INT i = Printf.sprintf "%d" i

method visit_EOL = "\n"

end

let main (m : CST.main) : string =

(new print)#visit_main m CST2String.ml

This code makes no decisions regarding parenthesization. It is just a printer.

Translating CSTs to Strings

This kind of output is produced:

65*((22+38)*69+(24+58))+(84*70+(20+63*83*97+49*(70+0))*(93+89)*(12*15+85+21))

Translating CSTs to Documents

The user instantiates the virtual methods and overrides a few other methods:

open PPrint

class print = object (self)

inherit [document] CST.reduce as super

method! visit_ADD = space ^^ plus ^^ break 1

method! visit_MUL = space ^^ star ^^ break 1

method! visit_expr e = group (super#visit_expr e)

method! case_paren e = nest 2 (lparen ^^ self#visit_expr e) ^^ rparen

(* ... a few more methods ... *)

end

let main (m : CST.main) : document =

(new print)#visit_main m CST2Document.ml

Again, this code makes no decisions regarding parenthesization.

Translating CSTs to Strings

This kind of output is produced:

65 *
((22 + 38) * 69 +

(24 + 58)

) +

(84 * 70 +

(20 +

63 * 83 * 97 +

49 * (70 + 0)

) *
(93 + 89) *
(12 * 15 + 85 +

21

)

)

À vous de jouer!

