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From ASTs Back to CSTs

Can we automatically generate a translation of ASTs to CSTs?

• No! Semantic actions are arbitrary OCaml code, so cannot (in general) be inverted.

Can we let the user write a translation of ASTs to CSTs?

• No! Some CSTs are not viable and must be avoided.
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Not All CSTs Are Viable

expr

expr

INT 1 MUL

expr

expr

INT 2 ADD

expr

INT 3

This CST is not viable: it does not satisfy grow(fringe(c)) = c.

In other words, parsing 1*2+3 does not produce this tree.

In other words, the parser cannot construct this tree.

One should never attempt to print this tree!



Some CSTs Are Viable

expr

expr

INT 1
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RPAR

Here is a viable CST whose fringe is 1*(2+3).

It represents the same AST as the previous non-viable tree.

This is the CST that we wish to print! Parentheses are necessary in this example.
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Can we automatically generate a translation of ASTs to CSTs?

• No.

Can we let the user write a translation of ASTs to CSTs?

• No. Guaranteeing that a viable tree is obtained
can be difficult and error-prone.
Maintaining this guarantee as the parser evolves
seems difficult as well.
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From ASTs Back to CSTs

To escape this conundrum, we propose to split this step:

• let the user translate an AST to (a description of) a set of possible CSTs;
• generate and/or provide an algorithm that selects a viable CST among this set.

Thus,

• the user deals with the problem of inverting the semantic actions;
• the user indicates where parentheses may be inserted;
• the tool decides where to actually insert parentheses.

A DCST resembles a CST but can contain binary disjunction nodes. It is usually a DAG.
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Summary of Contributions

Menhir can now:

• generate abstract types of DCSTs
and a DCST construction API
so the user can translate ASTs to DCSTs.

• generate abstract types of CSTs
and a CST deconstruction API
so the user can translate CSTs to documents or strings.

• provide a translation of DCSTs to CSTs
whose correctness is guaranteed,
even if the grammar has conflicts and uses %left, %right, %nonassoc, %prec.

Only viable CSTs can ever be constructed.



Limitations

Two DCST-to-CST translations have been implemented:

• one is fast but incomplete: in certain (unlikely?) situations,
it can fail to find a viable CST even though there exists one.

• the other is complete but can be 15x slower,
due to memoization.

This new facility has no known users yet...
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An Example Grammar

Here are abstract syntax trees for arithmetic expressions:

type binop = BAdd | BMul (* Binary operators *)

type expr = (* Expressions *)

| EConst of int

| EBinOp of expr * binop * expr

type main = expr AST.ml



An Example Grammar

As usual, the tokens are defined first:

%token<int> INT (* Tokens *)

%token ADD "+"

%token MUL "*"

%token LPAR "("

%token RPAR ")"

%token EOL parser.mly



An Example Grammar

Then, precedence declarations are provided:

%left ADD (* Priority levels: weakest to strongest *)

%left MUL parser.mly



An Example Grammar

Then, an unstratified syntax of expressions is given:

%inline op:

| ADD { BAdd } [@name add]

| MUL { BMul } [@name mul]

expr:

| LPAR; e = expr; RPAR { e } [@name paren]

| i = INT { EConst i } [@name const]

| e1 = expr; op = op; e2 = expr { EBinOp (e1, op, e2) }

main:

| e = expr; EOL { e } [@name eol] parser.mly

The [@name] attributes influence the generated CST and DCST APIs.



The LR(1) Automaton

INT 2

− 0 LPAR 1 expr 3 RPAR 4

main 9 expr 10 ADD 7 expr 8

EOL 11 MUL 5 expr 6

reduce always

reduce always

reduce always

reduce on
ADD, RPAR, EOL

accept always

reduce always

A shift/reduce conflict on MUL in state 8 is resolved in favor of shifting.

A shift/reduce conflict on ADD in state 6 is resolved in favor of reduction.



The Generated DCST API

The generated parser contains this submodule:

module DCST : sig

type expr

type main

val expr_choice: expr -> expr -> expr (* Constructors for [expr] *)

val paren: expr -> expr

val const: (int) -> expr

val add: expr -> expr -> expr

val mul: expr -> expr -> expr

val main_choice: main -> main -> main (* Constructors for [main] *)

val eol: expr -> main

end parser.mli



Translating ASTs to DCSTs

The user exploits the DCST construction API as follows:

let possibly_paren (e : DCST.expr) : DCST.expr =

DCST.expr_choice e (DCST.paren e) (* [e] is shared: a DAG is built *)

let rec expr (e : AST.expr) : DCST.expr =

possibly_paren @@ (* at every node, parentheses may be inserted *)

match e with

| EConst i -> DCST.const i

| EBinOp (e1, BAdd, e2) -> DCST.add (expr e1) (expr e2)

| EBinOp (e1, BMul, e2) -> DCST.mul (expr e1) (expr e2)

and main : AST.main -> DCST.main = function

| e -> DCST.eol (expr e) AST2DCST.ml



An Example DCST
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The CST That We Expect
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DCST to CST Conversion: API

The generated parser contains this submodule:

module Settle : sig

val main: DCST.main -> CST.main option

end parser.mli



DCST to CST Conversion: Key Insights

Suppose you have access to the parse tables.

To check that a CST is viable, run the parser on its fringe.
Verify that the parser succeeds and produces this tree.

• In reality, viability depends on the parser’s state and on the lookahead symbol.

To transform a DCST into a viable CST, run the parser on its fringe.
At disjunction nodes, choose a viable child:

• by trying both children and backtracking (complete; exponentially slow), or
• by trying both children and memoizing shared subgoals (complete; slow), or
• by committing to the first child if it seems apparently viable (incomplete; fast).
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The CST Deconstruction API

The generated parser contains this submodule:

module CST : sig

type expr

type main

class virtual [’r] reduce : object

method virtual zero : ’r (* Document construction methods *)

method virtual cat : ’r -> ’r -> ’r

method virtual text : string -> ’r

method visit_expr : expr -> ’r (* Visitor methods *)

method case_paren : expr -> ’r

method case_add : expr -> expr -> ’r

method case_mul : expr -> expr -> ’r

(* ... more visitor methods and case methods ... *)

end

end parser.mli



Translating CSTs to Strings

The user instantiates (just) the virtual methods:

class print = object

inherit [string] CST.reduce

method zero = ""

method cat = (^)

method text s = s

method visit_INT i = Printf.sprintf "%d" i

method visit_EOL = "\n"

end

let main (m : CST.main) : string =

(new print)#visit_main m CST2String.ml

This code makes no decisions regarding parenthesization. It is just a printer.



Translating CSTs to Strings

This kind of output is produced:

65*((22+38)*69+(24+58))+(84*70+(20+63*83*97+49*(70+0))*(93+89)*(12*15+85+21))



Translating CSTs to Documents

The user instantiates the virtual methods and overrides a few other methods:

open PPrint

class print = object (self)

inherit [document] CST.reduce as super

method! visit_ADD = space ^^ plus ^^ break 1

method! visit_MUL = space ^^ star ^^ break 1

method! visit_expr e = group (super#visit_expr e)

method! case_paren e = nest 2 (lparen ^^ self#visit_expr e) ^^ rparen

(* ... a few more methods ... *)

end

let main (m : CST.main) : document =

(new print)#visit_main m CST2Document.ml

Again, this code makes no decisions regarding parenthesization.



Translating CSTs to Strings

This kind of output is produced:

65 *
( (22 + 38) * 69 +

(24 + 58)

) +

( 84 * 70 +

( 20 +

63 * 83 * 97 +

49 * (70 + 0)

) *
(93 + 89) *
( 12 * 15 + 85 +

21

)

)



À vous de jouer!


