Thunks and Debits in
Iris with Time Credits

Pottier Guéneau Jourdan Mével POPL 2024

val create: (unit -> ’a) -> ’'a thunk
val force : 'a thunk -> ’'a

type 'a stream = 'a cell thunk
and 'a cell
= Nil | Cons of 'a * 'a stream

val create: (unit -> ’a) -> ’'a thunk
val force : 'a thunk -> ’'a

Purely Functional
[lata Structures

Chris Obasal

type 'a stream = 'a cell thunk
and 'a cell
= Nil | Cons of 'a * 'a stream

val create: (unit -> ’a) -> ’'a thunk
val force : 'a thunk -> ’'a

Purely Functional
[lata Structures

Ohris Okasahi o2

type 'a queue
let snoc g x
let extract q

type 'a stream = 'a cell thunk
and 'a cell
= Nil | Cons of 'a * 'a stream

val create: (unit -> ’a) -> ’'a thunk
val force : 'a thunk -> ’'a

Purely Functional
[lata Structures

Ohris Ohasali

type 'a queue
let snoc g x
let extract q

type 'a stream = 'a cell thunk

and 'a cell
= Nil | Cons of 'a * 'a stream
val create: (unit -> ’a) -> ’'a thunk

val force : 'a thunk -> ’'a

T ————

informal amortized
time complexity analysis

of purely functional

lazy data structures

Purely Functional
[lata Structures

Ohris Ohasali

type 'a queue
let snoc g x
let extract q

type 'a stream = 'a cell thunk

and 'a cell

= Nil | Cons of 'a * 'a stream
val create: (unit -> ’a) -> ’'a thunk
val force : 'a thunk -> ’'a

informal amortized
time complexity analysis

of purely functional

lazy data structures

credit-based reasoning
about thunks?

NS ——

Purely Functional

[lata Structures
Chris Ohasahi 4

type '’
let snoc g x
let extract q

type 'a stream = 'a cell thunk

and 'a cell

= Nil | Cons of 'a * 'a stream
val create: (unit -> ’a) -> ’'a thunk
val force : 'a thunk -> ’'a

informal amortized
time complexity analysis

of purely functional

lazy data structures

credit-based reasoning
about thunks?

Purely Functional
[lata Structures

Ohris Ohasali

type 'a queue
let snoc g x
let extract q

type 'a stream = 'a cell thunk

and 'a cell

= Nil | Cons of 'a * 'a stream
val create: (unit -> ’a) -> ’'a thunk
val force : 'a thunk -> ’'a

informal amortized
time complexity analysis

of purely functional

lazy data structures

debit-based reasoning
about thunks

type 'a queue = ...
let snoc g x = ...
let extract q = ...

informal amortized

1 1
1 1
1 1
1 1
J | time complexity analysis |
N ! of purely functional !
type 'a stream = ’a cell thunk : P y :
and ’a cell . lazy data structures ,
= Nil | Cons of 'a * 'a stream : :
N L e e e e e e e e e e e == -
N cmmmmmmmmmmmmm e e oo

debit-based reasoning
about thunks

val create: (unit -> ’a) -> ’'a thunk

’

val force : 'a thunk -> ’'a

S ———

. ioht Semiformal Time Complexity Analysis f(can b e forma | iZed j
Lightwelt Purely Functional Data Structures T

s Anders anilson [Danielsson, 2008 J

University of Technology

Chalmers

type 'a queue = ... !
1
16): Secax T : informal amortized
et extract q =
L J | time complexity analysis
f N ! of purely functional
type 'a stream = 'a cell thunk : P y
and ’a cell . lazy data structures
= Nil | Cons of 'a * 'a stream :
| N L e e e e e e e e e e e ==
p N cmmmmmmmmmmmmmmm oo
let create f = ref (UNEVALUATED f) . debit-based reasoning
let force t = match !t with ... : about thunks
_ /. e e e e L ______
/[

implement thunks
using mutable state

S ———

type 'a queue
let snoc g x
let extract q

type 'a streal
and 'a cell

m

= 'a cell thunk

= Nil | Cons of 'a * 'a stream

let create f
let force t

ref (UNEVALUATED f)
match !t with ...

informal amortized
time complexity analysis

of purely functional

lazy data structures

debit-based reasoning
about thunks

Iris with time credits

S ———

type 'a queue = ...
let snoc g x = ...
let extract q = ...

type 'a stream = 'a cell thunk
and 'a cell
= Nil | Cons of 'a * 'a stream

let create f = ref (UNEVALUATED f)
let force t = match !t with ...

e Analysis with Separation

tised Resourc 2
Amortk Logic

Robert Atkey

sty of Edinburgh
FCS, School of Informatics, University of Edinburg]
e bob. atkey0ed..ac Uk

Atkey, 2010 j

informal amortized
time complexity analysis

of purely functional

lazy data structures

debit-based reasoning
about thunks

Iris with time credits

S ———

type 'a queue
let snoc g x
let extract q

J
N
type 'a stream = 'a cell thunk
and 'a cell
= Nil | Cons of 'a * 'a stream
J
N
let create f = ref (UNEVALUATED f)
let force t = match !t with ...
J

of the C

Arthur Ch

Machine-Check

ed Veri i
orrectness and g o
of an Efficient Union-

A.mortized Complexity
Find Implementation

Charguéraud
& FP, 2015

informal amortized
time complexity analysis

of purely functional

lazy data structures

debit-based reasoning
about thunks

Iris with time credits

S ———

type 'a queue = ...
let snoc g x = ...
let extract q = ...

type 'a stream = 'a cell thunk
and 'a cell
= Nil | Cons of 'a * 'a stream

let create f = ref (UNEVALUATED f)
let force t = match !t with ...

Credi
jme Credits and Time Receipts in I

dan?, and Frangois Postier

SnequesHenzi Jour

Glen Mével',

» CNTS, LRI, i P

machine-chck

Mé:}el, Jourdan
& FP, 2019

sctimes, just OV
White Rabbit: Sout e
" Lowis Carrol, Alce in Wonderland

informal amortized
time complexity analysis

of purely functional

lazy data structures

debit-based reasoning
about thunks

Iris with time credits

N

type 'a queue = ...
let snoc g x = ...
let extract q = ...

informal amortized

time complexity analysis

1

1

1

1

1

1

. .
of purely functional

type 'a stream = 'a cell thunk : P y

1

1

1

\

and 'a cell lazy data structures
= Nil | Cons of 'a * 'a stream
3
AR e eevort] oo
let create f = ref (UNEVALUATED f) i debit-based reasoning
let force t = match !t with ...) : about thunks

¢ - N — iProp

$(m + n2) = I * $m | Iris with time credits

S ———

($1} tick() {True}

type 'a queue
let snoc g x
let extract q

type 'a streal
and 'a cell

m

= 'a cell thunk

= Nil | Cons of 'a * 'a stream

let create f
let force t

ref (UNEVALUATED f)
match !t with ...

informal amortized
time complexity analysis

of purely functional

lazy data structures

debit-based reasoning
about thunks

S ———

with credit/debit reasoning

ghost piggy bank API J
Iris with time credits J

type 'a queue
let snoc g x
let extract q

informal amortized

time complexity analysis

type ’'a stream
and 'a cell
= Nil | Con

= 'a cell thunk
lazy data structures

1
1
1
1
1
1
, .
N | of purely functional
1
1
s of 'a x 'a stream :

let create f =
let force t =

ref (UNEVALUATED f) . debit-based reasoning :
match !t with ... : about thunks !

PiggyBa

dnec.

7_"’
nkPQNTOxf" =68 ost piggy bank API
((»P ncx $nc) Vv Q) * credit/debit reasoning
~Q=e¢) ‘
Iris with time credits J

type 'a queue
let snoc g x
let extract q

type 'a streal
and 'a cell

m

= 'a cell thunk

= Nil | Cons of 'a * 'a stream

T ————

informal amortized
time complexity analysis

of purely functional

lazy data structures

let create f
let force t

ref (UNEVALUATED f)
match !t with ...

thunk API

with credit/debit reasoning

ghost piggy bank API

with credit/debit reasoning

Vs

Iris with time credits

type 'a queue = ...
let snoc g x
let extract q

type 'a stream = 'a cell thunk
and 'a cell
= Nil | Cons of 'a * 'a stream

J

let crea
let force

- |
Thunk F t nR ¢ *$k =& [T think API

Ihunk?jt("’k)R‘ﬁ

informal amortized
time complexity analysis

of purely functional

lazy data structures

P ————

credit/debit reasoning

ghost piggy bank API
with credit/debit reasoning

Iris with time credits

type 'a queue
let snoc g x
let extract q

type 'a strea
and 'a cell

m

= 'a cell thunk

= Nil | Cons of 'a * 'a stream

stream API
with credit/debit reasoning

(S J

let create f
let force t

ref (UNEVALUATED f)
match !t with ...

thunk API
with credit/debit reasoning

ghost piggy bank API
with credit/debit reasoning

Vs

Iris with time credits

type 'a queue = ...
let snoc g x = ...
let extract q = ...

and 'a

_nit| Streamh s dsi

let creat
let force t

(m) ds1 < dsz (n)
xs * $m =8

Stream h s dsz XS

= ref (UNEVALUATED f)
= match !t with ...

stream API

credit/debit reasoning

|

thunk API
with credit/debit reasoning

ghost piggy bank API
with credit/debit reasoning

Vs

Iris with time credits

type 'a queue = ... -
requires deep
payment
[

let snoc g x = ...
let extract q = ...

(m) ds1 < dsz (n)

type 'a
and 'a
= Nil

stream API
Stream h s dsi XS * $m =e credit/debit reasoning

Stream h s dsz XS T

= ref (UNEVALUATED f)
= match !t with ...

J

thunk API
with credit/debit reasoning

let creat
let force t

ghost piggy bank API
with credit/debit reasoning

Vs

Iris with time credits

type 'a queue
let snoc g x
let extract q

banker's queue API
purely credit-based

type 'a strea
and 'a cell

m

= 'a cell thunk

= Nil | Cons of 'a * 'a stream

let create f
let force t

ref (UNEVALUATED f)
match !t with ...

stream API
with credit/debit reasoning
thunk API

with credit/debit reasoning

ghost piggy bank API
with credit/debit reasoning

Vs

Iris with time credits

{$X = BQueue q (x :: xs) * £}
extract q
(AKX, q). "' =x7 = BQueue q xs x £} |

€ 'a stream = 'a cell thunk

and 'a cell

= Nil | Cons of 'a * 'a stream

(S

banker's queue API
purely credit-based

stream API
with credit/debit reasoning

J

let force t

[let create f

ref (UNEVALUATED f)
match !t with ...

|

with credit/debit reasoning

thunk API

ghost piggy bank API

with credit/debit reasoning

Vs

Iris with time credits

In summary,
following up on Okasaki (1999), Danielsson (2008), MJP (2019),
we use a rich Separation Logic to perform machine-checked proofs
of correctness and time complexity
of a stack of libraries
that marry imperative and functional programming.

We explain debits and deep payment in terms of credits.

https://doi.org/10.1017/CBO9780511530104
http://www.cse.chalmers.se/~nad/publications/danielsson-popl2008.pdf
http://cambium.inria.fr/~fpottier/publis/mevel-jourdan-pottier-time-in-iris-2019.pdf

Thunks

Thunks: Implementation

A thunk is a mutable data structure that offers a memoization service.

type ’'a state = UNEVALUATED of (unit -> ’'a) | EVALUATED of ’'a
type ’'a thunk = ’'a state ref
let create f ref (UNEVALUATED f)

let force t =
match !t with
| UNEVALUATED f -> let v = f() in t := EVALUATED v; v
| EVALUATED v -> v

Thunk API: Overview

An abstract predicate Thunk t n ¢
where t is the thunk, n is its debit, ¢ is its postcondition.

Two runtime operations: creating and forcing a thunk,

and several ghost operations, including sharing and paying.

Thunk API: Creation

THUNK-CREATE
{$N x once {$n} O {Mv. O ¢ v}
Create f
{At. Thunk t n o}

Creating a thunk costs O(1) credits.

If the suspended computation costs n credits then the thunk has debit n.

e Say Alice wants to suspend a computation whose cost is 10.

® She creates a thunk, whose debit is initially 10.

Thunk API: Ordinary Payment

THUNK-PAY
Thunk t n ¢ « $k =
Thunk t (n— k) ¢

Paying consumes credits and reduces a thunk’s debit.
e Say Alice pays $2. Then Alice knows the remaining debit is 8.

Paying is permitted at all times.

Thunk API: Sharing

THUNK-PERSISTENT
persistent(Thunk t n ®)

Sharing a thunk is permitted.
Each principal has its own view of the debit

and can pay independently, so debit is an over-approximation of true debt.

e Say Alice tells Bob and Charlie that the debit is 8.
e Say Bob pays $1. Bob knows the debit is 7.
e Say Charlie pays $8. Charlie knows the debit is 0.

Thunk API: Forcing

THUNK-FORCE
{Thunkt 0 ¢ « $F « £
force t
{Av. Ogv x ¢}

Whoever knows the debit is 0 can force the thunk.
Forcing costs O(1) credits.

A thunk can be forced many times.

Thunk API: Deep Payment

Whereas ordinary payment consumes credits and reduces a thunk’s debit,

THUNK-PAY
Thunkt n ¢ * Sk =

Thunk t (n—k) ¢

Thunk API: Deep Payment

Whereas ordinary payment consumes credits and reduces a thunk’s debit,

THUNK-PAY
Thunkt n ¢ * Sk =

Thunk t (n—k) ¢

deep payment increases a thunk’'s debit and produces credits
for use in the future, when this thunk is forced.

Thunk API: Deep Payment

Whereas ordinary payment consumes credits and reduces a thunk’s debit,

THUNK-CONSEQUENCE
THUNK-PAY Thunk t ny ¢ —

Thunk t n ¢ * $k = (Vv.($m + Oov) 209 v) =
Thunk t (n—k) ¢ Thunk t (n1 + np) ¥

deep payment increases a thunk’'s debit and produces credits
for use in the future, when this thunk is forced.

Thunk API: Deep Payment

Whereas ordinary payment consumes credits and reduces a thunk’s debit,

THUNK-CONSEQUENCE

THUNK-PAY
Thunkt n ¢ * Sk = THUNK-DEEP-PAY-EXAMPLE

Thunk t (n—k) ¢ Thunk t1 ny (\ta.Thunk t2 ny @) =
Thunk t; (n1 + n2) ()\tz.Thunk t, 0 qb)

deep payment increases a thunk’'s debit and produces credits
for use in the future, when this thunk is forced.

Deep payment implies that debits can be shifted towards the left.

A key rule, whose justification is new in this work and involves ghost piggy banks.

7))}
e
qv)
Q
-
e
(0p)

Streams

A stream’s elements are computed on demand and memoized.

type ’'a stream = 'a cell thunk
and 'a cell Nil | Cons of 'a * 'a stream

Streams are also known as lazy lists, or just lists in Haskell.

Streams: APl Overview

An abstract predicate Stream s d %
where s is the stream, d is its sequence of debits, X is its sequence of elements.

Streams can be shared.

Debits can be shifted towards the left. STREAM-SHIFT-DEBIT

'—31 S 32_]_>l<

Streams di X =

STREAM-PERSIST

x| X!

. B ream s d
persistent(Stream s d X) >]

Streams: APl Overview

An abstract predicate Stream s d %
where s is the stream, d is its sequence of debits, X is its sequence of elements.

Streams can be shared.

Debits can be shifted towards the left. STREAM-SHIFT-DEBIT

STREAM—SHIFT-DEBIT—EXAMPLE
Stream s (0,0,...,O,n) X =
N——

STREAM-PERSIST

persistent(Stream s d X)

n times

Stream s (1,1,...,1,0) %
S——

n times

The banker’s queue

The Banker's Queue: OCaml Code

A FIFO queue (Okasaki, 1999). Every operation has amortized time complexity O(1).

type ’'a queue =
{ lenf: int; f: 'a stream; lenr: int; r: 'a list }
let empty () =
{ lenf = 0; f =nil(); lenr =0; r =[] }
let check ({ lenf = lenf ; f = f; lenr = lenr; r=r } as q) =
if lenf >= lenr then q
else { lenf = lenf + lenr; f = append f (revl r); lenr = 0; r =[] }
let snoc q x =
check { q with lenr = g.lenr + 1; r = x :: q.r }
let extract q =
let x, f = uncons q.f in
x, check { q with f = f; lenf = gq.lenf - 1 }

The Banker’'s Queue: Intuition

The expression ‘append f (revl r) constructs a stream whose debit sequence is (roughly)

1,1,...,1,n,0,0,...,0

n times n times

By shifting debits towards the left, the debit sequence can be smoothened up:

2,2,...,2,0,0,0,...,0

n times n times

Thus every debit is O(1), which is why extract costs only O(1).

iggy banks

Q.
-

(7]

@)
-
@)

Piggy Banks: API Overview

An abstraction with four main operations: creating, paying, sharing, forcing a bank.
Piggy banks do not exist at runtime: all operations are ghost state updates.

The piggy bank API involves both credits and debits.

Piggy Banks: Paying and Sharing

Paying and sharing works in the same way as for thunks.

PIGGYBANK-PAY
P iggyBankRQ n x $k = P1GGYBANK-PERSIST

PiggyBankp o (n — k)

persistent(PiggyBankp q N)

Piggy Banks: Creation

When a piggy bank is created, a target amount is fixed, and becomes the initial debit.
An initial property P and a target property Q are also fixed upon creation.
® Say P holds initially.

® Alice creates a piggy bank with initial debit 10.
® Her purpose is to gather $10 and spend it to execute a transition from P to Q.

P1cGYBANK-CREATE

P n = PiggyBankpq n

Piggy Banks: Forcing the Bank

Whoever knows the debit is 0 can force the bank. |

PIGGYBANK-BREAK
They get the collected credit and must establish Q. PiggyBankPQ 0 % £

I, (((DPn * $n) V bQ) x)
Q=)

A bank can be forced several times.

e Say Charlie forces the bank first.
He gets $10
and can spend them to run code that establishes Q.

® Say Alice later forces the bank.
She gets $0
and learns that @ holds already.

Forcing the bank requires a unique token: this forbids reentrancy/concurrency.

The Point of Piggy Banks

Piggy banks do not support deep payment, so they are simpler than thunks.

Our construction of thunks can allocate several piggy banks per thunk:

® when a new thunk is created,
a new piggy bank is created for it;

® when a deep payment is made on an existing thunk,
a new piggy bank is created for this thunk,
so a new target amount and a new target property can be set.

This data structure also illustrates a subtle point about nested s'uspens:;nsb;
the debits for a nested suspension may be allocated, and even discharged, be-

‘ L f ider ho :
| fore the suspension is physically created. For example, consi Okasaki (1 999)

Conclusion

Debits and deep payment can be explained in terms of credits!

In the paper:

e forbidding reentrancy = guaranteeing productivity;
achieved by indexing thunks with heights;

® correctness and amortized time complexity of 3 data structures by Okasaki.

Limitations:

® only 3 data structures verified in this paper;
* making Iris® more user-friendly would require some engineering work;

® open problem: how to control the time complexity of unbounded waiting loops?

Backup Slides

Streams: OCaml Code

Reversing a list and converting it to a stream:

let rec append (sl : ’'a stream) (s2 : 'a stream) : 'a stream =
Thunk.create @@ fun () -> match Thunk.force sl with
| Nil -> Thunk.force s2

| Cons (x, sl) -> Cons (x, append sl s2)

let rec revl _append (1 : ’a list) (c : 'a cell) : 'a cell =
match 1 with

Concatenating two streams:

| x :: 1 -> revli_append 1 (Cons (x, Thunk.create @@ fun () -> c))

let revl (1 : 'a list) : ’'a stream =
Thunk.create @@ fun () -> revl_append 1 Nil

Streams: Debit Subsumption

The debit subsumption judgement

can be defined as follows:

Vi. Z(take idy) < Z(take i dh)

This judgement moves debits towards the left.

The Banker's Queue: Debit Invariant

There is a front stream fs and a rear list rs. One maintains |fs| > |rs|.
Every thunk in fs carries a certain debt or debit.

The first |fs| — |rs| thunks have debt K; the rest have debt 0.

K... Ko ... 0
fs } : %
rs P

Elements are inserted in the rear, extracted from the front.

The Banker's Queue: Extraction

If |fs| > |rs|, then extraction does not require rebalancing.
Extraction requires paying K before the first thunk can be forced.

Including this payment, its time complexity is O(1).

The Banker's Queue: Insertion

If |fs| > |rs|, then insertion does not require rebalancing.
Insertion actually consumes O(1) time,

and requires paying K to maintain the invariant.

A deep payment,

possibly involving a thunk that does not even exist yet in memory!

The Banker's Queue: Insertion

If |fs| > |rs|, then insertion does not require rebalancing.
Insertion actually consumes O(1) time,

and requires paying K to maintain the invariant.

0 This fiata structure also illustrates a subtle point about nested suspensions—
: e debits for a Fested suspension may be allocated, and even discharged, be-
ore the suspension is physically created. For example, consider how -+ wc;rks

possibly involving a thunk that does not even exist yet in memory?

A deep payme

The Banker's Queue: Rebalancing

Rebalancing involves revl, append, and a redistribution of debits.

fs
rs

fs
rs

fs
rs

The queue is unbalanced.
|fs|]=nA|rs|=n+1

Reverse and append the rear list
to the front stream.

Redistribute debits by adding R
to the first n debits.

Moving debits towards the left is safe: it requires earlier payments.

The Banker's Queue: Public API

The banker’s queue admits a simple specification in Iris®.

BANKER-PERSISTENT BANKER-EMPTY
persistent(BQueue q X) {$E } empty () {\q. BQueue q []}

Queues are persistent. Creation costs O(1).

The Banker's Queue: Public API

Insertion and extraction cost O(1).

BANKER-SNOC
{$S x BQueue q X} snoc q x {\q'. BQueue ¢’ (X ++ [x])}

BANKER-EXTRACT
{$X x BQueue q (x::X) x ¢}
extract q
{IMX',q"). "X =x7 * BQueue g’ X x ¢}
Extraction requires a token 7.

Extraction forces a thunk, and thunks are not thread-safe.

