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In summary,
following up on Okasaki (1999), Danielsson (2008), MJP (2019),
we use a rich Separation Logic to perform machine-checked proofs
of correctness and time complexity
of a stack of libraries
that marry imperative and functional programming.

We explain debits and deep payment in terms of credits.


https://doi.org/10.1017/CBO9780511530104
http://www.cse.chalmers.se/~nad/publications/danielsson-popl2008.pdf
http://cambium.inria.fr/~fpottier/publis/mevel-jourdan-pottier-time-in-iris-2019.pdf
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Thunks: Implementation

A thunk is a mutable data structure that offers a memoization service.

type ’'a state = UNEVALUATED of (unit -> ’'a) | EVALUATED of ’'a
type ’'a thunk = ’'a state ref
let create f ref (UNEVALUATED f)

let force t =
match !t with
| UNEVALUATED f -> let v = f() in t := EVALUATED v; v
| EVALUATED v -> v



Thunk API: Overview

An abstract predicate Thunk t n ¢
where t is the thunk, n is its debit, ¢ is its postcondition.

Two runtime operations: creating and forcing a thunk,

and several ghost operations, including sharing and paying.



Thunk API: Creation

THUNK-CREATE
{$N x once {$n} O {Mv. O ¢ v}
Create f
{At. Thunk t n o}

Creating a thunk costs O(1) credits.

If the suspended computation costs n credits then the thunk has debit n.

e Say Alice wants to suspend a computation whose cost is 10.

® She creates a thunk, whose debit is initially 10.



Thunk API: Ordinary Payment

THUNK-PAY
Thunk t n ¢ « $k =
Thunk t (n— k) ¢

Paying consumes credits and reduces a thunk’s debit.
e Say Alice pays $2. Then Alice knows the remaining debit is 8.

Paying is permitted at all times.



Thunk API: Sharing

THUNK-PERSISTENT
persistent( Thunk t n ®)

Sharing a thunk is permitted.
Each principal has its own view of the debit

and can pay independently, so debit is an over-approximation of true debt.

e Say Alice tells Bob and Charlie that the debit is 8.
e Say Bob pays $1. Bob knows the debit is 7.
e Say Charlie pays $8. Charlie knows the debit is 0.



Thunk API: Forcing

THUNK-FORCE
{Thunkt 0 ¢ « $F « £
force t
{Av. Ogv x ¢}

Whoever knows the debit is 0 can force the thunk.
Forcing costs O(1) credits.

A thunk can be forced many times.



Thunk API: Deep Payment

Whereas ordinary payment consumes credits and reduces a thunk’s debit,

THUNK-PAY
Thunkt n ¢ * Sk =

Thunk t (n—k) ¢
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for use in the future, when this thunk is forced.



Thunk API: Deep Payment

Whereas ordinary payment consumes credits and reduces a thunk’s debit,

THUNK-CONSEQUENCE
THUNK-PAY Thunk t ny ¢ —

Thunk t n ¢ * $k = (Vv.($m + Oov) 209 v) =
Thunk t (n—k) ¢ Thunk t (n1 + np) ¥

deep payment increases a thunk’'s debit and produces credits
for use in the future, when this thunk is forced.



Thunk API: Deep Payment

Whereas ordinary payment consumes credits and reduces a thunk’s debit,

THUNK-CONSEQUENCE

THUNK-PAY
Thunkt n ¢ * Sk = THUNK-DEEP-PAY-EXAMPLE

Thunk t (n—k) ¢ Thunk t1 ny (\ta.Thunk t2 ny @) =
Thunk t; (n1 + n2) ()\tz.Thunk t, 0 qb)

deep payment increases a thunk’'s debit and produces credits
for use in the future, when this thunk is forced.

Deep payment implies that debits can be shifted towards the left.

A key rule, whose justification is new in this work and involves ghost piggy banks.
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Streams

A stream’s elements are computed on demand and memoized.

type ’'a stream = 'a cell thunk
and 'a cell Nil | Cons of 'a * 'a stream

Streams are also known as lazy lists, or just lists in Haskell.



Streams: APl Overview

An abstract predicate Stream s d %
where s is the stream, d is its sequence of debits, X is its sequence of elements.

Streams can be shared.

Debits can be shifted towards the left. STREAM-SHIFT-DEBIT
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Streams di X =
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Streams: APl Overview

An abstract predicate Stream s d %
where s is the stream, d is its sequence of debits, X is its sequence of elements.

Streams can be shared.

Debits can be shifted towards the left. STREAM-SHIFT-DEBIT

STREAM—SHIFT-DEBIT—EXAMPLE
Stream s (0,0,...,O,n) X =
N——

STREAM-PERSIST

persistent(Stream s d X)

n times

Stream s (1,1,...,1,0) %
S——

n times
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The Banker's Queue: OCaml Code

A FIFO queue (Okasaki, 1999). Every operation has amortized time complexity O(1).

type ’'a queue =
{ lenf: int; f: 'a stream; lenr: int; r: 'a list }
let empty () =
{ lenf = 0; f =nil(); lenr =0; r =[] }
let check ({ lenf = lenf ; f = f; lenr = lenr; r=r } as q) =
if lenf >= lenr then q
else { lenf = lenf + lenr; f = append f (revl r); lenr = 0; r =[] }
let snoc q x =
check { q with lenr = g.lenr + 1; r = x :: q.r }
let extract q =
let x, f = uncons q.f in
x, check { q with f = f; lenf = gq.lenf - 1 }



The Banker’'s Queue: Intuition

The expression ‘append f (revl r) constructs a stream whose debit sequence is (roughly)

1,1,...,1,n,0,0,...,0

n times n times

By shifting debits towards the left, the debit sequence can be smoothened up:

2,2,...,2,0,0,0,...,0

n times n times

Thus every debit is O(1), which is why extract costs only O(1).
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Piggy Banks: API Overview

An abstraction with four main operations: creating, paying, sharing, forcing a bank.
Piggy banks do not exist at runtime: all operations are ghost state updates.

The piggy bank API involves both credits and debits.



Piggy Banks: Paying and Sharing

Paying and sharing works in the same way as for thunks.

PIGGYBANK-PAY
P iggyBankRQ n x $k = P1GGYBANK-PERSIST

PiggyBankp o (n — k)

persistent(PiggyBankp q N )




Piggy Banks: Creation

When a piggy bank is created, a target amount is fixed, and becomes the initial debit.
An initial property P and a target property Q are also fixed upon creation.
® Say P holds initially.

® Alice creates a piggy bank with initial debit 10.
® Her purpose is to gather $10 and spend it to execute a transition from P to Q.

P1cGYBANK-CREATE

P n = PiggyBankpq n




Piggy Banks: Forcing the Bank

Whoever knows the debit is 0 can force the bank. |

PIGGYBANK-BREAK
They get the collected credit and must establish Q. PiggyBankPQ 0 % £

I, (((DPn * $n) V bQ) x )
Q=)

A bank can be forced several times.

e Say Charlie forces the bank first.
He gets $10
and can spend them to run code that establishes Q.

® Say Alice later forces the bank.
She gets $0
and learns that @ holds already.

Forcing the bank requires a unique token: this forbids reentrancy/concurrency.



The Point of Piggy Banks

Piggy banks do not support deep payment, so they are simpler than thunks.

Our construction of thunks can allocate several piggy banks per thunk:

® when a new thunk is created,
a new piggy bank is created for it;

® when a deep payment is made on an existing thunk,
a new piggy bank is created for this thunk,
so a new target amount and a new target property can be set.

This data structure also illustrates a subtle point about nested s'uspens:;nsb;
the debits for a nested suspension may be allocated, and even discharged, be-

‘ L f ider ho :
| fore the suspension is physically created. For example, consi Okasaki ( 1 999)




Conclusion




Debits and deep payment can be explained in terms of credits!

In the paper:

e forbidding reentrancy = guaranteeing productivity;
achieved by indexing thunks with heights;

® correctness and amortized time complexity of 3 data structures by Okasaki.

Limitations:

® only 3 data structures verified in this paper;
* making Iris® more user-friendly would require some engineering work;

® open problem: how to control the time complexity of unbounded waiting loops?
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Streams: OCaml Code

Reversing a list and converting it to a stream:

let rec append (sl : ’'a stream) (s2 : 'a stream) : 'a stream =
Thunk.create @@ fun () -> match Thunk.force sl with
| Nil -> Thunk.force s2

| Cons (x, sl) -> Cons (x, append sl s2)

let rec revl _append (1 : ’a list) (c : 'a cell) : 'a cell =
match 1 with

Concatenating two streams:

| x :: 1 -> revli_append 1 (Cons (x, Thunk.create @@ fun () -> c))

let revl (1 : 'a list) : ’'a stream =
Thunk.create @@ fun () -> revl_append 1 Nil



Streams: Debit Subsumption

The debit subsumption judgement

can be defined as follows:

Vi. Z(take idy) < Z(take i dh)

This judgement moves debits towards the left.



The Banker's Queue: Debit Invariant

There is a front stream fs and a rear list rs. One maintains |fs| > |rs|.
Every thunk in fs carries a certain debt or debit.

The first |fs| — |rs| thunks have debt K; the rest have debt 0.

K... Ko ... 0
fs } : %
rs P

Elements are inserted in the rear, extracted from the front.



The Banker's Queue: Extraction

If |fs| > |rs|, then extraction does not require rebalancing.
Extraction requires paying K before the first thunk can be forced.

Including this payment, its time complexity is O(1).




The Banker's Queue: Insertion

If |fs| > |rs|, then insertion does not require rebalancing.
Insertion actually consumes O(1) time,

and requires paying K to maintain the invariant.

A deep payment,

possibly involving a thunk that does not even exist yet in memory!



The Banker's Queue: Insertion

If |fs| > |rs|, then insertion does not require rebalancing.
Insertion actually consumes O(1) time,

and requires paying K to maintain the invariant.
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The Banker's Queue: Rebalancing

Rebalancing involves revl, append, and a redistribution of debits.

fs
rs

fs
rs

fs
rs

The queue is unbalanced.
|fs|]=nA|rs|=n+1

Reverse and append the rear list
to the front stream.

Redistribute debits by adding R
to the first n debits.

Moving debits towards the left is safe: it requires earlier payments.



The Banker's Queue: Public API

The banker’s queue admits a simple specification in Iris®.

BANKER-PERSISTENT BANKER-EMPTY
persistent( BQueue q X) {$E } empty () {\q. BQueue q []}

Queues are persistent. Creation costs O(1).



The Banker's Queue: Public API

Insertion and extraction cost O(1).

BANKER-SNOC
{$S x BQueue q X} snoc q x {\q'. BQueue ¢’ (X ++ [x])}

BANKER-EXTRACT
{$X x BQueue q (x::X) x ¢}
extract q
{IMX',q"). "X =x7 * BQueue g’ X x ¢}
Extraction requires a token 7.

Extraction forces a thunk, and thunks are not thread-safe.



