
Pottier Guéneau Jourdan Mével POPL 2024

Thunks and Debits in
Iris with Time Credits

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...
informal amortized

time complexity analysis
of purely functional
lazy data structures

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...
informal amortized

time complexity analysis
of purely functional
lazy data structures

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...
informal amortized

time complexity analysis
of purely functional
lazy data structures

credit-based reasoning
about thunks?

UNSOUND!

NO!

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...
informal amortized

time complexity analysis
of purely functional
lazy data structures

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

SOUND

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...
informal amortized

time complexity analysis
of purely functional
lazy data structures

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

can be formalized

Danielsson, 2008

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...
informal amortized

time complexity analysis
of purely functional
lazy data structures

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

implement thunks
using mutable state

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...
informal amortized

time complexity analysis
of purely functional
lazy data structures

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...
informal amortized

time complexity analysis
of purely functional
lazy data structures

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits
Atkey, 2010

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...
informal amortized

time complexity analysis
of purely functional
lazy data structures

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits
Charguéraud
& FP, 2015

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...
informal amortized

time complexity analysis
of purely functional
lazy data structures

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits
Mével, Jourdan

& FP, 2019

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...
informal amortized

time complexity analysis
of purely functional
lazy data structures

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits
$: N → iProp

$(n1 + n2) ≡ $n1 ∗ $n2

{ $1 } tick() {True }

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...
informal amortized

time complexity analysis
of purely functional
lazy data structures

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...
informal amortized

time complexity analysis
of purely functional
lazy data structures

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...
informal amortized

time complexity analysis
of purely functional
lazy data structures

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...
informal amortized

time complexity analysis
of purely functional
lazy data structures

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

requires deep
payment

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

val create: (unit -> ’a) -> ’a thunk

val force : ’a thunk -> ’a

type ’a stream = ’a cell thunk

and ’a cell

= Nil | Cons of ’a * ’a stream

type ’a queue = ...

let snoc q x = ...

let extract q = ...

credit-based reasoning
about thunks?

debit-based reasoning
about thunks

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

let create f = ref (UNEVALUATED f)

let force t = match !t with ...

Iris with time credits

ghost piggy bank API
with credit/debit reasoning

thunk API
with credit/debit reasoning

stream API
with credit/debit reasoning

banker’s queue API
purely credit-based

In summary,

following up on Okasaki (1999), Danielsson (2008), MJP (2019),

we use a rich Separation Logic to perform machine-checked proofs

of correctness and time complexity

of a stack of libraries

that marry imperative and functional programming.

We explain debits and deep payment in terms of credits.

https://doi.org/10.1017/CBO9780511530104
http://www.cse.chalmers.se/~nad/publications/danielsson-popl2008.pdf
http://cambium.inria.fr/~fpottier/publis/mevel-jourdan-pottier-time-in-iris-2019.pdf

Thunks

Thunks: Implementation

A thunk is a mutable data structure that offers a memoization service.

type ’a state = UNEVALUATED of (unit -> ’a) | EVALUATED of ’a

type ’a thunk = ’a state ref

let create f = ref (UNEVALUATED f)

let force t =

match !t with

| UNEVALUATED f -> let v = f() in t := EVALUATED v; v

| EVALUATED v -> v

Thunk API: Overview

An abstract predicate Thunk t n ϕ
where t is the thunk, n is its debit, ϕ is its postcondition.

Two runtime operations: creating and forcing a thunk,

and several ghost operations, including sharing and paying.

Thunk API: Creation

Thunk-Create
{ $N ∗ once { $n } f () {λv . □ ϕ v}}

create f
{λt. Thunk t n ϕ}

Creating a thunk costs O(1) credits .

If the suspended computation costs n credits then the thunk has debit n.

• Say Alice wants to suspend a computation whose cost is 10 .
• She creates a thunk, whose debit is initially 10 .

Thunk API: Ordinary Payment

Thunk-Pay
Thunk t n ϕ ∗ $k ⇛
Thunk t (n − k) ϕ

Paying consumes credits and reduces a thunk’s debit .

• Say Alice pays $2 . Then Alice knows the remaining debit is 8 .

Paying is permitted at all times.

Thunk API: Sharing

Thunk-Persistent
persistent(Thunk t n ϕ)

Sharing a thunk is permitted.

Each principal has its own view of the debit
and can pay independently, so debit is an over-approximation of true debt.

• Say Alice tells Bob and Charlie that the debit is 8 .
• Say Bob pays $1 . Bob knows the debit is 7 .
• Say Charlie pays $8 . Charlie knows the debit is 0 .

Thunk API: Forcing

Thunk-Force
{Thunk t 0 ϕ ∗ $F ∗ E}

force t
{λv . □ ϕ v ∗ E}

Whoever knows the debit is 0 can force the thunk.

Forcing costs O(1) credits .

A thunk can be forced many times.

Thunk API: Deep Payment
Whereas ordinary payment consumes credits and reduces a thunk’s debit ,

Thunk-Pay
Thunk t n ϕ ∗ $k ⇛

Thunk t (n − k) ϕ

deep payment increases a thunk’s debit and produces credits
for use in the future, when this thunk is forced.

Deep payment implies that debits can be shifted towards the left.

A key rule, whose justification is new in this work and involves ghost piggy banks.

Thunk-Consequence
Thunk t n1 ϕ −∗
(∀v . ($n2 ∗ □ ϕ v) ⇛ □ ψ v) ⇛
Thunk t (n1 + n2) ψ

Thunk-Deep-Pay-Example
Thunk t1 n1 (λt2.Thunk t2 n2 ϕ) ⇛

Thunk t1 (n1 + n2) (λt2.Thunk t2 0 ϕ)

Thunk API: Deep Payment
Whereas ordinary payment consumes credits and reduces a thunk’s debit ,

Thunk-Pay
Thunk t n ϕ ∗ $k ⇛

Thunk t (n − k) ϕ

deep payment increases a thunk’s debit and produces credits
for use in the future, when this thunk is forced.

Deep payment implies that debits can be shifted towards the left.

A key rule, whose justification is new in this work and involves ghost piggy banks.

Thunk-Consequence
Thunk t n1 ϕ −∗
(∀v . ($n2 ∗ □ ϕ v) ⇛ □ ψ v) ⇛
Thunk t (n1 + n2) ψ

Thunk-Deep-Pay-Example
Thunk t1 n1 (λt2.Thunk t2 n2 ϕ) ⇛

Thunk t1 (n1 + n2) (λt2.Thunk t2 0 ϕ)

Thunk API: Deep Payment
Whereas ordinary payment consumes credits and reduces a thunk’s debit ,

Thunk-Pay
Thunk t n ϕ ∗ $k ⇛

Thunk t (n − k) ϕ

deep payment increases a thunk’s debit and produces credits
for use in the future, when this thunk is forced.

Deep payment implies that debits can be shifted towards the left.

A key rule, whose justification is new in this work and involves ghost piggy banks.

Thunk-Consequence
Thunk t n1 ϕ −∗
(∀v . ($n2 ∗ □ ϕ v) ⇛ □ ψ v) ⇛
Thunk t (n1 + n2) ψ

Thunk-Deep-Pay-Example
Thunk t1 n1 (λt2.Thunk t2 n2 ϕ) ⇛

Thunk t1 (n1 + n2) (λt2.Thunk t2 0 ϕ)

Thunk API: Deep Payment
Whereas ordinary payment consumes credits and reduces a thunk’s debit ,

Thunk-Pay
Thunk t n ϕ ∗ $k ⇛

Thunk t (n − k) ϕ

deep payment increases a thunk’s debit and produces credits
for use in the future, when this thunk is forced.

Deep payment implies that debits can be shifted towards the left.

A key rule, whose justification is new in this work and involves ghost piggy banks.

Thunk-Consequence
Thunk t n1 ϕ −∗
(∀v . ($n2 ∗ □ ϕ v) ⇛ □ ψ v) ⇛
Thunk t (n1 + n2) ψ

Thunk-Deep-Pay-Example
Thunk t1 n1 (λt2.Thunk t2 n2 ϕ) ⇛

Thunk t1 (n1 + n2) (λt2.Thunk t2 0 ϕ)

Streams

Streams

A stream’s elements are computed on demand and memoized.

type ’a stream = ’a cell thunk

and ’a cell = Nil | Cons of ’a * ’a stream

Streams are also known as lazy lists, or just lists in Haskell.

Streams: API Overview

An abstract predicate Stream s d⃗ x⃗
where s is the stream, d⃗ is its sequence of debits , x⃗ is its sequence of elements.

Streams can be shared.

Debits can be shifted towards the left.

Stream-Persist
persistent(Stream s d⃗ x⃗)

Stream-Shift-Debit
⌜ d⃗1 ≤ d⃗2 ⌝ −∗
Stream s d⃗1 x⃗ ⇛

Stream s d⃗2 x⃗

Stream-Shift-Debit-Example
Stream s (0, 0, . . . , 0︸ ︷︷ ︸

n times

, n) x⃗ ⇛

Stream s (1, 1, . . . , 1︸ ︷︷ ︸
n times

, 0) x⃗

Streams: API Overview

An abstract predicate Stream s d⃗ x⃗
where s is the stream, d⃗ is its sequence of debits , x⃗ is its sequence of elements.

Streams can be shared.

Debits can be shifted towards the left.

Stream-Persist
persistent(Stream s d⃗ x⃗)

Stream-Shift-Debit
⌜ d⃗1 ≤ d⃗2 ⌝ −∗
Stream s d⃗1 x⃗ ⇛

Stream s d⃗2 x⃗

Stream-Shift-Debit-Example
Stream s (0, 0, . . . , 0︸ ︷︷ ︸

n times

, n) x⃗ ⇛

Stream s (1, 1, . . . , 1︸ ︷︷ ︸
n times

, 0) x⃗

The banker’s queue

The Banker’s Queue: OCaml Code

A FIFO queue (Okasaki, 1999). Every operation has amortized time complexity O(1).

type ’a queue =

{ lenf: int; f: ’a stream ; lenr: int; r: ’a list }

let empty () =

{ lenf = 0; f = nil(); lenr = 0; r = [] }

let check ({ lenf = lenf ; f = f; lenr = lenr; r = r } as q) =

if lenf >= lenr then q

else { lenf = lenf + lenr; f = append f (revl r) ; lenr = 0; r = [] }

let snoc q x =

check { q with lenr = q.lenr + 1; r = x :: q.r }

let extract q =

let x, f = uncons q.f in

x, check { q with f = f; lenf = q.lenf - 1 }

The Banker’s Queue: Intuition

The expression append f (revl r) constructs a stream whose debit sequence is (roughly)

1, 1, . . . , 1︸ ︷︷ ︸
n times

, n, 0, 0, . . . , 0︸ ︷︷ ︸
n times

By shifting debits towards the left, the debit sequence can be smoothened up:

2, 2, . . . , 2︸ ︷︷ ︸
n times

, 0, 0, 0, . . . , 0︸ ︷︷ ︸
n times

Thus every debit is O(1), which is why extract costs only O(1).

Ghost piggy banks

Piggy Banks: API Overview

An abstraction with four main operations: creating, paying, sharing, forcing a bank.

Piggy banks do not exist at runtime: all operations are ghost state updates.

The piggy bank API involves both credits and debits .

Piggy Banks: Paying and Sharing

Paying and sharing works in the same way as for thunks.

PiggyBank-Pay
PiggyBankP,Q n ∗ $k ⇛
PiggyBankP,Q (n − k)

PiggyBank-Persist
persistent(PiggyBankP,Q n)

Piggy Banks: Creation

When a piggy bank is created, a target amount is fixed, and becomes the initial debit.

An initial property P and a target property Q are also fixed upon creation.

• Say P holds initially.
• Alice creates a piggy bank with initial debit 10 .
• Her purpose is to gather $10 and spend it to execute a transition from P to Q.

PiggyBank-Create
P n ⇛ PiggyBankP,Q n

Piggy Banks: Forcing the Bank

Whoever knows the debit is 0 can force the bank.

They get the collected credit and must establish Q.

A bank can be forced several times.

• Say Charlie forces the bank first.
He gets $10
and can spend them to run code that establishes Q.

• Say Alice later forces the bank.
She gets $0
and learns that Q holds already.

Forcing the bank requires a unique token: this forbids reentrancy/concurrency.

PiggyBank-Break
PiggyBankP,Q 0 ∗ E ⇛

∃n.
(

((▷P n ∗ $n) ∨ ▷Q) ∗
(▷Q ⇛ E)

)

The Point of Piggy Banks

Piggy banks do not support deep payment, so they are simpler than thunks.

Our construction of thunks can allocate several piggy banks per thunk:

• when a new thunk is created,
a new piggy bank is created for it;

• when a deep payment is made on an existing thunk,
a new piggy bank is created for this thunk,
so a new target amount and a new target property can be set.

Okasaki (1999)

Conclusion

Debits and deep payment can be explained in terms of credits !

In the paper:

• forbidding reentrancy = guaranteeing productivity;
achieved by indexing thunks with heights;

• correctness and amortized time complexity of 3 data structures by Okasaki.

Limitations:

• only 3 data structures verified in this paper;
• making Iris$ more user-friendly would require some engineering work;
• open problem: how to control the time complexity of unbounded waiting loops?

Backup Slides

Streams: OCaml Code

Reversing a list and converting it to a stream:

let rec append (s1 : ’a stream) (s2 : ’a stream) : ’a stream =

Thunk.create @@ fun () -> match Thunk.force s1 with

| Nil -> Thunk.force s2

| Cons (x, s1) -> Cons (x, append s1 s2)

let rec revl_append (l : ’a list) (c : ’a cell) : ’a cell =

match l with

Concatenating two streams:

| x :: l -> revl_append l (Cons (x, Thunk.create @@ fun () -> c))

let revl (l : ’a list) : ’a stream =

Thunk.create @@ fun () -> revl_append l Nil

Streams: Debit Subsumption

The debit subsumption judgement

d⃗1 ≤ d⃗2

can be defined as follows:

∀i .
∑

(take i d⃗1) ≤
∑

(take i d⃗2)

This judgement moves debits towards the left.

The Banker’s Queue: Debit Invariant

There is a front stream fs and a rear list rs. One maintains |fs| ≥ |rs|.

Every thunk in fs carries a certain debt or debit.

The first |fs| − |rs| thunks have debt K ; the rest have debt 0.

rs

fs
K K· · · 0 0· · ·

Elements are inserted in the rear, extracted from the front.

The Banker’s Queue: Extraction

If |fs| > |rs|, then extraction does not require rebalancing.

Extraction requires paying K before the first thunk can be forced.

Including this payment, its time complexity is O(1).

rs
fs

K K K· · · 0 0· · ·

The Banker’s Queue: Insertion

If |fs| > |rs|, then insertion does not require rebalancing.

Insertion actually consumes O(1) time,

and requires paying K to maintain the invariant.

rs
fs

K KK· · · 0 0· · ·

A deep payment,

possibly involving a thunk that does not even exist yet in memory!

The Banker’s Queue: Insertion

If |fs| > |rs|, then insertion does not require rebalancing.

Insertion actually consumes O(1) time,

and requires paying K to maintain the invariant.

rs
fs

K KK· · · 0 0· · ·

A deep payment,

possibly involving a thunk that does not even exist yet in memory!

The Banker’s Queue: Rebalancing

Rebalancing involves revl , append , and a redistribution of debits.

fs
rs

0 0· · · The queue is unbalanced.
|fs| = n ∧ |rs| = n + 1

rs
fs

A A· · ·
K +
Rn 0 0· · · Reverse and append the rear list

to the front stream.

rs
fs

A +
R

A +
R· · · K 0 0· · · Redistribute debits by adding R

to the first n debits.

Moving debits towards the left is safe: it requires earlier payments.

The Banker’s Queue: Public API

The banker’s queue admits a simple specification in Iris$.

Banker-Persistent
persistent(BQueue q x⃗)

Banker-Empty
{ $E } empty () {λq. BQueue q []}

Queues are persistent. Creation costs O(1).

The Banker’s Queue: Public API

Insertion and extraction cost O(1).

Banker-Snoc
{ $S ∗ BQueue q x⃗} snoc q x {λq′. BQueue q′ (x⃗ ++ [x])}

Banker-Extract
{ $X ∗ BQueue q (x :: x⃗) ∗ E}

extract q
{λ(x ′, q′). ⌜x ′ = x⌝ ∗ BQueue q′ x⃗ ∗ E}

Extraction requires a token E.

Extraction forces a thunk, and thunks are not thread-safe.

