
1 / 53



Reasoning about Heap Space

How can we establish formal (verified) bounds
on a program’s heap space usage?

We wish to

• work in the setting of a program logic,
• view heap space as a resource.
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Reasoning about Heap Space, without GC

Following Hofmann (1999, 2000), let �1 represent one space credit.

Allocation consumes credits; deallocation produces credits.

A function’s space requirement is visible in its specification.

End of talk...?
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In the presence of GC, what Happens?

Garbage collection can offer superior simplicity, safety, performance.

In the presence of GC,

• deallocation becomes implicit,
• so we lose the ability to recover space credits while reasoning.
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A Ghost Deallocation Operation?

It is tempting to switch to a logical deallocation operation:

This would marry

• manual reasoning about memory at verification time
• automatic management of memory at runtime.
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Research Questions

At least two questions spring to mind:
Is this approach practical? Is it sound?
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Practicality?

A pitfall would be to get the worst of both worlds:

• mental burden of manual reasoning about memory deallocation,
• performance issues sometimes caused by GC.

Yet we can strive to get the best of each:

• simplicity and possibly superior performance afforded by GC,
• reasoning at a suitable level of abstraction:

e.g., via bulk logical deallocation.
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Soundness?

Is logical deallocation sound?

It does have a few good properties: no double-free, no use-after-free.

• a block cannot be logically deallocated twice;
• a block cannot be accessed after it has been logically deallocated.
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Soundness?

Unfortunately, logical deallocation in this form is not sound.

Introducing logical deallocation creates a distinction between

• the logical heap that the programmer keeps in mind,
• the physical heap that exists at runtime.
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Logical versus Physical Heaps

The following situation is problematic.

The programmer has logically deallocated a block and obtained �3,

but this block is reachable and cannot be reclaimed by the GC.

We have 3 space credits but no free space in the physical heap!
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Restricting Logical Deallocation

To avoid this problem, we want to restrict logical deallocation.

• A block should be logically deallocated only if it is unreachable,
• which guarantees that the GC can reclaim this block,
• so the logical and physical heaps remain synchronized.
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A Global Invariant

The logical and physical heaps coincide on their reachable fragments.

So, �k implies k free words exist in the logical heap
implies k free words can be created in the physical heap.
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Problem Solved? Not Yet

The outstanding problem is, how do we restrict logical deallocation?

• We want to disallow deallocating a reachable block,
• but Separation Logic lets us reason about ownership.
• Ownership and reachability are unrelated!
• Furthermore, reachability is a nonlocal property.

Not requiring reachability reasoning is a strength of traditional SL.
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A Solution: Predecessor Tracking

Following Kassios and Kritikos (2013),

• we keep track of the predecessors of every block.
• If a block has no predecessor, then it is unreachable,
• therefore it can be logically deallocated.
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Points-To and Pointed-By Assertions

In addition to points-to, we use pointed-by assertions:
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Logical Deallocation

We get a sound logical deallocation axiom, for a single block:
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Dealing with Roots

We want the pointers from the stack(s) to the heap to be explicit,

• so the operational semantics views them as GC roots,
• so our predecessor-tracking logic keeps track of them.

This leads to a calculus where stack cells are explicit
and a variable denotes an address on the stack.
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Roadmap

1 Syntax, Semantics of SpaceLang

2 Reasoning Rules of SL�

3 Ghost Reference Counting

4 Examples of Specifications

5 Conclusion
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Values, Blocks, Stores

Memory locations: `, c, r , s ∈ L.

Values include constants, memory locations, and closed procedures:

v ::= () | k | ` | λ~x .i

Memory blocks include heap tuples, stack cells, and deallocated blocks:

b ::= ~v | 〈v〉 | �

A store maps locations to blocks, encompassing the heap and stack(s).
The size of a block:

size(~v) = 1 + |~v | size(〈v〉) = size(�) = 0

The size of the store is the sum of the sizes of all blocks.
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Call-by-Reference and GC Roots

A reference is a variable or a (stack) location and denotes a stack cell.

% ::= x | c

SpaceLang uses call-by-reference.

A variable denotes a closed reference, not a closed value as is usual.

The operational semantics involves substitutions [c/x ].

This preserves the property that the code never points to the heap.

The roots of the garbage collection process are the stack cells.
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Instructions

SpaceLang is imperative. An instruction i does not return a value.

skip no-op
i ; i sequencing
if ∗% then i else i conditional
∗%(~%) procedure call
∗% = v constant load
∗% = ∗% move

∗% = alloc n heap allocation
∗% = [∗%+ o] heap load
[∗%+ o] = ∗% heap store
∗% = (∗% == ∗%) address comparison
alloca x in i stack allocation
alloca c in i active stack cell
fork ∗% as x in i thread creation

The operands of every instruction are stack cells (%).

There is no deallocation instruction for heap blocks.
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Operational Semantics: Heap Allocation

We fix a maximum heap size S.
Heap allocation fails if the heap size exceeds S.

StepAlloc
σ′ = [`+= ()n]σ

size(σ′) ≤ S σ′′ = 〈s := `〉σ′

∗s = alloc n / σ −→ skip / σ′′

S is a parameter of the operational semantics,

but the reasoning rules of SL� are independent of S.

22 / 53



Operational Semantics: Stack Allocation

The dynamic semantics of stack allocation is in three steps:

StepAllocaEntry
σ′ = [c += 〈()〉]σ

alloca x in i / σ −→ alloca c in [c/x ]i / σ′

StepAllocaExit
σ(c) = 〈v〉 σ′ = [c := �]σ
alloca c in skip / σ −→ skip / σ′

Evaluation contexts: K ::= [] | K ; i | alloca c inK .
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Garbage Collection

To complete the definition of the operational semantics,

• allow garbage collection before every reduction step.
σ 1 σ′ holds if
• the stores σ and σ′ have the same domain;
• for every ` in this domain,

either σ′(`) = σ(`), or ` is unreachable in σ and σ′(`) = �.
• allow thread interleavings (comes for free with Iris).
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Heap Allocation

Heap allocation consumes space credits.

Points-to and pointed-by assertions for the new location appear.

One pointer to the value v is deleted. (This aspect is optional.)

26 / 53



Heap Store

Writing a heap cell is simple... but involves some administration.

One pointer to v is deleted; one pointer to v ′ is created.
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Stack Allocation

A points-to assertion for the new stack cell exists throughout its lifetime.

No pointed-by assertion is provided. (A design choice.)

• No pointers (from the heap or stack) to the stack.
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Logical Deallocation

Logical deallocation of a block is a ghost operation:
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Deferred Predecessor Deletion

Deletion of deallocated predecessors can be deferred:

A key rule: if L′ is empty, then v becomes eligible for deallocation.
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Bulk Logical Deallocation

A group that is closed under predecessors can be deallocated at once:

The rules for constructing a “cloud” (omitted) are straightforward.
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More Axioms

Points-to and pointed-by assertions can be split and joined.

Pointed-by assertions are covariant.

Points-to and pointed-by assertions can be confronted.
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More Axioms

Space credits can be split and joined.
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Soundness of SL�

Theorem (Soundness)
If {�S} i {True} holds, then, executing i in an empty store
cannot lead to a situation where a thread is stuck.

If the code is verified under S space credits,
then its heap space usage cannot exceed S.

This guarantee holds for every S.
The reasoning rules are independent of S.

The rules allow compositional reasoning about space.
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Choice of a Predecessor Tracking Discipline

Keeping track of a multiset of predecessors can be heavy.

Sometimes

• counting predecessors is enough,
• or recording what regions the predecessors inhabit is enough.

Can high-level predecessor tracking disciplines be defined on top of SL�?
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Example: Ghost Reference Counting

The simplified pointed-by assertion v ←[ n counts predecessors:

v ←[ n , ∃L. (v ←[1 L ? |L| = n)

Edge addition / deletion increment / decrement n.
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Aperçu

4 Examples of Specifications
A Stack
List Copy
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Creation

Creating a stack consumes 4 space credits.
f 7→ 〈create〉
stack 7→ 〈()〉

�4

 ∗f (stack)

∃`.
f 7→ 〈create〉
stack 7→ 〈`〉

isStack ` [] ? `←[ 1


We get unique ownership of the stack and we have the sole pointer to it.
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Pushing

Pushing consumes 4 space credits.

f 7→ 〈push〉
stack 7→ 〈`〉
elem 7→ 〈v〉
�4 ? isStack ` vs

v ←[ n


∗f (stack, elem)



f 7→ 〈push〉
stack 7→ 〈`〉
elem 7→ 〈v〉

isStack ` (v :: vs)
v ←[ n + 1


The value v receives one more antecedent.
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Popping

Popping frees up 4 space credits.

f 7→ 〈pop〉
stack 7→ 〈`〉
elem 7→ 〈()〉

isStack ` (v :: vs)
v ←[ n


∗f (stack, elem)



f 7→ 〈pop〉
stack 7→ 〈`〉
elem 7→ 〈v〉
�4 ? isStack ` vs

v ←[ n


The number of antecedents of v is unchanged, as elem points to it.

42 / 53



Disposal

Logically deallocating the entire stack is a ghost operation.

It frees up a linear number of space credits.isStack ` vs ? `←[ 0
∗

(v ,n)∈vns
v ←[ n

 VI

 �(4 + 4× |vs|)
∗

(v ,n)∈vns
v ←[ n − (v $ vs)


The ghost reference counters of the stack elements are decremented.

43 / 53



Aperçu
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Lists Without Sharing

Each cell owns the next cell and possesses the sole pointer to it.

isList ` [] , ` 7→ [0]
isList ` (v :: vs ) , ∃`′. ` 7→ [1; v ; `′] ? `′ ←[ 1 ? isList `′ vs

Let’s now have a look at list copy and its spec. (Fasten seatbelts!)
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List Copy in SpaceLang

copy , λ(self , dst, src).
alloca tag in ∗tag = [∗src + 0]; – read the list’s tag
if ∗tag then – if this is a cons cell, then

alloca head in ∗head = [∗src + 1]; – read the list’s head
alloca tail in ∗tail = [∗src + 2]; – read the list’s tail
∗src = (); – clobber this root
alloca dst′ in ∗self (self , dst′, tail); – copy the list’s tail
∗dst = alloc 3; – allocate a new cons cell
[∗dst + 0] = ∗tag; – and initialize it
[∗dst + 1] = ∗head;
[∗dst + 2] = ∗dst′

else – this must be a nil cell
∗src = (); – clobber this root
∗dst = alloc 1; – allocate a new nil cell
[∗dst + 0] = ∗tag – and initialize it
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Specification of List Copy

The case m = 1, where we have the sole pointer to the list, is special.
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Summary of Contributions

A sound logic to reason about space usage in the presence of GC.

• Allocation consumes space credits �n.
• Logical deallocation is a ghost operation.
• Logical dellocation requires predecessor tracking v ←[ L.
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Future Work

Predecessor tracking still requires too much administration.

We are investigating

• deferred edge deletion;
• automated or simplified tracking of roots;
• predecessor tracking based on regions;
• notions of single-entry-point regions.

We would also like to adapt SL� directly to call-by-value λ-calculus.
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A Bit of Controversy about OCaml

During this traversal, which part of the tree is live?

type tree = Leaf | Node of tree * tree

let rec walk t =

match t with

| Leaf -> ()

| Node (t1, t2) -> walk t1; walk t2

It could (should?) be the subtrees that have not yet been traversed,

because t2 remains live while walk t1 is executed...
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A Bit of Controversy about OCaml

But the OCaml compiler transforms the code roughly as follows:

type tree = Leaf | Node of tree * tree

let rec walk t =

match t with

| Leaf -> ()

| Node ( _, _) -> walk t.1 ; walk t.2

Thus, t remains live while walk t.1 is executed.

Every left subtree remains live until it has been entirely traversed.

Reasoning about space at this level
requires a precise definition of where each variable is a root.
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Operational Semantics

StepSeqSkip
skip; i / σ −→ i / σ

StepIf
σ(r) = 〈k〉

if ∗r then i1 else i2 / σ −→ k 6= 0 ? i1 : i2 / σ

StepCall
σ(r) = 〈λ~x.i〉 |~x| = |~s|
∗r(~s) / σ −→ [~s/~x ]i / σ

StepConst
σ

′ = 〈s := v〉σ
pointers(v) = ∅

∗s = v / σ −→ skip / σ′

StepMove
σ(r) = 〈v〉

σ
′ = 〈s := v〉σ

∗s = ∗r / σ −→ skip / σ′

StepAlloc
σ

′ = [` += ()n ]σ
size(σ′) ≤ S σ

′′ = 〈s := `〉σ′

∗s = alloc n / σ −→ skip / σ′′

StepLoad
σ(r) = 〈`〉 σ(`) = ~v 0 ≤ o < |~v|

~v(o) = v σ
′ = 〈s := v〉σ

∗s = [∗r + o] / σ −→ skip / σ′

StepStore
σ(r) = 〈v〉 σ(s) = 〈`〉 σ(`) = ~v
0 ≤ o < |~v| σ

′ = [` := [o := v ]~v ]σ

[∗s + o] = ∗r / σ −→ skip / σ′

StepLocEq
σ(r1) = 〈`1〉 σ(r2) = 〈`2〉
σ

′ = 〈s := (`1 = `2 ? 1 : 0)〉σ

∗s = (∗r1 == ∗r2) / σ −→ skip / σ′

StepAllocaEntry
σ

′ = [c += 〈()〉]σ

alloca x in i / σ −→ alloca c in [c/x ]i / σ′

StepAllocaExit
σ(c) = 〈v〉 σ

′ = [c := �]σ

alloca c in skip / σ −→ skip / σ′

StepFork
σ(r) = 〈v〉 σ

′ = [r := ()][c += 〈v〉]σ

fork ∗r as x in i / σ −→ skip / σ′

spawning alloca c in [c/x ]i

StepContext
i / σ −→ i′ / σ′

spawning~i

K [i] / σ −→ K [i′] / σ′

spawning~i
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