1/53

Reasoning about Heap Space

How can we establish formal (verified) bounds
on a program's heap space usage?

We wish to

® work in the setting of a program logic,

® view heap space as a resource.

Reasoning about Heap Space, without GC

Following Hofmann (1999, 2000), let ©1 represent one space credit.

Allocation consumes credits; deallocation produces credits.
2(0,‘%5(2,) } 2= allloc (£) { Lk }
){ Ay } %m(x) 5 QALS&(z@r) }

A function’s space requirement is visible in its specification.

End of talk...?

In the presence of GC, what Happens?

Garbage collection can offer superior simplicity, safety, performance.

In the presence of GC,

® deallocation becomes implicit,

® 5o we lose the ability to recover space credits while reasoning.

A Ghost Deallocation Operation?

It is tempting to switch to a logical deallocation operation:
A ()M}ée(g)

This would marry

® manual reasoning about memory at verification time

® automatic management of memory at runtime.

Research Questions

At least two questions spring to mind:
Is this approach practical? Is it sound?

Practicality?

A pitfall would be to get the worst of both worlds:

® mental burden of manual reasoning about memory deallocation,

® performance issues sometimes caused by GC.
Yet we can strive to get the best of each:

® simplicity and possibly superior performance afforded by GC,

® reasoning at a suitable level of abstraction:
e.g., via bulk logical deallocation.

Soundness?

Is logical deallocation sound?
sk S Quge(®)
It does have a few good properties: no double-free, no use-after-free.

® 3 block cannot be logically deallocated twice;

® 3 block cannot be accessed after it has been logically deallocated.

Soundness?

Unfortunately, logical deallocation in this form is not sound.
ek B Okise®

Introducing logical deallocation creates a distinction between

® the logical heap that the programmer keeps in mind,

® the physical heap that exists at runtime.

Logical versus Physical Heaps

The following situation is problematic.

The programmer has logically deallocated a block and obtained ©3,

but this block is reachable and cannot be reclaimed by the GC.

We have 3 space credits but no free space in the physical heap!
SLO

10/53

Restricting Logical Deallocation

To avoid this problem, we want to restrict logical deallocation.

® A block should be logically deallocated only if it is unreachable,
® which guarantees that the GC can reclaim this block,

® 5o the logical and physical heaps remain synchronized.

A Global Invariant

The logical and physical heaps coincide on their reachable fragments.

Qoamﬂ&wr Wﬂ%
So, <k implies k free words exist in the logical heap
implies k free words can be created in the physical heap.

SLO

12/53

Problem Solved? Not Yet

The outstanding problem is, how do we restrict logical deallocation?

® We want to disallow deallocating a reachable block,
® but Separation Logic lets us reason about ownership.
® Ownership and reachability are unrelated!

® Furthermore, reachability is a nonlocal property.

Not requiring reachability reasoning is a strength of traditional SL.

A Solution: Predecessor Tracking

Following Kassios and Kritikos (2013),

® we keep track of the predecessors of every block.
® |f a block has no predecessor, then it is unreachable,

® therefore it can be logically deallocated.

Points-To and Pointed-By Assertions

In addition to points-to, we use pointed-by assertions:

D& % 2 <L
mmaw/a fawkfto!{
\/—\/\/

tiow ko deallocale
pumiiac o

SLO

15/53

Logical Deallocation

We get a sound logical deallocation axiom, for a single block:

xX— b ¥ e S ()Acze(@)

Dealing with Roots

We want the pointers from the stack(s) to the heap to be explicit,

® 5o the operational semantics views them as GC roots,

® so our predecessor-tracking logic keeps track of them.

This leads to a calculus where stack cells are explicit
and a variable denotes an address on the stack.

@ Syntax, Semantics of SpacelLang

Roadmap

Values, Blocks, Stores

Memory locations: ¢,c,r,s € L.

Values include constants, memory locations, and closed procedures:
vi=() | k|| AX.i
Memory blocks include heap tuples, stack cells, and deallocated blocks:
b:=v|(v)|¥

A store maps locations to blocks, encompassing the heap and stack(s).
The size of a block:

size(V) =1+ |V| size((v)) = size(¥) =0

The size of the store is the sum of the sizes of all blocks. —

Call-by-Reference and GC Roots

A reference is a variable or a (stack) location and denotes a stack cell.
on=x|c

Spacelang uses call-by-reference.

A variable denotes a closed reference, not a closed value as is usual.
The operational semantics involves substitutions [c/x].

This preserves the property that the code never points to the heap.

The roots of the garbage collection process are the stack cells.

Instructions

Spacelang is imperative. An instruction i does not return a value.

skip no-op x0 = alloc n heap allocation

ivi sequencing x0 = [*x0 + 0] heap load

if xothenielsei conditional [*0 + o] = *p heap store

x0(0) procedure call o = (o == %) address comparison

x0 =V constant load allocaxini stack allocation

*x0 = *0 move allocacini active stack cell
fork xgasxini thread creation

The operands of every instruction are stack cells (o).

There is no deallocation instruction for heap blocks.

Operational Semantics: Heap Allocation

We fix a maximum heap size S.
Heap allocation fails if the heap size exceeds S.

STEPALLOC
o = +=()lo
size(0c’)<S o' =(s:=0)0

xs = allocn / o — skip / o”

S is a parameter of the operational semantics,

but the reasoning rules of SLo are independent of S.

Operational Semantics: Stack Allocation

The dynamic semantics of stack allocation is in three steps:

STEPALLOCAENTRY
!
o' =[c+={(()lo

allocaxini / o —> allocacin|c/x]i / o

STEPALLOCAEXIT
olc)=(v) o' =[c:=Ho
allocacinskip / 0 —> skip / o’

Evaluation contexts: K ::=[] | K;i | allocacin K.

Garbage Collection

To complete the definition of the operational semantics,

® allow garbage collection before every reduction step.
o W o’ holds if

® the stores o and ¢’ have the same domain;

® for every £ in this domain,
either o/(¢) = o(¥), or £ is unreachable in o and o’/(¢) = ¥.

e allow thread interleavings (comes for free with Iris).

@ Syntax, Semantics of SpacelLang
@ Reasoning Rules of SLo

© Ghost Reference Counting

@ Examples of Specifications

® Conclusion

25/53

Heap Allocation

Heap allocation consumes space credits.

mow axnebisn
A1iroc n
MWA';M osize(()™) ﬁ: 2}
st (v) ¢ xs=allocn {3¢. s > (2)
oy 0 g L\ {5}

W dack edae deebion
Points-to and pointed-by assertions for the new location appear.

One pointer to the value v is deleted. (This aspect is optional.)

SLO

26/53

Heap Store

Writing a heap cell is simple... but involves some administration.

STORE
g(o)=v

J‘/’ s 0—><(£’) s '—><<f>>
ﬂ r— (v’ r—= "Vbbd
017 p [xs+0]=%r {£+>1 [0:=0] Mco%

v<—1q v<—|qL\{{’}

v g o' g L' w{t} delebion
dﬂ;adzl‘hw/) “"}”

One pointer to v is deleted; one pointer to v/ is created.

SLO

27 /53

Stack Allocation

A points-to assertion for the new stack cell exists throughout its lifetime.

Bod o ke ol

oo
Arroca _; _5
Ve. {@ x e ()} [c/x]i {er(0) x ¥}
{®} allocaxini {¥}

No pointed-by assertion is provided. (A design choice.)

® No pointers (from the heap or stack) to the stack.

Logical Deallocation

Logical deallocation of a block is a ghost operation:

= 2
L1V x L4y L x dom(L) C{l} =, 1{l} * osize(V)
. —_ Tl

ok 4t}

29/53

Deferred Predecessor Deletion

Deletion of deallocated predecessors can be deferred:

v—L + D = 0y L' bt b
dead y \
yd 4 dem(LM)eD

A key rule: if L’ is empty, then v becomes eligible for deallocation.

SLO

30/53

Bulk Logical Deallocation

A group that is closed under predecessors can be deallocated at once:

/D«Q:E”D = ﬁ?p —
%DW w,;mm J)m

ame m D
The rules for constructing a “cloud” (omitted) are straightforward.

SLO

31/53

More Axioms

Points-to and pointed-by assertions can be split and joined.

2 et = £+—>14@ + L B
8 (——17‘1'1; LAHL?— E U‘qa"‘l * ,0<_‘1sz
oL —* vl glel

] !
Ri— b # el 31 R b 4 Beryl *
2§ pointens (8) < £$L
Pointed-by assertions are covariant.

Points-to and pointed-by assertions can be confronted.

Space credits can be split and joined.

Tuwe = 00
Olmrm) =3 Omy * Gy

More Axioms

Soundness of SLo

Theorem (Soundness)

If {S} i { True} holds, then, executing i in an empty store
cannot lead to a situation where a thread is stuck.

If the code is verified under S space credits,
then its heap space usage cannot exceed S.

This guarantee holds for every S.
The reasoning rules are independent of S.

The rules allow compositional reasoning about space.

© Ghost Reference Counting

Roadmap

Choice of a Predecessor Tracking Discipline

Keeping track of a multiset of predecessors can be heavy.

Sometimes

® counting predecessors is enough,

® or recording what regions the predecessors inhabit is enough.

Can high-level predecessor tracking disciplines be defined on top of SLo?

Example: Ghost Reference Counting

The simplified pointed-by assertion v <+ n counts predecessors:

viin = 3L (ven L« |L=n)

Edge addition / deletion increment / decrement n.

Roadmap

@ Examples of Specifications

SL_<\/

38/53

Apercu

@ Examples of Specifications
A Stack

SL_<\/

39/53

Creation

Creating a stack consumes 4 space credits.

f — (create) f — (create)
stack — (()) p *f(stack) ¢ 3¢. stack— ({)
o4 isStack £ [| x £ = 1

We get unique ownership of the stack and we have the sole pointer to it.

Pushing

Pushing consumes 4 space credits.

f — (push) f — (push)
stack — ({) stack — ({)
elem — (v) «f (stack, elem) elem — (v)
o4 x isStack { vs isStack ¢ (v :: vs)
v<in vn+1

The value v receives one more antecedent.

Popping

Popping frees up 4 space credits.

— (pop) f — (pop)
stack — (€) stack — ({)
elem — {(()) «f(stack, elem) elem — (v)

isStack £ (v :: vs) o4 % isStack { vs
V<in V<in

The number of antecedents of v is unchanged, as elem points to it.

Disposal

Logically deallocating the entire stack is a ghost operation.

It frees up a linear number of space credits.

isStack { vs * ¢ <0 o(4+ 4 x |vs|)
% vein =1 k ven—(v$vs)
(v,n)€vns (v,n)€vns

The ghost reference counters of the stack elements are decremented.

Apercu

@ Examples of Specifications

List Copy

SL_<\/

44/53

Lists Without Sharing

Each cell owns the next cell and possesses the sole pointer to it.

isList (] = ¢~ [0]
isList 0 (v::vs) = 3. 0w [Lv;l]x 0 <+ 1xisList (' vs

Let's now have a look at /list copy and its spec. (Fasten seatbelts!)

List Copy in Spacelang

copy = \(self, dst, src).

alloca tagin xtag = [xsrc + 0]; — read the list's tag

if xtagthen — if this is a cons cell, then
alloca headin xhead = [xsrc + 1]; — read the list's head
alloca tailin xtail = [xsrc + 2]; — read the list’s tail
xsrc = (); — clobber this root
alloca dst’ in *self (self, dst', tail); — copy the list’s tail
*dst = alloc 3; — allocate a new cons cell
[*dst + 0] = xtag; — and initialize it

[xdst + 1] = xhead,
[«dst + 2] = xdst’

else — this must be a nil cell
xsrc = (); — clobber this root
*dst = alloc 1; — allocate a new nil cell
[*dst + 0] = xtag — and initialize it

Specification of List Copy

The case m = 1, where we have the sole pointer to the list, is special.

f— (copy) *x dst— {()) x src— (£) ij ’“‘MW

isList { vs x £+ m o
m=1700:0(2+4x|vs|) -
Vv € vs. 3n. (v, n) € vns
>]<(v,n)€vns vn

«f(f, dst, src)

f— (copy) x dst (€Y x src— {(()) aug%u
m =17 True: (isList £ vs x £++m—1)
isList ' vs x £/ <1 oL meﬂ
>l<(v,n)6vns vin+ (m =170:v$ VS)
Smmwmhwwlwk
Q_Lammﬁu%mam&wlwh

3¢.

SLO

47/53

@ Syntax, Semantics of SpacelLang
@ Reasoning Rules of SLo

© Ghost Reference Counting

@ Examples of Specifications

@ Conclusion

48/53

Summary of Contributions

A sound logic to reason about space usage in the presence of GC.

® Allocation consumes space credits on.
® | ogical deallocation is a ghost operation.

® | ogical dellocation requires predecessor tracking v < L.

Future Work

Predecessor tracking still requires too much administration.

We are investigating

deferred edge deletion;

automated or simplified tracking of roots;

® predecessor tracking based on regions;

notions of single-entry-point regions.

We would also like to adapt SL¢ directly to call-by-value A-calculus.

A Bit of Controversy about OCaml

During this traversal, which part of the tree is live?

type tree = Leaf | Node of tree * tree

let rec walk t =
match t with
| Leaf -> ()
| Node (tl, t2) -> walk t1; walk t2

51/53

A Bit of Controversy about OCaml

During this traversal, which part of the tree is live?

type tree = Leaf | Node of tree * tree

let rec walk t =
match t with
| Leaf -> ()
| Node (tl, t2) -> walk t1; walk t2

It could (should?) be the subtrees that have not yet been traversed,

because t2 remains live while walk t1 is executed...

A Bit of Controversy about OCaml

But the OCaml compiler transforms the code roughly as follows:

type tree = Leaf | Node of tree * tree

let rec walk t =
match t with
| Leaf -> ()
| Node (_, _) ->walk t.1; walk t.2

Thus, t remains live while walk t.1 is executed.
Every left subtree remains live until it has been entirely traversed.

Reasoning about space at this level
requires a precise definition of where each variable is a root. -

STEPSEQSKIP Sreplre

skip;i /o — i/ o

o(r) = (k)

Operational Semantics

STEPCALL
o(r) = (AX.i)

IX] = 18]

if krthenijelseir /o — k#0771 :ih / o

«r(3)) o — [5/R)i | o

STEPCONST STEPMOVE STEPALLO(; ,
o =(s:=v)o o(r) = (v) o =[+=("]o
pointers(v) = 0 o' = (s:=v)o size(c’) < S o' = (s:=t)o’

xs=v /o —sskip/ o

STEPLOAD
o(r) = (L) a(2) = % 0< o< |V|
V(o) = v o = (s:=v)o

xs = *r /| o — skip / o’

*5:[*r+o]/a—>skip/al

STEPLOCEQ
o(n) =) o(r)= ()
o =(s:=(l1 =4, 71:0))o
*xs = (xr] == xry) / o —> skip / o’
STEPALLOCAEXIT STEPFORK
o(@)=(v) o =[c:=Ho o(r) = (v)

xs =allocn / o — skip / o'’

STEPSTORE
o(r)=(v) o= o)=V
0<o< |7 o =[t:=[o:=V]V]o

[#s + o] = *r / 0 — skip / &’

STEPALLOCAENTRY
!’
ol =le+= (D=

allocaxini / ¢ — allocacin(c/x]i / o’

STEPCONTEXT
i/ o — i’ / o’
o’ =[r:= Qlle += (V)]o spawning T

alloca cinskip / & —» skip / o’

fork xrasxini / o — skip / o’
spawning alloca cin [c/x]i

Kli] / o — K[i'l / o
spawning7

53/53

	Syntax, Semantics of SpaceLang
	Reasoning Rules of SL♢
	Ghost Reference Counting
	Examples of Specifications
	A Stack
	List Copy

	Conclusion
	Backup

