
1 / 53

Reasoning about Heap Space

How can we establish formal (verified) bounds
on a program’s heap space usage?

We wish to

• work in the setting of a program logic,
• view heap space as a resource.

2 / 53

Reasoning about Heap Space, without GC

Following Hofmann (1999, 2000), let �1 represent one space credit.

Allocation consumes credits; deallocation produces credits.

A function’s space requirement is visible in its specification.

End of talk...?

3 / 53

In the presence of GC, what Happens?

Garbage collection can offer superior simplicity, safety, performance.

In the presence of GC,

• deallocation becomes implicit,
• so we lose the ability to recover space credits while reasoning.

4 / 53

A Ghost Deallocation Operation?

It is tempting to switch to a logical deallocation operation:

This would marry

• manual reasoning about memory at verification time
• automatic management of memory at runtime.

5 / 53

Research Questions

At least two questions spring to mind:
Is this approach practical? Is it sound?

6 / 53

Practicality?

A pitfall would be to get the worst of both worlds:

• mental burden of manual reasoning about memory deallocation,
• performance issues sometimes caused by GC.

Yet we can strive to get the best of each:

• simplicity and possibly superior performance afforded by GC,
• reasoning at a suitable level of abstraction:

e.g., via bulk logical deallocation.

7 / 53

Soundness?

Is logical deallocation sound?

It does have a few good properties: no double-free, no use-after-free.

• a block cannot be logically deallocated twice;
• a block cannot be accessed after it has been logically deallocated.

8 / 53

Soundness?

Unfortunately, logical deallocation in this form is not sound.

Introducing logical deallocation creates a distinction between

• the logical heap that the programmer keeps in mind,
• the physical heap that exists at runtime.

9 / 53

Logical versus Physical Heaps

The following situation is problematic.

The programmer has logically deallocated a block and obtained �3,

but this block is reachable and cannot be reclaimed by the GC.

We have 3 space credits but no free space in the physical heap!

10 / 53

Restricting Logical Deallocation

To avoid this problem, we want to restrict logical deallocation.

• A block should be logically deallocated only if it is unreachable,
• which guarantees that the GC can reclaim this block,
• so the logical and physical heaps remain synchronized.

11 / 53

A Global Invariant

The logical and physical heaps coincide on their reachable fragments.

So, �k implies k free words exist in the logical heap
implies k free words can be created in the physical heap.

12 / 53

Problem Solved? Not Yet

The outstanding problem is, how do we restrict logical deallocation?

• We want to disallow deallocating a reachable block,
• but Separation Logic lets us reason about ownership.
• Ownership and reachability are unrelated!
• Furthermore, reachability is a nonlocal property.

Not requiring reachability reasoning is a strength of traditional SL.

13 / 53

A Solution: Predecessor Tracking

Following Kassios and Kritikos (2013),

• we keep track of the predecessors of every block.
• If a block has no predecessor, then it is unreachable,
• therefore it can be logically deallocated.

14 / 53

Points-To and Pointed-By Assertions

In addition to points-to, we use pointed-by assertions:

15 / 53

Logical Deallocation

We get a sound logical deallocation axiom, for a single block:

16 / 53

Dealing with Roots

We want the pointers from the stack(s) to the heap to be explicit,

• so the operational semantics views them as GC roots,
• so our predecessor-tracking logic keeps track of them.

This leads to a calculus where stack cells are explicit
and a variable denotes an address on the stack.

17 / 53

Roadmap

1 Syntax, Semantics of SpaceLang

2 Reasoning Rules of SL�

3 Ghost Reference Counting

4 Examples of Specifications

5 Conclusion

18 / 53

Values, Blocks, Stores

Memory locations: `, c, r , s ∈ L.

Values include constants, memory locations, and closed procedures:

v ::= () | k | ` | λ~x .i

Memory blocks include heap tuples, stack cells, and deallocated blocks:

b ::= ~v | 〈v〉 | �

A store maps locations to blocks, encompassing the heap and stack(s).
The size of a block:

size(~v) = 1 + |~v | size(〈v〉) = size(�) = 0

The size of the store is the sum of the sizes of all blocks.

19 / 53

Call-by-Reference and GC Roots

A reference is a variable or a (stack) location and denotes a stack cell.

% ::= x | c

SpaceLang uses call-by-reference.

A variable denotes a closed reference, not a closed value as is usual.

The operational semantics involves substitutions [c/x].

This preserves the property that the code never points to the heap.

The roots of the garbage collection process are the stack cells.

20 / 53

Instructions

SpaceLang is imperative. An instruction i does not return a value.

skip no-op
i ; i sequencing
if ∗% then i else i conditional
∗%(~%) procedure call
∗% = v constant load
∗% = ∗% move

∗% = alloc n heap allocation
∗% = [∗%+ o] heap load
[∗%+ o] = ∗% heap store
∗% = (∗% == ∗%) address comparison
alloca x in i stack allocation
alloca c in i active stack cell
fork ∗% as x in i thread creation

The operands of every instruction are stack cells (%).

There is no deallocation instruction for heap blocks.

21 / 53

Operational Semantics: Heap Allocation

We fix a maximum heap size S.
Heap allocation fails if the heap size exceeds S.

StepAlloc
σ′ = [`+= ()n]σ

size(σ′) ≤ S σ′′ = 〈s := `〉σ′

∗s = alloc n / σ −→ skip / σ′′

S is a parameter of the operational semantics,

but the reasoning rules of SL� are independent of S.

22 / 53

Operational Semantics: Stack Allocation

The dynamic semantics of stack allocation is in three steps:

StepAllocaEntry
σ′ = [c += 〈()〉]σ

alloca x in i / σ −→ alloca c in [c/x]i / σ′

StepAllocaExit
σ(c) = 〈v〉 σ′ = [c := �]σ
alloca c in skip / σ −→ skip / σ′

Evaluation contexts: K ::= [] | K ; i | alloca c inK .

23 / 53

Garbage Collection

To complete the definition of the operational semantics,

• allow garbage collection before every reduction step.
σ 1 σ′ holds if
• the stores σ and σ′ have the same domain;
• for every ` in this domain,

either σ′(`) = σ(`), or ` is unreachable in σ and σ′(`) = �.
• allow thread interleavings (comes for free with Iris).

24 / 53

Roadmap

1 Syntax, Semantics of SpaceLang

2 Reasoning Rules of SL�

3 Ghost Reference Counting

4 Examples of Specifications

5 Conclusion

25 / 53

Heap Allocation

Heap allocation consumes space credits.

Points-to and pointed-by assertions for the new location appear.

One pointer to the value v is deleted. (This aspect is optional.)

26 / 53

Heap Store

Writing a heap cell is simple... but involves some administration.

One pointer to v is deleted; one pointer to v ′ is created.

27 / 53

Stack Allocation

A points-to assertion for the new stack cell exists throughout its lifetime.

No pointed-by assertion is provided. (A design choice.)

• No pointers (from the heap or stack) to the stack.

28 / 53

Logical Deallocation

Logical deallocation of a block is a ghost operation:

29 / 53

Deferred Predecessor Deletion

Deletion of deallocated predecessors can be deferred:

A key rule: if L′ is empty, then v becomes eligible for deallocation.

30 / 53

Bulk Logical Deallocation

A group that is closed under predecessors can be deallocated at once:

The rules for constructing a “cloud” (omitted) are straightforward.

31 / 53

More Axioms

Points-to and pointed-by assertions can be split and joined.

Pointed-by assertions are covariant.

Points-to and pointed-by assertions can be confronted.

32 / 53

More Axioms

Space credits can be split and joined.

33 / 53

Soundness of SL�

Theorem (Soundness)
If {�S} i {True} holds, then, executing i in an empty store
cannot lead to a situation where a thread is stuck.

If the code is verified under S space credits,
then its heap space usage cannot exceed S.

This guarantee holds for every S.
The reasoning rules are independent of S.

The rules allow compositional reasoning about space.

34 / 53

Roadmap

1 Syntax, Semantics of SpaceLang

2 Reasoning Rules of SL�

3 Ghost Reference Counting

4 Examples of Specifications

5 Conclusion

35 / 53

Choice of a Predecessor Tracking Discipline

Keeping track of a multiset of predecessors can be heavy.

Sometimes

• counting predecessors is enough,
• or recording what regions the predecessors inhabit is enough.

Can high-level predecessor tracking disciplines be defined on top of SL�?

36 / 53

Example: Ghost Reference Counting

The simplified pointed-by assertion v ←[n counts predecessors:

v ←[n , ∃L. (v ←[1 L ? |L| = n)

Edge addition / deletion increment / decrement n.

37 / 53

Roadmap

1 Syntax, Semantics of SpaceLang

2 Reasoning Rules of SL�

3 Ghost Reference Counting

4 Examples of Specifications
A Stack
List Copy

5 Conclusion

38 / 53

Aperçu

4 Examples of Specifications
A Stack
List Copy

39 / 53

Creation

Creating a stack consumes 4 space credits.
f 7→ 〈create〉
stack 7→ 〈()〉

�4

 ∗f (stack)

∃`.
f 7→ 〈create〉
stack 7→ 〈`〉

isStack ` [] ? `←[1


We get unique ownership of the stack and we have the sole pointer to it.

40 / 53

Pushing

Pushing consumes 4 space credits.

f 7→ 〈push〉
stack 7→ 〈`〉
elem 7→ 〈v〉
�4 ? isStack ` vs

v ←[n


∗f (stack, elem)



f 7→ 〈push〉
stack 7→ 〈`〉
elem 7→ 〈v〉

isStack ` (v :: vs)
v ←[n + 1


The value v receives one more antecedent.

41 / 53

Popping

Popping frees up 4 space credits.

f 7→ 〈pop〉
stack 7→ 〈`〉
elem 7→ 〈()〉

isStack ` (v :: vs)
v ←[n


∗f (stack, elem)



f 7→ 〈pop〉
stack 7→ 〈`〉
elem 7→ 〈v〉
�4 ? isStack ` vs

v ←[n


The number of antecedents of v is unchanged, as elem points to it.

42 / 53

Disposal

Logically deallocating the entire stack is a ghost operation.

It frees up a linear number of space credits.isStack ` vs ? `←[0
∗

(v ,n)∈vns
v ←[n

 VI

 �(4 + 4× |vs|)
∗

(v ,n)∈vns
v ←[n − (v $ vs)


The ghost reference counters of the stack elements are decremented.

43 / 53

Aperçu

4 Examples of Specifications
A Stack
List Copy

44 / 53

Lists Without Sharing

Each cell owns the next cell and possesses the sole pointer to it.

isList ` [] , ` 7→ [0]
isList ` (v :: vs) , ∃`′. ` 7→ [1; v ; `′] ? `′ ←[1 ? isList `′ vs

Let’s now have a look at list copy and its spec. (Fasten seatbelts!)

45 / 53

List Copy in SpaceLang

copy , λ(self , dst, src).
alloca tag in ∗tag = [∗src + 0]; – read the list’s tag
if ∗tag then – if this is a cons cell, then

alloca head in ∗head = [∗src + 1]; – read the list’s head
alloca tail in ∗tail = [∗src + 2]; – read the list’s tail
∗src = (); – clobber this root
alloca dst′ in ∗self (self , dst′, tail); – copy the list’s tail
∗dst = alloc 3; – allocate a new cons cell
[∗dst + 0] = ∗tag; – and initialize it
[∗dst + 1] = ∗head;
[∗dst + 2] = ∗dst′

else – this must be a nil cell
∗src = (); – clobber this root
∗dst = alloc 1; – allocate a new nil cell
[∗dst + 0] = ∗tag – and initialize it

46 / 53

Specification of List Copy

The case m = 1, where we have the sole pointer to the list, is special.

47 / 53

Roadmap

1 Syntax, Semantics of SpaceLang

2 Reasoning Rules of SL�

3 Ghost Reference Counting

4 Examples of Specifications

5 Conclusion

48 / 53

Summary of Contributions

A sound logic to reason about space usage in the presence of GC.

• Allocation consumes space credits �n.
• Logical deallocation is a ghost operation.
• Logical dellocation requires predecessor tracking v ←[L.

49 / 53

Future Work

Predecessor tracking still requires too much administration.

We are investigating

• deferred edge deletion;
• automated or simplified tracking of roots;
• predecessor tracking based on regions;
• notions of single-entry-point regions.

We would also like to adapt SL� directly to call-by-value λ-calculus.

50 / 53

A Bit of Controversy about OCaml

During this traversal, which part of the tree is live?

type tree = Leaf | Node of tree * tree

let rec walk t =

match t with

| Leaf -> ()

| Node (t1, t2) -> walk t1; walk t2

It could (should?) be the subtrees that have not yet been traversed,

because t2 remains live while walk t1 is executed...

51 / 53

A Bit of Controversy about OCaml

During this traversal, which part of the tree is live?

type tree = Leaf | Node of tree * tree

let rec walk t =

match t with

| Leaf -> ()

| Node (t1, t2) -> walk t1; walk t2

It could (should?) be the subtrees that have not yet been traversed,

because t2 remains live while walk t1 is executed...

51 / 53

A Bit of Controversy about OCaml

But the OCaml compiler transforms the code roughly as follows:

type tree = Leaf | Node of tree * tree

let rec walk t =

match t with

| Leaf -> ()

| Node (_, _) -> walk t.1 ; walk t.2

Thus, t remains live while walk t.1 is executed.

Every left subtree remains live until it has been entirely traversed.

Reasoning about space at this level
requires a precise definition of where each variable is a root.

52 / 53

Operational Semantics

StepSeqSkip
skip; i / σ −→ i / σ

StepIf
σ(r) = 〈k〉

if ∗r then i1 else i2 / σ −→ k 6= 0 ? i1 : i2 / σ

StepCall
σ(r) = 〈λ~x.i〉 |~x| = |~s|
∗r(~s) / σ −→ [~s/~x]i / σ

StepConst
σ

′ = 〈s := v〉σ
pointers(v) = ∅

∗s = v / σ −→ skip / σ′

StepMove
σ(r) = 〈v〉

σ
′ = 〈s := v〉σ

∗s = ∗r / σ −→ skip / σ′

StepAlloc
σ

′ = [` += ()n]σ
size(σ′) ≤ S σ

′′ = 〈s := `〉σ′

∗s = alloc n / σ −→ skip / σ′′

StepLoad
σ(r) = 〈`〉 σ(`) = ~v 0 ≤ o < |~v|

~v(o) = v σ
′ = 〈s := v〉σ

∗s = [∗r + o] / σ −→ skip / σ′

StepStore
σ(r) = 〈v〉 σ(s) = 〈`〉 σ(`) = ~v
0 ≤ o < |~v| σ

′ = [` := [o := v]~v]σ

[∗s + o] = ∗r / σ −→ skip / σ′

StepLocEq
σ(r1) = 〈`1〉 σ(r2) = 〈`2〉
σ

′ = 〈s := (`1 = `2 ? 1 : 0)〉σ

∗s = (∗r1 == ∗r2) / σ −→ skip / σ′

StepAllocaEntry
σ

′ = [c += 〈()〉]σ

alloca x in i / σ −→ alloca c in [c/x]i / σ′

StepAllocaExit
σ(c) = 〈v〉 σ

′ = [c := �]σ

alloca c in skip / σ −→ skip / σ′

StepFork
σ(r) = 〈v〉 σ

′ = [r := ()][c += 〈v〉]σ

fork ∗r as x in i / σ −→ skip / σ′

spawning alloca c in [c/x]i

StepContext
i / σ −→ i′ / σ′

spawning~i

K [i] / σ −→ K [i′] / σ′

spawning~i

53 / 53

	Syntax, Semantics of SpaceLang
	Reasoning Rules of SL♢
	Ghost Reference Counting
	Examples of Specifications
	A Stack
	List Copy

	Conclusion
	Backup

