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Separation Logic: to own, or not to own

Separation Logic (Reynolds, 2002) is about disjointness of heap fragments.

I what “we” own, versus what “others” own.

Therefore, it is about unique ownership. A dichotomy arises:

I Of every memory cell, either we have ownership, or we don’t.
I If we do, then we can read and write this cell.
I If we don’t, then we can neither write nor even read this cell.

From memory cells (and arrays), this dichotomy extends to data structures:

To a (user-defined) data structure,
either we have no access at all, or we have full read-write access.



Separation Logic’s read and write axioms

The reasoning rule for writing a cell requires (and returns) a full permission:

set
{l ↪→ v ′} (set l v) {λy . l ↪→ v}

So does the reasoning rule for reading a cell:

traditional read axiom
{l ↪→ v} (get l) {λy . [y = v] ? l ↪→ v}

They are known as “small axioms”, because they require minimum permission.

But are they as small as they could be?

Isn’t it excessive for reading to require a full permission?

Are there adverse consequences of working with such coarse permissions?
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The problem

Suppose we are implementing an abstract data type of (mutable) sequences.

Here is a typical specification of sequence concatenation:

{s1 { Seq L1 ? s2 { Seq L2}

(append s1 s2)

{λs3. s3 { Seq (L1 ++ L2) ? s1 { Seq L1 ? s2 { Seq L2}

Although correct, this style of specification can be criticized on several grounds:

I It is a bit noisy.
I It requires the permissions s1 { Seq L1 ? s2 { Seq L2 to be

threaded throughout the proof of append.
I It actually does not guarantee that s1 and s2 are unmodified. — (next slide)
I It requires s1 and s2 to be distinct data structures. — (slide after next)
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The problem, facet 3: temporary modifications are not forbidden

Repeating “s { Seq L ” in the pre- and postcondition can be deceiving.

This does not forbid changes to the concrete data structure in memory.

Here is a function that really just reads the data structure:

{s { Seq L } (length s) {λy . s { Seq L ? [ y = |L | ]}

And a function that actually modifies the data structure:

{s { Seq L ? [ |L | ≤ n ]} (resize s n) {λ(). s { Seq L }
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The problem, facet 4: sharing is not permitted

The specification of append requires s1 and s2 to be distinct data structures:

{s1 { Seq L1 ? s2 { Seq L2}

(append s1 s2)

{λs3. s3 { Seq (L1 ++ L2) ? s1 { Seq L1 ? s2 { Seq L2}

Indeed, s { Seq L ? s { Seq L is equivalent to false.

As a result, to allow sharing, we must establish another specification:

{s { Seq L }
(append s s)
{λs3. s3 { Seq (L ++ L) ? s { Seq L }

Duplicate work for us. Increased complication and/or duplicate work for the user.
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Fractional permissions to the rescue...?

Could sequence concatenation be specified as follows in Concurrent SL?

∀π1, π2. {π1 · (s1 { Seq L1) ? π2 · (s2 { Seq L2)}

(append s1 s2)

{λs3. s3 { Seq (L1 ++ L2) ? π1 · (s1 { Seq L1) ? π2 · (s2 { Seq L2)}

Yes, if the logic allows scaling, π · H. This requires existential quantification to be
restricted so as to be precise (Boyland, 2010).

Without scaling, one must define s { Seqπ L .

This addresses problem facets 3 and 4,

I but is still noisy,
I and still requires careful splitting, threading, and joining of permissions.

“Hiding the fractions” (Heule et al, 2013) is cool but requires yet more machinery.

http://dx.doi.org/10.1145/1749608.1749611
http://research.microsoft.com/en-us/um/people/leino/papers/krml225.pdf
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In this paper

We propose a solution that is:

I not as powerful as fractional permissions (or other share algebras),
I but significantly simpler.

Our contributions:

I introducing a read-only modality, RO.
RO(H) represents temporary read-only access to the memory governed by H.

I finding simple and sound reasoning rules for RO.
I proposing a model that justifies these rules.



Some Intuition

Reasoning Rules

Model

Conclusion



Our solution

We would like the specification of append to look like this:

{RO(s1 { Seq L1) ? RO(s2 { Seq L2)}

(append s1 s2)

{λs3. s3 { Seq (L1 ++ L2)}

Compared with the earlier specification based on unique read-write permissions,

I this specification is more concise,
I imposes fewer proof obligations,
I makes it clear that the data structures cannot be modified by append,
I and does not require s1 and s2 to be distinct. — (next slide)
I Furthermore, this spec implies the earlier spec. — (slide after next)
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Our solution, facet 4: sharing is permitted

The top Hoare triple is the new spec of append,
where s1 and s2 are instantiated with s.

{ RO(s { Seq L) ? RO(s { Seq L) }
(append s s)
{ λs3. s3 { Seq (L ++ L) }

{ RO(s { Seq L) }
(append s s)
{ λs3. s3 { Seq (L ++ L) }

consequence

The bottom triple states that, with read-only access to s, append s s is permitted.
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Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

{ RO(s1 { Seq L1) ? RO(s2 { Seq L2) }

(append s1 s2)

{ λs3. s3 { Seq (L1 ++ L2) }

{ RO(s1 { Seq L1 ? s2 { Seq L2) }

(append s1 s2)

{ λs3. s3 { Seq (L1 ++ L2) }

{ s1 { Seq L1 ? s2 { Seq L2 }

(append s1 s2)

{ λs3. s3 { Seq (L1 ++ L2) ? s1 { Seq L1 ? s2 { Seq L2 }

read-only frame

consequence

The triple at the bottom is the earlier spec of append.
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Permissions

The syntax of permissions is as follows:

H := [P] | l ↪→ v | H1 ? H2 | H1 ∨∨ H2 | ∃∃x .H | RO(H)

Every permission H has a read-only form RO(H).



Properties of RO

Read-only access to a data structure entails read-only access to its parts:

RO(H1 ? H2) . RO(H1) ? RO(H2) (the reverse is false)

Read-only permissions are duplicable (therefore, no need to count them!):

RO(H) = RO(H) ? RO(H)

Read-only permissions are generally well-behaved:

RO([P]) = [P]
RO(H1 ∨∨ H2) = RO(H1) ∨∨ RO(H2)

RO(∃∃x .H) = ∃∃x .RO(H)
RO(RO(H)) = RO(H)

RO(H) . RO(H′) if H . H′



A new read axiom

The traditional read axiom:
traditional read axiom
{l ↪→ v} (get l) {λy . [y = v] ? l ↪→ v}

is replaced with a “smaller” axiom:

new read axiom
{RO(l ↪→ v)} (get l) {λy . [y = v]}

The traditional axiom can be derived from the new axiom.



A new frame rule

The traditional frame rule is subsumed by a new “read-only frame rule”:

frame rule
{H} t {Q} normal H′

{H ? H′} t {Q ? H′}

read-only frame rule
{H ? RO(H′)} t {Q} normal H′

{H ? H′} t {Q ? H′}

This says: upon entry into a block, H′ is temporarily replaced with RO(H′),
and upon exit, magically re-appears.

The side condition normal H′ means roughly that H′ has no RO components.

This means that read-only permissions cannot be framed out.

If they could, the read-only frame rule would clearly be unsound. (Exercise!)



How read-only permissions are used

No reasoning rule involves a triple whose postcondition contains RO.

Read-only permissions always appear in preconditions, never in postconditions.

They are always passed down, never returned.

In fact, in the model, we will see that, in a triple {H} t {Q}:

I the postcondition applies only to some read-write fragment of the final heap;
I the read-only part of the heap must be preserved anyway,

so there is no need for the postcondition to describe it.
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Memories & heaps – a simple model of access rights

A memory is a finite map of locations to values.

A heap h is a pair of two disjoint memories h.f and h.r.

I h.f represents the locations to which we have full access;
I h.r represents the locations to which we have read-only access.

An assertion, or permission, is a predicate over heaps (or: a set of heaps).



Heap composition & separating conjunction

The combination of two heaps:

h1 + h2 = (h1.f ] h2.f, h1.r ∪ h2.r)

read-write

read-only

is defined only if:

I the read-write components h1.f and h2.f are disjoint;
I the read-only components h1.r and h2.r agree where they overlap;
I the read-write component h1.f is disjoint with the read-only component h2.r,

and vice-versa.

With this in mind, separating conjunction is interpreted as usual:

H1 ? H2 =
λh. ∃h1h2. (h1 + h2 is defined) ∧ h = h1 + h2 ∧ H1 h1 ∧ H2 h2
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The read-only modality

h h’

RO(H) is interpreted as follows:

RO(H) =
λh. (h.f = ∅) ∧ ∃h′. (h.r = h′.f ] h′.r)∧H h′

This means:

I we have write access to nothing.
I if we had write access to certain locations for which we have read access,

then H would hold.
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The rest of the connectives

[P] = λh. (h.f = ∅) ∧ (h.r = ∅) ∧ P
l ↪→ v = λh. (h.f = (l 7→ v)) ∧ (h.r = ∅)

H1 ∨∨ H2 = λh. H1 h ∨ H2 h
∃∃x .H = λh. ∃x . H h

normal(H) = ∀h. H h ⇒ h.r = ∅



Interpretation of triples

The meaning of the Hoare triple {H} t {Q} is as follows:

∀h1h2.

{
h1 + h2 is defined
H h1

}
⇒ ∃vh′1.


h′1 + h2 is defined
t/ bh1 + h2c ⇓ v/ bh′1 + h2c

h′1.r = h1.r
on-some-rw-frag(Q v)h′1


What’s nonstandard?

I The read-only part of the heap must be preserved.
I The postcondition describes only a read-write fragment of the final heap.

on-some-rw-frag(H) =
λh.∃h1h2. (h1 + h2 is defined) ∧ h = h1 + h2 ∧ h1.r = ∅ ∧ H h1
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Soundness

Theorem

With respect to this interpretation of triples, every reasoning rule is sound.

Proof.

“Straightforward”. Machine-checked. �
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We propose:

I a simple extension of Separation Logic with a read-only modality;
I a simple model that explains why this is sound.

We believe that temporary read-only permissions sometimes help state
more concise, accurate, useful specifications, and lead to simpler proofs.

Possible future work: an implementation in CFML (Charguéraud).



Amnesia (1/2)

Suppose population has this “RO” specification:

{RO(h { HashTable M)} (population h) {λy . [y = card M]}

Suppose a hash table is a mutable record whose data field points to an array:

h { HashTable M :=
∃∃a.∃∃L . (h { {data = a; . . .} ? a { Array L ? . . .)

Suppose there is an operation foo on hash tables:

let foo h =
let d = h.data in – read the address of the array
let p = population h in – call population
. . .

If “RO” is sugar for repeating h { HashTable M in the pre and post,
then the proof of foo runs into a problem...



Amnesia (2/2)

Reasoning about foo might go like this:

1 let foo h =
2 {h { HashTable M} – foo’s precondition
3 {h { {data = a; . . .} ? a { Array L ? . . .} – by unfolding
4 let d = h.data in
5 {h { {data = a; . . .} ? a { Array L ? . . . ? [d = a]} – by reading
6 {h { HashTable M ? [d = a]} – by folding
7 let p = population h in – we have to fold
8 {h { HashTable M ? [d = a] ? [p = #M]}
9 . . .

At line 8, the equation d = a is useless.

We have forgotten what d represents, and lost the benefit of the read at line 4.

If “RO” is sugar, the specification of population is weaker than it seems.

If “RO” is native, there is a way around this problem. (Details omitted.)
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