Temporary Read-Only Permissions for Separation Logic
Making Separation Logic’s

Small Axioms
Smaller

Arthur Charguéraud Frangois Pottier

V4

Gallium seminar
Paris, April 10, 2017

Separation Logic: to own, or not to own

Separation Logic (Reynolds, 2002) is about disjointness of heap fragments.
» what “we” own, versus what “others” own.
Therefore, it is about unique ownership. A dichotomy arises:
» Of every memory cell, either we have ownership, or we don’t.
» If we do, then we can read and write this cell.
> If we don’t, then we can neither write nor even read this cell.
From memory cells (and arrays), this dichotomy extends to data structures:

To a (user-defined) data structure,
either we have no access at all, or we have full read-write access.

Separation Logic’s read and write axioms

The reasoning rule for writing a cell requires (and returns) a full permission:

SET
{l— v’} (setlv) {Ay. | — v}

So does the reasoning rule for reading a cell:

TRADITIONAL READ AXIOM
{l—= v} (geth {Ay. [y =Vv]* = v}

They are known as “small axioms”, because they require minimum permission.

Separation Logic’s read and write axioms

The reasoning rule for writing a cell requires (and returns) a full permission:

SET
{l— v’} (setlv) {Ay. | — v}

terminology:

So does the reasoning rule for reading a cell: “permission” = “assertion”

TRADITIONAL READ AXIOM
{l—= v} (geth {Ay. [y =Vv]* = v}

They are known as “small axioms”, because they require minimum permission.

Separation Logic’s read and write axioms

The reasoning rule for writing a cell requires (and returns) a full permission:

SET
{l— v’} (setlv) {Ay. | — v}

So does the reasoning rule for reading a cell:

TRADITIONAL READ AXIOM
{l—= v} (geth {Ay. [y =Vv]* = v}

They are known as “small axioms”, because they require minimum permission.
But are they as small as they could be?
Isn't it excessive for reading to require a full permission?

Are there adverse consequences of working with such coarse permissions?

The problem

Suppose we are implementing an abstract data type of (mutable) sequences.
Here is a typical specification of sequence concatenation:
{s1 ~ SeqL; x s, ~ Seq Ly}

(appends; sz)
{As3. s3~ Seq(Ly + L) * s1 ~ SeqlLy x s, ~ Seq Ly}

The problem

Suppose we are implementing an abstract data type of (mutable) sequences.

Here is a typical specification of sequence concatenation:

{s1 ~ SeqL; x s, ~ Seq Ly}
(appends; sz)
{As3. s3~ Seq(Ly + L) * s1 ~ SeqlLy x s, ~ Seq Ly}
Although correct, this style of specification can be criticized on several grounds:
> Itis a bit noisy.

» It requires the permissions s; ~» SeqL; x s, ~» Seq L, to be
threaded throughout the proof of append.

» It actually does not guarantee that s; and s, are unmodified. — (next slide)
» It requires s; and s, to be distinct data structures. — (slide after next)

The problem, facet 3: temporary modifications are not forbidden

Repeating “s ~ Seq L” in the pre- and postcondition can be deceiving.
This does not forbid changes to the concrete data structure in memory.

Here is a function that really just reads the data structure:

{s ~ Seql]} (length s) {Ay. s ~ SeqlL x [y =|L|]}

The problem, facet 3: temporary modifications are not forbidden

Repeating “s ~ Seq L” in the pre- and postcondition can be deceiving.
This does not forbid changes to the concrete data structure in memory.

Here is a function that really just reads the data structure:
{s ~ Seql]} (length s) {Ay. s ~ SeqlL x [y =|L|]}
And a function that actually modifies the data structure:

{s~ SeqlL x [|L] <n]} (resize sn) {A(). s~ SeqL}

The problem, facet 4: sharing is not permitted

The specification of append requires s; and s, to be distinct data structures:

{s1 ~ SeqL; x so~> Seq Ly}
(append s, s3)
{As3. s3~ Seq(Ly H+ L) *x s1 ~ SeqlL; x s, ~ Seq Ly}

Indeed, s ~ SeqL x s~» SeqlL is equivalent to false.

The problem, facet 4: sharing is not permitted

The specification of append requires s; and s, to be distinct data structures:

{s1 ~ SeqL; x so~> Seq Ly}
(append s, s3)
{As3. s3~ Seq(Ly H+ L) *x s1 ~ SeqlL; x s, ~ Seq Ly}

Indeed, s ~ SeqL x s~» SeqlL is equivalent to false.
As a result, to allow sharing, we must establish another specification:

{s ~ SeqlL}
(appends s)
{As3. s3~ Seq(L H L) x s~ SeqlL}

Duplicate work for us. Increased complication and/or duplicate work for the user.

Fractional permissions to the rescue...?

Could sequence concatenation be specified as follows in Concurrent SL?

Y714, Tio. {711 . (81 ~> Seq L1) * Tio - (Sg ~> Seq Lg)}
(appends; s;)
{As3. s3~ Seq(Ly H Lo) * my-(S1~ Seqly) x mz-(s2 ~ Seqly)}

Yes, if the logic allows scaling, 7t - H. This requires existential quantification to be
restricted so as to be precise (Boyland, 2010).

Without scaling, one must define s ~ Seqn L.

http://dx.doi.org/10.1145/1749608.1749611
http://research.microsoft.com/en-us/um/people/leino/papers/krml225.pdf

Fractional permissions to the rescue...?

Could sequence concatenation be specified as follows in Concurrent SL?

Y714, Tio. {711 . (81 ~> Seq L1) * Tio - (Sg ~> Seq Lg)}
(appends; s;)
{As3. 83~ Seq(L1 +H L2) * Ty - (31 ~ Seq L1) * Tip - (52 ~ Seq Lg)}

Yes, if the logic allows scaling, 7t - H. This requires existential quantification to be
restricted so as to be precise (Boyland, 2010).

Without scaling, one must define s ~ Seqn L.
This addresses problem facets 3 and 4,

» but is still noisy,
» and still requires careful splitting, threading, and joining of permissions.

“Hiding the fractions” (Heule et al, 2013) is cool but requires yet more machinery.

http://dx.doi.org/10.1145/1749608.1749611
http://research.microsoft.com/en-us/um/people/leino/papers/krml225.pdf

In this paper

We propose a solution that is:
» not as powerful as fractional permissions (or other share algebras),
» but significantly simpler.

Our contributions:

» introducing a read-only modality, RO.
RO(H) represents temporary read-only access to the memory governed by H.
» finding simple and sound reasoning rules for RO.

» proposing a model that justifies these rules.

Some Intuition

Our solution

We would like the specification of append to look like this:

{RO(sy ~ Seq L) » RO(s; ~ SeqLy)}
(append s, sz)
{As3. 83~ Seq (Ly + L2)}

Our solution

We would like the specification of append to look like this:

{RO(sy ~ Seq L) » RO(s; ~ SeqLy)}
(append s, sz)
{As3. s3~ Seq(Ly H Lo)}

Compared with the earlier specification based on unique read-write permissions,

» this specification is more concise,

» imposes fewer proof obligations,

» makes it clear that the data structures cannot be modified by append,
» and does not require s; and s, to be distinct. — (next slide)

» Furthermore, this spec implies the earlier spec. — (slide after next)

Our solution, facet 4: sharing is permitted

The top Hoare triple is the new spec of append,
where s; and s, are instantiated with s.

{ RO(s~ SeqL) x RO(s ~ Seql) }
(appends s)
{ Ass. s3~ Seq(L HL) |}
{ RO(s~ Seql) }
(appends s)
{ As3. s3~ Seq(L+1L) }

CONSEQUENCE

The bottom triple states that, with read-only access to s, appends s is permitted.

Our solution, facet 4: sharing is permitted

The top Hoare triple is the new spec of append,
where s; and s, are instantiated with s.

{ RO(s~ SeqL) x RO(s ~ Seql) }
(appends s)
{ MNgs. s3~ Seq(L +HL) }

CONSEQUENCE

T RO(s~ Seql) }

read-only ;
permissions are (appends s)
duplicable { ASs. S3~> Seq(L +L) }

The bottom triple states that, with read-only access to s, appends s is permitted.

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

{ RO(s1 ~ SeqlLy) x RO(s; ~ Seql,) }
(append s, s2)
{ Asz. s3~ Seq(Ly + Lp) }
{ RO(s1 ~ Seql; x s;~ Seql,) |}
(appends; s,)
{ Ass. s3~ Seq (L + L2) |}
{ sy~ Seql; x sp~ Seql, }
(appends; sz)
{ Ass. s3~> Seq(Li + L) * s1~ Seqly x s, ~ Seql, }

CONSEQUENCE

READ-ONLY FRAME

The triple at the bottom is the earlier spec of append.

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

{ RO(s1 ~ SeqlLy) x RO(s; ~ Seql,) }

permission | (8ppends; sz)
becomes | | ASs. 3~ Seq(Ls +Lo) | CONSEQUENCE
read-only RO(s1 ~ SeqLs x s, ~ Seqly) }

(appends; s,)
{ ASs3. 83~ Seq(L1 +H Lg) }
{ '31 ~» SeqlL; x s, ~ Seql, }
(appends; sz)
{ Ass. s3~> Seq(Li + L) * s1~ Seqly x s, ~ Seql, }

READ-ONLY FRAME

The triple at the bottom is the earlier spec of append.

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

{ RO(s1 ~ SeqLy) x RO(s; ~ Seql,) }

read-only (fppends; s,)
permission | | \\S3- 83~ Seq(Ly 4+ Lz) |
is weakened | { RO(s, ~ Seql; * s, ~ Seql,) }

CONSEQUENCE

(appends; s)
{ ASs3. 83~ Seq(L1 +H Lg) }
{ sy~ Seqly x s~ Seql, }
(appends; s,)
{ Ass. 83~ Seq(Li + Lp) x s4~ Seqly x sp~ Seql, }

READ-ONLY FRAME

The triple at the bottom is the earlier spec of append.

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

{ RO(s1 ~ SeqlLy) x RO(s; ~ Seql,) }
(append s, s2)
{ Asz. s3~ Seq(Ly + Lp) append is
{ RO(si ~ SeqlL; x s, ~\SeqL called
(appends; s,)
{ ASs3. 83~ Seq(L1 +H Lg) }
{ sy~ Seql; x sp~ Seql, }
(appends; sz)
{ Ass. s3~> Seq(Li + L) * s1~ Seqly x s, ~ Seql, }

I~ CONSEQUENCE

READ-ONLY FRAME

The triple at the bottom is the earlier spec of append.

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

{ RO(s1 ~ SeqlLy) x RO(s; ~ Seql,) }

(append s, s2)
{ Ass. s3~ Seq(Li + L2) }

{ RO(si ~ SeqlL; *x s, ~ SeqlL
(appends; s)

read-write
permission

magically
re-appears

I~ CONSEQUENCE

{ Ass. s3~ Seq (L + L) -)\

{ sy~ Seqly x s~ Seql, }
(appends; s,)

{ Ass. 83~ Seq(Li + Lp) x 54~ Seqly x sp~ Seql, }

The triple at the bottom is the earlier spec of append.

READ-ONLY FRAME

Reasoning Rules

Permissions

The syntax of permissions is as follows:

H := [P]Il= v|H;%Hy|HyvH|3x H|RO(H)

Every permission H has a read-only form RO(H).

Properties of RO

Read-only access to a data structure entails read-only access to its parts:
RO(H; x H.) » RO(H;) x RO(H.) (the reverse is false)
Read-only permissions are duplicable (therefore, no need to count them!):
RO(H) = RO(H)x RO(H)
Read-only permissions are generally well-behaved:

) = [P]

) = RO(H) v RO(H,)
RO(Jx.H) = x.RO(H)

) = RO(H)

) = RO(H) it H > H

A new read axiom

The traditional read axiom:

TRADITIONAL READ AXIOM

{l—= v} (geth) {Ay. [y =V]*x = v}

is replaced with a “smaller” axiom:

NEW READ AXIOM

RO/ = v)} (getl) {Ay. [y = v]i

The traditional axiom can be derived from the new axiom.

A new frame rule

The traditional frame rule is subsumed by a new “read-only frame rule”:

FRAME RULE READ-ONLY FRAME RULE

{H} t {Q} normal H’ {H* RO(H")} t{Q} normal H’
{(Hx H'}t{Qx H'} {Hx H} t{Q % H'}

This says: upon entry into a block, H’ is temporarily replaced with RO(H"),
and upon exit, magically re-appears.

The side condition normal H means roughly that H" has no RO components.
This means that read-only permissions cannot be framed out.

If they could, the read-only frame rule would clearly be unsound. (Exercise!)

How read-only permissions are used

No reasoning rule involves a triple whose postcondition contains RO.
Read-only permissions always appear in preconditions, never in postconditions.
They are always passed down, never returned.

In fact, in the model, we will see that, in a triple {H} t {Q}:

» the postcondition applies only to some read-write fragment of the final heap;

> the read-only part of the heap must be preserved anyway,
so there is no need for the postcondition to describe it.

Model

Memories & heaps — a simple model of access rights

A memory is a finite map of locations to values.
A heap h is a pair of two disjoint memories h.f and h.r.

» h.f represents the locations to which we have full access;
» h.r represents the locations to which we have read-only access.

An assertion, or permission, is a predicate over heaps (or: a set of heaps).

Heap composition & separating conjunction

The combination of two heaps: :mwm
hy + hp = (1 19 hof, hyr U hyor) e

is defined only if:

Heap composition & separating conjunction

The combination of two heaps: ;rm_m
By + hp = (he.f & hpf, hyr U hour) e

is defined only if:

> the read-write components h;.f and h,.f are disjoint;

Heap composition & separating conjunction

The combination of two heaps: ;rm_m
By + b = (he.f & hpd, hyr U hour) e

is defined only if:

> the read-write components h;.f and h,.f are disjoint;
> the read-only components hy.r and h,.r agree where they overlap;

Heap composition & separating conjunction

The combination of two heaps: :rm_m

read-only

h1 + hg = (h1 fw hg.f, h1.rU h2.r)

is defined only if:

> the read-write components h;.f and h,.f are disjoint;
> the read-only components hy.r and h,.r agree where they overlap;

> the read-write component hy.f is disjoint with the read-only component h..r,
and vice-versa.

Heap composition & separating conjunction

The combination of two heaps: im_m
h1 + hg = (h1 fw hg.f, h1 ru hg.r) e

is defined only if:
> the read-write components h;.f and h,.f are disjoint;
> the read-only components h;.r and h,.r agree where they overlap;

> the read-write component hy.f is disjoint with the read-only component h..r,
and vice-versa.

With this in mind, separating conjunction is interpreted as usual:

Hi x Ho =
Ah. 3h1 hg. (h1 + h2 is defined) A h= h1 + hg A H1 h1 A Hg hg

The read-only modality

RO(H) is interpreted as follows:

RO(H) =
Ah. (hi=@) A AW (hr=Hfgh)AHN

The read-only modality

RO(H) is interpreted as follows:
RO(H) =
Ah. (hf=@) A . (hr=hfwh.r)AHHK
This means:

> we have write access to nothing.

The read-only modality

RO(H) is interpreted as follows:

RO(H) =
Ah. (hi=@) A AW (hr=HIgh)AHN

This means:

> we have write access to nothing.

» if we had write access to certain locations for which we have read access,
then H would hold.

The rest of the connectives

[Pl = Ah. (hf=02) A (hr=2) AP
[—>v = Ah. (hf=(HV)) A (hr=02)
Hy v H, = Ah. HHh v H, h
dx.H = Ah. Ix. Hh

normal(H) = Yh. Hh = hr=¢

Interpretation of triples

The meaning of the Hoare triple {H} t {Q} is as follows:

hy + hy is defined
Vh1h2.{ H‘hf 2 18 dell

What’s nonstandard?

}:> Avhy.

h{ + hy is defined

t/Lh +ha] U v/ Lh] + ha]
hi.r = hy.r
on-some-rw-frag(Q v) h;

Interpretation of triples

The meaning of the Hoare triple {H} t {Q} is as follows:

h{ + hy is defined

t/Lh +ha] U v/ Lh] + ha]
hi.r = hy.r
on-some-rw-frag(Q v) h;

hy + h, is defined

Y hy hg.{ Hh,

}:> dvh;.

What’s nonstandard?

» The read-only part of the heap must be preserved.

Interpretation of triples

The meaning of the Hoare triple {H} t {Q} is as follows:

h{ + hy is defined
h1 + h2 is defined , t/ |_h1 + th U V/ Lh; + th
Vh1h2.{ Hh1 }:> 3Vh1. h1’r: h1.r
on-some-rw-frag(Q v) h;

What’s nonstandard?

» The read-only part of the heap must be preserved.
» The postcondition describes only a read-write fragment of the final heap.

on-some-rw-frag(H) =
Ah.3hiho. (h1 + hy is defined) Ah=hi+h A hjr=a A Hhy

Soundness

Theorem

With respect to this interpretation of triples, every reasoning rule is sound.

Proof.

“Straightforward”. Machine-checked.

Conclusion

We propose:

» a simple extension of Separation Logic with a read-only modality;
» a simple model that explains why this is sound.

We believe that temporary read-only permissions sometimes help state
more concise, accurate, useful specifications, and lead to simpler proofs.

Possible future work: an implementation in CFML (Charguéraud).

Amnesia (1/2)
Suppose population has this “RO” specification:
{RO(h ~» HashTable M)} (population h) {Ay. [y = card M]}

Suppose a hash table is a mutable record whose data field points to an array:

h ~ HashTable M :=
Ha.AL.(h~ {data=a;...} xa~> ArrayL x...)

Suppose there is an operation foo on hash tables:

letfoo h =
letd = h.datain — read the address of the array

let p = population hin — call population

If “RO” is sugar for repeating h ~» HashTable M in the pre and post,
then the proof of foo runs into a problem...

Amnesia (2/2)

Reasoning about foo might go like this:

1 letfoo h=

2 {h ~ HashTable M} — foo’s precondition
3 {h~ {data=a;...} xa~» Array L x ...} — by unfolding

4 letd = h.datain

5 {h~{data=a;..} xa~ ArrayL % ... x [d = a]} —by reading

6 {h ~» HashTable M x [d = a]} — by folding

7 let p = population hin — we have to fold

8 {h ~ HashTable M x [d = a] x [p = #M]}

9

At line 8, the equation d = a is useless.
We have forgotten what d represents, and lost the benefit of the read at line 4.
If “RO” is sugar, the specification of population is weaker than it seems.

If “RO” is native, there is a way around this problem. (Details omitted.)

	Some Intuition
	Reasoning Rules
	Model
	Conclusion

