
Temporary Read-Only Permissions for Separation Logic

Arthur Charguéraud François Pottier

(talk delivered by Armaël Guéneau)

ESOP 2017
Uppsala, April 28, 2017

Separation Logic: to own, or not to own

The setting is basic (sequential) Separation Logic.

Separation Logic is about disjointness, therefore about unique ownership.

A dichotomy arises:

To every memory cell, array, or user-defined data structure,
either we have no access at all, or we have full read-write access.

This is visible in the read and write axioms, which both need a full permission:

set
{l ↪→ v ′} (set l v) {λy . l ↪→ v}

traditional read axiom
{l ↪→ v} (get l) {λy . [y = v] ? l ↪→ v}

Separation Logic: to own, or not to own

The setting is basic (sequential) Separation Logic.

Separation Logic is about disjointness, therefore about unique ownership.

A dichotomy arises:

To every memory cell, array, or user-defined data structure,
either we have no access at all, or we have full read-write access.

This is visible in the read and write axioms, which both need a full permission:

set
{l ↪→ v ′} (set l v) {λy . l ↪→ v}

traditional read axiom
{l ↪→ v} (get l) {λy . [y = v] ? l ↪→ v}

The problem

Suppose we are implementing an abstract data type of mutable sequences.

An abstract predicate s { Seq L represents the unique ownership of a sequence.

Here is a typical specification of sequence concatenation:

{s1 { Seq L1 ? s2 { Seq L2}

(append s1 s2)

{λs3. s3 { Seq (L1 ++ L2) ? s1 { Seq L1 ? s2 { Seq L2}

Although correct, this style of specification can be criticized on several grounds:

I It is a bit noisy.
I It requires the permissions s1 { Seq L1 ? s2 { Seq L2 to be

threaded through the proof of append.
I It actually does not guarantee that s1 and s2 are unmodified in memory.
I It requires s1 and s2 to be distinct data structures. — (next slide)

The problem

Suppose we are implementing an abstract data type of mutable sequences.

An abstract predicate s { Seq L represents the unique ownership of a sequence.

Here is a typical specification of sequence concatenation:

{s1 { Seq L1 ? s2 { Seq L2}

(append s1 s2)

{λs3. s3 { Seq (L1 ++ L2) ? s1 { Seq L1 ? s2 { Seq L2}

Although correct, this style of specification can be criticized on several grounds:

I It is a bit noisy.
I It requires the permissions s1 { Seq L1 ? s2 { Seq L2 to be

threaded through the proof of append.
I It actually does not guarantee that s1 and s2 are unmodified in memory.
I It requires s1 and s2 to be distinct data structures. — (next slide)

The problem, focus: sharing is not permitted

This specification requires s1 and s2 to be distinct (disjoint) data structures:

{s1 { Seq L1 ? s2 { Seq L2}

(append s1 s2)

{λs3. s3 { Seq (L1 ++ L2) ? s1 { Seq L1 ? s2 { Seq L2}

(append s s) requires s { Seq L ? s { Seq L , which the client cannot produce.

To allow (append s s), we must establish another specification:

{s { Seq L }
(append s s)
{λs3. s3 { Seq (L ++ L) ? s { Seq L }

Duplicate work and increased complication for us and for our clients.

The problem, focus: sharing is not permitted

This specification requires s1 and s2 to be distinct (disjoint) data structures:

{s1 { Seq L1 ? s2 { Seq L2}

(append s1 s2)

{λs3. s3 { Seq (L1 ++ L2) ? s1 { Seq L1 ? s2 { Seq L2}

(append s s) requires s { Seq L ? s { Seq L , which the client cannot produce.

To allow (append s s), we must establish another specification:

{s { Seq L }
(append s s)
{λs3. s3 { Seq (L ++ L) ? s { Seq L }

Duplicate work and increased complication for us and for our clients.

Fractional permissions to the rescue...?

In (some) Concurrent SLs, sequence concatenation can be specified as follows:

∀π1, π2. {π1 · (s1 { Seq L1) ? π2 · (s2 { Seq L2)}

(append s1 s2)

{λs3. s3 { Seq (L1 ++ L2) ? π1 · (s1 { Seq L1) ? π2 · (s2 { Seq L2)}

We scale an assertion by a fraction: π · H.

This addresses the main aspects of the problem,

I but is still noisy,
I might seem a bit frightening to non-experts,
I and still requires careful splitting, threading, and joining of permissions.
I “Hiding” fractions (Heule et al, 2013) adds another layer of sophistication.

Fractional permissions to the rescue...?

In (some) Concurrent SLs, sequence concatenation can be specified as follows:

∀π1, π2. {π1 · (s1 { Seq L1) ? π2 · (s2 { Seq L2)}

(append s1 s2)

{λs3. s3 { Seq (L1 ++ L2) ? π1 · (s1 { Seq L1) ? π2 · (s2 { Seq L2)}

We scale an assertion by a fraction: π · H.

This addresses the main aspects of the problem,

I but is still noisy,
I might seem a bit frightening to non-experts,
I and still requires careful splitting, threading, and joining of permissions.
I “Hiding” fractions (Heule et al, 2013) adds another layer of sophistication.

In this paper

We propose a solution that is:

I not as powerful as fractional permissions (or other share algebras),
I but significantly simpler. (A design “sweet spot”?)

Our contributions:

I introducing a read-only modality, const (in the paper: “RO”).
const(H) gives temporary read-only access to the memory governed by H.

I finding simple and sound reasoning rules for const .
I proposing a model that justifies these rules.

Some Intuition

Reasoning Rules

Model

Conclusion

Our solution

We would like the specification of append to look like this:

{const(s1 { Seq L1) ? const(s2 { Seq L2)}

(append s1 s2)

{λs3. s3 { Seq (L1 ++ L2)}

Compared with the earlier specification based on unique read-write permissions,

I this specification is more concise,
I imposes fewer proof obligations,
I makes it clear that the data structures cannot be modified by append,
I and does not require s1 and s2 to be distinct. — (next slide)
I Furthermore, this spec implies both earlier specs. — (next slide)

Our solution

We would like the specification of append to look like this:

{const(s1 { Seq L1) ? const(s2 { Seq L2)}

(append s1 s2)

{λs3. s3 { Seq (L1 ++ L2)}

Compared with the earlier specification based on unique read-write permissions,

I this specification is more concise,
I imposes fewer proof obligations,
I makes it clear that the data structures cannot be modified by append,
I and does not require s1 and s2 to be distinct. — (next slide)
I Furthermore, this spec implies both earlier specs. — (next slide)

The new spec subsumes both earlier specs

{const(s1 { Seq L1) ? const(s2 { Seq L2)}

(append s1 s2)

{λs3. s3 { Seq (L1 ++ L2)} new spec

{const(s { Seq L)}
(append s s)
{λs3. s3 { Seq (L ++ L)}

new spec
(with sharing)

{s { Seq L }
(append s s)
{λs3. s3 { Seq (L ++ L)
? s { Seq L }

earlier spec
(with sharing){s1 { Seq L1 ? s2 { Seq L2}

(append s1 s2)

{λs3. s3 { Seq (L1 ++ L2)
? s1 { Seq L1 ? s2 { Seq L2}

earlier spec
(without sharing)

The new spec subsumes both earlier specs

{const(s1 { Seq L1) ? const(s2 { Seq L2)}

(append s1 s2)

{λs3. s3 { Seq (L1 ++ L2)} new spec

{const(s { Seq L)}
(append s s)
{λs3. s3 { Seq (L ++ L)}

new spec
(with sharing)

{s { Seq L }
(append s s)
{λs3. s3 { Seq (L ++ L)
? s { Seq L }

earlier spec
(with sharing)

{s1 { Seq L1 ? s2 { Seq L2}

(append s1 s2)

{λs3. s3 { Seq (L1 ++ L2)
? s1 { Seq L1 ? s2 { Seq L2}

earlier spec
(without sharing)

The new spec subsumes both earlier specs

{const(s1 { Seq L1) ? const(s2 { Seq L2)}

(append s1 s2)

{λs3. s3 { Seq (L1 ++ L2)} new spec

{const(s { Seq L)}
(append s s)
{λs3. s3 { Seq (L ++ L)}

new spec
(with sharing)

{s { Seq L }
(append s s)
{λs3. s3 { Seq (L ++ L)
? s { Seq L }

earlier spec
(with sharing)

{s1 { Seq L1 ? s2 { Seq L2}

(append s1 s2)

{λs3. s3 { Seq (L1 ++ L2)
? s1 { Seq L1 ? s2 { Seq L2}

earlier spec
(without sharing)

The new spec subsumes both earlier specs

{const(s1 { Seq L1) ? const(s2 { Seq L2)}

(append s1 s2)

{λs3. s3 { Seq (L1 ++ L2)} new spec

{const(s { Seq L)}
(append s s)
{λs3. s3 { Seq (L ++ L)}

new spec
(with sharing)

{s { Seq L }
(append s s)
{λs3. s3 { Seq (L ++ L)
? s { Seq L }

earlier spec
(with sharing){s1 { Seq L1 ? s2 { Seq L2}

(append s1 s2)

{λs3. s3 { Seq (L1 ++ L2)
? s1 { Seq L1 ? s2 { Seq L2}

earlier spec
(without sharing)

Some Intuition

Reasoning Rules

Model

Conclusion

Assertions

The syntax of assertions is extended:

H := [P] | l ↪→ v | H1 ? H2 | H1 ∨∨ H2 | ∃∃x .H | const(H)

Read-only access to a data structure entails read-only access to its parts:

const(H1 ? H2)
 const(H1) ? const(H2) (the reverse is false)

Read-only access can be shared:

const(H) = const(H) ? const(H)

(A few more axioms, not shown).

A new read axiom

The traditional read axiom:
traditional read axiom
{l ↪→ v} (get l) {λy . [y = v] ? l ↪→ v}

is replaced with a “smaller” axiom:

new read axiom
{const(l ↪→ v)} (get l) {λy . [y = v]}

The traditional axiom can be derived from the new axiom.

A new frame rule

The traditional frame rule is subsumed by a new “read-only frame rule”:

frame rule
{H} t {Q} normal(H′)

{H ? H′} t {Q ? H′}

read-only frame rule
{H ? const(H′)} t {Q} normal(H′)

{H ? H′} t {Q ? H′}

Upon entry into a code block, H′ can be temporarily replaced with const(H′),
and upon exit, H′ magically re-appears.

The side condition normal(H′) means roughly that H′ has no const components.

This means that read-only permissions cannot be framed out.

Not a problem, as they are always passed down, never returned.

They never appear in postconditions.

A new frame rule

The traditional frame rule is subsumed by a new “read-only frame rule”:

frame rule
{H} t {Q} normal(H′)

{H ? H′} t {Q ? H′}

read-only frame rule
{H ? const(H′)} t {Q} normal(H′)

{H ? H′} t {Q ? H′}

Upon entry into a code block, H′ can be temporarily replaced with const(H′),
and upon exit, H′ magically re-appears.

The side condition normal(H′) means roughly that H′ has no const components.

This means that read-only permissions cannot be framed out.

Not a problem, as they are always passed down, never returned.

They never appear in postconditions.

Some Intuition

Reasoning Rules

Model

Conclusion

Interpretation of assertions

In a heap fragment, let every cell be colored RW or RO.

Let separating conjunction require:

I disjointness of the RW areas;
I disjointness of one side’s RW area with the other side’s RO area;
I agreement on the content of the heap where the RO areas overlap.

If an assertion H describes a certain set of heaps, then:

I Let const(H) describe the same heaps, colored entirely RO.
I Let normal(H) mean that every heap in H is colored entirely RW.

Interpretation of triples

The meaning of the Hoare triple {H} t {Q} is a variant of the usual:

∀h1h2.

{
h1 + h2 is defined
H h1

}
⇒ ∃vh′1.


h′1 + h2 is defined
t/ bh1 + h2c ⇓ v/ bh′1 + h2c

(Q ? true) v h′1

h′1.r = h1.r


Roughly, “If part of the heap satisfies H,
then t runs safely and changes that part of the
heap to satisfy Q , leaving the rest untouched.”

We make two changes:

I Q describes a purely RW part of the final heap.
I The RO part of the heap is preserved,

even though Q says nothing about it.

Interpretation of triples

The meaning of the Hoare triple {H} t {Q} is a variant of the usual:

∀h1h2.

{
h1 + h2 is defined
H h1

}
⇒ ∃vh′1.


h′1 + h2 is defined
t/ bh1 + h2c ⇓ v/ bh′1 + h2c

on-some-rw-frag(Q v)h′1

h′1.r = h1.r


Roughly, “If part of the heap satisfies H,
then t runs safely and changes that part of the
heap to satisfy Q , leaving the rest untouched.”

We make two changes:

I Q describes a purely RW part of the final heap.

I The RO part of the heap is preserved,
even though Q says nothing about it.

Interpretation of triples

The meaning of the Hoare triple {H} t {Q} is a variant of the usual:

∀h1h2.

{
h1 + h2 is defined
H h1

}
⇒ ∃vh′1.


h′1 + h2 is defined
t/ bh1 + h2c ⇓ v/ bh′1 + h2c

on-some-rw-frag(Q v)h′1
h′1.r = h1.r


Roughly, “If part of the heap satisfies H,
then t runs safely and changes that part of the
heap to satisfy Q , leaving the rest untouched.”

We make two changes:

I Q describes a purely RW part of the final heap.
I The RO part of the heap is preserved,

even though Q says nothing about it.

Soundness

Theorem

With respect to this interpretation of triples, every reasoning rule is sound.

Proof.

“Straightforward”. Machine-checked. �

Some Intuition

Reasoning Rules

Model

Conclusion

What about concurrency?

Our proof is carried out in a sequential setting.

I The proof uses big-step operational semantics.

What about structured concurrency, i.e., parallel composition (e1 || e2)?

I We believe that const permissions remain sound,
I but do not have a proof – a different proof technique is required.
I They allow read-only state to be shared between threads.

What about unstructured concurrency, i.e., threads and channels?

I One cannot allow const permissions to be sent along channels.
I More complex machinery is required: fractions, lifetimes, . . .

Conclusion

We propose:

I a simple extension of Separation Logic with a read-only modality;
I a simple model that explains why this is sound.

A possible design sweet spot?

I not so easy to find, worth knowing about;
I applicable to PL design? (e.g., adding const to Mezzo)

Applications:

I more concise, more accurate, more general specifications;
I simpler proofs.

Pending implementation in CFML (Charguéraud).

Some Intuition

Reasoning Rules

Model

Conclusion

Temporary modifications are not forbidden

Repeating “s { Seq L ” in the pre- and postcondition can be deceiving.

This does not forbid changes to the concrete data structure in memory.

Here is a function that really just reads the data structure:

{s { Seq L } (length s) {λy . s { Seq L ? [y = |L |]}

And a function that actually modifies the data structure:

{s { Seq L ? [|L | ≤ n]} (resize s n) {λ(). s { Seq L }

Temporary modifications are not forbidden

Repeating “s { Seq L ” in the pre- and postcondition can be deceiving.

This does not forbid changes to the concrete data structure in memory.

Here is a function that really just reads the data structure:

{s { Seq L } (length s) {λy . s { Seq L ? [y = |L |]}

And a function that actually modifies the data structure:

{s { Seq L ? [|L | ≤ n]} (resize s n) {λ(). s { Seq L }

Amnesia (1/2)

Suppose population has this specification:

{const(h { HashTable M)} (population h) {λy . [y = card M]}

Suppose a hash table is a mutable record whose data field points to an array:

h { HashTable M :=
∃∃a.∃∃L . (h { {data = a; . . .} ? a { Array L ? . . .)

Suppose there is an operation foo on hash tables:

let foo h =
let d = h.data in – read the address of the array
let p = population h in – call population
. . .

If “const” is sugar for repeating h { HashTable M in the pre and post,
then the proof of foo runs into a problem...

Amnesia (2/2)

Reasoning about foo might go like this:

1 let foo h =
2 {h { HashTable M} – foo’s precondition
3 {h { {data = a; . . .} ? a { Array L ? . . .} – by unfolding
4 let d = h.data in
5 {h { {data = a; . . .} ? a { Array L ? . . . ? [d = a]} – by reading
6 {h { HashTable M ? [d = a]} – by folding
7 let p = population h in – we have to fold
8 {h { HashTable M ? [d = a] ? [p = #M]}
9 . . .

At line 8, the equation d = a is useless.

We have forgotten what d represents, and lost the benefit of the read at line 4.

If “const” is sugar, the specification of population is weaker than it seems.

If “const” is native, there is a way around this problem. (Details omitted.)

Our solution, facet 4: sharing is permitted

The top Hoare triple is the new spec of append,
where s1 and s2 are instantiated with s.

{ const(s { Seq L) ? const(s { Seq L) }
(append s s)
{ λs3. s3 { Seq (L ++ L) }

{ const(s { Seq L) }
(append s s)
{ λs3. s3 { Seq (L ++ L) }

consequence

The bottom triple states that, with read-only access to s, append s s is permitted.

Our solution, facet 4: sharing is permitted

The top Hoare triple is the new spec of append,
where s1 and s2 are instantiated with s.

{ const(s { Seq L) ? const(s { Seq L) }
(append s s)
{ λs3. s3 { Seq (L ++ L) }

{ const(s { Seq L) }
(append s s)
{ λs3. s3 { Seq (L ++ L) }

consequence

The bottom triple states that, with read-only access to s, append s s is permitted.

read-only
permissions are

duplicable

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

{ const(s1 { Seq L1) ? const(s2 { Seq L2) }

(append s1 s2)

{ λs3. s3 { Seq (L1 ++ L2) }

{ const(s1 { Seq L1 ? s2 { Seq L2) }

(append s1 s2)

{ λs3. s3 { Seq (L1 ++ L2) }

{ s1 { Seq L1 ? s2 { Seq L2 }

(append s1 s2)

{ λs3. s3 { Seq (L1 ++ L2) ? s1 { Seq L1 ? s2 { Seq L2 }

read-only frame

consequence

The triple at the bottom is the earlier spec of append.

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

{ const(s1 { Seq L1) ? const(s2 { Seq L2) }

(append s1 s2)

{ λs3. s3 { Seq (L1 ++ L2) }

{ const(s1 { Seq L1 ? s2 { Seq L2) }

(append s1 s2)

{ λs3. s3 { Seq (L1 ++ L2) }

{ s1 { Seq L1 ? s2 { Seq L2 }

(append s1 s2)

{ λs3. s3 { Seq (L1 ++ L2) ? s1 { Seq L1 ? s2 { Seq L2 }

read-only frame

consequence

The triple at the bottom is the earlier spec of append.

permission
becomes
read-only

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

{ const(s1 { Seq L1) ? const(s2 { Seq L2) }

(append s1 s2)

{ λs3. s3 { Seq (L1 ++ L2) }

{ const(s1 { Seq L1 ? s2 { Seq L2) }

(append s1 s2)

{ λs3. s3 { Seq (L1 ++ L2) }

{ s1 { Seq L1 ? s2 { Seq L2 }

(append s1 s2)

{ λs3. s3 { Seq (L1 ++ L2) ? s1 { Seq L1 ? s2 { Seq L2 }

read-only frame

consequence

The triple at the bottom is the earlier spec of append.

read-only
permission

is split

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

{ const(s1 { Seq L1) ? const(s2 { Seq L2) }

(append s1 s2)

{ λs3. s3 { Seq (L1 ++ L2) }

{ const(s1 { Seq L1 ? s2 { Seq L2) }

(append s1 s2)

{ λs3. s3 { Seq (L1 ++ L2) }

{ s1 { Seq L1 ? s2 { Seq L2 }

(append s1 s2)

{ λs3. s3 { Seq (L1 ++ L2) ? s1 { Seq L1 ? s2 { Seq L2 }

read-only frame

consequence

The triple at the bottom is the earlier spec of append.

append is
called

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

{ const(s1 { Seq L1) ? const(s2 { Seq L2) }

(append s1 s2)

{ λs3. s3 { Seq (L1 ++ L2) }

{ const(s1 { Seq L1 ? s2 { Seq L2) }

(append s1 s2)

{ λs3. s3 { Seq (L1 ++ L2) }

{ s1 { Seq L1 ? s2 { Seq L2 }

(append s1 s2)

{ λs3. s3 { Seq (L1 ++ L2) ? s1 { Seq L1 ? s2 { Seq L2 }

read-only frame

consequence

The triple at the bottom is the earlier spec of append.

read-write
permission
magically

re-appears

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

{ const(s1 { Seq L1) ? const(s2 { Seq L2) }

(append s1 s2)

{ λs3. s3 { Seq (L1 ++ L2) }

{ const(s1 { Seq L1 ? s2 { Seq L2) }

(append s1 s2)

{ λs3. s3 { Seq (L1 ++ L2) }

{ s1 { Seq L1 ? s2 { Seq L2 }

(append s1 s2)

{ λs3. s3 { Seq (L1 ++ L2) ? s1 { Seq L1 ? s2 { Seq L2 }

read-only frame

consequence

The triple at the bottom is the earlier spec of append.

no need to
join

read-only
permissions

Assertions

The syntax of assertions is extended:

H := [P] | l ↪→ v | H1 ? H2 | H1 ∨∨ H2 | ∃∃x .H | const(H)

Read-only access to a data structure entails read-only access to its parts:

const(H1 ? H2)
 const(H1) ? const(H2) (the reverse is false)

Read-only permissions are duplicable (therefore, no need to count them!):

const(H) = const(H) ? const(H)

Read-only permissions are generally well-behaved:

const([P]) = [P]
const(H1 ∨∨ H2) = const(H1) ∨∨ const(H2)

const(∃∃x .H) = ∃∃x . const(H)
const(const(H)) = const(H)

const(H)
 const(H′) if H
 H′

Reasoning rules (structural)

read-only frame rule
{H ? const(H′)} t {Q} normal(H′)

{H ? H′} t {Q ? H′}

consequence
H
 H′ {H′} t {Q ′} Q ′
 Q

{H} t {Q}

discard-pre
{H} t {Q}

{H ?GC} t {Q}

discard-post
{H} t {Q ?GC}

{H} t {Q}

extract-prop
P ⇒ {H} t {Q}

{[P] ? H} t {Q}

extract-or
{H1} t {Q} {H2} t {Q}

{H1 ∨∨ H2} t {Q}

extract-exists
∀x . {H} t {Q}

{∃∃x .H} t {Q}

Reasoning rules (syntax-directed)

val
{[]} v {λy . [y = v]}

if
n , 0 ⇒ {H} t1 {Q}
n = 0 ⇒ {H} t2 {Q}

{H} (if n then t1 else t2) {Q}

framed sequencing rule (let)
{H} t1 {Q ′} ∀x . {Q ′ x ? H′} t2 {Q}

{H ? H′} (let x = t1 in t2) {Q}

app
v1 = µf .λx .t {H} ([v1/f] [v2/x] t) {Q}

{H} (v1 v2) {Q}

ref
{[]} (ref v) {λy . ∃∃l. [y = l] ? l ↪→ v}

new read axiom (get)
{const(l ↪→ v)} (get l) {λy . [y = v]}

set
{l ↪→ v ′} (set l v) {λy . l ↪→ v}

Memories & heaps – a simple model of access rights

A memory is a finite map of locations to values.

A heap h is a pair of two disjoint memories h.f and h.r.

I h.f represents the locations to which we have full access;
I h.r represents the locations to which we have read-only access.

An assertion, or permission, is a predicate over heaps (or: a set of heaps).

Heap composition & separating conjunction

The combination of two heaps:

h1 + h2 = (h1.f] h2.f, h1.r ∪ h2.r)

read-write

read-only

is defined only if:

I the read-write components h1.f and h2.f are disjoint;
I the read-only components h1.r and h2.r agree where they overlap;
I the read-write component h1.f is disjoint with the read-only component h2.r,

and vice-versa.

With this in mind, separating conjunction is interpreted as usual:

H1 ? H2 =
λh. ∃h1h2. (h1 + h2 is defined) ∧ h = h1 + h2 ∧ H1 h1 ∧ H2 h2

Heap composition & separating conjunction

The combination of two heaps:

h1 + h2 = (h1.f] h2.f, h1.r ∪ h2.r)

read-write

read-only

is defined only if:

I the read-write components h1.f and h2.f are disjoint;

I the read-only components h1.r and h2.r agree where they overlap;
I the read-write component h1.f is disjoint with the read-only component h2.r,

and vice-versa.

With this in mind, separating conjunction is interpreted as usual:

H1 ? H2 =
λh. ∃h1h2. (h1 + h2 is defined) ∧ h = h1 + h2 ∧ H1 h1 ∧ H2 h2

Heap composition & separating conjunction

The combination of two heaps:

h1 + h2 = (h1.f] h2.f, h1.r ∪ h2.r)

read-write

read-only

is defined only if:

I the read-write components h1.f and h2.f are disjoint;
I the read-only components h1.r and h2.r agree where they overlap;

I the read-write component h1.f is disjoint with the read-only component h2.r,
and vice-versa.

With this in mind, separating conjunction is interpreted as usual:

H1 ? H2 =
λh. ∃h1h2. (h1 + h2 is defined) ∧ h = h1 + h2 ∧ H1 h1 ∧ H2 h2

Heap composition & separating conjunction

The combination of two heaps:

h1 + h2 = (h1.f] h2.f, h1.r ∪ h2.r)

read-write

read-only

is defined only if:

I the read-write components h1.f and h2.f are disjoint;
I the read-only components h1.r and h2.r agree where they overlap;
I the read-write component h1.f is disjoint with the read-only component h2.r,

and vice-versa.

With this in mind, separating conjunction is interpreted as usual:

H1 ? H2 =
λh. ∃h1h2. (h1 + h2 is defined) ∧ h = h1 + h2 ∧ H1 h1 ∧ H2 h2

Heap composition & separating conjunction

The combination of two heaps:

h1 + h2 = (h1.f] h2.f, h1.r ∪ h2.r)

read-write

read-only

is defined only if:

I the read-write components h1.f and h2.f are disjoint;
I the read-only components h1.r and h2.r agree where they overlap;
I the read-write component h1.f is disjoint with the read-only component h2.r,

and vice-versa.

With this in mind, separating conjunction is interpreted as usual:

H1 ? H2 =
λh. ∃h1h2. (h1 + h2 is defined) ∧ h = h1 + h2 ∧ H1 h1 ∧ H2 h2

The read-only modality

h h’

const(H) is interpreted as follows:

const(H) =
λh. (h.f = ∅) ∧ ∃h′. (h.r = h′.f] h′.r)∧H h′

This means:

I we have write access to nothing.
I if we had write access to certain locations for which we have read access,

then H would hold.

The read-only modality

h h’

const(H) is interpreted as follows:

const(H) =
λh. (h.f = ∅) ∧ ∃h′. (h.r = h′.f] h′.r)∧H h′

This means:

I we have write access to nothing.

I if we had write access to certain locations for which we have read access,
then H would hold.

The read-only modality

h h’

const(H) is interpreted as follows:

const(H) =
λh. (h.f = ∅) ∧ ∃h′. (h.r = h′.f] h′.r)∧H h′

This means:

I we have write access to nothing.
I if we had write access to certain locations for which we have read access,

then H would hold.

The rest of the connectives

[P] = λh. (h.f = ∅) ∧ (h.r = ∅) ∧ P
l ↪→ v = λh. (h.f = (l 7→ v)) ∧ (h.r = ∅)

H1 ∨∨ H2 = λh. H1 h ∨ H2 h
∃∃x .H = λh. ∃x . H h

normal(H) = ∀h. H h ⇒ h.r = ∅

Interpretation of triples

The meaning of the Hoare triple {H} t {Q} is as follows:

∀h1h2.

{
h1 + h2 is defined
H h1

}
⇒ ∃vh′1.


h′1 + h2 is defined
t/ bh1 + h2c ⇓ v/ bh′1 + h2c

h′1.r = h1.r
on-some-rw-frag(Q v)h′1


What’s nonstandard?

I The read-only part of the heap must be preserved.
I The postcondition describes only a read-write fragment of the final heap.

on-some-rw-frag(H) =
λh.∃h1h2. (h1 + h2 is defined) ∧ h = h1 + h2 ∧ h1.r = ∅ ∧ H h1

Interpretation of triples

The meaning of the Hoare triple {H} t {Q} is as follows:

∀h1h2.

{
h1 + h2 is defined
H h1

}
⇒ ∃vh′1.


h′1 + h2 is defined
t/ bh1 + h2c ⇓ v/ bh′1 + h2c

h′1.r = h1.r
on-some-rw-frag(Q v)h′1


What’s nonstandard?

I The read-only part of the heap must be preserved.

I The postcondition describes only a read-write fragment of the final heap.

on-some-rw-frag(H) =
λh.∃h1h2. (h1 + h2 is defined) ∧ h = h1 + h2 ∧ h1.r = ∅ ∧ H h1

Interpretation of triples

The meaning of the Hoare triple {H} t {Q} is as follows:

∀h1h2.

{
h1 + h2 is defined
H h1

}
⇒ ∃vh′1.


h′1 + h2 is defined
t/ bh1 + h2c ⇓ v/ bh′1 + h2c

h′1.r = h1.r
on-some-rw-frag(Q v)h′1


What’s nonstandard?

I The read-only part of the heap must be preserved.
I The postcondition describes only a read-write fragment of the final heap.

on-some-rw-frag(H) =
λh.∃h1h2. (h1 + h2 is defined) ∧ h = h1 + h2 ∧ h1.r = ∅ ∧ H h1

	Some Intuition
	Reasoning Rules
	Model
	Conclusion

