Temporary Read-Only Permissions for Separation Logic

Arthur Charguéraud François Pottier
(talk delivered by Armaël Guéneau)

ESOP 2017
Uppsala, April 28, 2017

Separation Logic: to own, or not to own

The setting is basic (sequential) Separation Logic.
Separation Logic is about disjointness, therefore about unique ownership.
A dichotomy arises:
To every memory cell, array, or user-defined data structure, either we have no access at all, or we have full read-write access.

Separation Logic: to own, or not to own

The setting is basic (sequential) Separation Logic.
Separation Logic is about disjointness, therefore about unique ownership.
A dichotomy arises:
To every memory cell, array, or user-defined data structure, either we have no access at all, or we have full read-write access.

This is visible in the read and write axioms, which both need a full permission:

$$
\begin{aligned}
& \text { SET } \\
& \left\{I \hookrightarrow v^{\prime}\right\}(\text { set } / v)\{\lambda y . I \hookrightarrow v\}
\end{aligned}
$$

traditional read axiom

$\{\mid \hookrightarrow v\}($ get $/)\{\lambda y .[y=v] \star / \hookrightarrow v\}$

The problem

Suppose we are implementing an abstract data type of mutable sequences.
An abstract predicate $s \leadsto$ Seq L represents the unique ownership of a sequence.
Here is a typical specification of sequence concatenation:

$$
\begin{aligned}
& \left\{s_{1} \leadsto \operatorname{Seq} L_{1} \star s_{2} \leadsto \operatorname{Seq} L_{2}\right\} \\
& \left(\text { append } s_{1} s_{2}\right) \\
& \left\{\lambda s_{3} . s_{3} \leadsto \operatorname{Seq}\left(L_{1}+L_{2}\right) \star s_{1} \leadsto \operatorname{Seq} L_{1} \star s_{2} \leadsto \operatorname{Seq} L_{2}\right\}
\end{aligned}
$$

The problem

Suppose we are implementing an abstract data type of mutable sequences.
An abstract predicate $s \leadsto$ Seq L represents the unique ownership of a sequence.
Here is a typical specification of sequence concatenation:

$$
\begin{aligned}
& \left\{s_{1} \leadsto \text { Seq } L_{1} \star s_{2} \leadsto \text { Seq } L_{2}\right\} \\
& \left(\text { append } s_{1} s_{2}\right) \\
& \left\{\lambda s_{3} . s_{3} \leadsto \operatorname{Seq}\left(L_{1}+L_{2}\right) \star s_{1} \leadsto \operatorname{Seq} L_{1} \star s_{2} \leadsto \operatorname{Seq} L_{2}\right\}
\end{aligned}
$$

Although correct, this style of specification can be criticized on several grounds:

- It is a bit noisy.
- It requires the permissions $s_{1} \leadsto \operatorname{Seq} L_{1} \star s_{2} \leadsto \operatorname{Seq} L_{2}$ to be threaded through the proof of append.
- It actually does not guarantee that s_{1} and s_{2} are unmodified in memory.
- It requires s_{1} and s_{2} to be distinct data structures. - (next slide)

The problem, focus: sharing is not permitted

This specification requires s_{1} and s_{2} to be distinct (disjoint) data structures:


```
(append s1 s2)
{\lambda\mp@subsup{s}{3}{}.\mp@subsup{s}{3}{}\leadsto\operatorname{Seq}(\mp@subsup{L}{1}{}+\mp@subsup{L}{2}{\prime})\star\mp@subsup{S}{1}{}\leadsto\operatorname{Seq}\mp@subsup{L}{1}{}\star\mp@subsup{S}{2}{}\leadsto\operatorname{Seq}\mp@subsup{L}{2}{2}}
```

(appends s) requires $s \leadsto \operatorname{Seq} L \star s \leadsto$ Seq L, which the client cannot produce.

The problem, focus: sharing is not permitted

This specification requires s_{1} and s_{2} to be distinct (disjoint) data structures:

$$
\begin{aligned}
& \left\{s_{1} \leadsto \text { Seq } L_{1} \star s_{2} \leadsto \text { Seq } L_{2}\right\} \\
& \left(\text { append } s_{1} s_{2}\right) \\
& \left\{\lambda s_{3} . s_{3} \leadsto \operatorname{Seq}\left(L_{1}+L_{2}\right) \star s_{1} \leadsto \text { Seq } L_{1} \star s_{2} \leadsto \text { Seq } L_{2}\right\}
\end{aligned}
$$

(appends s) requires $s \leadsto \operatorname{Seq} L \star s \leadsto \operatorname{Seq} L$, which the client cannot produce.
To allow (appends s), we must establish another specification:

$$
\begin{aligned}
& \{s \leadsto \operatorname{Seq} L\} \\
& (\text { appends } s) \\
& \left\{\lambda s_{3} \cdot s_{3} \leadsto \operatorname{Seq}(L+L) \star s \leadsto \operatorname{Seq} L\right\}
\end{aligned}
$$

Duplicate work and increased complication for us and for our clients.

Fractional permissions to the rescue...?

In (some) Concurrent SLs, sequence concatenation can be specified as follows:

```
\forall\mp@subsup{\pi}{1}{},\mp@subsup{\pi}{2}{}.{\mp@subsup{\pi}{1}{}\cdot(\mp@subsup{s}{1}{}~\mathrm{ Seq L}\mp@subsup{L}{1}{})\star\mp@subsup{\pi}{2}{}\cdot(\mp@subsup{s}{2}{}~\mathrm{ Seq L}\mp@subsup{L}{2}{\prime})}
    (appends}\mp@subsup{s}{1}{}\mp@subsup{s}{2}{}
    {\lambda\mp@subsup{s}{3}{}.\mp@subsup{s}{3}{}~\operatorname{Seq}(\mp@subsup{L}{1}{}+\mp@subsup{L}{2}{})\star\mp@subsup{\pi}{1}{}\cdot(\mp@subsup{s}{1}{}~\operatorname{Seq}\mp@subsup{L}{1}{})\star\mp@subsup{\pi}{2}{}\cdot(\mp@subsup{s}{2}{}~\operatorname{Seq}\mp@subsup{L}{2}{})}
```

We scale an assertion by a fraction: $\pi \cdot H$.

Fractional permissions to the rescue...?

In (some) Concurrent SLs, sequence concatenation can be specified as follows:

$$
\begin{aligned}
& \forall \pi_{1}, \pi_{2} .\left\{\pi_{1} \cdot\left(s_{1} \leadsto \operatorname{Seq} L_{1}\right) \star \pi_{2} \cdot\left(s_{2} \leadsto \operatorname{Seq} L_{2}\right)\right\} \\
&\left(\text { append } s_{1} S_{2}\right) \\
&\left\{\lambda s_{3} . s_{3} \leadsto \operatorname{Seq}\left(L_{1}+L_{2}\right) \star \pi_{1} \cdot\left(s_{1} \leadsto \operatorname{Seq} L_{1}\right) \star \pi_{2} \cdot\left(s_{2} \leadsto \operatorname{Seq} L_{2}\right)\right\}
\end{aligned}
$$

We scale an assertion by a fraction: $\pi \cdot H$.
This addresses the main aspects of the problem,

- but is still noisy,
- might seem a bit frightening to non-experts,
- and still requires careful splitting, threading, and joining of permissions.
- "Hiding" fractions (Heule et al, 2013) adds another layer of sophistication.

In this paper

We propose a solution that is:

- not as powerful as fractional permissions (or other share algebras),
- but significantly simpler. (A design "sweet spot"?)

Our contributions:

- introducing a read-only modality, const (in the paper: "RO"). const (H) gives temporary read-only access to the memory governed by H .
- finding simple and sound reasoning rules for const.
- proposing a model that justifies these rules.

Some Intuition

Reasoning Rules

Model

Conclusion

Our solution

We would like the specification of append to look like this:

$$
\begin{aligned}
& \left\{\operatorname{const}\left(s_{1} \leadsto \operatorname{Seq} L_{1}\right) \star \operatorname{const}\left(s_{2} \leadsto \operatorname{Seq} L_{2}\right)\right\} \\
& \left(\operatorname{append} s_{1} s_{2}\right) \\
& \left\{\lambda s_{3} . s_{3} \leadsto \operatorname{Seq}\left(L_{1}+L_{2}\right)\right\}
\end{aligned}
$$

Our solution

We would like the specification of append to look like this:

$$
\begin{aligned}
& \left\{\operatorname{const}\left(s_{1} \leadsto \operatorname{Seq} L_{1}\right) \star \operatorname{const}\left(s_{2} \leadsto \operatorname{Seq} L_{2}\right)\right\} \\
& \left(\text { append } s_{1} s_{2}\right) \\
& \left\{\lambda s_{3} . s_{3} \leadsto \text { Seq }\left(L_{1}+L_{2}\right)\right\}
\end{aligned}
$$

Compared with the earlier specification based on unique read-write permissions,

- this specification is more concise,
- imposes fewer proof obligations,
- makes it clear that the data structures cannot be modified by append,
- and does not require s_{1} and s_{2} to be distinct. - (next slide)
- Furthermore, this spec implies both earlier specs. - (next slide)

The new spec subsumes both earlier specs

```
{const(\mp@subsup{s}{1}{}~\operatorname{Seq}\mp@subsup{L}{1}{})\star\operatorname{const}(\mp@subsup{s}{2}{}~\operatorname{Seq}\mp@subsup{L}{2}{})}
(append}\mp@subsup{\mathbf{s}}{\mathbf{1}}{\mathbf{s}}\mp@subsup{\mathbf{s}}{\mathbf{2}}{\mathrm{ )}
{\lambda\mp@subsup{s}{3}{}.\mp@subsup{s}{3}{}~\operatorname{Seq}(\mp@subsup{L}{1}{}+\mp@subsup{L}{2}{})}
    new spec
```


The new spec subsumes both earlier specs

The new spec subsumes both earlier specs

The new spec subsumes both earlier specs

Some Intuition

Reasoning Rules

Model

Conclusion

Assertions

The syntax of assertions is extended:

$$
H:=[P]|I \hookrightarrow v| H_{1} \star H_{2}\left|H_{1} \mathbb{w} H_{2}\right| \nexists x . H \mid \operatorname{const}(H)
$$

Read-only access to a data structure entails read-only access to its parts:

$$
\operatorname{const}\left(H_{1} \star H_{2}\right) \quad \Vdash \quad \operatorname{const}\left(H_{1}\right) \star \operatorname{const}\left(H_{2}\right) \quad \text { (the reverse is false) }
$$

Read-only access can be shared:

$$
\operatorname{const}(H)=\operatorname{const}(H) \star \operatorname{const}(H)
$$

(A few more axioms, not shown).

A new read axiom

The traditional read axiom:
TRADITIONAL READ AXIOM

$$
\{I \hookrightarrow v\}(\operatorname{get} I)\{\lambda y .[y=v] \star \mid \hookrightarrow v\}
$$

is replaced with a "smaller" axiom:

NEW READ AXIOM

$$
\{\operatorname{const}(I \hookrightarrow v)\}(\text { get } I)\{\lambda y .[y=v]\}
$$

The traditional axiom can be derived from the new axiom.

A new frame rule

The traditional frame rule is subsumed by a new "read-only frame rule":

Upon entry into a code block, H^{\prime} can be temporarily replaced with const(H^{\prime}), and upon exit, H^{\prime} magically re-appears.

A new frame rule

The traditional frame rule is subsumed by a new "read-only frame rule":

$\frac{$| frame rule |
| :---: |
| $\{H\} t\{Q\}$ |\(\quad normal\left(H^{\prime}\right)}{\left\{H \star H^{\prime}\right\} t\left\{Q \star H^{\prime}\right\}} \quad \frac{\left.\begin{array}{l}Read-only frame rule

\left\{H \star \operatorname{const}\left(H^{\prime}\right)\right\}\end{array} t Q\right\} \quad normal\left(H^{\prime}\right)}{\left\{H \star H^{\prime}\right\} t\left\{Q \star H^{\prime}\right\}}\)

Upon entry into a code block, H^{\prime} can be temporarily replaced with const $\left(H^{\prime}\right)$, and upon exit, H^{\prime} magically re-appears.

The side condition normal(H^{\prime}) means roughly that H^{\prime} has no const components.
This means that read-only permissions cannot be framed out.
Not a problem, as they are always passed down, never returned.
They never appear in postconditions.

Some Intuition

Reasoning Rules

Model

Conclusion

Interpretation of assertions

In a heap fragment, let every cell be colored RW or RO.
Let separating conjunction require:

- disjointness of the RW areas;
- disjointness of one side's RW area with the other side's RO area;
- agreement on the content of the heap where the RO areas overlap.

If an assertion H describes a certain set of heaps, then:

- Let const (H) describe the same heaps, colored entirely RO.
- Let normal (H) mean that every heap in H is colored entirely RW.

Interpretation of triples

The meaning of the Hoare triple $\{H\} t\{Q\}$ is a variant of the usual:

$$
\forall h_{1} h_{2} \cdot\left\{\begin{array}{l}
h_{1}+h_{2} \text { is defined } \\
H h_{1}
\end{array}\right\} \Rightarrow \exists v h_{1}^{\prime} \cdot\left\{\begin{array}{l}
h_{1}^{\prime}+h_{2} \text { is defined } \\
t /\left\lfloor h_{1}+h_{2}\right\rfloor \Downarrow v /\left\lfloor h_{1}^{\prime}+h_{2}\right\rfloor \\
(Q \star \text { true }) v h_{1}^{\prime}
\end{array}\right\}
$$

Roughly, "If part of the heap satisfies H , then t runs safely and changes that part of the heap to satisfy Q, leaving the rest untouched."
We make two changes:

Interpretation of triples

The meaning of the Hoare triple $\{H\} t\{Q\}$ is a variant of the usual:

$$
\begin{aligned}
& \forall h_{1} h_{2} .\left\{\begin{array}{l}
h_{1}+h_{2} \text { is defined } \\
H h_{1}
\end{array}\right\} \Rightarrow \exists v h_{1}^{\prime} \cdot\left\{\begin{array}{l}
h_{1}^{\prime}+h_{2} \text { is defined } \\
t /\left\lfloor h_{1}+h_{2}\right\rfloor \Downarrow v /\left\lfloor h_{1}^{\prime}+h_{2}\right\rfloor \\
\text { on-some-rw-frag }(Q v) h_{1}^{\prime}
\end{array}\right\} \\
& \text { hhly, "If part of the heap satisfies } H \text {, } \\
& t \text { runs safely and changes that part of the } \\
& \text { to satisfy } Q \text {, leaving the rest untouched." } \\
& \text { nake two changes: } \\
& Q \text { describes a purely RW part of the final heap. }
\end{aligned}
$$

Interpretation of triples

The meaning of the Hoare triple $\{H\} t\{Q\}$ is a variant of the usual:

$$
\forall h_{1} h_{2} \cdot\left\{\begin{array}{l}
h_{1}+h_{2} \text { is defined } \\
H h_{1}
\end{array}\right\} \Rightarrow \exists v h_{1}^{\prime} \cdot\left\{\begin{array}{l}
h_{1}^{\prime}+h_{2} \text { is defined } \\
t /\left\lfloor h_{1}+h_{2}\right\rfloor \Downarrow v /\left\lfloor h_{1}^{\prime}+h_{2}\right\rfloor \\
\text { on-some-rw-frag }(Q v) h_{1}^{\prime} \\
h_{1}^{\prime} \cdot \mathrm{r}=h_{1} \cdot \mathrm{r}
\end{array}\right\}
$$

Roughly, "If part of the heap satisfies H , then t runs safely and changes that part of the heap to satisfy Q, leaving the rest untouched."
We make two changes:

- Q describes a purely RW part of the final heap.
- The RO part of the heap is preserved, even though Q says nothing about it.

Soundness

Theorem

With respect to this interpretation of triples, every reasoning rule is sound.

Proof.

"Straightforward". Machine-checked.

Some Intuition

Reasoning Rules

Model

Conclusion

What about concurrency?

Our proof is carried out in a sequential setting.

- The proof uses big-step operational semantics.

What about structured concurrency, i.e., parallel composition $\left(e_{1} \| e_{2}\right)$?

- We believe that const permissions remain sound,
- but do not have a proof - a different proof technique is required.
- They allow read-only state to be shared between threads.

What about unstructured concurrency, i.e., threads and channels?

- One cannot allow const permissions to be sent along channels.
- More complex machinery is required: fractions, lifetimes, ...

Conclusion

We propose:

- a simple extension of Separation Logic with a read-only modality;
- a simple model that explains why this is sound.

A possible design sweet spot?

- not so easy to find, worth knowing about;
- applicable to PL design? (e.g., adding const to Mezzo)

Applications:

- more concise, more accurate, more general specifications;
- simpler proofs.

Pending implementation in CFML (Charguéraud).

Some Intuition

Reasoning Rules

Model

Conclusion

Temporary modifications are not forbidden

Repeating " $s \leadsto$ Seq L " in the pre- and postcondition can be deceiving.
This does not forbid changes to the concrete data structure in memory.
Here is a function that really just reads the data structure:

$$
\{s \leadsto \operatorname{Seq} L\}(\text { length } s)\{\lambda y . s \leadsto \operatorname{Seq} L \star[y=|L|]\}
$$

Temporary modifications are not forbidden

Repeating " $s \leadsto$ Seq L " in the pre- and postcondition can be deceiving.
This does not forbid changes to the concrete data structure in memory.
Here is a function that really just reads the data structure:

$$
\{s \leadsto \operatorname{Seq} L\}(\text { length } s)\{\lambda y . s \leadsto \operatorname{Seq} L \star[y=|L|]\}
$$

And a function that actually modifies the data structure:

$$
\{s \leadsto \operatorname{Seq} L \star[|L| \leq n]\}(\text { resize } s n)\{\lambda() . s \leadsto \operatorname{Seq} L\}
$$

Amnesia (1/2)

Suppose population has this specification:

$$
\{\text { const }(h \leadsto \text { HashTable } M)\}(\text { population } h)\{\lambda y .[y=\operatorname{card} M]\}
$$

Suppose a hash table is a mutable record whose data field points to an array:

$$
\begin{aligned}
& h \leadsto \text { HashTable } M:= \\
& \quad \nexists a . \nexists L .(h \leadsto\{\text { data }=a ; \ldots\} \star a \leadsto \operatorname{Array} L \star \ldots)
\end{aligned}
$$

Suppose there is an operation foo on hash tables:
let foo $h=$
let $d=h$.data in $\quad-$ read the address of the array
let $p=$ population h in \quad - call population

If "const" is sugar for repeating $h \leadsto$ HashTable M in the pre and post, then the proof of foo runs into a problem...

Amnesia (2/2)

Reasoning about foo might go like this:
1 let foo $h=$
$2 \quad\{h \leadsto$ HashTable $M\}$

- foo's precondition
$\{h \leadsto\{$ data $=a ; \ldots\} \star a \sim$ Array $L \star \ldots\} \quad$ - by unfolding
let $d=h$. data in
$\{h \leadsto\{$ data $=a ; \ldots\} \star a \sim$ Array $L \star \ldots \star[d=a]\} \quad$-by reading
$\{h \leadsto$ HashTable $M \star[d=a]\} \quad$ - by folding
let $p=$ population h in \quad - we have to fold
$\{h \leadsto$ HashTable $M \star[d=a] \star[p=\# M]\}$
9 ...
At line 8, the equation $d=a$ is useless.
We have forgotten what d represents, and lost the benefit of the read at line 4.
If "const" is sugar, the specification of population is weaker than it seems.
If "const" is native, there is a way around this problem. (Details omitted.)

Our solution, facet 4: sharing is permitted

The top Hoare triple is the new spec of append, where s_{1} and s_{2} are instantiated with s.

```
{ const(s~SeqL) \star const(s ~ Seq L) }
(appendss)
{\lambda\mp@subsup{s}{3}{}.\mp@subsup{s}{3}{}~\operatorname{Seq}(L+L)}
{\operatorname{const(s}~\operatorname{SeqL)}}
    (appendss)
    { \lambdas3. ss ~ Seq(L + L) }
```

The bottom triple states that, with read-only access to s, appends s is permitted.

Our solution, facet 4: sharing is permitted

The top Hoare triple is the new spec of append, where s_{1} and s_{2} are instantiated with s.

The bottom triple states that, with read-only access to s, appends s is permitted.

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.
$\left\{\operatorname{const}\left(s_{1} \leadsto \operatorname{Seq} L_{1}\right) \star \operatorname{const}\left(s_{2} \leadsto \operatorname{Seq} L_{2}\right)\right\}$
(append $s_{1} s_{2}$)
$\left\{\lambda s_{3} . s_{3} \leadsto \operatorname{Seq}\left(L_{1}+L_{2}\right)\right\}$
$\left\{\operatorname{const}\left(s_{1} \leadsto \operatorname{Seq} L_{1} \star s_{2} \leadsto \operatorname{Seq} L_{2}\right)\right\}$
(append $s_{1} s_{2}$)
$\left\{\lambda s_{3} . s_{3} \leadsto \operatorname{Seq}\left(L_{1}+L_{2}\right)\right\}$
$\left\{s_{1} \leadsto \operatorname{Seq} L_{1} \star s_{2} \leadsto \operatorname{Seq} L_{2}\right\}$
(append $s_{1} s_{2}$)
$\left\{\lambda s_{3} . s_{3} \leadsto \operatorname{Seq}\left(L_{1}+L_{2}\right) \star s_{1} \leadsto \operatorname{Seq} L_{1} \star s_{2} \leadsto \operatorname{Seq} L_{2}\right\}$

The triple at the bottom is the earlier spec of append.

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

The triple at the bottom is the earlier spec of append.

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

The triple at the bottom is the earlier spec of append.

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

The triple at the bottom is the earlier spec of append.

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

The triple at the bottom is the earlier spec of append.

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

The triple at the bottom is the earlier spec of append.

Assertions

The syntax of assertions is extended:

$$
H:=[P]|/ \hookrightarrow v| H_{1} \star H_{2}\left|H_{1} \mathbb{w} H_{2}\right| \nexists x \cdot H \mid \operatorname{const}(H)
$$

Read-only access to a data structure entails read-only access to its parts:

$$
\operatorname{const}\left(H_{1} \star H_{2}\right) \quad \Vdash \quad \operatorname{const}\left(H_{1}\right) \star \operatorname{const}\left(H_{2}\right) \quad \text { (the reverse is false) }
$$

Read-only permissions are duplicable (therefore, no need to count them!):

$$
\operatorname{const}(H)=\operatorname{const}(H) \star \operatorname{const}(H)
$$

Read-only permissions are generally well-behaved:

$$
\begin{array}{rll}
\operatorname{const}([P]) & =[P] & \\
\operatorname{const}\left(H_{1} \mathbb{*} H_{2}\right) & =\operatorname{const}\left(H_{1}\right) \mathbb{v} \operatorname{const}\left(H_{2}\right) & \\
\operatorname{const}(\nexists x . H) & =\nexists x \cdot \operatorname{const}(H) & \\
\operatorname{const}(\operatorname{const}(H)) & =\operatorname{const}(H) & \text { if } H \Vdash H^{\prime} \\
\operatorname{const}(H) & \Vdash \operatorname{const}\left(H^{\prime}\right) &
\end{array}
$$

Reasoning rules (structural)

Reasoning rules (syntax-directed)

$$
\begin{array}{ll}
& \text { IF } \\
\text { vaL } \\
\{[]\} v\{\lambda y .[y=v]\} & \begin{array}{l}
n=0 \Rightarrow\{H\} t_{1}\{Q\} \\
\left.\{H\} \text { (if } n \text { then } t_{1} \text { else } t_{2}\right)\{Q\}
\end{array}
\end{array}
$$

framed sequencing rule (Let)
$\frac{\{H\} t_{1}\left\{Q^{\prime}\right\} \quad \forall x .\left\{Q^{\prime} x \star H^{\prime}\right\} t_{2}\{Q\}}{\left\{H \star H^{\prime}\right\}\left(\operatorname{let} x=t_{1} \operatorname{in} t_{2}\right)\{Q\}}$

REF
$\{[]\}(\operatorname{ref} v)\{\lambda y . \nexists / .[y=I] \star / \hookrightarrow v\}$
$\frac{\stackrel{\text { APP }}{v_{1}}=\mu f . \lambda x . t \quad\{H\}\left(\left[v_{1} / f\right]\left[v_{2} / x\right] t\right)\{Q\}}{\{H\}\left(v_{1} v_{2}\right)\{Q\}}$

NEW READ AXIOM (GET)
$\{\operatorname{const}(I \hookrightarrow v)\}($ get $/)\{\lambda y .[y=v]\}$

SET
$\left\{I \hookrightarrow v^{\prime}\right\}($ set $/ v)\{\lambda y . I \hookrightarrow v\}$

Memories \& heaps - a simple model of access rights

A memory is a finite map of locations to values.
A heap h is a pair of two disjoint memories $h . f$ and h.r.

- h.f represents the locations to which we have full access;
- h.r represents the locations to which we have read-only access.

An assertion, or permission, is a predicate over heaps (or: a set of heaps).

Heap composition \& separating conjunction

The combination of two heaps:

$$
h_{1}+h_{2}=\left(h_{1} . f \uplus h_{2} . f, h_{1} \cdot r \cup h_{2} \cdot r\right)
$$

is defined only if:

Heap composition \& separating conjunction

The combination of two heaps:

$$
h_{1}+h_{2}=\left(h_{1} . f \uplus h_{2} . f, h_{1} \cdot r \cup h_{2} \cdot r\right)
$$

is defined only if:

- the read-write components $h_{1} . f$ and $h_{2} . f$ are disjoint;

Heap composition \& separating conjunction

The combination of two heaps:

$$
h_{1}+h_{2}=\left(h_{1} \cdot f \uplus h_{2} \cdot \mathrm{f}, h_{1} \cdot r \cup h_{2} \cdot r\right)
$$

is defined only if:

- the read-write components $h_{1} . f$ and $h_{2} . f$ are disjoint;
- the read-only components h_{1}.r and h_{2}.r agree where they overlap;

Heap composition \& separating conjunction

The combination of two heaps:
$h_{1}+h_{2}=\left(h_{1} . f \uplus h_{2} . f, h_{1} . r \cup h_{2} \cdot r\right)$

is defined only if:

- the read-write components $h_{1} . f$ and $h_{2} . f$ are disjoint;
- the read-only components h_{1}.r and h_{2}.r agree where they overlap;
- the read-write component $h_{1} . f$ is disjoint with the read-only component h_{2}.r, and vice-versa.

Heap composition \& separating conjunction

The combination of two heaps:

$$
h_{1}+h_{2}=\left(h_{1} . f \uplus h_{2} . f, h_{1} \cdot r \cup h_{2} \cdot r\right)
$$

is defined only if:

- the read-write components $h_{1} . f$ and $h_{2} . f$ are disjoint;
- the read-only components h_{1}.r and h_{2}.r agree where they overlap;
- the read-write component $h_{1} . f$ is disjoint with the read-only component h_{2}.r, and vice-versa.

With this in mind, separating conjunction is interpreted as usual:

$$
\begin{aligned}
& H_{1} \star H_{2}= \\
& \quad \lambda h . \exists h_{1} h_{2} .\left(h_{1}+h_{2} \text { is defined }\right) \wedge h=h_{1}+h_{2} \wedge H_{1} h_{1} \wedge H_{2} h_{2}
\end{aligned}
$$

The read-only modality

const (H) is interpreted as follows:

$$
\begin{aligned}
& \operatorname{const}(H)= \\
& \quad \lambda h .(h . f=\varnothing) \wedge \exists h^{\prime} .\left(h . \mathrm{r}=h^{\prime} . \mathrm{f} \uplus h^{\prime} . \mathrm{r}\right) \wedge H h^{\prime}
\end{aligned}
$$

The read-only modality

const (H) is interpreted as follows:

$$
\operatorname{const}(H)=
$$

$\lambda h .(h . f=\varnothing) \wedge \exists h^{\prime} .\left(h . r=h^{\prime} . f \uplus h^{\prime} . r\right) \wedge H h^{\prime}$
This means:

- we have write access to nothing.

The read-only modality

const (H) is interpreted as follows:

$$
\begin{aligned}
& \operatorname{const}(H)= \\
& \quad \lambda h .(h . f=\varnothing) \wedge \exists h^{\prime} .\left(h . r=h^{\prime} . f \uplus h^{\prime} . r\right) \wedge H h^{\prime}
\end{aligned}
$$

This means:

- we have write access to nothing.

- if we had write access to certain locations for which we have read access, then H would hold.

The rest of the connectives

$$
\begin{aligned}
{[P] } & =\lambda h .(h . f=\varnothing) \wedge(h . \mathrm{r}=\varnothing) \wedge P \\
I \hookrightarrow v & =\lambda h .(h . f=(I \mapsto v)) \wedge(h . \mathrm{r}=\varnothing) \\
H_{1} \mathbb{w} H_{2} & =\lambda h . H_{1} h \vee H_{2} h \\
\exists x . H & =\lambda h . \exists x . H h \\
\operatorname{normal}(H) & =\forall h . H h \Rightarrow h \cdot \mathrm{r}=\varnothing
\end{aligned}
$$

Interpretation of triples

The meaning of the Hoare triple $\{H\} t\{Q\}$ is as follows:

$$
\forall h_{1} h_{2} \cdot\left\{\begin{array}{l}
h_{1}+h_{2} \text { is defined } \\
H h_{1}
\end{array}\right\} \Rightarrow \exists v h_{1}^{\prime} \cdot\left\{\begin{array}{l}
h_{1}^{\prime}+h_{2} \text { is defined } \\
t /\left\lfloor h_{1}+h_{2}\right\rfloor \Downarrow v /\left\lfloor h_{1}^{\prime}+h_{2}\right\rfloor \\
h_{1}^{\prime} \cdot r=h_{1} \cdot r \\
\text { on-some-rw-frag }(Q v) h_{1}^{\prime}
\end{array}\right\}
$$

What's nonstandard?

Interpretation of triples

The meaning of the Hoare triple $\{H\} t\{Q\}$ is as follows:

$$
\forall h_{1} h_{2} \cdot\left\{\begin{array}{l}
h_{1}+h_{2} \text { is defined } \\
H h_{1}
\end{array}\right\} \Rightarrow \exists v h_{1}^{\prime} \cdot\left\{\begin{array}{l}
h_{1}^{\prime}+h_{2} \text { is defined } \\
t /\left\lfloor h_{1}+h_{2}\right\rfloor \Downarrow v /\left\lfloor h_{1}^{\prime}+h_{2}\right\rfloor \\
h_{1}^{\prime} \cdot r=h_{1} \cdot r \\
\text { on-some-rw-frag }(Q v) h_{1}^{\prime}
\end{array}\right\}
$$

- The read-only part of the heap must be preserved.

Interpretation of triples

The meaning of the Hoare triple $\{H\} t\{Q\}$ is as follows:

$$
\forall h_{1} h_{2} \cdot\left\{\begin{array}{l}
h_{1}+h_{2} \text { is defined } \\
H h_{1}
\end{array}\right\} \Rightarrow \exists v h_{1}^{\prime} \cdot\left\{\begin{array}{l}
h_{1}^{\prime}+h_{2} \text { is defined } \\
t /\left\lfloor h_{1}+h_{2}\right\rfloor \Downarrow v /\left\lfloor h_{1}^{\prime}+h_{2}\right\rfloor \\
h_{1}^{\prime} \cdot r=h_{1} \cdot r \\
\text { on-some-rw-frag }(Q v) h_{1}^{\prime}
\end{array}\right\}
$$

What's nonstandard?

- The read-only part of the heap must be preserved.
- The postcondition describes only a read-write fragment of the final heap.

$$
\text { on-some-rw-frag }(H)=
$$

$\lambda h . \exists h_{1} h_{2} \cdot\left(h_{1}+h_{2}\right.$ is defined $) \wedge h=h_{1}+h_{2} \wedge h_{1} \cdot r=\varnothing \wedge H h_{1}$

