Temporary Read-Only Permissions for Separation Logic

Arthur Charguéraud Frangois Pottier

(talk delivered by Armaél Guéneau)

informaties gFmathematics

ESOP 2017
Uppsala, April 28, 2017

Separation Logic: to own, or not to own

The setting is basic (sequential) Separation Logic.
Separation Logic is about disjointness, therefore about unique ownership.

A dichotomy arises:

To every memory cell, array, or user-defined data structure,
either we have no access at all, or we have full read-write access.

Separation Logic: to own, or not to own

The setting is basic (sequential) Separation Logic.
Separation Logic is about disjointness, therefore about unique ownership.

A dichotomy arises:

To every memory cell, array, or user-defined data structure,
either we have no access at all, or we have full read-write access.

This is visible in the read and write axioms, which both need a full permission:

SET TRADITIONAL READ AXIOM
{l— v’} (setlv) {Ay. | < v} {I= v} (geth) {Ay. [y =vV] x| v}

The problem

Suppose we are implementing an abstract data type of mutable sequences.
An abstract predicate s ~» Seq L represents the unique ownership of a sequence.
Here is a typical specification of sequence concatenation:

{si ~ SeqL; x so~» Seq Ly}

(append s; sz)
{As3. s3~ Seq(Ly H L) *x s1 ~ SeqlL; x s, ~ Seq Ly}

The problem

Suppose we are implementing an abstract data type of mutable sequences.
An abstract predicate s ~» Seq L represents the unique ownership of a sequence.
Here is a typical specification of sequence concatenation:
{si ~ SeqL; x so~» Seq Ly}
(append s; sz)
{As3. s3~ Seq(Ly H L) *x s1 ~ SeqlL; x s, ~ Seq Ly}
Although correct, this style of specification can be criticized on several grounds:
> Itis a bit noisy.

> It requires the permissions s; ~ SeqL; x s, ~» SeqL, to be
threaded through the proof of append.

» It actually does not guarantee that s; and s, are unmodified in memory.
» It requires sy and s; to be distinct data structures. — (next slide)

The problem, focus: sharing is not permitted

This specification requires s; and s, to be distinct (disjoint) data structures:

{si ~ SeqL; x s»~» Seq Ly}
(appends; sz)
{As3. s3~ Seq(Ly H L) * s; ~ SeqL; x s, ~ Seq Ly}

(appends s) requires s ~ SeqL x s ~» SeqL, which the client cannot produce.

The problem, focus: sharing is not permitted

This specification requires s; and s, to be distinct (disjoint) data structures:

{sy ~ SeqL; * s» ~ Seq Ly}

(appends; sz)

{As3. s3~ Seq(Ly H L) * s; ~ SeqL; x s, ~ Seq Ly}
(appends s) requires s ~> SeqL * s ~» Seq L, which the client cannot produce.

To allow (append s s), we must establish another specification:

{s ~ SeqlL}
(appends s)
{As3. s3~ Seq(L H L) x s~ SeqlL}

Duplicate work and increased complication for us and for our clients.

Fractional permissions to the rescue...?

In (some) Concurrent SLs, sequence concatenation can be specified as follows:

Y1y, 2. {11 - (81~ SeqLy) * m2-(s2 ~ SeqLy)}
(appends; sz)
{As3. s3~ Seq (L + L) * 71 -(S1 ~> Seqly) * mz- (s ~ SeqLz)}

We scale an assertion by a fraction: 7 - H.

Fractional permissions to the rescue...?

In (some) Concurrent SLs, sequence concatenation can be specified as follows:

Y71y, Tte. {114 - (S1 ~> Seq Ly) * 1z - (S2 ~ Seq L)}
(appends; s;)
{As3. s3~ Seq(Li H Ly) * 71 (81~ Seqly) x m2-(s2 ~ SeqLy)}
We scale an assertion by a fraction: 7 - H.
This addresses the main aspects of the problem,

> but is still noisy,

» might seem a bit frightening to non-experts,

» and still requires careful splitting, threading, and joining of permissions.
» “Hiding” fractions (Heule et al, 2013) adds another layer of sophistication.

In this paper

We propose a solution that is:
» hot as powerful as fractional permissions (or other share algebras),
» but significantly simpler. (A design “sweet spot”?)

Our contributions:

» introducing a read-only modality, const (in the paper: “RO”).
const(H) gives temporary read-only access to the memory governed by H.
» finding simple and sound reasoning rules for const.

» proposing a model that justifies these rules.

Some Intuition

Our solution

We would like the specification of append to look like this:

{const(sy ~ SeqLy) x const(s, ~ SeqLy)}
(append s s2)
{/\Sa. S3 ~» Seq (L1 -+H- Lz)}

Our solution

We would like the specification of append to look like this:

{const(sy ~ SeqLy) x const(s, ~ SeqLy)}
(append s s2)
{/\Sa. S3 ~» Seq (L1 -+H- Lz)}

Compared with the earlier specification based on unique read-write permissions,

> this specification is more concise,

> imposes fewer proof obligations,

makes it clear that the data structures cannot be modified by append,
and does not require s; and s, to be distinct. — (next slide)
Furthermore, this spec implies both earlier specs. — (next slide)

v

v

v

The new spec subsumes both earlier specs

{const(s; ~ SeqL;) x const(s, ~ SeqL,)}
(appends; s3)
{As3. 83~ Seq(Ls + Lp)} new spec

The new spec subsumes both earlier specs

{const(s; ~ SeqL;) x const(s, ~ SeqL,)}
(appends; s3)
{Ass. 83~ Seq (Ly H- Lp)} new spec

earlier spec
(without sharing)

{sy ~ SeqlL; x s; ~ SeqL,}
(appends, s3)

{As3. s3~ Seq(Ly H L)

* 81~ Seq Ly x s, ~ Seq Ly}

The new spec subsumes both earlier specs

{const(s; ~ SeqL;) x const(s, ~ SeqL,)}

(appends; s3)
{As3. 83~ Seq (L + Lp)}

earlier spec
(without sharing)

{sy ~ SeqlL; x s; ~ SeqL,}
(appends, s3)

{As3. s3~ Seq(Ly H L)

* 81~ Seq Ly x s, ~ Seq Ly}

{const(s ~ SeqL)}
(appendss)

new spec ﬁ

new spec
(with sharing)

{As3. 83~ Seq(L + L)}

The new spec subsumes both earlier specs

{const(s; ~ SeqL;) x const(s, ~ SeqL,)}

(appends; s3)

{As3. 83~ Seq (Ly H Lp)} new spec

new spec
{const(s ~ SeqL)} | (with sharing)
(appendss)
{As3. 83~ Seq(L + L)}

earlier spec
(without sharing)
earlier spec

{si ~ SeqL; x s~ SeqlL,} {s ~ SeqlL} (with sharing)

(appends, s3) (appendss)

{As3. s3~ Seq(Ly H L) {Ass. s3~ Seq(L -+ L)

* 81~ Seq Ly x s, ~ Seq Ly} * §~»> SeqlL}

Reasoning Rules

Assertions

The syntax of assertions is extended:

H := [P]ll— v|H;*xH:|H v Hy|3x.H]| const(H)
Read-only access to a data structure entails read-only access to its parts:
const(H; x Hy) = const(H,) x const(H.) (the reverse is false)
Read-only access can be shared:
const(H) = const(H) % const(H)

(A few more axioms, not shown).

A new read axiom

The traditional read axiom:

TRADITIONAL READ AXIOM

{l—= v} (geth) {Ay. [y =V]*x = v}

is replaced with a “smaller” axiom:

NEW READ AXIOM

{const(l — v)} (getl) {Ay. [y = v]}

The traditional axiom can be derived from the new axiom.

A new frame rule

The traditional frame rule is subsumed by a new “read-only frame rule”:

FRAME RULE READ-ONLY FRAME RULE
{H} t{Q} normal(H") {H % const(H")} t {Q} normal(H’)
{Hx H}t{Qx H'} {Hx H}t{Qx H'}

Upon entry into a code block, H' can be temporarily replaced with const(H’),
and upon exit, H' magically re-appears.

A new frame rule

The traditional frame rule is subsumed by a new “read-only frame rule”:

FRAME RULE READ-ONLY FRAME RULE
{H} t{Q} normal(H") {H % const(H")} t {Q} normal(H’)
{Hx H}t{Qx H'} {Hx H}t{Qx H'}

Upon entry into a code block, H' can be temporarily replaced with const(H’),
and upon exit, H' magically re-appears.

The side condition normal(H’) means roughly that H" has no const components.
This means that read-only permissions cannot be framed out.
Not a problem, as they are always passed down, never returned.

They never appear in postconditions.

Model

Interpretation of assertions

In a heap fragment, let every cell be colored RW or RO.
Let separating conjunction require:
» disjointness of the RW areas;
» disjointness of one side’s RW area with the other side’s RO area;
» agreement on the content of the heap where the RO areas overlap.
If an assertion H describes a certain set of heaps, then:

» Let const(H) describe the same heaps, colored entirely RO.
» Let normal(H) mean that every heap in H is colored entirely RW.

Interpretation of triples

The meaning of the Hoare triple {H} t {Q} is a variant of the usual:

h; + hy is defined

hy + h, is defined , |t/ 4+ he] U v/ Lh] + he]
W“hz’{ Hh, }: M-S (@ x true) v i

Roughly, “If part of the heap satisfies H,
then t runs safely and changes that part of the
heap to satisfy Q, leaving the rest untouched.”

We make two changes:

Interpretation of triples

The meaning of the Hoare triple {H} t {Q} is a variant of the usual:

h; + hy is defined

hy + h, is defined , |t/ 4+ he] U v/ Lh] + he]
Vhy hz’{ Hh; }:" Avh. on-some-rw-frag(Q v) h;

Roughly, “If part of the heap satisfies H,
then t runs safely and changes that part of the
heap to satisfy Q, leaving the rest untouched.”

We make two changes:
» Q describes a purely RW part of the final heap.

Interpretation of triples

The meaning of the Hoare triple {H} t {Q} is a variant of the usual:

h; + hy is defined

t/Lhi + h2] U v/Lhi + ho]
on-some-rw-frag(Q v) h;
hi.r = hy.r

hy + h, is defined

Yh hz.{ Hh,

}: dvh;.

Roughly, “If part of the heap satisfies H,
then t runs safely and changes that part of the
heap to satisfy Q, leaving the rest untouched.”

We make two changes:

» Q describes a purely RW part of the final heap.

» The RO part of the heap is preserved,
even though Q says nothing about it.

Soundness

Theorem

With respect to this interpretation of triples, every reasoning rule is sound.

Proof.

“Straightforward”. Machine-checked.

Conclusion

What about concurrency?

Our proof is carried out in a sequential setting.
» The proof uses big-step operational semantics.
What about structured concurrency, i.e., parallel composition (e || €2)?

» We believe that const permissions remain sound,
» but do not have a proof — a different proof technique is required.
» They allow read-only state to be shared between threads.

What about unstructured concurrency, i.e., threads and channels?
» One cannot allow const permissions to be sent along channels.
» More complex machinery is required: fractions, lifetimes, ...

Conclusion

We propose:

» a simple extension of Separation Logic with a read-only modality;
» a simple model that explains why this is sound.

A possible design sweet spot?

» not so easy to find, worth knowing about;
» applicable to PL design? (e.g., adding const to Mezzo)

Applications:

» more concise, more accurate, more general specifications;
» simpler proofs.

Pending implementation in CFML (Charguéraud).

Some Intuition

Reasoning Rules

Model

Conclusion

Temporary modifications are not forbidden

Repeating “s ~ Seq L” in the pre- and postcondition can be deceiving.
This does not forbid changes to the concrete data structure in memory.

Here is a function that really just reads the data structure:

{s ~ Seql]} (length s) {Ay. s ~ SeqlL = [y =|L|]}

Temporary modifications are not forbidden

Repeating “s ~ Seq L” in the pre- and postcondition can be deceiving.
This does not forbid changes to the concrete data structure in memory.

Here is a function that really just reads the data structure:
{s ~ Seql]} (length s) {Ay. s ~ SeqlL = [y =|L|]}
And a function that actually modifies the data structure:

{s~ SeqlL x [|L] <n]} (resize sn) {A(). s~ SeqL}

Amnesia (1/2)

Suppose population has this specification:

{const(h ~> HashTable M)} (population h) {Ay. [y = card M]}

Suppose a hash table is a mutable record whose data field points to an array:

h ~ HashTable M :=
Fa.AL.(h~ {data=a;...} xa~ ArrayL x...)

Suppose there is an operation foo on hash tables:

letfoo h =
letd = h.datain — read the address of the array

let p = population hin — call population

If “const” is sugar for repeating h ~» HashTable M in the pre and post,
then the proof of foo runs into a problem...

Amnesia (2/2)

Reasoning about foo might go like this:

1 letfooh=

2 {h ~ HashTable M} — foo’s precondition
3 {h~ {data=a;...} xa~ Array L x ...} — by unfolding

4 letd = h.datain

5 {h~{data=a;..} xa~ ArrayL % ... x [d = a]} —by reading

6 {h ~» HashTable M x [d = a]} — by folding

7 let p = population hin — we have to fold

8 {h ~ HashTable M x [d = a] x [p = #M]}

9

At line 8, the equation d = a is useless.
We have forgotten what d represents, and lost the benefit of the read at line 4.
If “const” is sugar, the specification of population is weaker than it seems.

If “const” is native, there is a way around this problem. (Details omitted.)

Our solution, facet 4: sharing is permitted

The top Hoare triple is the new spec of append,
where s; and s, are instantiated with s.

{ const(s ~ Seql) x const(s~ Seql) }
(appends s)
{ As3. s3~ Seq(L+1L) }

{ const(s~ Seql) }

(appends s)

{ As3. s3~ Seq(L+1L) }

CONSEQUENCE

The bottom triple states that, with read-only access to s, appends s is permitted.

Our solution, facet 4: sharing is permitted

The top Hoare triple is the new spec of append,
where s; and s, are instantiated with s.

{ .const(s ~ SeqlL) * const(s~> Seql) }
(agpends s)
{ Ad. S3~Seq(L+1L) }

CONSEQUENCE

\{ const(s ~ Seql) }

read-only g
permissions are (appends s)
duplicable { ASs. S3~> Seq(L +L) }

The bottom triple states that, with read-only access to s, appends s is permitted.

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

{ const(s; ~ SeqL) *x const(s, ~ SeqlL,) }
(appends; s2)
{ AS3. 83~ Seq(L1 +H Lg) }
{ const(si ~ SeqlL; x s, ~ Seql,) }
(append s, sz)
{ Asz. s3~ Seq(Ly + L2) |}
{ sy~ Seql; x sp~ Seql, }
(appends; sz)
{ Ass. s3~> Seq(Li + L) * s1~ Seqly x s, ~ Seql, }

CONSEQUENCE

READ-ONLY FRAME

The triple at the bottom is the earlier spec of append.

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

{ const(s; ~ SeqLy) * const(s, ~ Seqly) }

permission PPends sz)
becomes | ASs. S3~ Seq(Ly +-Lz) |

read-only | | const(si ~ Seql; * s~ Seqlz) |

CONSEQUENCE

(append s, sz)
{ Ass. 83~ Seq(Ly + Lp))

{ '31 ~» SeqlL; x s, ~ Seql, }
(appends; sz)
{ Ass. s3~> Seq(Li + L) * s1~ Seqly x s, ~ Seql, }

READ-ONLY FRAME

The triple at the bottom is the earlier spec of append.

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

{ const(s; ~ SeqLy) * const(s, ~ Seqly) }
read-only FPPendsi sz)
permission | \Ss. Sz~ Seq (L + L) |
is split T const(s; ~ SeqL; * s, ~> Seqls) |

CONSEQUENCE

(append s, sz)
{ Asz. s3~ Seq(Ly + L2) |}
{ sy~ Seql; x sp~ Seql, }
(appends; sz)
{ Ass. s3~> Seq(Li + L) * s1~ Seqly x s, ~ Seql, }

READ-ONLY FRAME

The triple at the bottom is the earlier spec of append.

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

{ const(s; ~ SeqlL;) x const(s, ~ Seq L,
(appends; s2)
{ AS3. 83~ Seq (L1 +H L2) append is
{ const(si ~ SeqL; x s\~ Seq called
(append s, sz)
{ Asz. s3~ Seq(Ly + L2) }
{ sy~ Seql; x sp~ Seql, }
(appends; sz)
{ Ass. s3~> Seq(Li + L) * s1~ Seqly x s, ~ Seql, }

I~ CONSEQUENCE

READ-ONLY FRAME

The triple at the bottom is the earlier spec of append.

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

{ const(s; ~ SeqLy) * const(s, ~ Seqly) }

(appends; s2)
{ Assz. s3~> Seq(Ly + L) |}

{ const(s;i ~ SeqL; x s, ~ Seq
(appends; s)

read-write
permission

magically
re-appears

I~ CONSEQUENCE

{ AS3. Sg«»Seq(L1 +*L2) i‘\

{ sy~ Seqly x s~ Seql, }
(appends; s,)

{ Ass. 83~ Seq(Li + L2) x s4~ Seqly x sp~ Seql, }

The triple at the bottom is the earlier spec of append.

READ-ONLY FRAME

Our solution, facet 5: the earlier specification can be derived

The Hoare triple at the top is the new spec of append.

{ const(s; ~ SeqLy) * const(s, ~ Seqly) }
appends; s,
e oy el 4 L) | no needto
{ const(si ~ Seqli x s2~> Seq| read-only
(appends; s) permissions
{ Ass. 53~ Seq(Ly + L) ——_~
{ sy~ Seqly x s~ Seql, }
(appends; s,)
{ Ass. 83~ Seq(Li + L2) x s4~ Seqly x sp~ Seql, }

CONSEQUENCE

READ-ONLY FRAME

The triple at the bottom is the earlier spec of append.

Assertions

The syntax of assertions is extended:
H = [P]|l—> Vv|HxH:|Hi v Hy|3x.H]|const(H)
Read-only access to a data structure entails read-only access to its parts:
const(Hy x H,) I+ const(H) x const(H.) (the reverse is false)
Read-only permissions are duplicable (therefore, no need to count them!):
const(H) = const(H) x const(H)
Read-only permissions are generally well-behaved:

const([P]) [P]
const(Hy v H,) = const(Hy) Vv const(H.)
const(dx.H) = dx.const(H)
)
)

const(const(H)) = const(H)
const(H) W const(H’) iftH + H

Reasoning rules (structural)

READ-ONLY FRAME RULE CONSEQUENCE
{H % const(H'")} t {Q} normal(H") Hr H {H'} t{Q’} QrQ
(Hx H}t{Q % H) {H} t{Q}
DISCARD-PRE DISCARD-POST EXTRACT-PROP
{H} t {Q} {H} t {Q % GC} P = {H) t{Q}
{H* GC} t {Q} {H} t{Q} {[P] x H} t {Q}
EXTRACT-OR EXTRACT-EXISTS
{Hi} t{Q} {Hz2} t{Q} Vx. {H} t{Q)}

{Hy v Ho} t {Q}) {Fx. H} t {Q}

Reasoning rules (syntax-directed)

T 0= M4 (Q)
VAL n=0= {H L {Q}

{vidy. [y=vi} H} (if n then t; else t) {Q}

FRAMED SEQUENCING RULE (LET) APP

{H} t; {Q} Vx. {Q' xx H} t{Q} vi = uf.Ax.t {H} ([vi/f] [va/x] 1) {Q}

{H* H'} (letx = tyink) {Q) {H} (vi v2) {Q}

REF NEW READ AXIOM (GET)

{1} (refv) {Ay. AL [y =1 %= v} {const(l — v)} (get!) {Ay. [y = v]}

SET
{l —> v’} (setlv) {Ay. | — v}

Memories & heaps — a simple model of access rights

A memory is a finite map of locations to values.
A heap h is a pair of two disjoint memories h.f and h.r.

> h.f represents the locations to which we have full access;
> h.r represents the locations to which we have read-only access.

An assertion, or permission, is a predicate over heaps (or: a set of heaps).

Heap composition & separating conjunction

The combination of two heaps: :rm_m
h1 + h2 = (h1 fw hg.f, h1 .rv hg.r) e

is defined only if:

Heap composition & separating conjunction

The combination of two heaps: ;rm_m
h1 + h2 = (h1 fw hg.f, h1 .rv h2.r) e

is defined only if:

> the read-write components h;.f and h,.f are disjoint;

Heap composition & separating conjunction

The combination of two heaps: Erm_wm
h1 + h2 = (h1 fw hg.f, h1 .rv hg.r) e

is defined only if:

> the read-write components h;.f and h,.f are disjoint;
> the read-only components hy.r and ho.r agree where they overlap;

Heap composition & separating conjunction

The combination of two heaps: :rm_m

read-only

h1 + h2 = (h1 fw hg.f, h1.rU hg.r)

is defined only if:

> the read-write components h;.f and h,.f are disjoint;
> the read-only components hy.r and ho.r agree where they overlap;

> the read-write component hy.f is disjoint with the read-only component ho.r,
and vice-versa.

Heap composition & separating conjunction

The combination of two heaps: ;rm_m
h1 + h2 = (h1 fw hg.f, h1 ru hg.r) e

is defined only if:
> the read-write components h;.f and h,.f are disjoint;
> the read-only components hy.r and ho.r agree where they overlap;

> the read-write component hy.f is disjoint with the read-only component ho.r,
and vice-versa.

With this in mind, separating conjunction is interpreted as usual:

Hi x Ho =
Ah. Jhiho. (h1 + hois defined) A h=hy+hs A H hy A Hohy

The read-only modality

const(H) is interpreted as follows:

const(H) =
Ah. (hf=@) A 3. (hr=hWIfwh I)AHHN

The read-only modality

const(H) is interpreted as follows:
const(H) =
Ah. (hf=@) A . (hr=hfwh.r)AHHK

This means:

» we have write access to nothing.

The read-only modality

const(H) is interpreted as follows:

const(H) =
Ah. (hf=@) A 3. (hr=HWIfwh .)AHHN

This means:

» we have write access to nothing.

» if we had write access to certain locations for which we have read access,
then H would hold.

The rest of the connectives

[Pl = Ah. (hf=02) A (hr=2) AP
[—>v = Ah. (hf=(HV)) A (hr=02)
Hy v H, = Ah. HHh v H, h
dx.H = Ah. Ix. Hh

normal(H) = Yh. Hh = hr=¢

Interpretation of triples

The meaning of the Hoare triple {H} t {Q} is as follows:

hy + h, is defined
Vh1h2.{ H‘m 2

What’s nonstandard?

}:> Avhy.

h{ + hy is defined

t/Lhi + h2) U v/ Lh{ + he]
hi.r = hyr
on-some-rw-frag(Q v) h;

Interpretation of triples

The meaning of the Hoare triple {H} t {Q} is as follows:

h{ + hy is defined

t/Lhi + h2) U v/ Lh{ + he]
hi.r = hyr
on-some-rw-frag(Q v) h;

hy + hy is defined

Vh h2.{ Hh,

}:> Avhy.

What’s nonstandard?

» The read-only part of the heap must be preserved.

Interpretation of triples

The meaning of the Hoare triple {H} t {Q} is as follows:

h; + h; is defined

hy 4+ hy is defined | t/Lhi +h v/|h +h
Vh1h2~{ H1h1 2 }:> Avh;. h/;!-r;h1_iju /LAY + he]
on-some-rw-frag(Q v) h;

What’s nonstandard?

» The read-only part of the heap must be preserved.
» The postcondition describes only a read-write fragment of the final heap.

on-some-rw-frag(H) =
Ah.3hiho. (h1 + ho is defined) Ah=hi+h A hyjr=@ A Hh

	Some Intuition
	Reasoning Rules
	Model
	Conclusion

