Verifying a hash table and its iterators in higher-order separation logic

François Pottier

CPP 2017
Paris, January 16, 2017

We want verified software...

The Vocal project is building a verified library of basic data structures and algorithms.

- The code is in OCaml.
- Verification can be done in higher-order separation logic :
- Charguéraud's CFML imports a view of the code into Coq;
- reasoning is carried out in Coq.

In this talk, I focus on one module : a hash table implementation.

Why verify a hash table implementation?

- a simple and useful data structure

Why talk about it today?

- dynamically allocated; mutable
- equipped with two iteration mechanisms : fold, cascade

The data structure

First-order operations

Iteration via fold

Iteration via cascades

Conclusion

OCaml interface

An excerpt of HashTable.mli.

```
module Make (K : HashedType) : sig
    type key = K.t
    type 'a t
    (* Creation. *)
    val create: int -> 'a t
    val copy: 'a t -> 'a t
    (* Insertion and removal. *)
    val add: 'a t -> key -> 'a -> unit
    val remove: 'a t -> key -> unit
    (* Lookup. *)
    val find: 'a t -> key -> 'a option
    val population: 'a t -> int
    (* Iteration. *)
    val fold: (key -> 'a -> 'b -> 'b) ->
                            'a t -> 'b -> 'b
    val cascade: 'a t -> (key * 'a) cascade
    (* ... more operations, not shown. *)
end
```


OCaml interface

An excerpt of HashTable.mli.

```
module Make (K : HashedType) : sig
    type key = K.t
    type 'a t
    (* Creation. *)
    val create:
        int -> 'a t
    val copy:
                            'a t -> 'a t
    (* Insertion and removal. *)
    val add: 'a t -> key -> 'a -> unit
    val remove:
    (* Lookup. *)
    val find: 'a t -> key -> 'a option
    val population: 'a t -> int
    (* Iteration. *)
    val fold: (key -> 'a -> 'b -> 'b) ->
                                'a t -> 'b -> 'b
    val cascade: 'a t -> (key * 'a) cascade
    (* ... more operations, not shown. *)
end
```


OCaml interface

An excerpt of HashTable.mli.

```
module Make (K : HashedType) : sig
    type key = K.t
    type 'a t
    (* Creation. *)
    val create: int -> 'a t
    val copy: 'a t -> 'a t
    (* Insertion and removal. *)
    val add: 'a t -> key -> 'a -> unit
    val remove: 'a t -> key -> unit
    (* Lookup. *)
    val find: ,a t -> key -> 'a opt
    val population: 'a t -> int
    (* Iteration. *)
    val fold: (key -> 'a }->\mathrm{ ' 'b -> 'b) ->
    'a t -> 'b -> 'b
    val cascade: 'a t -> (key * 'a) cascade
    (* ... more operations, not shown. *)
end
```


OCaml interface

An excerpt of HashTable.mli.

```
module Make (K : HashedType) : sig
    type key = K.t
    type 'a t
    (* Creation. *)
    val create: int -> 'a t
    val copy: 'a t -> 'a t
    (* Insertion and removal. *)
    val add: 'a t -> key -> 'a -> unit
    val remove: 'a t -> key -> unit
    (* Lookup. *)
    val find: ,'a t -> key -> 'a opt (consumer in control)
    (* Iteration. *)
    val fold: (key -> 'a -> 'b -> 'b) ->
    'a t -> 'b -> 'b
    val cascade: 'a t -> (key * 'a) cascade
    (* ... more operations, not shown. *)
end
```


OCaml implementation

An excerpt of HashTable.ml.

```
module Make (K : HashedType) = struct
    (* Type definitions. *)
    type key = K.t
    type 'a bucket =
        Void
    | More of key * 'a * 'a bucket
    type 'a table = {
        mutable data: 'a bucket array;
        mutable popu: int;
            init: int;
    }
    type 'a t = 'a table
    (* Operations: see following slides... *)
end
```


OCaml implementation

An excerpt of HashTable.ml.

```
module Make (K : HashedType) = struct
    (* Type definitions. *)
    type key = K.t
    type 'a bucket =
        Void
    | More of key * 'a * 'a bucket
    type 'a table = {
        mutable data: 'a bucket array;
        mutable popu: int;
                        init: int;
    }
    type 'a t = 'a table
    (* Operations: see following slides... *)
end
```


OCaml implementation

An excerpt of HashTable.ml.

```
module Make (K : HashedType) = struct
    (* Type definitions. *)
    type key = K.t
    type 'a bucket =
        Void
    | More of key * 'a * 'a bucket
    type 'a table = {
        mutable data: 'a bucket array;
        mutable popu: int;
            init: int;
    }
    type 'a t = 'a table
    (* Operations: see following slides... *)
end
```


OCaml implementation

An excerpt of HashTable.ml.

```
module Make (K : HashedType) = struct
    (* Type definitions. *)
    type key = K.t
    type 'a bucket =
        Void
    | More of key * 'a * 'a bucket
    type 'a table = {
        mutable data: 'a bucket array;
        mutable popu: int;
            init: int;
    }
    type 'a t = 'a table
    (* Operations: see following slides... *)
end
```


Separation logic invariant (in Coq)

An excerpt of HashTable_proof.v.

```
Implicit Type M : key -> list A.
Definition h ~> TableInState M s :=
    Hexists d pop init data,
    h ~ > '{
        data := d;
        popu := pop;
        init := init
    } \*
    d ~> Array data \*
    \[ table_inv M init data ] \*
    \[ population M = pop ] \*
    \ [s = (d, data) ].
Definition h ~> Table M :=
    Hexists s, h ~ > TableInState M s.
```


Separation logic invariant (in Coq)

An excerpt of HashTable_proof.v.

```
Implicit Type M : key -> list A.
Definition h ~> TableInState M s :=
    Hexists d pop init data,
    h ~> '{
        data := d;
        popu := pop;
        init := init
    } \*
    d ~> Array data \*
    \[ table_inv M init data ] \*
    \[ population M = pop ] \*
    \[ s = (d, data) ].
Definition h ~> Table M :=
    Hexists s, h ~> TableInState M s.
```


A table represents

 a finite mapof keys to (lists of) values.

Separation logic invariant (in Coq)

An excerpt of HashTable_proof.v.

```
Implicit Type M : key -> list A.
Definition h ~> TableInState M s :=
    Hexists d pop init data,
    h ~> '{
        data := d;
        popu := pop;
        init := init
    } \*
    d ~> Array data \*
    \[ table_inv M init data ] \*
    \[ population M = pop ] \*
    \[ s = (d, data) ].
Definition h ~> Table M :=
    Hexists s, h ~> TableInState M s.
```

This SL predicate asserts "the table at address h encodes the dictionary M".

Separation logic invariant (in Coq)

An excerpt of HashTable_proof.v.

```
Implicit Type M : key -> list A.
Definition h ~> TableInState M s :=
    Hexists d pop init data,
    h ~> '{
        data := d;
        popu := pop;
        init := init
    } \*
    d ~> Array data \*
    \[ table_inv M init data ] \*
    \[ population M = pop ] \*
    \[ s = (d, data) ].
Definition h ~> Table M :=
    Hexists s, h ~> TableInState M s.
```

This one names s the current concrete state of the table.

Separation logic invariant (in Coq)

An excerpt of HashTable_proof.v.

```
Implicit Type M : key -> list A.
Definition h ~> TableInState M s :=
    Hexists d pop init data,
    h ~> '{ & 
        popu := pop;
        init := init
    } \*
    d ~> Array data \*
    \[ table_inv M init data ] \*
    \[ population M = pop ] \*
    \[ s = (d, data) ].
Definition h ~> Table M :=
    Hexists s, h ~> TableInState M s.
```

There must be a record at address h...

Separation logic invariant (in Coq)

An excerpt of HashTable_proof.v.

```
Implicit Type M : key -> list A.
Definition h ~> TableInState M s :=
    Hexists d pop init data,
    h ~> '{
        data := d;
        popu := pop;
        init := init
    } \*
    d ~> Array data \*
    \[ table_inv M init data ] \*
    \[ population M = pop ] \*
    \[ s = (d, data) ].
Definition h ~> Table M :=
    Hexists s, h ~> TableInState M s.
```


Separation logic invariant (in Coq)

An excerpt of HashTable_proof.v.

```
Implicit Type M : key -> list A.
Definition h ~ > TableInState M s :=
    Hexists d pop init data,
    h ~ > '{
        data := d;
        popu := pop;
        init := init
    } \*
    d ~> Array data \*
    \[ table_inv M init data ] \*
    \[ population M = pop ] \*
    \[s= (d, data) ].
Definition h ~> Table M :=
    Hexists s, h ~> TableInState M s.
```


Separation logic invariant (in Coq)

An excerpt of HashTable_proof.v.

```
Implicit Type M : key -> list A.
Definition h ~ > TableInState M s :=
    Hexists d pop init data,
    h ~ > '{
        data := d;
        popu := pop;
        init := init
    } \*
    d ~> Array data \*
    \[ table_inv M init data ] \*
    \[ population M = pop ]
    \ s = (d, data) ].
Definition h ~> Table M :=
    Hexists s, h ~> TableInState M s.
```

The content of memory is related to M .

Separation logic invariant (in Coq)

An excerpt of HashTable_proof.v.

```
Implicit Type M : key -> list A.
Definition h ~ > TableInState M s :=
    Hexists d pop init data,
    h ~ > '{
        data := d;
        popu := pop;
        init := init
    } \*
    d ~> Array data \*
    \[ table_inv M init data ] \*
    \[ population M = pop ] \*
    \[s=(d, data) ].
Definition h ~ > Table M :=
    Hexists s, h ~ > TableInState M s.
```

We use s to demand / guarantee that certain operations are read-only.

Separation logic invariant (in Coq)

An excerpt of HashTable_proof.v.

```
Implicit Type M : key -> list A.
Definition h ~ > TableInState M s :=
    Hexists d pop init data,
    h ~ > '{
        data := d;
        popu := pop;
        init := init
    } \*
    d ~> Array data \*
    \[ table_inv M init data ] \*
    \[ population M = pop ] \*
    \ s = (d, data) ].
Definition h ~> Table M :=
    Hexists s, h ~ > TableInState M s.
```

We use s to demand / guarantee that certain operations are read-only.

The data structure

First-order operations

Iteration via fold

Iteration via cascades

Conclusion

Specifying a first-order operation : insertion

The effect of add hk x is to add the key-value pair (k, x) to the dictionary.
This is stated as a Hoare triple :

```
Theorem add_spec:
    forall M h k x,
    app MK.add [h k x]
        PRE (h ~ > Table M)
        POST (fun _ => Hexists M',
            h ~> Table M' \*
            \ M M' = add M k x ] \*
            \[ lean M -> M k = nil -> lean M, ]).
```


Specifying a first-order operation : insertion

The effect of add hk x is to add the key-value pair (k, x) to the dictionary.
This is stated as a Hoare triple :
Theorem add_spec:
forall $M \mathrm{~h} k \mathrm{x}$,
app MK.add [h k x]
PRE (h ~> Table M)
POST (fun _ $=>$ Hexists M^{\prime},
h ~> Table M, *
$\backslash\left[M^{\prime}=\operatorname{add} M \mathrm{k}\right] \quad \backslash *$

\[lean $M->M k=n i l->$ lean M, $]$).

Specifying a first-order operation : insertion

The effect of add hk x is to add the key-value pair (k, x) to the dictionary.
This is stated as a Hoare triple :

```
Theorem add_spec:
    forall M h k x,
    app MK.add [h k x]
        PRE (h ~ > Table M)
        POST (fun _ => Hexists M',
            h ~> Table M' \*
            \ [ M' = add M k x ] \*
            \[ lean M -> M k = nil -> lean M, ]).
```


Specifying a first-order operation : insertion

The effect of add hk x is to add the key-value pair (k, x) to the dictionary.
This is stated as a Hoare triple :
Theorem add_spec:
...and produces a valid table...
forall $M \mathrm{~h} k \mathrm{x}$, app MK.add [h k x]

PRE (h ~> Table M)
POST (fun _ \Rightarrow Hexists M,
h ~> Table M, *
$\backslash\left[M^{\prime}=\operatorname{add} M \mathrm{k} \mathrm{x}\right] \backslash *$

\[lean $M \rightarrow M k=n i l->$ lean M, $]$).

Specifying a first-order operation : insertion

The effect of add hk x is to add the key-value pair (k, x) to the dictionary.
This is stated as a Hoare triple :
Theorem add_spec:

> ...representing a dictionary forall $M \mathrm{~h} k \mathrm{x}$, app MK.add [h k x]

PRE (h ~> Table M)
POST (fun _ $=>$ Hexists M^{\prime},
h ~> Table M, *
$\backslash\left[M^{\prime}=\operatorname{add} M \mathrm{k}\right] \quad \backslash *$

\[lean $M \rightarrow M \ln =$ nil $->$ lean M,]).

The data structure

First-order operations

Iteration via fold

Iteration via cascades

Conclusion

Fold - for hash tables

```
let rec fold_aux f b accu =
    match b with
    | Void ->
            accu
    | More(k, x, b) ->
            let accu = f k x accu in
            fold_aux f b accu
let fold f h accu =
    let data = h.data in
    let state = ref accu in
    for i = 0 to Array.length data - 1 do
        state := fold_aux f data.(i) !state
    done;
    !state
```


Fold - for hash tables

let fold f h accu =
let data = h.data in
let state = ref accu in
for i = 0 to Array.length data - 1 do
state := fold_aux f data.(i) !state
done;
!state

```

\section*{A loop over the data array...}
```

```
let rec fold_aux f b accu =
```

```
let rec fold_aux f b accu =
    match b with
    match b with
    | Void ->
    | Void ->
            accu
            accu
    | More(k, x, b) ->
    | More(k, x, b) ->
        let accu = f k x accu in
        let accu = f k x accu in
        fold_aux f b accu
```

 fold_aux f b accu
    ```


\section*{Fold - for hash tables}
```

let rec fold_aux f b accu =
match b with
| Void ->
accu
| More(k, x, b) ->
let accu = f k x accu in
fold_aux f b accu
let fold f h accu =
let data = h.data in
let state = ref accu in
for i = O to Array.length data - 1 do
state := fold_aux f data.(i) !state
done;
!state

```

\section*{Fold - for hash tables}
```

let rec fold_aux f b accu =
match b with
| Void ->
accu
| More(k, x, b) ->
let accu = f k x accu in
fold_aux f b'accu
let fold f h accu =
let data = h.data in
let state = ref accu in
for i = 0 to Array.length data - 1 do
state := fold_aux f data.(i) !state
done;
!state

```

\section*{Fold - for hash tables}
```

let rec fold_aux f b accu =
match b with
| Void ->
accu
| More(k, x, b) ->
let accu = f k x accu in
fold_aux f b accu
let fold f h accu =
let data = h.data in
let state = ref accu in
for i = 0 to Array.length data - 1 do
state := fold_aux f data.(i) !state
done;
!state

```

Writing a specification for a fold raises some questions :
- in what order does the consumer receive the key-value pairs ?
- is the consumer allowed to access the table for reading? for writing?

\section*{Specifying an iteration order - in general}

Really a matter of specifying which orders the consumer may observe.
The events that can be observed by a consumer are :
- the production of one element;
- the end of the sequence (this event occurs at most once, and occurs last).

An observation can be defined as a sequence of events.
A set of observations can be described by two predicates (Filliâtre and Pereira) :
```

Variables permitted complete : list A -> Prop.

```

\section*{Specifying fold - in general}

This is a higher-order specification : an implication between Hoare triples.
```

Variables permitted complete : list A -> Prop.
Variable I : list A -> B -> hprop.
Variables S S' : C -> hprop.
Definition Fold := forall f c,
(forall x xs accu,
permitted (xs \& x) ->
call f x accu
PRE (S' c * I xs accu)
POST (fun accu => S' c * I (xs \& x) accu)
) ->
forall accu,
app fold [f c accu]
PRE (S c * I nil accu)
POST (fun accu => Hexists xs,
S c * I xs accu *

\[complete xs]).

```

\section*{Specifying fold - in general}

This is a higher-order specification : an implication between Hoare triples.
```

Variables permitted complete : list A -> Prop.
Variable I : list A -> B -> hprop.
Variables S S' : C -> hprop.
Definition Fold := forall f c,
(forall x xs accu,
permitted (xs \& x) ->
call f x accu
PRE (S' c * I xs accu)
POST (fun accu => S' c * I (xs \& x) accu)
) ->
forall accu,
app fold [f c accu]
PRE (S c * I nil accu)
POST (fun accu => Hexists xs,
S c * I xs accu *

\[complete xs]).

```

\section*{Specifying fold - in general}

This is a higher-order specification : an implication between Hoare triples.
```

Variables permitted complete : list A -> Prop.
Variable I : list A -> B -> hprop.
Variables S S' : C -> hprop.
Definition Fold := forall f c,
(forall x xs accu,
permitted (xs \& x) ->
call f x accu

The consumer may assume every partial sequence she observes is permitted.

```
            PRE ( S' c \* I xs accu)
```

 PRE (S' c * I xs accu)
 POST (fun accu => S' c * I (xs & x) accu)
 POST (fun accu => S' c * I (xs & x) accu)
) ->
) ->
 forall accu,
 forall accu,
 app fold [f c accu]
 app fold [f c accu]
 PRE (S c * I nil accu)
 PRE (S c * I nil accu)
 POST (fun accu => Hexists xs,
 POST (fun accu => Hexists xs,
 S c * I xs accu *
 S c * I xs accu *
 \[complete xs]).
    ```
```

\[complete xs]).

```
```


Specifying fold - in general

This is a higher-order specification : an implication between Hoare triples.

```
Variables permitted complete : list A -> Prop.
Variable I : list A -> B -> hprop.
Variables S S' : C -> hprop.
Definition Fold := forall f c,
    ( forall x xs accu,
        permitted (xs & x) ->
        call f x accu
            PRE ( S' c \* I xs accu)
            POST (fun accu => S' c \* I (xs & x) accu)
    ) ->
    forall accu,
    app fold [f c accu]
        PRE (S c \* I nil accu)
        POST (fun accu => Hexists xs,
            S c \* I xs accu \*
            \[ complete xs ]).
```


Specifying fold - in general

This is a higher-order specification : an implication between Hoare triples.

```
Variables permitted complete : list A -> Prop.
Variable I : list A -> B -> hprop.
Variables S S' : C -> hprop.
Definition Fold := forall f c,
    ( forall x xs accu,
        permitted (xs & x) ->
        call f x accu
            PRE ( S' c \* I xs accu)
            POST (fun accu => S' c \* I (xs & x) accu)
    ) ->
    forall accu,
    app fold [f c accu]
        PRE (S c \* I nil accu)
        POST (fun accu => Hexists xs,
            S c \* I xs accu \*
            \[ complete xs ]).
```


Specifying fold - in general

This is a higher-order specification : an implication between Hoare triples.

```
Variables permitted complete : list A -> Prop.
Variable I : list A -> B -> hprop.
Variables S S' : C -> hprop.
Definition Fold := forall f c,
    ( forall x xs accu,
        permitted (xs & x) ->
        call f x accu
            PRE ( S' c \* I }\downarrow\textrm{xs
            POST (fun accu => S' c \* I (xs & x) accu)
    ) ->
    forall accu,
    app fold [f c accu]
        PRE (S c \* I nil accu)
        POST (fun accu => Hexists xs,
            S c \* I xs accu \*
            \[ complete xs ]).
```


Specifying fold - in general

This is a higher-order specification : an implication between Hoare triples.

```
Variables permitted complete : list A -> Prop.
Variable I : list A -> B -> hprop.
Variables S S' : C -> hprop.
Definition Fold := forall f c,
    ( forall x xs accu,
        permitted (xs & x) ->
        call f x accu
            PRE ( S' c \* I xs accu)
    ) ->
    forall accu,
    app fold [f c accu]
        PRE (S c \* I nil accu)
        POST (fun accu => Hexists xs,
            S c \* I xs accu
                [ complete xs ]).
```

The whole iteration is then guaranteed to preserve I.

Specifying fold - in general

This is a higher-order specification : an implication between Hoare triples.

```
Variables permitted complete : list A -> Prop.
Variable I : list A -> B -> hprop.
Variables S S' : C -> hprop.
Definition Fold := forall f c,
    ( forall x xs accu,
        permitted (xs & x) ->
        call f x accu
            PRE ( S' c \* I xs accu)
            POST (fun accu => S' c \* I (xs & x) accu)
    ) ->
    forall accu,
    app fold [f c accu]
        PRE (S c \* I nil accu)
        POST (fun accu => Hexists xs,
            S c \* I xs accu \*
            \[ complete xs ]).
```


Specifying fold - in general

This is a higher-order specification : an implication between Hoare triples.

```
Variables permitted complete : list A -> Prop.
Variable I : list A -> B -> hprop.
Variables S S' : C -> hprop.
Definition Fold := forall f c,
    ( forall x xs accu,
        permitted (xs & x) ->
        call f x accu
            PRE ( S', \ \* xs accu)
            POST (fun accu => S' c. N I (xs & x) accu)
    ) ->
    forall accu,
    app fold [f c accu]
        PRE (S c ** I rII accu)
        POST (fun accu => Hexists xs,
            S c \* I xs accu \*
            \[ complete xs ]).
```


Specifying fold - in general

This is a higher-order specification : an implication between Hoare triples.

```
Variables permitted complete : list A -> Prop.
Variable I : list A -> B -> hprop.
Variables S S' : C -> hprop.
Definition Fold := forall f c,
    ( forall x xs accu,
        permitted (xs & x) ->
        call f x accu
            PRE ( S' c accu)
            POST (fun accu => S' c <<* I (xs & x) accu)
    ) ->
    forall accu,
    app fold [f c accu]
        PRE (S c \* I nil accu)
        POST (fun accu => Hexists xs,
            S c \* I xs accu \*
            \[ complete xs ]).
```

The producer gets S' access, which may be weaker.

Specifying an iteration order - for hash tables

For hash tables, we give concrete definitions of permitted and complete :

```
Definition permitted kxs :=
    exists M', removal M kxs M'.
Definition complete kxs :=
    removal M kxs empty.
```

where removal M kxs M' means that from M one may remove the key-value-pair sequence kxs to obtain M'.

This specification is semi-deterministic :

- two key-value pairs for different keys may be observed in any order;
- two key-value pairs for the same key must be observed most-recent-value-first.

Specifying fold - for hash tables

The specification of fold for hash tables is an instance of the general spec :

```
Theorem fold_spec_ro:
    forall M s B I,
    Fold MK.fold
    (* Calling convention: *)
    (fun f kx (accu : B) =>
        app f [(fst kx) (snd kx) accu])
    (* Permitted/complete sequences: *)
    (permitted M) (complete M) I
    (* fold requires & preserves this: *)
    (fun h => h ~ > TableInState M s)
    (* f receives and must preserve this: *)
    (fun h => h ~ > TableInState M s).
```


Specifying fold - for hash tables

The specification of fold for hash tables is an instance of the general spec :

```
Theorem fold_spec_ro:
```

 forall \(M\) s \(B\),
 Fold MK.fold

The predicates permitted and complete for hash tables.

```
    (* Calling convention: *)
    (fun f kx (accu : B) =>
        app f [(fst kx) (snd kx) accu])
    (* Permitted/complete sequences: *)
    (permitted M) (complete M) I
    (* fold requires & preserves this: *)
    (fun h => h ~ > TableInState M s)
    (* f receives and must preserve this: *)
    (fun h => h ~ > TableInState M s).
```


Specifying fold - for hash tables

The specification of fold for hash tables is an instance of the general spec :

```
Theorem fold_spec_ro:
    forall M s B I,
    Fold MK.fold
        (* Calling convention: *)
        (fun f kx (accu : B) =>
        app f [(fst kx) (snd kx) accu])
    (* Permitted/complete sequences: *)
    (permitted M) (complete M) I
    (* fold requires & preserves this: *)
    (fun h h h ~ > TableInState M s)
    (* f receives and must preserve this: *)
    (fun h => h ~ > TableInState M s).
```

This spec allows read-only access to the table during iteration, and guarantees that iteration itself is a read-only operation.

Specifying fold - for hash tables

The specification of fold for hash tables is an instance of the general spec :

```
Theorem fold_spec_ro:
    forall M s B I,
    Fold MK.fold
        (* Calling convention: *)
        (fun f kx (accu : B) =>
        app f [(fst kx) (snd kx) accu])
    (* Permitted/complete sequences: *)
    (permitted M) (complete M) I
    (* fold requires & preserves this: *)
    (fun h => h ~ > TableInState M s)
    (* f receives and must preserve this:
    (fun h => h ~ > TableInState M s).
```

This spec allows read-only access to the table during iteration, and guarantees that iteration itself is a read-only operation.

Specifying fold - for hash tables

If access to the table during iteration is not needed, a simpler spec can be given :

```
Theorem fold_spec:
    forall M B I,
    Fold MK.fold
        (fun f kx (accu : B) =>
            app f [(fst kx) (snd kx) accu])
        (permitted M) (complete M) I
        (* fold requires छ preserves this: *)
        (fun h => h ~ > Table M)
        (* f cannot access the table: *)
        (fun h => \[]).
```


Specifying fold - for hash tables

If access to the table during iteration is not needed, a simpler spec can be given :

```
Theorem fold_spec:
    forall M B I,
    Fold MK.fold
        (fun f kx (accu : B) =>
            app f [(fst kx) (snd
        (permitted M) (complete M) I
        (* fold requires छ preserves this. *)
        (fun h => h ~ > Table M)
        (* f cannot access the table: *)
        (fun h => \[]).
```


Specifying fold - for hash tables

If access to the table during iteration is not needed, a simpler spec can be given :

The data structure

First-order operations

Iteration via fold

Iteration via cascades

Conclusion

Iterators

An iterator is an on-demand producer of a sequence of elements.

Iterators

What should be the type of an iterator?

Iterators

What should be the type of an iterator?

```
public interface Iterator<E> {
    E next () throws NoSuchElementException;
    boolean hasNext();
}
```


Iterators

- requires the iterator to be mutable;
- is more complex than strictly necessary.

Cascades

A cascade, or delayed list, is perhaps the simplest possible form of iterator.

```
type 'a cascade =
    unit -> 'a head
and 'a head =
| Nil
| Cons of 'a * 'a cascade
```


Cascades

A cascade, or delayed list, is perhaps the simplest possible form of iterator.

```
type 'a cascade =
unit -> ',a head
and 'a head =
Computation occurs on demand...
| Nil
| Cons of 'a * 'a cascade
```


Cascades

A cascade, or delayed list, is perhaps the simplest possible form of iterator.

```
type 'a cascade =
    unit -> 'a head
and 'a head =
    ...yielding either end-of-sequence...
```


Cascades

A cascade, or delayed list, is perhaps the simplest possible form of iterator.

```
type 'a cascade =
    unit -> 'a head
and 'a head =
| Nil
| Cons of 'a *'a cascade
...or an element and a tail.
```


Cascades

A cascade, or delayed list, is perhaps the simplest possible form of iterator.

```
type 'a cascade =
    unit -> 'a head
and 'a head =
| Nil
| Cons of 'a * 'a cascade
```

This definition offers an abstract, consumer-oriented view. It does not reveal :

- whether a cascade has mutable internal state, or is pure;
- whether elements are stored in memory, or computed on demand;
- whether elements are re-computed when re-demanded, or memoized.

Cascades

A cascade, or delayed list, is perhaps the simplest possible form of iterator.

```
type 'a cascade =
    unit -> 'a head
and 'a head =
| Nil
| Cons of 'a * 'a cascade
```

This definition offers an abstract,

- whether a cascade has mutable is
- whether elements are stored in m.

Cascades are easy to build and use because they are "just like lists".

A cascade - for hash tables

Constructing a cascade is like constructing a list of all key-value pairs...

```
let rec cascade_aux data i b =
    match b with
    | More (k, x, b) ->
            Cons
                (k, x),
            fun () -> cascade_aux data i b
            )
    | Void ->
        let i = i + 1 in
        if i < Array.length data then
                cascade_aux data i data.(i)
            else
                Nil
let cascade h =
    let data = h.data in
    let b = data.(0) in
    fun () ->
        cascade_aux data 0 b
```


A cascade - for hash tables

Constructing a cascade is like constructing a list of all key-value pairs...

```
let rec cascade_aux data i b =
    match b with
    | More (k, x, b) ->
        Cons
            (k, x),
            fun () -> cascade_aux data i b
            )
    | Void ->
        let i = i + 1 in
        if i < Array.length i..with a delay.
        else
            Nil
let cascade h =
    let data = h.data in
    let b = data.(0) in
    fun () ->
        cascade_aux data 0 b
```


A cascade - for hash tables

Constructing a cascade is like constructing a list of all key-value pairs...

```
let rec cascade_aux data i b =
    match b with
    | More (k, x, b) ->
        Cons
            (k, x),
            fun () -> cascade_aux data i b
            )
    | Void ->
        let i = i + 1 in
        if i < Array.length
            cascade_aux data
            else
                Nil
let cascade h =
    let data = h.data in
    let b = data.(0) in
    fun () ->
        cascade_aux data 0 b
```

The cascade must not be used after the table is modified!

Specifying a cascade - in general

A cascade is a function that returns an element and a cascade.
We use an impredicative encoding of this co-inductive specification.

```
Variable I : hprop.
Variables permitted complete : list A -> Prop.
Definition c ~ > Cascade xs :=
    Hexists S : list A -> func -> hprop,
    S xs c \*
    \[ forall xs c, duplicable (S xs c) ] \*
    \[ forall xs c, S xs c ==> S xs c \* \[ permitted xs ]] \*
    \[ forall xs c,
        app c [tt]
            INV (S xs c \* I)
            POST (fun o =>
                match o with
                | Nil => \[ complete xs ]
                | Cons x c => S (xs & x) c
                end) ].
```


Specifying a cascade - in general

A cascade is a function that returns an element and a cascade.
We use an impredicative encoding of this co-inductive specification.

```
Variable I : hprop.
Variables permitted complete : list A
The cascade has internal invariant S...
Definition c ~> Cascade xs :=
    Hexists S \dot{ list A -> func -> hprop,}
    S xs c \*
    \[ forall xs c, duplicable (S xs c) ] \*
    \[ forall xs c, S xs c ==> S xs c \* \[ permitted xs ]] \*
    \[ forall xs c,
        app c [tt]
            INV (S xs c \* I)
            POST (fun o =>
                match o with
                | Nil => \[ complete xs ]
                | Cons x c => S (xs & x) c
                end) ].
```


Specifying a cascade - in general

A cascade is a function that returns an element and a cascade.
We use an impredicative encoding of this co-inductive specification.

```
Variable I : hprop. 
Definition c ~> Cascade xs :=
    Hexists S : list A -> func -> hprop,
    S xs c \*
    \[ forall xs c, duplicable {S xs c) ] \*
    \[forall xs c, S xs c ==> S xs c \* \[ permitted xs ]] \*
    \[ forall xs c,
        app c [tt]
            INV (S xs c \* I)
            POST (fun o =>
                match o with
                | Nil => \[ complete xs ]
                | Cons x c => S (xs & x) c
                end) ].
```


Specifying a cascade - in general

A cascade is a function that returns an element and a cascade.
We use an impredicative encoding of this co-inductive specification.

Specifying a cascade - in general

A cascade is a function that returns an element and a cascade.
We use an impredicative encoding of this co-inductive specification.

```
Variable I : hprop.
Variables permitted
complete : list
```

The spec is parameterized over permitted and complete.

```
Definition c ~> Cascade xs :=
    Hexists S : list A -> func -> hprop,
    S xs c \*
    \[ forall xs c, duplicable (S xs c) ] \*
    \[ forall xs c, S xs c ==> S xs c \* \[ permitted xs ]] \*
    \[ forall xs c,
        app c [tt]
            INV (S xs c \* I)
            POST (fun o =>
                match o with
                | Nil => \[ complete xs ]
                | Cons x c => S (xs & x) c
                end) ].
```


Specifying a cascade - in general

A cascade is a function that returns an element and a cascade.
We use an impredicative encoding of this co-inductive specification.

```
Variable I : hprop.
Variables permitted complete : list A
```

The consumer may assume that the partial sequence produced so far is permitted.

```
Definition c ~> Cascade xs :=
```

Definition c ~> Cascade xs :=
Hexists S : list A -> func -> hprop,
S xs c *

\[forall xs c, duplicable (S xs c)] *
\[forall xs c, S xs c ==> S xs c * \[permitted xs]] *
\[forall xs c,
app c [tt]
INV (S xs c * I)
POST (fun o =>
match o with
| Nil => \[complete xs]
| Cons x c => S (xs \& x) c
end)].

```

\section*{Specifying a cascade - in general}

A cascade is a function that returns an element and a cascade.
We use an impredicative encoding of this co-inductive specification.
```

Variable I : hprop.
Variables permitted complete : list ANone

```

> Upon termination, the consumer may deduce that the sequence is complete.
```

Definition c ~> Cascade xs :=

```
Definition c ~> Cascade xs :=
    Hexists S : list A -> func -> hprop,
    Hexists S : list A -> func -> hprop,
    S xs c \*
    \[ forall xs c, duplicable (S xs c) ] \*
    \[ forall xs c, S xs c ==> S xs c \* \[ permitted xs ]] \*
    \[ forall xs c,
        app c [tt]
            INV (S xs c \* I)
            POST (fun o =>
                match o with
                | Nil }=>\mathrm{ \ [ complete xs ]
                | Cons x c => S (xs & x) c
                end) ].
```


Specifying a cascade - in general

A cascade is a function that returns an element and a cascade.
We use an impredicative encoding of this co-inductive specification.

```
Variable I : hprop.
Variables permitted complete : list A
```

The cascade has access to an underlying data structure.

```
Definition c ~ > Cascade xs :=
    Hexists S : list A -> func -> hprop,
    S xs c \*
    \[ forall xs c, duplicable (S xs c) ] \*
    \[ forall xs c, S xs c ==> S xs c \* \< permitted xs ]] \*
    \[ forall xs c,
        app c [tt]
            INV (S xs c \* I)
            POST (fun o =>
                match o with
                | Nil => \[ complete xs ]
                | Cons x c => S (xs & x) c
                end) ].
```


Specifying a cascade - for hash tables

```
Theorem cascade_spec:
    forall h M s,
    app MK.cascade [h]
        INV (h ~ > TableInState M s)
        POST (fun c =>
            c ~> Cascade
                (h ~> TableInState M s)
                (permitted M) (complete M)
                nil
        ).
```


Specifying a cascade - for hash tables

```
Theorem cascade_spec:
    forall h M s,
    app MK.cascade [h]
        INV (h ~> TableInState M s)
        POST (fun c =>
            c ~> Cascade
                (h ~> TableInState M s)
                (permitted M) (complete M)
                nil
        ).
```


Specifying a cascade - for hash tables

```
Theorem cascade_spec:
    forall h M s,
    app MK.cascade [h]
        INV (h ~ > TableInState M s)
        POST (fun c =>
            c ~> Cascade
                (h ~> TableInState M s)
                (permitted M) (complete M)
                nil
        ).
```

"Concurrent modifications" are disallowed.

The data structure

First-order operations

Iteration via fold

Iteration via cascades

Conclusion

Conclusion

I have shown arguably nice specifications expressed in vanilla Separation Logic.

- No magic wands, fractional permissions, or other black wizardry.

A few statistics :

- Under 150loc of OCaml code.
- Dictionaries about 600loc of Coq specs and proofs.
- Hash tables about 1500loc of Coq specs and proofs.

Total effort about 15 man.days, but a lot of expertise still required.
Future work:

- verifying more data structures;
- making the system more accessible.

