
Reachability and error diagnosis in LR(1) automata

François Pottier

JFLA, Saint-Malo
January 29, 2016

The evil : poor syntax error messages

let f x == 3

$ ocamlc -c f.ml

File "f.ml", line 1, characters 8-10:
Error: Syntax error

The evil : poor syntax error messages

module StringSet = Set.Make(String)
let add (x : int) (xs : StringSet) =

StringSet.add (string_of_int x) xs

$ ocamlc -c s.ml

File "s.ml", line 2, characters 33-34:
Error: Syntax error: type expected.

Our weapon

Init

s
ε / ε
−−� s [z]

Step-Terminal

s
α /w
−−−� s′ [z] A ` s′ z

−→ s′′

s
αz /wz
−−−−−� s′′ [z′]

Step-NonTerminal

s
α /w
−−−� s′ [z] A ` s′ A

−→ s′′

s′
A /w′
−−−−→ s′′ [z′] z = first(w ′z′)

s
αA /ww′
−−−−−−� s′′ [z′]

Reduce

A ` s A
−→ s′′ s

α /w
−−−� s′ [z]

A ` s′ reduces A → α on z

s
A /w
−−−→ s′′ [z]

Figure: Inductive characterization of the predicates s
α /w
−−−−� s′ [z] and s

A /w
−−−−→ s′ [z].

Problem

Diagnosing (explaining) syntax errors is difficult (in general).

It is often considered particularly difficult in LR parsers, where :

I the current state encodes a disjunction of possible pasts and futures ;
I a lot of contextual information is buried in the stack.

Contribution

I Equip the Menhir parser generator with tools that help :
I understand the landscape of syntax errors ;
I maintain a complete and irredundant collection of diagnostic messages.

I Apply this approach to the CompCert C99 (pre-)parser.

What we do : CompCert’s new diagnostic messages

How we do it : Menhir’s new features

Show the past, show (some) futures

color->y = (sc.kd * amb->y + il.y + sc.ks * is.y * sc.y;

$ ccomp -c render.c

render.c:70:57: syntax error after ’y’ and before ’;’.
Up to this point, an expression has been recognized:

’sc.kd * amb->y + il.y + sc.ks * is.y * sc.y’
If this expression is complete,
then at this point, a closing parenthesis ’)’ is expected.

Guidelines :

I Show the past : what has been recently understood.
I Show the future : what is expected next...
I ...but do not show every possible future.

Stay where we are

multvec_i[i = multvec_j[i] = 0;

$ ccomp -c subsumption.c

subsumption.c:71:34: syntax error after ’0’ and before ’;’.
Ill-formed expression.
Up to this point, an expression has been recognized:

’i = multvec_j[i] = 0’
If this expression is complete,
then at this point, a closing bracket ’]’ is expected.

Guidelines :

I Show where the problem was detected,
I even if the actual error took place earlier.

Show high-level futures ; show enough futures

void f (void) { return; }}

$ gcc -c braces.c

braces.c:1: error: expected identifier or ‘(’ before ‘}’ token

$ clang -c braces.c

braces.c:1:26: error: expected external declaration

$ ccomp -c braces.c

braces.c:1:25: syntax error after ’}’ and before ’}’.
At this point, one of the following is expected:

a function definition; or
a declaration; or
a pragma; or
the end of the file.

Show high-level futures ; show enough futures

Guidelines :

I Do not just say what tokens are allowed next :
I instead, say what high-level constructs are allowed.
I List all permitted futures, if that is reasonable.

Show enough futures

int f(void) { int x;) }

$ gcc -c extra.c

extra.c: In function ‘f’:
extra.c:1: error: expected statement before ‘)’ token

$ clang -c extra.c

extra.c:1:7: error: expected expression

$ ccomp -c extra.c

extra.c:1:20: syntax error after ’;’ and before ’)’.
At this point, one of the following is expected:

a declaration; or
a statement; or
a pragma; or
a closing brace ’}’.

Show the goal(s)

int main (void) { static const x; }

$ ccomp -c staticconstlocal.c

staticconstlocal.c:1:31: syntax error after ’const’ and before ’x’.
Ill-formed declaration.
At this point, one of the following is expected:

a storage class specifier; or
a type qualifier; or
a type specifier.

Guidelines :

I If possible and useful, show the goal.
I Here, we definitely hope to recognize a “declaration”.

Show the goal(s)

static const x;

$ ccomp -c staticconstglobal.c

staticconstglobal.c:1:13: syntax error after ’const’ and before ’x’.
Ill-formed declaration or function definition.
At this point, one of the following is expected:

a storage class specifier; or
a type qualifier; or
a type specifier.

Guidelines :

I Show multiple goals when the choice has not been made yet.
I Here, we hope to recognize a “declaration” or a “function definition”.

What we do : CompCert’s new diagnostic messages

How we do it : Menhir’s new features

How to diagnose syntax errors ?

Jeffery’s idea (2005) :

Choose a diagnostic message based on the LR automaton’s state,
ignoring its stack entirely.

Is this a reasonable idea ?

Answering “yes” would be somewhat naïve...

Yet, answering “no” would be overly pessimistic !

In fact, this approach can be made to work, but

I one needs to know which sentences cause errors ;
I one needs to know (and control) in which states these errors are detected ;
I which requires tool support.

How to diagnose syntax errors ?

Jeffery’s idea (2005) :

Choose a diagnostic message based on the LR automaton’s state,
ignoring its stack entirely.

Is this a reasonable idea ?

Answering “yes” would be somewhat naïve...

Yet, answering “no” would be overly pessimistic !

In fact, this approach can be made to work, but

I one needs to know which sentences cause errors ;
I one needs to know (and control) in which states these errors are detected ;
I which requires tool support.

How to diagnose syntax errors ?

Jeffery’s idea (2005) :

Choose a diagnostic message based on the LR automaton’s state,
ignoring its stack entirely.

Is this a reasonable idea ?

Answering “yes” would be somewhat naïve...

Yet, answering “no” would be overly pessimistic !

In fact, this approach can be made to work, but

I one needs to know which sentences cause errors ;
I one needs to know (and control) in which states these errors are detected ;
I which requires tool support.

How to diagnose syntax errors ?

Jeffery’s idea (2005) :

Choose a diagnostic message based on the LR automaton’s state,
ignoring its stack entirely.

Is this a reasonable idea ?

Answering “yes” would be somewhat naïve...

Yet, answering “no” would be overly pessimistic !

In fact, this approach can be made to work, but

I one needs to know which sentences cause errors ;
I one needs to know (and control) in which states these errors are detected ;
I which requires tool support.

Is this a reasonable idea ? – Yes

Sometimes, yes, clearly the state alone contains enough information.

int f (int x) { do {} while (x--) }

The error is detected in a state that looks like this :

statement: DO statement WHILE LPAREN expr RPAREN . SEMICOLON [...]

It is easy enough to give an accurate message :

$ ccomp -c dowhile.c

dowhile.c:1:34: syntax error after ’)’ and before ’}’.
Ill-formed statement.
At this point, a semicolon ’;’ is expected.

Is this a reasonable idea ? – Yes, it seems... ?

Here is another example where things seem to work out as hoped :

int f (int x) { return x + 1 }

The error is detected in a state that looks like this :

expr -> expr . COMMA assignment_expr [SEMICOLON COMMA]
expr? -> expr . [SEMICOLON]

We decide to omit the first possibility, and say a semicolon is expected.

$ ccomp -c return.c

return.c:1:29: syntax error after ’1’ and before ’}’.
Up to this point, an expression has been recognized:

’x + 1’
If this expression is complete,
then at this point, a semicolon ’;’ is expected.

Yet, ’,’ and ’;’ are clearly not the only permitted futures ! What is going on ?

Is this a reasonable idea ? – Uh, oh...

Let us change just the incorrect token in the previous example :

int f (int x) { return x + 1 2; }

The error is now detected in a different state, which looks like this :

postfix_expr -> postfix_expr . LBRACK expr RBRACK [...]
postfix_expr -> postfix_expr . LPAREN arg_expr_list? RPAREN [...]
postfix_expr -> postfix_expr . DOT general_identifier [...]
postfix_expr -> postfix_expr . PTR general_identifier [...]
postfix_expr -> postfix_expr . INC [...]
postfix_expr -> postfix_expr . DEC [...]
unary_expr -> postfix_expr . [SEMICOLON RPAREN and 34 more tokens]

Based on this information, what diagnostic message can one propose ?

Is this a reasonable idea ? – No !

Based on this, the diagnostic message could say that :

I The “postfix expression” x + 1 can be continued in 6 different ways ;
I Or maybe this “postfix expression” forms a complete “unary expression”...
I ...and in that case, it could be followed with 36 different tokens...
I among which ’;’ appears, but also ’)’, ’]’, ’}’, and others !

So,

I there is a lot of worthless information,
I yet there is still not enough information :
I we cannot see that ’;’ is permitted, while ’)’ is not.

The missing information is not encoded in the state : it is buried in the stack.

Two problems

We face two problems :

I depending on which incorrect token we look ahead at,
the error is detected in different states ;

I in some of these states, there is not enough information
to propose a good diagnostic message.

What can we do about this ?

We propose two solutions to these problems :

I Selective duplication.
In the grammar, distinguish “expressions that can be followed with a
semicolon”, “expressions that can be followed with a closing parenthesis”, etc.

(Uses Menhir’s expansion of parameterized nonterminal symbols.)

This fixes the problematic states by building more information into them.
I Reduction on error.

In the automaton, perform one more reduction to get us out of the problematic
state before the error is detected.

(Uses Menhir’s new %on_error_reduce directive.)

This avoids the problematic states.

How do we know what we are doing ?

But :

I how do we find all states where an error can be detected ?
I in a canonical LR(1) automaton, this is easy...
I in a non-canonical automaton and in the presence of conflicts, it is not !

I after tweaking the grammar or automaton, how do we know for sure
that we have fixed or avoided the problematic states ?

We need tool support.

Menhir’s new features

Menhir can now :

I list all states where an error can be detected,
together with example sentences that cause these errors.

The grammar author :

I manually constructs a diagnostic message for each error state ;
I adjusts the grammar or automaton to make this task easier.

Menhir :

I updates the list of example sentences and messages as the grammar evolves ;
I checks that this list remains correct, irredundant, and complete.

A few figures

(One version of) CompCert’s ISO C99 parser :

I 145 nonterminal symbols, 93 terminal symbols, 365 productions ;
I 677-state LALR(1) automaton ;
I 263 error states found in 43 seconds using 1Gb of memory ;
I 150 distinct hand-written diagnostic messages.

You can do it, too !

	What we do: CompCert's new diagnostic messages
	How we do it: Menhir's new features

