# Machine-checked correctness and complexity of a Union-Find implementation 

Arthur Charguéraud François Pottier

September 8, 2015

## The Union-Find data structure: OCaml interface


type elem
val make : unit -> elem
val find : elem -> elem
val union : elem -> elem -> elem

## The Union-Find data structure: OCaml implementation

Pointer-based, with path compression and union by rank:

```
type rank = int
type elem = content ref
and content =
    | Link of elem
    | Root of rank
let make () = ref (Root 0)
let rec find x =
    match !x with
    | Root _ -> x
    | Link y ->
        let z = find y in
        x := Link z;
        z
```

```
let link x y =
    if \(\mathrm{x}==\mathrm{y}\) then x else
    match !x, !y with
    | Root rx, Root ry ->
        if \(r x<r y\) then begin
            \(\mathrm{x}:=\) Link y ;
            y
            end else if \(r x>r y\) then begin
                \(\mathrm{y}:=\) Link x ;
                x
            end else begin
                y := Link \(x\);
                \(\mathrm{x}:=\operatorname{Root}(r \mathrm{x}+1)\);
                x
            end
    | _, _ -> assert false
```

let union $\mathrm{x} y=$ link (find x ) (find y )

## Complexity analysis

Tarjan, 1975: the amortized cost of union and find is $O(\alpha(N))$.

- where $N$ is a fixed (pre-agreed) bound on the number of elements.

Streamlined proof in Introduction to Algorithms, 3rd ed. (1999).

$$
\begin{aligned}
A_{0}(x) & =x+1 \\
A_{k+1}(x) & =A_{k}^{(x+1)}(x) \\
& =A_{k}\left(A_{k}\left(\ldots A_{k}(x) \ldots\right)\right) \quad(x+1 \text { times }) \\
\alpha(n) & =\min \left\{k \mid A_{k}(1) \geqslant n\right\}
\end{aligned}
$$

Quasi-constant cost: for all practical purposes, $\alpha(n) \leqslant 5$.

## Contributions

- The first machine-checked complexity analysis of Union-Find.
- Not just at an abstract level, but based on the OCaml code.
- Modular. We establish a specification for clients to rely on.


## Verification methodology

We extend the CFML logic and tool with time credits.
This allows reasoning about the correctness and (amortized) complexity of realistic (imperative, higher-order) OCaml programs.

Space of the related work:

- Verification that ignores complexity.
- Verification that includes complexity:
- Proof only at an abstract mathematical level.
- Proof that goes down to the level of the source code:
- with emphasis on automation (e.g., the RAML project);
- with emphasis on expressiveness (Atkey; this work).


## Specification

## Separation Logic with time credits

## Union-Find: invariants

## Conclusion

## Specification of find

Theorem find_spec : $\forall \mathrm{N} D \mathrm{R} x, \mathrm{x} \in \mathrm{D} \rightarrow$
App find x
(UF N D R * $\$$ (alpha $N+2$ )
(fun $r \Rightarrow$ UF NDR $\star \backslash[r=R x]$ ).

The abstract predicate UF $N D R$ is the invariant.
It asserts that the data structure is well-formed and that we own it.

- $D$ is the set of all elements, i.e., the domain.
- $N$ is a bound on the cardinality of the domain.
- $R$ maps each element of $D$ to its representative.


## Specification of union

Theorem union_spec: $\forall \mathrm{N} D R \mathrm{x} y, \mathrm{x} \in \mathrm{D} \rightarrow \mathrm{y} \in \mathrm{D} \rightarrow$
App union x y
(UF N D R $\star \$(3 *($ alpha $N)+6))$
(fun $z \Rightarrow$

$$
\begin{aligned}
& \text { UF N D (fun } w \Rightarrow \text { If } R \mathrm{w}=\mathrm{R} x \vee R \mathrm{w}=\mathrm{R} y \text { then } z \text { else } R \mathrm{w}) \\
& \star[\mathrm{z}=\mathrm{R} x \vee \mathrm{z}=\mathrm{R} y]) \text {. }
\end{aligned}
$$

The amortized cost of union is $3 \alpha(N)+6$.

- Reasoning with $O$ 's is ongoing work.
- Asserting that the worst-case cost is $O(\log N)$ would require non-storable time credits.


## Specification of make

Theorem make_spec : $\forall \mathrm{N} D \mathrm{R}$, card $\mathrm{D}<\mathrm{N} \rightarrow$
App make tt
(UF N D R $\star$ \$1)
$($ fun $x \Rightarrow U F N(D \cup\{x\}) R \star \backslash[x \notin D] \star \backslash[R x=x])$.

The cost of make is $O(1)$.
At most $N$ elements can be created.

## Specification of the ghost operations

Theorem UF_create : $\forall \mathrm{N}$, $\backslash[] \triangleright(\mathrm{UF} N \varnothing \mathrm{id})$.

Theorem UF_properties: $\forall N D R, U F N D R \triangleright U F N D R \star$

$$
\begin{aligned}
& {[(\operatorname{card} D \leqslant N) \wedge} \\
& \forall x,(R(R x)=R x) \wedge \\
& (x \in D \rightarrow R x \in D) \wedge \\
& (x \notin D \rightarrow R x=x)]
\end{aligned}
$$

UF_create initializes an empty Union-Find data structure. It can be thought of as a ghost operation. $N$ is fixed at this moment. UF_properties reveals a few properties of $D, N$ and $R$.

## Specification

Separation Logic with time credits

## Union-Find: invariants

## Separation Logic

Heap predicates:

$$
H: \text { Heap } \rightarrow \text { Prop }
$$

Usually, Heap is loc $\mapsto$ value. The basic predicates are:

$$
\begin{array}{ll}
{[]} & \equiv \lambda h \cdot h=\varnothing \\
{[P]} & \equiv \lambda h \cdot h=\varnothing \wedge P \\
H_{1} \star H_{2} & \equiv \lambda h \cdot \exists h_{1} h_{2} \cdot h_{1} \perp h_{2} \wedge h=h_{1} \uplus h_{2} \wedge H_{1} h_{1} \wedge H_{2} h_{2} \\
\exists x . H & \equiv \lambda h \cdot \exists x \cdot H h \\
l \hookrightarrow v & \equiv \lambda h \cdot h=(l \mapsto v)
\end{array}
$$

## Separation Logic with time credits

We wish to introduce a new heap predicate:

$$
\$ n: \text { Heap } \rightarrow \text { Prop } \quad \text { where } n \in \mathbb{N}
$$

Intended properties:

$$
\$\left(n+n^{\prime}\right)=\$ n \star \$ n^{\prime} \quad \text { and } \quad \$ 0=[]
$$

Intended use:
A time credit is a permission to perform "one step" of computation.

## Model of time credits

We change Heap to $(\mathrm{loc} \mapsto$ value) $\times \mathbb{N}$.
A heap is a (partial) memory paired with a (partial) number of credits.
The predicate $\$ n$ means that we own (exactly) $n$ credits:

$$
\$ n \equiv \lambda(m, c) . m=\varnothing \wedge c=n
$$

Separating conjunction distributes the credits among the two sides:

$$
\left(m_{1}, c_{1}\right) \uplus\left(m_{2}, c_{2}\right) \equiv\left(m_{1} \uplus m_{2}, c_{1}+c_{2}\right)
$$

## Connecting computation and time credits

Idea:

- Make sure that every function call consumes one time credit.
- Provide no way of creating a time credit.

Thus,

$$
\text { (total \#function calls) } \leqslant \text { (initial \#credits) }
$$

This, we prove (on paper).

## Connecting computation and time credits

This is a formal statement of the previous claim.
Theorem (Soundness of characteristic formulae with time credits)

$$
\forall m c .\left\{\begin{array}{l}
\llbracket t \rrbracket H Q \\
H(m, c)
\end{array} \Rightarrow \exists n v m^{\prime} c^{\prime} m^{\prime \prime} .\left\{\begin{array}{l}
t / m \Downarrow^{n} v_{/ m^{\prime} \uplus m^{\prime \prime}} \\
n \leqslant c-c^{\prime} \\
Q v\left(m^{\prime}, c^{\prime}\right)
\end{array}\right.\right.
$$

## Ensuring that every call consumes one credit

The CFML tool inserts a call to pay() at the beginning of every function.

```
let rec find x =
    pay();
    match !x with
    | Root _ -> x
    | Link y -> let z = find y in x := Link z; z
```

The function pay is fictitious. It is axiomatized:

$$
\operatorname{App} \operatorname{pay}()(\$ 1)\left(\lambda_{-} \cdot[]\right)
$$

This says that pay() consumes one credit.

## Connecting computation and time credits

Hypotheses:

- No loops in the source code. (Translate them to recursive functions.)
- The compiler turns a function into machine code with no loop.
- A machine instruction executes in constant time.

Thus,

$$
\begin{aligned}
(\text { total \#instructions executed }) & =O(\text { total \#function calls }) \\
(\text { total execution time }) & =O \text { (total \#function calls) } \\
\text { (total execution time) } & =O \text { (initial \#credits) }
\end{aligned}
$$

This, we do not prove.
(It would require modeling the compiler and the machine.)

## Expressive power

An assertion $\$ n$ can appear in a precondition, a postcondition, a data structure invariant, etc.

That is, time credits can be passed from caller to callee (and back), and can be stored for later use.

This allows amortized time complexity analysis.

## Specification

## Separation Logic with time credits

Union-Find: invariants

Conclusion

## Invariant \#1: math

Definition Inv N D F K R :=
confined D F $\wedge$
functional $\mathrm{F} \wedge$
$(\forall \mathrm{x}$, path $\mathrm{F} \mathrm{x}(\mathrm{R} \mathrm{x}) \wedge$ is_root $\mathrm{F}(\mathrm{R} x)) \wedge$
(finite D) ^
$(\operatorname{card} \mathrm{D} \leqslant \mathrm{N})$
$(\forall \mathrm{x}, \mathrm{x} \notin \mathrm{D} \rightarrow \mathrm{Kx}=0) \wedge$
$(\forall \mathrm{xy}, \mathrm{Fxy} \rightarrow \mathrm{Kx}<\mathrm{K} \mathrm{y}) \wedge$
$\left(\forall \mathrm{r}\right.$, is_root $\mathrm{Fr} \rightarrow 2^{\wedge}(\mathrm{Kr}) \leqslant$ card (descendants Fr$)$ ).

The relation $F$ is the graph (i.e., the disjoint set forest).
$K$ maps every element to its rank.
$D, N, R$ are as before.

## Invariant \#2: memory

CFML describes a region as GroupRef $M$, where the partial map $M$ maps a memory location to the content of the corresponding memory cell.

## Invariant \#3: connecting math and memory

We must express the connection between $M$ and our $D, N, R, F, K$.
Definition Mem D F K M :=
(dom $M=D)$
$\wedge(\forall \mathrm{x}, \mathrm{x} \in \mathrm{D} \rightarrow$
match $\mathrm{M}[\mathrm{x}]$ with
| Link y $\Rightarrow$ F x y
| Root $\mathrm{k} \Rightarrow$ is_root $\mathrm{F} \mathrm{x} \wedge \mathrm{k}=\mathrm{K} \mathrm{x}$ end).
$M$ contains less information than $D, N, R, F, K$. E.g.,

- $N$ is ghost state;
- the rank $K(x)$ of a non-root node $x$ is ghost state.


## Invariant \#4: potential

At every time, we store $\Phi$ time credits. ( $\Phi$ is defined in a few slides.)
$\Phi$ depends on $D, F, K, N$, so the Coq invariant is $\backslash \$($ Phi D F K N).

## Invariants \#1-\#4 together

The abstract predicate that appears in the public specification:
Definition UF N D R := $\exists \mathrm{F}$ K M,

\[ Inv ND F K R ] *
(GroupRef M) *
\[Mem D F K M ] * $\$($ Phi D F K N) .

## Definition of $\Phi$, on paper

$$
\begin{array}{ll}
p(x)=\text { parent of } x & \text { if } x \text { is not a root } \\
k(x)=\max \left\{k \mid K(p(x)) \geqslant A_{k}(K(x))\right\} & \text { (the level of } x) \\
i(x)=\max \left\{i \mid K(p(x)) \geqslant A_{k(x)}^{(i)}(K(x))\right\} & \text { (the index of } x) \\
\phi(x)=\alpha(N) \cdot K(x) & \text { if } x \text { is a root or has rank } 0 \\
\phi(x)=(\alpha(N)-k(x)) \cdot K(x)-i(x) & \text { otherwise } \\
\Phi & =\sum_{x \in D} \phi(x)
\end{array}
$$

Don't ask... For some intuition, see Seidel and Sharir (2005).

## Definition of $\Phi$, in Coq

Definition p Fx:=
epsilon (fun $y \Rightarrow F x y$ ).
DefinitionkFKx:=
$\operatorname{Max}(f u n k \Rightarrow K(p F x) \geqslant A k(K x))$.
Definition i F K x:=
$\operatorname{Max}(f u n i \Rightarrow K(p F x) \geqslant$ iter $i(A(k F K x))(K x))$.
Definition phi F K Nx:=
If (is_root $\mathrm{F} x) \vee(\mathrm{Kx}=0)$
then (alpha N$) *(\mathrm{Kx})$
else (alphaN - kFKx) * (Kx) - (iFKx).
Definition Phi D F K N :=
Sum D (phi F K N).
Non-constructive operators: epsilon, Max, If, Sum. Convenient!

## Machine-checked amortized complexity analysis

Proving that the invariant is preserved naturally leads to this goal:

$$
\Phi+\text { advertised cost } \geqslant \Phi^{\prime}+\text { actual cost }
$$

For instance, in the case of find, we must prove:

$$
\text { Phi D F K N }+(\text { alpha } N+2) \geqslant \text { Phi D F' K N }+(\mathrm{d}+1)
$$

where:

- $F$ is the graph before the execution of find $x$,
- $F$, is the graph after the execution of find $x$,
- $d$ is the length of the path in $F$ from $x$ to its root.


## Specification

Separation Logic with time credits

Union-Find: invariants

Conclusion

## Summary

- A machine-checked proof of correctness and complexity.
- Down to the level of the OCaml code.
- 3Kloc of high-level mathematical analysis.
- 0.4 Kloc of specification and low-level verification.
http://gallium.inria.fr/~fpottier/dev/uf/


## Future work

- Establish a local bound of $\alpha(n)$ instead of $\alpha(N)$ where $N$ is fixed.
- Follow Alstrup et al. (2014).
- Introduce $O$ notation and write $O(\alpha(n))$ instead of $3 \alpha(n)+6$.
- Attach a datum to every root. Offer a few more operations.
- Develop a verified OCaml library of basic algorithms and data structures (with Filliâtre and others).


## Appendix

## The CFML approach

```
(** UnionFind.ml **) (** UnionFind_ml.v **) (** UnionFind_proof.v **)
let rec find x = Axiom find : Func.
Axiom find_cf : }\forall\textrm{x H Q,
    (..) }->\mathrm{ App find x H Q.
```

(** UnionFind_proof.v **)

Theorem find_spec : $\forall x \in D$, App find $x(\ldots)(\ldots)$.
Proof.
intros. apply find_cf.

Qed.

## Characteristic formulae

The characteristic formula of a term $t$, written $\llbracket t \rrbracket$, is a predicate such that:

$$
\forall H Q . \llbracket t \rrbracket H Q \Rightarrow\{H\} t\{Q\}
$$

In any state satisfying $H, t$ terminates on $v$, in a state satisfying $Q v$.

Example definition:

$$
\llbracket t_{1} ; t_{2} \rrbracket \equiv \lambda H Q . \exists H^{\prime} . \llbracket t_{1} \rrbracket H\left(\lambda_{-} . H^{\prime}\right) \wedge \llbracket t_{2} \rrbracket H^{\prime} Q
$$

Characteristic formulae: sound and complete, follow the structure of the code (compositional and linear-sized), and support the frame rule.

## Characteristic formula generation

$$
\begin{aligned}
\llbracket v \rrbracket & =\lambda H Q . H \triangleright Q v \\
\llbracket t_{1} ; t_{2} \rrbracket & =\lambda H Q . \exists Q^{\prime} . \llbracket t_{1} \rrbracket H Q^{\prime} \wedge \llbracket t_{2} \rrbracket\left(Q^{\prime} t t\right) Q \\
\llbracket \text { let } x=t_{1} \text { in } t_{2} \rrbracket & =\lambda H Q . \exists Q^{\prime} . \llbracket t_{1} \rrbracket H Q^{\prime} \wedge \forall x . \llbracket t_{2} \rrbracket\left(Q^{\prime} x\right) Q \\
\llbracket f v \rrbracket & =\lambda H Q . \text { App } f v H Q \\
\llbracket \text { let } f=\lambda x . t_{1} \text { in } t_{2} \rrbracket & =\lambda H Q . \forall f \cdot P \Rightarrow \llbracket t_{2} \rrbracket H Q \\
\text { where } P & =\left(\forall x H^{\prime} Q^{\prime} . \llbracket t_{1} \rrbracket H^{\prime} Q^{\prime} \Rightarrow \operatorname{App} f x H^{\prime} Q^{\prime}\right)
\end{aligned}
$$

App has type:
$\forall A B$. Func $\rightarrow A \rightarrow$ (Heap $\rightarrow$ Prop $) \rightarrow(B \rightarrow$ Heap $\rightarrow$ Hprop $) \rightarrow$ Prop.

## Other amortized analyses using CFML with credits

Resizable arrays

- push and pop at back in $O(1)$.

Random-access lists

- push and pop at head in $O(1)$, get and set in $O(\log n)$.

Bootstrapped chunked sequence

- push and pop at the two ends in $O(1)$, split and join in $O\left(B \log _{B} n\right)$.

