
Machine-checked correctness and complexity
of a Union-Find implementation

Arthur Charguéraud François Pottier

September 8, 2015

1 / 32

The Union-Find data structure: OCaml interface

type elem
val make : unit -> elem
val find : elem -> elem
val union : elem -> elem -> elem

2 / 32

The Union-Find data structure: OCaml implementation

Pointer-based, with path compression and union by rank:

type rank = int

type elem = content ref

and content =
| Link of elem
| Root of rank

let make () = ref (Root 0)

let rec find x =
match !x with
| Root _ -> x
| Link y ->

let z = find y in
x := Link z;
z

let link x y =
if x == y then x else
match !x, !y with
| Root rx, Root ry ->

if rx < ry then begin
x := Link y;
y

end else if rx > ry then begin
y := Link x;
x

end else begin
y := Link x;
x := Root (rx+1);
x

end
| _, _ -> assert false

let union x y = link (find x) (find y)

3 / 32

Complexity analysis

Tarjan, 1975: the amortized cost of union and find is OpαpNqq.
§ where N is a fixed (pre-agreed) bound on the number of elements.

Streamlined proof in Introduction to Algorithms, 3rd ed. (1999).

A0pxq “ x` 1

Ak`1pxq “ A
px`1q
k pxq

“ AkpAkp...Akpxq...qq (x` 1 times)
αpnq “ mintk |Akp1q ě nu

Quasi-constant cost: for all practical purposes, αpnq ď 5.

4 / 32

Contributions

§ The first machine-checked complexity analysis of Union-Find.
§ Not just at an abstract level, but based on the OCaml code.
§ Modular. We establish a specification for clients to rely on.

5 / 32

Verification methodology

We extend the CFML logic and tool with time credits.

This allows reasoning about the correctness and (amortized) complexity
of realistic (imperative, higher-order) OCaml programs.

Space of the related work:
§ Verification that ignores complexity.
§ Verification that includes complexity:

§ Proof only at an abstract mathematical level.
§ Proof that goes down to the level of the source code:

§ with emphasis on automation (e.g., the RAML project);
§ with emphasis on expressiveness (Atkey; this work).

6 / 32

Specification

Separation Logic with time credits

Union-Find: invariants

Conclusion

7 / 32

Specification of find

Theorem find_spec : @N D R x, x P D Ñ
App find x
(UF N D R ‹ $(alpha N + 2))
(fun r ñ UF N D R ‹ \[r = R x]).

The abstract predicate UFN DR is the invariant.
It asserts that the data structure is well-formed and that we own it.

§ D is the set of all elements, i.e., the domain.
§ N is a bound on the cardinality of the domain.
§ R maps each element of D to its representative.

8 / 32

Specification of union

Theorem union_spec : @N D R x y, x P D Ñ y P D Ñ
App union x y
(UF N D R ‹ $(3∗(alpha N)+6))
(fun z ñ

UF N D (fun w ñ If R w = R x _R w = R y then z else R w)
‹ [z = R x _z = R y]).

The amortized cost of union is 3αpNq ` 6.
§ Reasoning with O’s is ongoing work.
§ Asserting that the worst-case cost is OplogNq would require
non-storable time credits.

9 / 32

Specification of make

Theorem make_spec : @N D R, card D < N Ñ
App make tt
(UF N D R ‹ $1)
(fun x ñ UF N (D Ytxu) R ‹ \[x R D] ‹ \[R x = x]).

The cost of make is Op1q.

At most N elements can be created.

10 / 32

Specification of the ghost operations

Theorem UF_create : @N,
\[] Ź (UF N H id).

Theorem UF_properties : @N D R, UF N D R Ź UF N D R ‹
[(card D ď N) ^
@x, (R (R x) = R x) ^
(x P D Ñ R x P D) ^
(x R D Ñ R x = x)].

UF_create initializes an empty Union-Find data structure.
It can be thought of as a ghost operation. N is fixed at this moment.

UF_properties reveals a few properties of D, N and R.

11 / 32

Specification

Separation Logic with time credits

Union-Find: invariants

Conclusion

12 / 32

Separation Logic

Heap predicates:
H : HeapÑ Prop

Usually, Heap is loc ÞÑ value. The basic predicates are:

r s ” λh. h “ H

rP s ” λh. h “ H ^ P

H1 ‹H2 ” λh. Dh1h2. h1 K h2 ^ h “ h1 Z h2 ^ H1 h1 ^ H2 h2
DDx.H ” λh. Dx. H h

l ãÑ v ” λh. h “ pl ÞÑ vq

13 / 32

Separation Logic with time credits

We wish to introduce a new heap predicate:

$n : HeapÑ Prop where n P N

Intended properties:

$pn` n1q “ $n ‹ $n1 and $ 0 “ r s

Intended use:

A time credit is a permission to perform “one step” of computation.

14 / 32

Model of time credits

We change Heap to ploc ÞÑ valueq ˆ N.

A heap is a (partial) memory paired with a (partial) number of credits.

The predicate $n means that we own (exactly) n credits:

$n ” λpm, cq. m “ H ^ c “ n

Separating conjunction distributes the credits among the two sides:

pm1, c1q Z pm2, c2q ” pm1 Zm2, c1 ` c2q

15 / 32

Connecting computation and time credits

Idea:
§ Make sure that every function call consumes one time credit.
§ Provide no way of creating a time credit.

Thus,
(total #function calls) ď (initial #credits)

This, we prove (on paper).

16 / 32

Connecting computation and time credits

This is a formal statement of the previous claim.

Theorem (Soundness of characteristic formulae with time credits)

@mc.

#

JtKH Q

H pm, cq
ñ Dnvm1c1m2.

$

’

&

’

%

t{m ó
n v{m1Zm2

n ď c´ c1

Qv pm1, c1q

17 / 32

Ensuring that every call consumes one credit

The CFML tool inserts a call to pay() at the beginning of every function.
let rec find x =
pay();
match !x with
| Root _ -> x
| Link y -> let z = find y in x := Link z; z

The function pay is fictitious. It is axiomatized:

App pay pq p$ 1q pλ_. r sq

This says that pay() consumes one credit.

18 / 32

Connecting computation and time credits

Hypotheses:
§ No loops in the source code. (Translate them to recursive functions.)
§ The compiler turns a function into machine code with no loop.
§ A machine instruction executes in constant time.

Thus,

ptotal #instructions executedq “ Optotal #function callsq
ptotal execution timeq “ Optotal #function callsq
ptotal execution timeq “ Opinitial #creditsq

This, we do not prove.
(It would require modeling the compiler and the machine.)

19 / 32

Expressive power

An assertion $n can appear in a precondition, a postcondition,
a data structure invariant, etc.

That is, time credits can be passed from caller to callee (and back),
and can be stored for later use.

This allows amortized time complexity analysis.

20 / 32

Specification

Separation Logic with time credits

Union-Find: invariants

Conclusion

21 / 32

Invariant #1: math

Definition Inv N D F K R :=
confined D F ^
functional F ^
(@ x, path F x (R x) ^ is_root F (R x)) ^
(finite D) ^
(card D ď N) ^
(@ x, x R D Ñ K x = 0) ^
(@ x y, F x y Ñ K x < K y) ^
(@ r, is_root F r Ñ 2^(K r) ď card (descendants F r)).

The relation F is the graph (i.e., the disjoint set forest).

K maps every element to its rank.

D, N , R are as before.

22 / 32

Invariant #2: memory

CFML describes a region as GroupRef M, where the partial map M maps
a memory location to the content of the corresponding memory cell.

23 / 32

Invariant #3: connecting math and memory

We must express the connection between M and our D,N,R, F,K.

Definition Mem D F K M :=
(dom M = D)

^ (@ x, x P D Ñ
match M[x] with
| Link y ñ F x y
| Root k ñ is_root F x ^ k = K x
end).

M contains less information than D,N,R, F,K. E.g.,
§ N is ghost state;
§ the rank Kpxq of a non-root node x is ghost state.

24 / 32

Invariant #4: potential

At every time, we store Φ time credits. (Φ is defined in a few slides.)

Φ depends on D,F,K,N , so the Coq invariant is \$ (Phi D F K N).

25 / 32

Invariants #1-#4 together

The abstract predicate that appears in the public specification:

Definition UF N D R := DDF K M,
\[Inv N D F K R] ‹
(GroupRef M) ‹
\[Mem D F K M] ‹
$(Phi D F K N).

26 / 32

Definition of Φ, on paper

ppxq “ parent of x if x is not a root
kpxq “ maxtk |Kpppxqq ě AkpKpxqqu (the level of x)
ipxq “ maxti |Kpppxqq ě A

piq
kpxqpKpxqqu (the index of x)

φpxq “ αpNq ¨Kpxq if x is a root or has rank 0
φpxq “ pαpNq ´ kpxqq ¨Kpxq ´ ipxq otherwise
Φ “

ř

xPD φpxq

Don’t ask... For some intuition, see Seidel and Sharir (2005).

27 / 32

http://dx.doi.org/10.1137/S0097539703439088

Definition of Φ, in Coq

Definition p F x :=
epsilon (fun y ñ F x y).

Definition k F K x :=
Max (fun k ñ K (p F x) ě A k (K x)).

Definition i F K x :=
Max (fun i ñ K (p F x) ě iter i (A (k F K x)) (K x)).

Definition phi F K N x :=
If (is_root F x) _(K x = 0)
then (alpha N) ∗ (K x)
else (alpha N ´ k F K x) ∗ (K x) ´ (i F K x).

Definition Phi D F K N :=
Sum D (phi F K N).

Non-constructive operators: epsilon, Max, If, Sum. Convenient!

28 / 32

Machine-checked amortized complexity analysis

Proving that the invariant is preserved naturally leads to this goal:

Φ` advertised cost ě Φ1 ` actual cost

For instance, in the case of find, we must prove:

Phi D F K N + (alpha N + 2) ě Phi D F’ K N + (d + 1)

where:
§ F is the graph before the execution of find x,
§ F’ is the graph after the execution of find x,
§ d is the length of the path in F from x to its root.

29 / 32

Specification

Separation Logic with time credits

Union-Find: invariants

Conclusion

30 / 32

Summary

§ A machine-checked proof of correctness and complexity.
§ Down to the level of the OCaml code.
§ 3Kloc of high-level mathematical analysis.
§ 0.4Kloc of specification and low-level verification.

http://gallium.inria.fr/~fpottier/dev/uf/

31 / 32

http://gallium.inria.fr/~fpottier/dev/uf/

Future work

§ Establish a local bound of αpnq instead of αpNq where N is fixed.
§ Follow Alstrup et al. (2014).

§ Introduce O notation and write Opαpnqq instead of 3αpnq ` 6.
§ Attach a datum to every root. Offer a few more operations.
§ Develop a verified OCaml library of basic algorithms and data
structures (with Filliâtre and others).

32 / 32

http://doi.acm.org/10.1145/2636922

Appendix

1 / 32

The CFML approach

(** UnionFind.ml **)

let rec find x =
...

(** UnionFind_ml.v **)

Axiom find : Func.

Axiom find_cf : @x H Q,
(...) Ñ App find x H Q.

(** UnionFind_proof.v **)

Theorem find_spec : @x P D,
App find x (...) (...).

Proof.
intros. apply find_cf.
...

Qed.

2 / 32

Characteristic formulae

The characteristic formula of a term t, written JtK, is a predicate such
that:

@HQ. JtKH Q ñ tHu t tQu

In any state satisfying H, t terminates on v, in a state satisfying Qv.

Example definition:

Jt1 ; t2K ” λHQ. DH 1. Jt1KH pλ_. H 1q ^ Jt2KH 1Q

Characteristic formulae: sound and complete, follow the structure of the
code (compositional and linear-sized), and support the frame rule.

3 / 32

Characteristic formula generation

JvK “ λHQ. H ŹQv

Jt1 ; t2K “ λHQ. DQ1. Jt1KH Q1 ^ Jt2K pQ1 ttqQ

Jletx “ t1 in t2K “ λHQ. DQ1. Jt1KH Q1 ^ @x. Jt2K pQ1 xqQ

Jf vK “ λHQ. App f v H Q

Jlet f “ λx. t1 in t2K “ λHQ. @f. P ñ Jt2KH Q

where P “ p@xH 1Q1. Jt1KH 1Q1 ñ App f xH 1Q1q

App has type:

@AB. FuncÑ AÑ pHeapÑ Propq Ñ pB Ñ HeapÑ Hpropq Ñ Prop.

4 / 32

Other amortized analyses using CFML with credits

Resizable arrays
§ push and pop at back in Op1q.

Random-access lists
§ push and pop at head in Op1q, get and set in Oplog nq.

Bootstrapped chunked sequence
§ push and pop at the two ends in Op1q, split and join in OpB logB nq.

5 / 32

	Specification
	Separation Logic with time credits
	Union-Find: invariants
	Conclusion
	Appendix

