
Machine-checked correctness and complexity
of a Union-Find implementation

Arthur Charguéraud François Pottier

September 8, 2015

1 / 32



The Union-Find data structure: OCaml interface

type elem
val make : unit -> elem
val find : elem -> elem
val union : elem -> elem -> elem
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The Union-Find data structure: OCaml implementation

Pointer-based, with path compression and union by rank:

type rank = int

type elem = content ref

and content =
| Link of elem
| Root of rank

let make () = ref (Root 0)

let rec find x =
match !x with
| Root _ -> x
| Link y ->

let z = find y in
x := Link z;
z

let link x y =
if x == y then x else
match !x, !y with
| Root rx, Root ry ->

if rx < ry then begin
x := Link y;
y

end else if rx > ry then begin
y := Link x;
x

end else begin
y := Link x;
x := Root (rx+1);
x

end
| _, _ -> assert false

let union x y = link (find x) (find y)
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Complexity analysis

Tarjan, 1975: the amortized cost of union and find is OpαpNqq.
§ where N is a fixed (pre-agreed) bound on the number of elements.

Streamlined proof in Introduction to Algorithms, 3rd ed. (1999).

A0pxq “ x` 1

Ak`1pxq “ A
px`1q
k pxq

“ AkpAkp...Akpxq...qq (x` 1 times)
αpnq “ mintk |Akp1q ě nu

Quasi-constant cost: for all practical purposes, αpnq ď 5.
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Contributions

§ The first machine-checked complexity analysis of Union-Find.
§ Not just at an abstract level, but based on the OCaml code.
§ Modular. We establish a specification for clients to rely on.
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Verification methodology

We extend the CFML logic and tool with time credits.

This allows reasoning about the correctness and (amortized) complexity
of realistic (imperative, higher-order) OCaml programs.

Space of the related work:
§ Verification that ignores complexity.
§ Verification that includes complexity:

§ Proof only at an abstract mathematical level.
§ Proof that goes down to the level of the source code:

§ with emphasis on automation (e.g., the RAML project);
§ with emphasis on expressiveness (Atkey; this work).
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Specification

Separation Logic with time credits

Union-Find: invariants

Conclusion

7 / 32



Specification of find

Theorem find_spec : @N D R x, x P D Ñ
App find x
(UF N D R ‹ $(alpha N + 2))
(fun r ñ UF N D R ‹ \[r = R x]).

The abstract predicate UFN DR is the invariant.
It asserts that the data structure is well-formed and that we own it.

§ D is the set of all elements, i.e., the domain.
§ N is a bound on the cardinality of the domain.
§ R maps each element of D to its representative.
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Specification of union

Theorem union_spec : @N D R x y, x P D Ñ y P D Ñ
App union x y
(UF N D R ‹ $(3∗(alpha N)+6))
(fun z ñ

UF N D (fun w ñ If R w = R x _R w = R y then z else R w)
‹ [z = R x _z = R y]).

The amortized cost of union is 3αpNq ` 6.
§ Reasoning with O’s is ongoing work.
§ Asserting that the worst-case cost is OplogNq would require
non-storable time credits.
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Specification of make

Theorem make_spec : @N D R, card D < N Ñ
App make tt
(UF N D R ‹ $1)
(fun x ñ UF N (D Ytxu ) R ‹ \[x R D] ‹ \[R x = x]).

The cost of make is Op1q.

At most N elements can be created.
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Specification of the ghost operations

Theorem UF_create : @N,
\[] Ź (UF N H id).

Theorem UF_properties : @N D R, UF N D R Ź UF N D R ‹
[(card D ď N) ^
@x, (R (R x) = R x) ^
(x P D Ñ R x P D) ^
(x R D Ñ R x = x)].

UF_create initializes an empty Union-Find data structure.
It can be thought of as a ghost operation. N is fixed at this moment.

UF_properties reveals a few properties of D, N and R.
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Separation Logic

Heap predicates:
H : HeapÑ Prop

Usually, Heap is loc ÞÑ value. The basic predicates are:

r s ” λh. h “ H

rP s ” λh. h “ H ^ P

H1 ‹H2 ” λh. Dh1h2. h1 K h2 ^ h “ h1 Z h2 ^ H1 h1 ^ H2 h2
DDx.H ” λh. Dx. H h

l ãÑ v ” λh. h “ pl ÞÑ vq
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Separation Logic with time credits

We wish to introduce a new heap predicate:

$n : HeapÑ Prop where n P N

Intended properties:

$pn` n1q “ $n ‹ $n1 and $ 0 “ r s

Intended use:

A time credit is a permission to perform “one step” of computation.
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Model of time credits

We change Heap to ploc ÞÑ valueq ˆ N.

A heap is a (partial) memory paired with a (partial) number of credits.

The predicate $n means that we own (exactly) n credits:

$n ” λpm, cq. m “ H ^ c “ n

Separating conjunction distributes the credits among the two sides:

pm1, c1q Z pm2, c2q ” pm1 Zm2, c1 ` c2q
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Connecting computation and time credits

Idea:
§ Make sure that every function call consumes one time credit.
§ Provide no way of creating a time credit.

Thus,
(total #function calls) ď (initial #credits)

This, we prove (on paper).
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Connecting computation and time credits

This is a formal statement of the previous claim.

Theorem (Soundness of characteristic formulae with time credits)
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Ensuring that every call consumes one credit

The CFML tool inserts a call to pay() at the beginning of every function.
let rec find x =
pay();
match !x with
| Root _ -> x
| Link y -> let z = find y in x := Link z; z

The function pay is fictitious. It is axiomatized:

App pay pq p$ 1q pλ_. r sq

This says that pay() consumes one credit.
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Connecting computation and time credits

Hypotheses:
§ No loops in the source code. (Translate them to recursive functions.)
§ The compiler turns a function into machine code with no loop.
§ A machine instruction executes in constant time.

Thus,

ptotal #instructions executedq “ Optotal #function callsq
ptotal execution timeq “ Optotal #function callsq
ptotal execution timeq “ Opinitial #creditsq

This, we do not prove.
(It would require modeling the compiler and the machine.)
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Expressive power

An assertion $n can appear in a precondition, a postcondition,
a data structure invariant, etc.

That is, time credits can be passed from caller to callee (and back),
and can be stored for later use.

This allows amortized time complexity analysis.
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Invariant #1: math

Definition Inv N D F K R :=
confined D F ^
functional F ^
(@ x, path F x (R x) ^ is_root F (R x)) ^
(finite D) ^
(card D ď N) ^
(@ x, x R D Ñ K x = 0) ^
(@ x y, F x y Ñ K x < K y) ^
(@ r, is_root F r Ñ 2^(K r) ď card (descendants F r)).

The relation F is the graph (i.e., the disjoint set forest).

K maps every element to its rank.

D, N , R are as before.
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Invariant #2: memory

CFML describes a region as GroupRef M, where the partial map M maps
a memory location to the content of the corresponding memory cell.
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Invariant #3: connecting math and memory

We must express the connection between M and our D,N,R, F,K.

Definition Mem D F K M :=
(dom M = D)

^ (@ x, x P D Ñ
match M[x] with
| Link y ñ F x y
| Root k ñ is_root F x ^ k = K x
end).

M contains less information than D,N,R, F,K. E.g.,
§ N is ghost state;
§ the rank Kpxq of a non-root node x is ghost state.
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Invariant #4: potential

At every time, we store Φ time credits. (Φ is defined in a few slides.)

Φ depends on D,F,K,N , so the Coq invariant is \$ (Phi D F K N).
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Invariants #1-#4 together

The abstract predicate that appears in the public specification:

Definition UF N D R := DDF K M,
\[ Inv N D F K R ] ‹
(GroupRef M) ‹
\[ Mem D F K M ] ‹
$(Phi D F K N).
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Definition of Φ, on paper

ppxq “ parent of x if x is not a root
kpxq “ maxtk |Kpppxqq ě AkpKpxqqu (the level of x)
ipxq “ maxti |Kpppxqq ě A

piq
kpxqpKpxqqu (the index of x)

φpxq “ αpNq ¨Kpxq if x is a root or has rank 0
φpxq “ pαpNq ´ kpxqq ¨Kpxq ´ ipxq otherwise
Φ “

ř

xPD φpxq

Don’t ask... For some intuition, see Seidel and Sharir (2005).

27 / 32

http://dx.doi.org/10.1137/S0097539703439088


Definition of Φ, in Coq

Definition p F x :=
epsilon (fun y ñ F x y).

Definition k F K x :=
Max (fun k ñ K (p F x) ě A k (K x)).

Definition i F K x :=
Max (fun i ñ K (p F x) ě iter i (A (k F K x)) (K x)).

Definition phi F K N x :=
If (is_root F x) _(K x = 0)
then (alpha N) ∗ (K x)
else (alpha N ´ k F K x) ∗ (K x) ´ (i F K x).

Definition Phi D F K N :=
Sum D (phi F K N).

Non-constructive operators: epsilon, Max, If, Sum. Convenient!
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Machine-checked amortized complexity analysis

Proving that the invariant is preserved naturally leads to this goal:

Φ` advertised cost ě Φ1 ` actual cost

For instance, in the case of find, we must prove:

Phi D F K N + (alpha N + 2) ě Phi D F’ K N + (d + 1)

where:
§ F is the graph before the execution of find x,
§ F’ is the graph after the execution of find x,
§ d is the length of the path in F from x to its root.
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Summary

§ A machine-checked proof of correctness and complexity.
§ Down to the level of the OCaml code.
§ 3Kloc of high-level mathematical analysis.
§ 0.4Kloc of specification and low-level verification.

http://gallium.inria.fr/~fpottier/dev/uf/
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Future work

§ Establish a local bound of αpnq instead of αpNq where N is fixed.
§ Follow Alstrup et al. (2014).

§ Introduce O notation and write Opαpnqq instead of 3αpnq ` 6.
§ Attach a datum to every root. Offer a few more operations.
§ Develop a verified OCaml library of basic algorithms and data
structures (with Filliâtre and others).
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The CFML approach

(** UnionFind.ml **)

let rec find x =
...

(** UnionFind_ml.v **)

Axiom find : Func.

Axiom find_cf : @x H Q,
(...) Ñ App find x H Q.

(** UnionFind_proof.v **)

Theorem find_spec : @x P D,
App find x (...) (...).

Proof.
intros. apply find_cf.
...

Qed.
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Characteristic formulae

The characteristic formula of a term t, written JtK, is a predicate such
that:

@HQ. JtKH Q ñ tHu t tQu

In any state satisfying H, t terminates on v, in a state satisfying Qv.

Example definition:

Jt1 ; t2K ” λHQ. DH 1. Jt1KH pλ_. H 1q ^ Jt2KH 1Q

Characteristic formulae: sound and complete, follow the structure of the
code (compositional and linear-sized), and support the frame rule.

3 / 32



Characteristic formula generation

JvK “ λHQ. H ŹQv

Jt1 ; t2K “ λHQ. DQ1. Jt1KH Q1 ^ Jt2K pQ1 ttqQ

Jletx “ t1 in t2K “ λHQ. DQ1. Jt1KH Q1 ^ @x. Jt2K pQ1 xqQ

Jf vK “ λHQ. App f v H Q

Jlet f “ λx. t1 in t2K “ λHQ. @f. P ñ Jt2KH Q

where P “ p@xH 1Q1. Jt1KH 1Q1 ñ App f xH 1Q1q

App has type:

@AB. FuncÑ AÑ pHeapÑ Propq Ñ pB Ñ HeapÑ Hpropq Ñ Prop.
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Other amortized analyses using CFML with credits

Resizable arrays
§ push and pop at back in Op1q.

Random-access lists
§ push and pop at head in Op1q, get and set in Oplog nq.

Bootstrapped chunked sequence
§ push and pop at the two ends in Op1q, split and join in OpB logB nq.
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