
An overview of Mezzo

François Pottier

INRIA

Bertinoro, June 2015

1 / 91

Acknowledgements

Jonathan Protzenko, Thibaut Balabonski,
Henri Chataing, Armaël Guéneau, Cyprien Mangin.

2 / 91

What is Mezzo?

An experimental programming language in the tradition of ML.

Try it out in your browser:

http://gallium.inria.fr/~protzenk/mezzo-web/

Or install it:

opam install mezzo

3 / 91

http://gallium.inria.fr/~protzenk/mezzo-web/

Premise

The types of OCaml, Haskell, Java, C#, etc.:

• describe the structure of data,

• but do not distinguish trees and graphs,

• and do not control who has permission to read or write.

4 / 91

Question

Could a more ambitious static discipline:

• rule out more programming errors, including data races,

• and enable new programming idioms,

• while remaining reasonably simple and flexible?

5 / 91

A quick comparison

In comparison with Tobias Wrigstad's talk (yesterday),

• data race freedom and ownership transfer are goals too;

• getting rid of GC is not;

• types and permissions do not influence code generation;
they are erased at runtime.

6 / 91

Outline

A first example and a few principles

Write-once references: usage

Mezzo: (some) design principles

Write-once references: interface & implementation

Mezzo: the good and the bad

Algebraic data structures

Sharing mutable data

Conclusion

7 / 91

A first example and a few principles

Write-once references: usage

8 / 91

Write-once references

A write-once reference:

• can be written at most once;

• can be read only after it has been written.

Let us look at a concrete example of use...

9 / 91

Usage

.

.writable..

new

.

frozen

.

set

.

get

.

open woref

val r1 = new ()
(* r1 @ writable *)
val r2 = r1
(* r1 @ writable * r2 = r1 *)
val () = set (r1, 3);
(* r1 @ frozen int * r2 = r1 *)
val x2 = get r2
(* r1 @ frozen int * r2 = r1 * x2 @ int *)
val rs = (r1, r2)
(* r1 @ frozen int * r2 = r1 * x2 @ int
* rs @ (=r1, =r2) *)

(* rs @ (frozen int, frozen int) *)
..

Demo!

10 / 91

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Usage

..writable..

new

.

frozen

.

set

.

get

.

open woref

val r1 = new ()
(* r1 @ writable *)

val r2 = r1
(* r1 @ writable * r2 = r1 *)
val () = set (r1, 3);
(* r1 @ frozen int * r2 = r1 *)
val x2 = get r2
(* r1 @ frozen int * r2 = r1 * x2 @ int *)
val rs = (r1, r2)
(* r1 @ frozen int * r2 = r1 * x2 @ int
* rs @ (=r1, =r2) *)

(* rs @ (frozen int, frozen int) *)
..

Demo!

10 / 91

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Usage

..writable..

new

.

frozen

.

set

.

get

.

open woref

val r1 = new ()
(* r1 @ writable *)
val r2 = r1
(* r1 @ writable * r2 = r1 *)

val () = set (r1, 3);
(* r1 @ frozen int * r2 = r1 *)
val x2 = get r2
(* r1 @ frozen int * r2 = r1 * x2 @ int *)
val rs = (r1, r2)
(* r1 @ frozen int * r2 = r1 * x2 @ int
* rs @ (=r1, =r2) *)

(* rs @ (frozen int, frozen int) *)
..

Demo!

10 / 91

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Usage

..writable..

new

.

frozen

.

set

.

get

.

open woref

val r1 = new ()
(* r1 @ writable *)
val r2 = r1
(* r1 @ writable * r2 = r1 *)
val () = set (r1, 3);
(* r1 @ frozen int * r2 = r1 *)

val x2 = get r2
(* r1 @ frozen int * r2 = r1 * x2 @ int *)
val rs = (r1, r2)
(* r1 @ frozen int * r2 = r1 * x2 @ int
* rs @ (=r1, =r2) *)

(* rs @ (frozen int, frozen int) *)
..

Demo!

10 / 91

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Usage

..writable..

new

.

frozen

.

set

.

get

.

open woref

val r1 = new ()
(* r1 @ writable *)
val r2 = r1
(* r1 @ writable * r2 = r1 *)
val () = set (r1, 3);
(* r1 @ frozen int * r2 = r1 *)
val x2 = get r2
(* r1 @ frozen int * r2 = r1 * x2 @ int *)

val rs = (r1, r2)
(* r1 @ frozen int * r2 = r1 * x2 @ int
* rs @ (=r1, =r2) *)

(* rs @ (frozen int, frozen int) *)
..

Demo!

10 / 91

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Usage

..writable..

new

.

frozen

.

set

.

get

.

open woref

val r1 = new ()
(* r1 @ writable *)
val r2 = r1
(* r1 @ writable * r2 = r1 *)
val () = set (r1, 3);
(* r1 @ frozen int * r2 = r1 *)
val x2 = get r2
(* r1 @ frozen int * r2 = r1 * x2 @ int *)
val rs = (r1, r2)
(* r1 @ frozen int * r2 = r1 * x2 @ int
* rs @ (=r1, =r2) *)

(* rs @ (frozen int, frozen int) *)
..

Demo!

10 / 91

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Usage

..writable..

new

.

frozen

.

set

.

get

.

open woref

val r1 = new ()
(* r1 @ writable *)
val r2 = r1
(* r1 @ writable * r2 = r1 *)
val () = set (r1, 3);
(* r1 @ frozen int * r2 = r1 *)
val x2 = get r2
(* r1 @ frozen int * r2 = r1 * x2 @ int *)
val rs = (r1, r2)
(* r1 @ frozen int * r2 = r1 * x2 @ int
* rs @ (=r1, =r2) *)

(* rs @ (frozen int, frozen int) *)

..

Demo!

10 / 91

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Usage

..writable..

new

.

frozen

.

set

.

get

.

open woref

val r1 = new ()
(* r1 @ writable *)
val r2 = r1
(* r1 @ writable * r2 = r1 *)
val () = set (r1, 3);
(* r1 @ frozen int * r2 = r1 *)
val x2 = get r2
(* r1 @ frozen int * r2 = r1 * x2 @ int *)
val rs = (r1, r2)
(* r1 @ frozen int * r2 = r1 * x2 @ int
* rs @ (=r1, =r2) *)

(* rs @ (frozen int, frozen int) *)
..

Demo!

10 / 91

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

A first example and a few principles

Mezzo: (some) design principles

11 / 91

Permissions

Like a program logic, the static discipline is flow-sensitive.

• A current (set of) permission(s) exists at each program point.

• Different permissions exist at different points.

Permissions do not exist at runtime.

12 / 91

Permissions

Thus, there is no such thing as the type of a variable x. Instead,

• at each program point in the scope of x,
• there may be zero, one, or more permissions to use x
in certain ways.

13 / 91

Layout and ownership

Permissions have layout and ownership readings.

• e.g., r @ writable

x @ t describes the shape and extent of a heap fragment,
rooted at x, and describes certain access rights for it.

“To know about x” is “to have access to x” is “to own x”.

14 / 91

Just two access modes

Every permission is either duplicable or affine.

The basic rules are:

• Immutable data is duplicable, i.e., shareable.

• Mutable data is affine, i.e., uniquely owned.

• Mutable data can become immutable; not the converse.

15 / 91

Aliasing

• Writing let x = y in ... gives rise to an equation x = y.
• It is a permission: x @ =y, where =y is a singleton type.

• In its presence, x @ t and y @ t are interconvertible.

• Thus, any name is as good as any other.

• The same idea applies to let x = xs.head in

16 / 91

Value ̸= permission

A value can be copied (always). No permission is required.

(* empty *)
let y = (x, x) in
(* y @ (=x, =x) *)

17 / 91

Value ̸= permission

A duplicable permission can be copied. This is implicit.

(* x @ int *)
let y = (x, x) in
(* x @ int * y @ (=x, =x) *)

(* x @ int * y @ (int, int) *)

18 / 91

Value ̸= permission

A duplicable permission can be copied. This is implicit.

(* x @ int *)
let y = (x, x) in
(* x @ int * y @ (=x, =x) *)
(* x @ int * y @ (int, int) *)

18 / 91

Value ̸= permission

An affine permission cannot be copied.

(* x @ ref int *)
let y = (x, x) in
(* x @ ref int * y @ (=x, =x) *)

assert y @ (ref int, ref int) (* WRONG! *)

In other words, mutable data cannot be shared.

19 / 91

Value ̸= permission

An affine permission cannot be copied.

(* x @ ref int *)
let y = (x, x) in
(* x @ ref int * y @ (=x, =x) *)
assert y @ (ref int, ref int) (* WRONG! *)

In other words, mutable data cannot be shared.

19 / 91

Examples of duplicable versus affine

• x @ list int is duplicable: read access can be shared.

• x = y is duplicable: equalities are forever.

• x @ mlist int and x @ list (ref int) are affine: they give
exclusive access to part of the heap.

20 / 91

Separation

x @ ref int * y @ ref int implies x and y are distinct.

Conjunction is separating at mutable data.

z @ (t, u)means z @ (=x, =y) * x @ t * y @ u, for x, y fresh.

Hence, product is separating.

21 / 91

Separation

The same principle applies to records.

Hence, list (ref int) denotes a list of distinct references.

Mutable data must be tree-structured.

• though x @ ref (=x) can be written and constructed.

22 / 91

A first example and a few principles

Write-once references: interface & implementation

23 / 91

Specification

A usage protocol can be described in a module signature:

• A state is a (user-defined) type.

• A transition is a (user-defined) function.

24 / 91

Specification of write-once refs

This protocol has two states and four transitions.

This is the interface file woref.mzi:
abstract writable ..

abstract frozen a ..

fact duplicable (frozen a) ..

val new: () -> writable ..

val set: [a] (consumes r: ..writable .., x: a | duplicable ..a)
-> (| r @ frozen a) ..

val get: [a] frozen a -> a ..

.

25 / 91

Specification of write-once refs

This protocol has two states and four transitions.

This is the interface file woref.mzi:
abstract writable ..

abstract frozen a ..

fact duplicable (frozen a) ..

val new: () -> writable ..

val set: [a] (consumes r: ..writable .., x: a | duplicable ..a)
-> (| r @ frozen a) ..

val get: [a] frozen a -> a ..

..

a state

25 / 91

Specification of write-once refs

This protocol has two states and four transitions.

This is the interface file woref.mzi:
abstract writable ..

abstract frozen a ..

fact duplicable (frozen a) ..

val new: () -> writable ..

val set: [a] (consumes r: ..writable .., x: a | duplicable ..a)
-> (| r @ frozen a) ..

val get: [a] frozen a -> a ..

..

another state

25 / 91

Specification of write-once refs

This protocol has two states and four transitions.

This is the interface file woref.mzi:
abstract writable ..

abstract frozen a ..

fact duplicable (frozen a) ..

val new: () -> writable ..

val set: [a] (consumes r: ..writable .., x: a | duplicable ..a)
-> (| r @ frozen a) ..

val get: [a] frozen a -> a ..

..

implicit transition from
frozen to frozen * frozen

25 / 91

Specification of write-once refs

This protocol has two states and four transitions.

This is the interface file woref.mzi:
abstract writable ..

abstract frozen a ..

fact duplicable (frozen a) ..

val new: () -> writable ..

val set: [a] (consumes r: ..writable .., x: a | duplicable ..a)
-> (| r @ frozen a) ..

val get: [a] frozen a -> a ..

..

explicit transition
into writable

25 / 91

Specification of write-once refs

This protocol has two states and four transitions.

This is the interface file woref.mzi:
abstract writable ..

abstract frozen a ..

fact duplicable (frozen a) ..

val new: () -> writable ..

val set: [a] (consumes r: ..writable .., x: a | duplicable ..a)
-> (| r @ frozen a) ..

val get: [a] frozen a -> a ..

..

set requires r (dynamic)
and r @ writable (static)

25 / 91

Specification of write-once refs

This protocol has two states and four transitions.

This is the interface file woref.mzi:
abstract writable ..

abstract frozen a ..

fact duplicable (frozen a) ..

val new: () -> writable ..

val set: [a] (consumes r: ..writable .., x: a | duplicable ..a)
-> (| r @ frozen a) ..

val get: [a] frozen a -> a ..

..

consumes keyword means
r @ writable NOT returned

25 / 91

Specification of write-once refs

This protocol has two states and four transitions.

This is the interface file woref.mzi:
abstract writable ..

abstract frozen a ..

fact duplicable (frozen a) ..

val new: () -> writable ..

val set: [a] (consumes r: ..writable .., x: a | duplicable ..a)
-> (| r @ frozen a) ..

val get: [a] frozen a -> a ..

..

duplicable a
is a permission

25 / 91

Specification of write-once refs

This protocol has two states and four transitions.

This is the interface file woref.mzi:
abstract writable ..

abstract frozen a ..

fact duplicable (frozen a) ..

val new: () -> writable ..

val set: [a] (consumes r: ..writable .., x: a | duplicable ..a)
-> (| r @ frozen a) ..

val get: [a] frozen a -> a ..

..

explicit transition from
writable to frozen

25 / 91

Specification of write-once refs

This protocol has two states and four transitions.

This is the interface file woref.mzi:
abstract writable ..

abstract frozen a ..

fact duplicable (frozen a) ..

val new: () -> writable ..

val set: [a] (consumes r: ..writable .., x: a | duplicable ..a)
-> (| r @ frozen a) ..

val get: [a] frozen a -> a ..

..

get r requires r @ frozen a

25 / 91

Implementation

This is the implementation file woref.mz:
data mutable writable =

Writable { contents: () ..}
data frozen a =

Frozen { contents: ..(a | duplicable a) }
val new () : writable =

Writable { contents = () }
val set [a] (consumes r: writable, x: a | duplicable a)

: (| r @ frozen a) =
..r.contents <- x; ..

tag of r <- Frozen ..(* this is a no-op *)
val get [a] (r: frozen a) : a =

r.contents

.

26 / 91

Implementation

This is the implementation file woref.mz:
data mutable writable =

Writable { contents: () ..}
data frozen a =

Frozen { contents: ..(a | duplicable a) }
val new () : writable =

Writable { contents = () }
val set [a] (consumes r: writable, x: a | duplicable a)

: (| r @ frozen a) =
..r.contents <- x; ..

tag of r <- Frozen ..(* this is a no-op *)
val get [a] (r: frozen a) : a =

r.contents

..

a field of type ()

26 / 91

Implementation

This is the implementation file woref.mz:
data mutable writable =

Writable { contents: () ..}
data frozen a =

Frozen { contents: ..(a | duplicable a) }
val new () : writable =

Writable { contents = () }
val set [a] (consumes r: writable, x: a | duplicable a)

: (| r @ frozen a) =
..r.contents <- x; ..

tag of r <- Frozen ..(* this is a no-op *)
val get [a] (r: frozen a) : a =

r.contents

..

a field of type a
where a must be duplicable

26 / 91

Implementation

This is the implementation file woref.mz:
data mutable writable =

Writable { contents: () ..}
data frozen a =

Frozen { contents: ..(a | duplicable a) }
val new () : writable =

Writable { contents = () }
val set [a] (consumes r: writable, x: a | duplicable a)

: (| r @ frozen a) =
..r.contents <- x; ..

tag of r <- Frozen ..(* this is a no-op *)
val get [a] (r: frozen a) : a =

r.contents

..

initially,
r @ writable

26 / 91

Implementation

This is the implementation file woref.mz:
data mutable writable =

Writable { contents: () ..}
data frozen a =

Frozen { contents: ..(a | duplicable a) }
val new () : writable =

Writable { contents = () }
val set [a] (consumes r: writable, x: a | duplicable a)

: (| r @ frozen a) =
..r.contents <- x; ..

tag of r <- Frozen ..(* this is a no-op *)
val get [a] (r: frozen a) : a =

r.contents

..

hence,
r @ Writable { contents: () }

26 / 91

Implementation

This is the implementation file woref.mz:
data mutable writable =

Writable { contents: () ..}
data frozen a =

Frozen { contents: ..(a | duplicable a) }
val new () : writable =

Writable { contents = () }
val set [a] (consumes r: writable, x: a | duplicable a)

: (| r @ frozen a) =
..r.contents <- x; ..

tag of r <- Frozen ..(* this is a no-op *)
val get [a] (r: frozen a) : a =

r.contents

..

after the assignment,
r @ Writable { contents: =x }

26 / 91

Implementation

This is the implementation file woref.mz:
data mutable writable =

Writable { contents: () ..}
data frozen a =

Frozen { contents: ..(a | duplicable a) }
val new () : writable =

Writable { contents = () }
val set [a] (consumes r: writable, x: a | duplicable a)

: (| r @ frozen a) =
..r.contents <- x; ..

tag of r <- Frozen ..(* this is a no-op *)
val get [a] (r: frozen a) : a =

r.contents

..

hence,
r @ Writable { contents: a }

26 / 91

Implementation

This is the implementation file woref.mz:
data mutable writable =

Writable { contents: () ..}
data frozen a =

Frozen { contents: ..(a | duplicable a) }
val new () : writable =

Writable { contents = () }
val set [a] (consumes r: writable, x: a | duplicable a)

: (| r @ frozen a) =
..r.contents <- x; ..

tag of r <- Frozen ..(* this is a no-op *)
val get [a] (r: frozen a) : a =

r.contents

..

after the tag update,
r @ Frozen { contents: a }

26 / 91

Implementation

This is the implementation file woref.mz:
data mutable writable =

Writable { contents: () ..}
data frozen a =

Frozen { contents: ..(a | duplicable a) }
val new () : writable =

Writable { contents = () }
val set [a] (consumes r: writable, x: a | duplicable a)

: (| r @ frozen a) =
..r.contents <- x; ..

tag of r <- Frozen ..(* this is a no-op *)
val get [a] (r: frozen a) : a =

r.contents

..

hence,
r @ frozen a

26 / 91

A first example and a few principles

Mezzo: the good and the bad

27 / 91

The good

The uniqueness of read/write permissions:

• rules out several categories of errors:
• data races; hence, shared-memory concurrency is safe;
• representation exposure;
• violations of (certain) object protocols.

• allows the type of an object to vary with time, which enables:
• explicit memory re-use;
• gradual initialization;
• describing (certain) object protocols.

28 / 91

The good

Here are some other positive aspects:

• all of the power of ML, and more;
• higher-order functions, pattern matching, polymorphism, etc.

• no need to annotate types with owners;
• to have a permission is to own

• ownership transfer is easy;
• just pass (or return, or store, or extract) a permission

• no need to annotate function types with effects.
• just pass and return a permission

29 / 91

The good

Moving an element into or out of a container is easy.

Here is a typical container interface:

abstract bag a
val new: [a] () -> bag a
val insert: [a] (bag a, consumes a) -> ()
val extract: [a] bag a -> option a

30 / 91

The bad

The discipline forbids sharing mutable data.

For this reason, borrowing an element from a container is typically
restricted to duplicable elements:

val find:
[a]
duplicable a =>
(a -> bool) -> list a -> option a

This affects user-defined data structures, arrays, regions, etc.

31 / 91

The bad

Fortunately,

• there is no restriction on the use of immutable data;
• there are several ways of sharing mutable data:

• (static) nesting; regions;
• (dynamic) adoption & abandon;
• (dynamic) locks.

32 / 91

Outline

A first example and a few principles

Algebraic data structures

(More) Principles

Computing the length of a list

Melding mutable lists

Concatenating immutable lists

Sharing mutable data

Conclusion

33 / 91

Algebraic data structures

(More) Principles

34 / 91

Immutable lists

The algebraic data type of immutable lists is defined as in ML:
data list a =

| Nil
| Cons { head: a; tail: list a }

35 / 91

Mutable lists

To define a type of mutable lists, one adds a keyword:
data mutable mlist a =

| MNil
| MCons { head: a; tail: mlist a }

36 / 91

Examples

For instance,

• x @ list int provides (read) access to an immutable list of
integers, rooted at x.

• x @ mlist int provides (exclusive, read/write) access to a
mutable list of integers at x.

• x @ list (ref int) offers read access to the spine and
read/write access to the elements, which are distinct cells.

37 / 91

Permission refinement

Permission refinement takes place at case analysis.
..

match xs with
| MNil ->

..

...
| MCons ->

..

let x = xs.head in
..

...
end

In contrast, traditional separation logic has untagged union.

.

38 / 91

Permission refinement

Permission refinement takes place at case analysis.
..

match xs with
| MNil ->

..

...
| MCons ->

..

let x = xs.head in
..

...
end

In contrast, traditional separation logic has untagged union.

..

a nominal permission:
xs @ mlist a

38 / 91

Permission refinement

Permission refinement takes place at case analysis.
..

match xs with
| MNil ->

..

...
| MCons ->

..

let x = xs.head in
..

...
end

In contrast, traditional separation logic has untagged union.

..

a structural permission:
xs @ MNil

38 / 91

Permission refinement

Permission refinement takes place at case analysis.
..

match xs with
| MNil ->

..

...
| MCons ->

..

let x = xs.head in
..

...
end

In contrast, traditional separation logic has untagged union.

..

another structural permission:
xs @ MCons { head: a; tail: mlist a }

38 / 91

Permission refinement

Permission refinement takes place at case analysis.
..

match xs with
| MNil ->

..

...
| MCons ->

..

let x = xs.head in
..

...
end

In contrast, traditional separation logic has untagged union.

..

automatically expanded to:
xs @ MCons { head: (=h); tail: (=t) }
* h @ a
* t @ mlist a

38 / 91

Permission refinement

Permission refinement takes place at case analysis.
..

match xs with
| MNil ->

..

...
| MCons ->

..

let x = xs.head in
..

...
end

In contrast, traditional separation logic has untagged union.

..

or (sugar):
xs @ MCons { head = h; tail = t }
* h @ a
* t @ mlist a

38 / 91

Permission refinement

Permission refinement takes place at case analysis.
..

match xs with
| MNil ->

..

...
| MCons ->

..

let x = xs.head in
..

...
end

In contrast, traditional separation logic has untagged union.

..

so, after the read access:
xs @ MCons { head = h; tail = t }
* h @ a
* t @ mlist a
* x = h

38 / 91

Principles

This illustrates two mechanisms:

• A nominal permission can be unfolded and refined,
yielding a structural permission.

• A structural permission can be decomposed,
yielding separate permissions for the block and its fields.

These reasoning steps are implicit and reversible.

39 / 91

Algebraic data structures

Computing the length of a list

40 /91

Interface

Here is the type of the length function for mutable lists.

val length: [a] mlist a -> int

It should be understood as follows:

• length requires one argument xs,
along with the permission xs @ mlist a.

• length returns one result n,
along with the permission xs @ mlist a * n @ int.

41 / 91

Implementation

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..

| MCons -> ..
length_aux (accu + 1, xs.tail) ..

end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

.

42 / 91

Implementation

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..

| MCons -> ..
length_aux (accu + 1, xs.tail) ..

end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

..

initially:
xs @ mlist a

42 / 91

Implementation

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..

| MCons -> ..
length_aux (accu + 1, xs.tail) ..

end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

..

upon entry into the first branch:
xs @ MNil

42 / 91

Implementation

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..

| MCons -> ..
length_aux (accu + 1, xs.tail) ..

end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

..

upon exit of the first branch:
xs @ MNil

42 / 91

Implementation

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..

| MCons -> ..
length_aux (accu + 1, xs.tail) ..

end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

..

upon exit of the first branch:
xs @ mlist a

42 / 91

Implementation

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..

| MCons -> ..
length_aux (accu + 1, xs.tail) ..

end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

..

upon entry into the second branch:
xs @ MCons { head = h; tail = t }
h @ a
t @ mlist a

42 / 91

Implementation

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..

| MCons -> ..
length_aux (accu + 1, xs.tail) ..

end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

..

after the call, nothing has changed:
xs @ MCons { head = h; tail = t }
h @ a
t @ mlist a

42 / 91

Implementation

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..

| MCons -> ..
length_aux (accu + 1, xs.tail) ..

end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

..

thus, by recombining:
xs @ MCons { head: a; tail: mlist a }

42 / 91

Implementation

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..

| MCons -> ..
length_aux (accu + 1, xs.tail) ..

end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

..

thus, by folding:
xs @ mlist a

42 / 91

Tail recursion versus iteration

The analysis of this code is surprisingly simple.

• This is a tail-recursive function, i.e.,
a loop in disguise.

• As we go, there is a list ahead of us and
a list segment behind us.

• Ownership of the latter is implicit, i.e.,
framed out.

Recursive reasoning, iterative execution.

43 / 91

Algebraic data structures

Melding mutable lists

44 / 91

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

.

45 / 91

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

..

xs is not consumed: at the end,
it is still a valid non-empty list

45 / 91

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

..

at the end, ys is accessible through xs,
hence must no longer be used directly

45 / 91

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

..

xs @ MCons { head: a; tail = t }
t @ MNil
ys @ mlist a

45 / 91

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

..

xs @ MCons { head: a; tail = ys }
t @ MNil
ys @ mlist a

45 / 91

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

..

xs @ MCons { head: a; tail: mlist a }
t @ MNil

45 / 91

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

..

xs @ MCons { head: a; tail: mlist a }

45 / 91

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

..

xs @ MCons { head: a; tail = t }
t @ MCons { head: a; tail: mlist a }
ys @ mlist a

45 / 91

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

..

xs @ MCons { head: a; tail = t }
t @ MCons { head: a; tail: mlist a }

45 / 91

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

..

xs @ MCons { head: a; tail = t }
t @ mlist a

45 / 91

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

..

xs @ MCons { head: a; tail: mlist a }

45 / 91

Melding mutable lists (2/2)

val meld [a] (consumes xs: mlist a,
consumes ys: mlist a) : mlist a =

match xs with
| MNil -> ys
| MCons -> meld_aux (xs, ys); xs
end

46 / 91

Algebraic data structures

Concatenating immutable lists

47 / 91

Three states

..
MCons

.head.

tail

An MCons cell:

• mutable,

• uninitialized tail,
• type: MCons { head: a; tail: () }

..
Cons

.head.

tail

An isolated Cons cell:

• immutable,

• not the start of a well-formed list,

• type: Cons { head: a; tail = t }

..
Cons

.head.

tail

A list cell:

• immutable,

• the start of a well-formed list,

• type list a

48 / 91

The big picture

..
MCons

.head.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

xs

.

ys

49 / 91

The big picture

..
MCons

.head.

tail

.
MCons

. head.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

xs

.

ys

49 / 91

The big picture

..
Cons

.head.

tail

.
MCons

. head.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

xs

.

ys

49 / 91

The big picture

..
Cons

.head.

tail

.
MCons

. head.

tail

.
MCons

. head.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

xs

.

ys

49 / 91

The big picture

..
Cons

.head.

tail

.
Cons

. head.

tail

.
MCons

. head.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

xs

.

ys

49 / 91

The big picture

..
Cons

.head.

tail

.
Cons

. head.

tail

.
Cons

. head.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

xs

.

ys

49 / 91

The big picture

..
Cons

.head.

tail

.
Cons

. head.

tail

.
Cons

. head.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

xs

.

ys

49 / 91

The big picture

..
Cons

.head.

tail

.
Cons

. head.

tail

.
Cons

. head.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

xs

.

ys

49 / 91

The big picture

..
Cons

.head.

tail

.
Cons

. head.

tail

.
Cons

. head.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

xs

.

ys

49 / 91

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

.

50 / 91

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

all three inputs are consumed

50 / 91

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

dst is initially unfinished

50 / 91

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

xs and ys are initially valid

50 / 91

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

upon return, dst is valid

50 / 91

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

dst.tail is initialized

50 / 91

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

dst is frozen

50 / 91

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

xs @ Cons { head = h; tail = t }
dst @ Cons { head: a; tail = dst' }
dst' @ MCons { head: a; tail: () }
t @ list a
ys @ list a

50 / 91

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

dst @ Cons { head: a; tail = dst' }
dst' @ MCons { head: a; tail: () }
t @ list a
ys @ list a

50 / 91

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

dst @ Cons { head: a; tail = dst' }
dst' @ list a

50 / 91

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

dst @ Cons { head: a; tail: list a }

50 / 91

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

dst @ list a

50 / 91

Concatenating immutable lists (2/2)

val append [a] (consumes (xs: list a, ys: list a))
: list a =

match xs with
| Cons ->

let dst = MCons { head = xs.head; tail = () } in
append_aux (dst, xs.tail, ys);
dst

| Nil ->
ys

end

51 / 91

Remark

The type of append:

[a] (consumes (list a, list a)) -> list a

is a subtype of:

[a] (list a, list a | duplicable a) -> list a

The arguments are consumed only if not duplicable.

52 / 91

Outline

A first example and a few principles

Algebraic data structures

Sharing mutable data

Regions (and nesting)

Adoption and abandon

Locks

Conclusion

53 / 91

What have we so far?

An affine permission is a (static) unique token.

We have seen that we can

• aggregate several tokens,
yielding a token for a (tree-structured) composite object

• conversely, split a token for a tree
into separate tokens for the root and sub-trees

54 / 91

What have we so far?

We have seen that pointer and permission are distinct concepts:
either one can exist without the other.

We have exploited this at a very local scale, e.g. when
type-checking meld and append.
Yet, we have not exploited this in algebraic data type definitions.

• we always marry a pointer to a sub-tree
and a permission to access it

55 / 91

What have we so far?

As long as we stick to this style, we cannot express:

• aliasing, where an object is accessible via two pointers;

• shared memory, where an object is accessible to two threads.

56 / 91

What do we need?

We need ways of saying, roughly,

• “this is a pointer...”

• “...without a permission...”

• “...but here is how to get the permission when needed.”

57 / 91

Sharing mutable data

Regions (and nesting)

58 / 91

Regions

A region is a group of objects (of identical type).

There is one permission for the group, instead of one per object.

A region does not exist at runtime. It is imaginary.

See e.g. Haskell's ST monad. See also Cyclone (Swamy et al., 2006).

59 / 91

Regions

An affine type of regions - internally defined as the unit type:

abstract region
val newregion: () -> region

A duplicable type of mutable references that inhabit a region:

abstract rref (r : value) a
fact duplicable (rref r a)

These objects can be shared without restriction.

60 / 91

Regions

val newrref: (consumes x: a | r @ region) -> rref r a
val get: (x: rref r a | duplicable a | r @ region) -> a
val set: (x: rref r a, consumes y: a | r @ region) -> ()

All three are polymorphic in r and a. Quantifiers omitted.

The token r @ region is required to use any reference in r.
The references are collectively “owned by the region”.

61 / 91

Limitations

Regions have no runtime cost.

However,

• get is restricted to duplicable elements (prev. slide).

• Handling affine elements requires a more clumsy mechanism
for focusing on at most one element at a time.

• Focusing on two elements, also known as multi-focusing,
would entail a proof obligation: x ̸= y.

• Membership in a region cannot be revoked.

62 / 91

A word about nesting

Nesting (Boyland, 2010) is a static mechanism for organizing
permissions into a hierarchy.

The hierarchy is constructed as the program runs
and grows with time.

Nesting can be axiomatized in Mezzo (by adding a few primitive
operations which do nothing at runtime).

Regions can be defined as a library on top of nesting.

Like regions, nesting has limitations (prev. slide).

63 / 91

Sharing mutable data

Adoption and abandon

64 / 91

Towards runtime regions

What if something like regions existed at runtime?

Old idea, if one thinks of a region as a “memory allocation area”.

• Tofte and Talpin, 1994

Here, however, there is a single garbage-collected heap.

We are thinking of a “region” as a “unit of ownership”.

65 / 91

Towards runtime regions

Imagine a “region” is a runtime object that maintains
a list of its “members”.

We prefer to speak of adopter and adoptees.

Conceptually,

• Adoption (a.k.a. give) adds an adoptee to the list.
• Abandon (a.k.a. take) extracts an adoptee from the list,

• and fails at runtime if it isn't in the list!

66 / 91

Adoption and abandon

This removes the difficulties with static regions.

• an adopter-adoptee relationship can be revoked.

• “focusing” amounts to taking an adoptee away from its
adopter, then giving it back.

• “focusing” on multiple elements is permitted.
• they must be distinct, or the program fails at runtime!

67 / 91

One typical application

A FIFO queue as a linked list with first and last pointers.

There is aliasing. This cannot be type-checked in vanilla Mezzo.

We let the “queue” object adopt all of the “list cell” objects.

The code type-checks (but could fail at runtime if we mistakenly
break our intended invariant).

See P. and Protzenko, ICFP 2013.

68 / 91

Implementation

Searching a linked list of adoptees would be too slow.

Instead, each adoptee points to its adopter (if it has one).

Every object has a special adopter field, which may be null.

• Adoption, give x to y, means:
x.adopter <- y

• Abandon, take x from y, means:
if x.adopter == y
then x.adopter <- null
else fail

69 / 91

Static discipline, in one slide

An adopter owns its adoptees.

Adoption and abandon are very much like inserting and extracting
an element out of a container:

• both require a permission for the adopter;

• adoption consumes a permission for the new adoptee;
abandon allows recovering it.

..

Demo!

70 / 91

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Static discipline, in one slide

An adopter owns its adoptees.

Adoption and abandon are very much like inserting and extracting
an element out of a container:

• both require a permission for the adopter;

• adoption consumes a permission for the new adoptee;
abandon allows recovering it.

..

Demo!

70 / 91

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Sharing mutable data

Locks

71 / 91

Towards hidden state

Regions and adoption-and-abandon serve a common purpose:

• move from one-token-per-object to one-token-per-group;

• introduce a duplicable type of pointer-into-the-group;

• thus permitting aliasing within a group.

72 / 91

Towards hidden state

A problem remains, though:

• every bit of mutable state is controlled by some unique token;

• i.e., every side effect must be advertised in a function's type;

• thus, multiple clients must coordinate and exchange a token.

There is a certain lack of modularity.

73 / 91

Example

Consider a “counter” abstraction, encapsulated as a function.

• it has abstract state: its type is{p : perm} ((| p) -> int | p).
• it cannot be shared by two threads,

• unless they synchronize and exchange p;
• without synchronization, there would be a data race!

A well-typed Mezzo program is data-race free.

..

Demo!

74 / 91

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Example

Consider a “counter” abstraction, encapsulated as a function.

• it has abstract state: its type is{p : perm} ((| p) -> int | p).
• it cannot be shared by two threads,

• unless they synchronize and exchange p;
• without synchronization, there would be a data race!

A well-typed Mezzo program is data-race free. ..

Demo!

74 / 91

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Locks and hidden state

Introducing a lock at the same time:

• removes the data race,

• allows the counter to have type () -> int.

The counter now has hidden state.

Let's see how this works...

75 / 91

Locks (1/2)

The axiomatization of locks begins with two abstract types:

abstract lock (p: perm)
fact duplicable (lock p)

abstract locked

The permission p is the lock invariant.

76 / 91

Locks (2/2)

The basic operations are:
val new:

(| consumes p) -> lock p
val acquire:

(l: lock p) -> (| p * l @ locked)
val release:

(l: lock p | consumes (p * l @ locked)) -> ()
All three are polymorphic in p. Quantifiers omitted.

77 / 91

The key idea

From concurrent separation logic (O'Hearn, 2007).

While the lock is unlocked, one can think of p as owned by the lock.

The lock is shareable, since lock p is duplicable.

Hence, a lock allows sharing and hiding mutable state.

78 / 91

Hiding as a design pattern

The pattern of hiding a function's internal state can be encoded
once and for all as a second-order function:
val hide : [a, b, p : perm] (

f : (a | p) -> b
| consumes p
) -> (a -> b)

79 / 91

Hiding as a design pattern

The pattern of hiding a function's internal state can be encoded
once and for all as a second-order function:
val hide [a, b, p : perm] (

f : (a | p) -> b
| consumes p
) : (a -> b) =

let l : lock p = new () in ..
fun (x : a) : b =
.. acquire l; ..
let y = f x in ..
release l; ..
y

.

80 / 91

Hiding as a design pattern

The pattern of hiding a function's internal state can be encoded
once and for all as a second-order function:
val hide [a, b, p : perm] (

f : (a | p) -> b
| consumes p
) : (a -> b) =

let l : lock p = new () in ..
fun (x : a) : b =
.. acquire l; ..
let y = f x in ..
release l; ..
y

..

l @ lock p

80 / 91

Hiding as a design pattern

The pattern of hiding a function's internal state can be encoded
once and for all as a second-order function:
val hide [a, b, p : perm] (

f : (a | p) -> b
| consumes p
) : (a -> b) =

let l : lock p = new () in ..
fun (x : a) : b =
.. acquire l; ..
let y = f x in ..
release l; ..
y

..

l @ lock p
because it is duplicable

80 / 91

Hiding as a design pattern

The pattern of hiding a function's internal state can be encoded
once and for all as a second-order function:
val hide [a, b, p : perm] (

f : (a | p) -> b
| consumes p
) : (a -> b) =

let l : lock p = new () in ..
fun (x : a) : b =
.. acquire l; ..
let y = f x in ..
release l; ..
y

..

l @ lock p
l @ locked
p

80 / 91

Hiding as a design pattern

The pattern of hiding a function's internal state can be encoded
once and for all as a second-order function:
val hide [a, b, p : perm] (

f : (a | p) -> b
| consumes p
) : (a -> b) =

let l : lock p = new () in ..
fun (x : a) : b =
.. acquire l; ..
let y = f x in ..
release l; ..
y

..

l @ lock p
l @ locked
p

80 / 91

Hiding as a design pattern

The pattern of hiding a function's internal state can be encoded
once and for all as a second-order function:
val hide [a, b, p : perm] (

f : (a | p) -> b
| consumes p
) : (a -> b) =

let l : lock p = new () in ..
fun (x : a) : b =
.. acquire l; ..
let y = f x in ..
release l; ..
y

..

l @ lock p

80 / 91

Rules of thumb

Regarding regions versus adoption and abandon,

• they serve the same purpose, namely one-token-per-group;

• use regions if possible, otherwise adoption and abandon.

Regarding locks,

• they serve a different purpose, namely no-token-at-all;
• they are typically used in conjunction with the above.

• a lock protects a token that controls a group of objects.

81 / 91

Outline

A first example and a few principles

Algebraic data structures

Sharing mutable data

Conclusion

82 / 91

Sources of inspiration

Mezzo draws inspiration from many sources. Most influential:

• Linear and affine types (Wadler, 1990) (Plasmeijer et al., 1992).
• not every value can be copied!

• Alias types (Smith, Walker & Morrisett, 2000),
L3 (Ahmed, Fluet & Morrisett 2007).

• copying a value is harmless,
• but not every capability can be copied!
• keep track of equations between values via singleton types.

• Regions and focusing in Vault (Fähndrich & DeLine, 2002);
• Separation logic (Reynolds, 2002) (O'Hearn, 2007).

• ownership is in the eye of the beholder.
• separation by default; local reasoning.
• a lock owns its invariant.

83 / 91

What distinguishes Mezzo?

It is a high-level programming language:

• algebraic data types preferred to records and null pointers;

• (tail) recursion preferred to iteration;

• garbage collection, first-class functions, polymorphism, etc.

• to some extent, lightweight types (i.e., no owner annotations).

84 / 91

Shortcomings

It is far from perfect:

• type inference can be unpredictable;

• it takes a black belt to understand type errors;

• there is currently no interoperability with OCaml.

85 / 91

Food for thought

At the present time I think we are on the verge of
discovering at last what programming languages should
really be like. [...]

My dream is that by 1984 we will see a
consensus developing for a really good programming
language [...]

Donald E. Knuth, 1974.

86 / 91

Food for thought

At the present time I think we are on the verge of
discovering at last what programming languages should
really be like. [...] My dream is that by 1984 we will see a
consensus developing for a really good programming
language [...]

Donald E. Knuth, 1974.

86 / 91

Food for thought

At the present time I think we are on the verge of
discovering at last what programming languages should
really be like. [...] My dream is that by 1984 we will see a
consensus developing for a really good programming
language [...]

Donald E. Knuth, 1974.

86 / 91

Thank you

More information online:
http://gallium.inria.fr/~protzenk/mezzo-lang/

87 / 91

http://gallium.inria.fr/~protzenk/mezzo-lang/

What distinguishes Mezzo?

Technically, some novel features of Mezzo are:

• the permission discipline replaces the type discipline;

• a new view of algebraic data types, with nominal and structural
permissions, and a new “tag update” instruction;

• a new, lightweight treatment of the distinction between
duplicable and affine data;

• adoption and abandon.

88 / 91

Who we are

The project was launched in late 2011 and has involved

• Jonathan Protzenko (Ph.D student, soon to graduate),

• Thibaut Balabonski (post-doc researcher),

• Henri Chataing, Armaël Guéneau, Cyprien Mangin (interns),

• and myself (INRIA researcher).

89 / 91

Where we are

We currently have:

• a type soundness proof for a subset of Mezzo;

• a working type-checker;

• a “compiler” down to untyped OCaml.

90 / 91

What next?

Many questions!

• Can we improve type inference and type error reports?

• Is this a good mix between static and dynamic mechanisms?

• What about temporary read-only views of mutable objects?

• Can we express complex object protocols?

• What about specifications & proofs of programs?

91 / 91

	A first example and a few principles
	Write-once references: usage
	Mezzo: (some) design principles
	Write-once references: interface & implementation
	Mezzo: the good and the bad

	Algebraic data structures
	(More) Principles
	Computing the length of a list
	Melding mutable lists
	Concatenating immutable lists

	Sharing mutable data
	Regions (and nesting)
	Adoption and abandon
	Locks

	Conclusion

