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The problem

Finding the strongly connected components of a directed graph.

I Pedagogical value:

The first nontrivial graph algorithm.

I Practical value:
Applications in program analysis, constraint solving,
model-checking, etc.
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Known algorithms

Several known algorithms run in linear time:

I Tarjan (1972).
I One pass. Maintains auxiliary data (“lowpoint values”, etc.).

I Kosaraju (unpublished, 1978) and Sharir (1981).
I Two passes. Maintains no auxiliary data.
I Described in Cormen/Leiserson/Rivest’s textbook.
I Explained by Wegener (2002).

I Gabow (2000), improving on Purdom (1968) and Munro (1971).
I One pass. Maintains a union-find data structure.
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Kosaraju’s algorithm

The algorithm is as follows:

1. Perform a DFS traversal of the graph E,
producing a forest f1.

2. Perform a DFS traversal of the reverse graph Ē,
visiting the roots in the reverse post-order of f1,
producing a forest f2.

Then, f2 is a list of the strongly connected components. Magic!

– Note: the second traversal does not have to be depth-first.

Really Easy to implement if you have done DFS already.
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Why does this work?
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Complete discovery

The left side of every dashed boundary is closed w.r.t. E.

The right side of every dashed boundary is closed w.r.t. Ē.

Every component is contained within some tree.

François Pottier Depth-first search and strong connectivity in Coq



7

f2

r

scc(r)

�v2
r

�w2

r

f1

scc(r)

r

�w1
�v1

�w�
1

Let r be the root of the last tree in f1.

The component of r must be Ē?(r).

So it is exactly the first tree in f2.

Furthermore,

it is a prefix of the last tree in f1.

So, if we remove it by thought...

we end up where we started, ...

only with a smaller graph. (Induction!)
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Now, in Coq (briefly)
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Forests

A non-empty forest:

w

�w �v

Forests form an inductive type:

f,~v, ~w ::= ε | w
~w

:: ~v
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DFS forests

We define an inductive predicate dfs (i) ~v (o).

I It has a certain declarative flavor:

~v is a DFS forest.

I It still has a certain imperative flavor:

if the vertices in i are marked at the beginning,
then a DFS algorithm may construct ~v,
and the vertices in o are marked at the end.
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DFS forests

DFS-Empty

dfs (i) ε (i)
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DFS forests

DFS-NonEmpty
w 6∈ i

dfs ({w} ∪ i) ~w (m)
roots(~w) ⊆ E({w})

E({w}) ⊆ m
dfs (m) ~v (o)

dfs (i)
w

~w
:: ~v (o)

w was not initially marked
after marking w, the DFS forest ~w was built

every root of ~w is a successor of w
every successor of w was marked at this point

then, the DFS forest ~v was built

the DFS forest
w

~w
:: ~v was built
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Complete discovery
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Complete discovery

Lemma (Complete discovery)

dfs (i) ~v (o) and E(i) ⊆ i imply E(o) ⊆ o.

Easy. (The paper summary of the proof is a few lines long.)
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Kosaraju’s algorithm

Theorem (Kosaraju’s algorithm is correct)

Let (V, E) be a directed graph. If the following hypotheses hold,

dfsE (∅) f1 (V)
dfsĒ (∅) f2 (V)

rev(post(f1)) orders f2

then the toplevel trees of f2 are the components of the graph E.

Slightly involved. (The paper summary of the proof is two pages.)
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Towards an executable? DFS in Coq

(?executable = extractible)
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Parameters

A set V of vertices.

V must be finite.

– Slightly too strong an assumption, but OK for now.
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Parameters

A mathematical graph E.

A runtime function successor v

producing an iterator on the successors of v.
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Parameters

A runtime representation of sets of vertices.

Record SET (V : Type) := MkSET {

repr : Type;

meaning : repr -> (V -> Prop);

void : repr;

mark : V -> repr -> repr;

marked : V -> repr -> bool;

... // 3 more hypotheses about void, mark, marked

}.
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A recursive formulation

Notation state := (repr * forest V)%type.

A state records the marked vertices and the forest built so far.
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A recursive formulation

One would like to write something like this:

Definition visitf : state -> V -> state := ...

This cannot work, though.

Because the recursive call sits in a loop, the proof of termination must
use the fact that a vertex, once marked, remains marked.

So, we must build this information into the postcondition...
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A recursive formulation

This states that s1 has at least as many marked vertices as s0:

Definition visitf_dep:

forall s0 : state, V -> { s1 | lift le s0 s1 }.

Proof.

eapply (Fix (...) (...)).

...

Defined.

Works. Unpleasant.
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A tail-recursive formulation

Work in progress.

Termination is relatively easy to prove. (Generic library: Loop.)

Parameterized by user hooks (on entry, on exit, on rediscovery).

Nice (?) most general (?) specification:

Theorem dfs_main_spec:

exists vs,

rev roots = rrootsl vs /\

rdfs E (marked base) (marked dfs_main) vs /\

dfs_main = rfold dfs_init_spec vs.

Running the iterative DFS algorithm is equivalent to guessing a DFS
forest and recursively folding over this forest.
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Conclusion
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Conclusion

Contributions:

I Proofs of basic properties of DFS.

I A proof of (the principle of) Kosaraju’s algorithm.

I Embryo of a certified DFS library. (More to come.)

Lessons:

I Separation between mathematics and code is desirable,
and quite easy to achieve in Coq.

I Writing, specifying, proving generic executable code
is a lot of work!

I We need a certified library of basic graph algorithms!
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