Depth-first search and strong connectivity in Coq

François Pottier

(nain-

January 9, 2015

François Pottier Depth-first search and strong connectivity in Coq

Finding the strongly connected components of a directed graph.

Pedagogical value:

The first nontrivial graph algorithm.

Practical value:

Applications in program analysis, constraint solving, model-checking, etc.

Several known algorithms run in linear time:

- ► Tarjan (1972).
 - One pass. Maintains auxiliary data ("lowpoint values", etc.).
- ► Kosaraju (unpublished, 1978) and Sharir (1981).
 - Two passes. Maintains no auxiliary data.
 - Described in Cormen/Leiserson/Rivest's textbook.
 - Explained by Wegener (2002).
- ► Gabow (2000), improving on Purdom (1968) and Munro (1971).
 - One pass. Maintains a union-find data structure.

The algorithm is as follows:

- 1. Perform a DFS traversal of the graph E, producing a forest f_1 .
- 2. Perform a DFS traversal of the *reverse graph* \overline{E} , visiting the roots in the *reverse post-order* of f_1 , producing a forest f_2 .

Then, f_2 is a list of the strongly connected components. *Magic!*

- Note: the second traversal does not have to be depth-first.

Really Easy to implement if you have done DFS already.

Why does this work?

Complete discovery

The left side of every dashed boundary is closed w.r.t. E. The right side of every dashed boundary is closed w.r.t. \overline{E} . Every component is contained within some tree.

Let r be the root of the *last* tree in f_1 . The component of r must be $\bar{E}^{\star}(r)$.

Let r be the root of the *last* tree in f_1 . The component of r must be $\overline{E}^{\star}(r)$. So it is exactly the *first* tree in f_2 .

Let r be the root of the *last* tree in f_1 . The component of r must be $\overline{E}^{\star}(r)$. So it is exactly the *first* tree in f_2 . Furthermore,

it is a *prefix* of the last tree in f_1 .

Let r be the root of the *last* tree in f_1 . The component of r must be $\overline{E}^{\star}(r)$. So it is exactly the *first* tree in f_2 . Furthermore,

it is a *prefix* of the last tree in f_1 .

So, if we *remove* it by thought...

we end up where we started, ...

only with a *smaller* graph. (Induction!)

Now, in Coq (briefly)

A non-empty forest:

Forests form an inductive type:

$$f, \vec{v}, \vec{w} ::= \epsilon \mid \frac{w}{\vec{w}} :: \vec{v}$$

We define an inductive predicate dfs (i) \vec{v} (o).

- ► It has a certain *declarative* flavor: *v* is a DFS forest.
- It still has a certain *imperative* flavor:

Francois Pottier

if the vertices in *i* are marked at the beginning, then a DFS algorithm may construct \vec{v} , and the vertices in *o* are marked at the end.

DFS-Empty

 $dfs~(i)~\epsilon~(i)$

DFS-NONEMPTY $w \notin i$ $dfs (\{w\} \cup i) \ \vec{w} (m)$ $roots(\vec{w}) \subseteq E(\{w\})$ $E(\{w\}) \subseteq m$ $dfs (m) \ \vec{v} (o)$ $\overline{dfs (i) \ \frac{w}{\vec{w}} :: \vec{v} (o)}$

w was not initially marked after marking w, the DFS forest \vec{w} was built every root of \vec{w} is a successor of w every successor of w was marked at this point then, the DFS forest \vec{v} was built

the DFS forest
$$rac{w}{ec w}::ec v$$
 was built

Complete discovery

Lemma (Complete discovery) $dfs (i) \vec{v} (o) \text{ and } E(i) \subseteq i \text{ imply } E(o) \subseteq o.$

Easy. (The paper summary of the proof is a few lines long.)

Theorem (Kosaraju's algorithm is correct)

Let (\mathcal{V}, E) be a directed graph. If the following hypotheses hold,

 $\begin{array}{c} dfs_{E} \; (\emptyset) \; f_{1} \; (\mathcal{V}) \\ dfs_{\bar{E}} \; (\emptyset) \; f_{2} \; (\mathcal{V}) \\ rev(post(f_{1})) \; orders \; f_{2} \end{array}$

then the toplevel trees of f_2 are the components of the graph E.

Slightly involved. (The paper summary of the proof is two pages.)

Towards an executable* DFS in Coq

(*executable = extractible)

20

- A set V of vertices.
- V must be finite.
- Slightly too strong an assumption, but OK for now.

A mathematical graph E.

A runtime function successor v producing an iterator on the successors of v.

A runtime representation of sets of vertices.

```
Record SET (V : Type) := MkSET {
  repr : Type;
  meaning : repr -> (V -> Prop);
  void : repr;
  mark : V -> repr -> repr;
  marked : V -> repr -> bool;
  ... // 3 more hypotheses about void, mark, marked
}.
```

Notation state := (repr * forest V)%type.

A state records the marked vertices and the forest built so far.

One would like to write something like this:

```
Definition visitf : state -> V -> state := ...
```

This *cannot work*, though.

Because the recursive call sits in a loop, the proof of termination must use the fact that *a vertex, once marked, remains marked*.

So, we must build this information into the postcondition...

This states that s1 has at least as many marked vertices as s0:

```
Definition visitf_dep:
  forall s0 : state, V -> { s1 | lift le s0 s1 }.
Proof.
  eapply (Fix (...) (...)).
  ...
Defined.
```

Works. Unpleasant.

Work in progress.

```
Termination is relatively easy to prove. (Generic library: Loop.)
Parameterized by user hooks (on_entry, on_exit, on_rediscovery).
Nice (?) most general (?) specification:
```

```
Theorem dfs_main_spec:
    exists vs,
    rev roots = rrootsl vs /\
    rdfs E (marked base) (marked dfs_main) vs /\
    dfs_main = rfold dfs_init_spec vs.
```

Running the iterative DFS algorithm is equivalent to *guessing* a DFS forest and recursively *folding* over this forest.

Conclusion

Contributions:

- Proofs of basic properties of DFS.
- A proof of (the principle of) Kosaraju's algorithm.
- Embryo of a certified DFS library. (More to come.)

Lessons:

- Separation between *mathematics* and *code* is desirable, and quite easy to achieve in Coq.
- Writing, specifying, proving generic executable code is a lot of work!
- We need a certified library of basic graph algorithms!