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Mezzo in a few words

Mezzo is a high-level programming language, equipped with:

• algebraic data types;

• first-class functions;

• garbage collection;

• mutable state;

• shared-memory concurrency.

Its static discipline is based on permissions...
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Permissions by example

val r1 = newref ()
(* r1 @ ref () *)

val r2 = r1
(* r1 @ ref () * r2 @ =r1 *)
(* r1 @ ref () * r2 = r1 *)
val () = r1 := 0
(* r1 @ ref int * r2 = r1 *)
val x2 = !r2 + 1
(* r1 @ ref int * r2 = r1 * x2 @ int *)
val p = (r1, r2)
(* r1 @ ref int * r2 = r1 * x2 @ int * p @ (=r1, =r2) *)
val () = assert p @ (ref int, ref int) (* REJECTED *)
val () = assert p @ (r: ref int, =r) (* ACCEPTED *)
val () = assert p @ (=r, r: ref int) (* ACCEPTED *)

..

Why do this?

.

For fun and
profit, of course!
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Motivation

Imagine an imperative implementation of sets:

val make: [a] () -> set a
val insert: [a] (set a, consumes a) -> ()
val merge: [a] (set a, consumes set a) -> ()

Then,

• let s = make() in ... produces s @ set t
• cannot do merge(s, s);
• cannot do merge(s1, s2); insert(s2, x); ..

• cannot do insert(s, x1) and insert(s, x2)
in independent threads. ..

.
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Permissions, in a nutshell

Like a program logic, Mezzo's static discipline is flow-sensitive.

• A current (set of) permission(s) exists at each program point.

• Different permissions exist at different points.

• There is no such thing as the type of a variable.

A permission has layout and ownership readings.

A permission is either duplicable or affine.
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What this talk is not about

The paper and talk do not discuss:

• algebraic data types, which describe tree-shaped data,

• (static) regions, which can describe non-tree-shaped data,

• adoption & abandon, a dynamic alternative to regions,

and much more (ICFP 2013).
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Algebraic data types

data list a =
| Nil
| Cons { head: a; tail: list a }

data mutable mlist a =
| MNil
| MCons { head: a; tail: mlist a }

.. Ce
nso

red
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Melding mutable lists

val rec meld_aux [a]
(xs: MCons { head: a; tail: mlist a },
consumes ys: mlist a) : () =
match xs.tail with
| MNil ->

xs.tail <- ys
| MCons ->

meld_aux (xs.tail, ys)
end.. Ce

nso
red
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Concatenating immutable lists

val rec append_aux [a] (consumes (
dst: MCons { head: a; tail: () },
xs: list a, ys: list a

)) : (| dst @ list a) =
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst';
tag of dst <- Cons;
append_aux (dst', xs.tail, ys)

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end..

Ce
nso

red
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Regions

abstract region
val newregion: () -> region
abstract rref (rho : value) a
fact duplicable (rref rho a)
val newrref: (consumes x: a | rho @ region) -> rref rho a
val get: (r: rref rho a | duplicable a | rho @ region) -> a
val set: (r: rref rho a, consumes x: a | rho @ region) -> ()
.. Ce

nso
red
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Adoption and abandon

val dfs [a] (g: graph a, f: a -> ()) : () =
let s = stack::new g.roots in
stack::work (s, fun (n: dynamic

| g @ graph a * s @ stack dynamic) : () =
take n from g;
if not n.visited then begin

n.visited <- true;
f n.content;
stack::push (n.neighbors, s)

end;
give n to g

)..

Ce
nso

red
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What this talk is about

So, what are the paper and talk about?

• extend Mezzo with threads and locks;
• describe a modular, machine-checked proof of

• type soundness;
• data race freedom.
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Outline

Threads, data races, and locks (by example)

Mezzo's architecture

The kernel and its proof (glimpses)

Conclusion
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A data race

open thread

val r = newref 0

val f (| r @ ref int ..) : () =

r := !r + 1

val () =
spawn f ..;
spawn f ..

.
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A data race

open thread

val r = newref 0

val f (| r @ ref int ..) : () =

r := !r + 1

val () =
spawn f ..;
spawn f ..

.. TYPE ERROR!
(in fact, this code is racy)

14 / 42



Introducing synchronization

open thread
open lock
val r = newref 0
val l : lock (r @ ref int) = new() ..
val f ( ..) : () =

acquire l; ..

r := !r + 1; ..

release l ..

val () =
spawn f ;
spawn f ..

.
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Abstracting synchronization

(* A second-order function. *)

val hide : [a, b, s : perm ..] (
f : (consumes a | s) -> b ..|
consumes s ..

) -> (consumes a) -> b ..

.
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A synchronization pattern

open lock

val hide [a, b, s : perm] (
f : (consumes a | s) -> b |
consumes s

) : (consumes a) -> b =
let l : lock s = new () in
fun (consumes x : a) : b =
acquire l;
let y = f x in
release l;
y

.
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Introducing synchronization, revisited

open thread
open hide
val r = newref 0 ..
val f (| r @ ref int) : () = ..

r := !r + 1

val f = hide f ..

val () =
spawn f;
spawn f ..

.
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Outline

Threads, data races, and locks (by example)

Mezzo's architecture

The kernel and its proof (glimpses)

Conclusion
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What is Mezzo?

A kernel:

• a λ-calculus with threads;

• affine, polymorphic, value-dependent, with type erasure.

Several extensions:

• mutable state: references;

• hidden state: locks;

• dynamic ownership control: adoption and abandon.

All machine-checked in Coq (14KLOC).
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Modularity

We wish to prove that well-typed programs:

• do not go wrong;

• are data-race free.

This is trivial - true of all programs - in the kernel calculus!

Subject reduction and progress are non-trivial results.

We set up their proof so that it is robust in the face of extensions.
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Modularity

We parameterize the kernel with:

• a type of machine states s;
• a type of instrumented states R, or resources;

• which must form a monotonic separation algebra;

• a correspondence relation, s ∼ R.

Subject reduction and progress hold for all such parameters.
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Pseudo-Modularity

The kernel is not parameterized w.r.t. the extensions.

We add the extensions, one after another, on top of the kernel.

So, the Coq code is monolithic. Fortunately,

• each extension is (morally) independent of the others;

• the key statements do not change with extensions;

• only new proof cases appear.
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Values and terms

A fairly unremarkable untyped λ-calculus with threads.

κ ::= value | term | soup | . . . (Kinds)

v ::= x | λx.t (Values)
t ::= v | v t.. | spawn v v .. (Terms)
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Operational semantics

initial configuration new configuration
s / (λx.t) v −→ s / [v/x]t

s / E[t] −→ s′ .. / E[t′]
if s / t −→ s′ / t′

s / thread (t) −→ s′ / thread (t′)
if s / t −→ s′ / t′

s / t1 ∥ t2 −→ s′ / t′1 ∥ t2
if s / t1 −→ s′ / t′1

s / t1 ∥ t2 −→ s′ / t1 ∥ t′2
if s / t2 −→ s′ / t′2

s / thread (D[spawn v1 v2]) −→ s / thread (D[()]) ∥ thread (v1 v2)

.
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s / thread (D[spawn v1 v2]) −→ s / thread (D[()]) ∥ thread (v1 v2)

..

an abstract notion
of machine state
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Types and permissions

κ ::= . . . | type | perm (Kinds)

T,U ::= x | =v | T → T | (T | P) (Types)
∀x : κ.T | ∃x : κ.T

P,Q ::= x | v@T | empty | P ∗ P (Permissions)
∀x : κ.P | ∃x : κ.P
duplicable θ

θ ::= T | P
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The typing judgement

A traditional type system uses a list Γ of type assumptions:

Γ ⊢ t : T

Mezzo splits it into a list K of kind assumptions and a permission P:

K,P ⊢ t : T

This can be read like a Hoare triple: K ⊢ {..P} t {..T}.
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The typing judgement

A typing judgement about a running program (or thread) depends
on a resource R:

R,K,P ⊢ t : T

R is the thread's partial, instrumented view of the machine state...
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Resources

A resource is:

• partial: a resource could be, say, a heap fragment;

• instrumented: a resource could record whether each location
is mutable or immutable.

At this stage, though, resources are abstract.

What properties must we require of them?
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Monotonic separation algebra

R resource
e.g., an instrumented heap fragment

maps every address to  , N, X v, or D v
R1 ⋆ R2 conjunction

e.g., requires separation at mutable addresses
requires agreement at immutable addresses

R̂ duplicable core
e.g., throws away mutable addresses

keeps immutable addresses
R1 ◁ R2 tolerable interference (rely)

e.g., allows memory allocation
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Working with abstract resources

• Star ⋆ is commutative and associative.

• R1 ⋆ R2 ok implies R1 ok.

• R ⋆ R̂ = R.

• R1 ⋆ R2 = R and R ok imply R̂1 = R̂.

• R ⋆ R = R implies R = R̂.

• R̂ ⋆ R̂ = R̂.

• R ◁ R.

• R1 ok and R1 ◁ R2 imply R2 ok.

• R1 ◁ R2 implies R̂1 ◁ R̂2.

• rely preserves splits:

R1 ⋆ R2 ◁ R′ R1 ⋆ R2 ok

∃R′
1R

′
2, R

′
1 ⋆ R′

2 = R′ ∧ R1 ◁ R′
1 ∧ R2 ◁ R′

2
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A small set of typing rules

Singleton
R; K; P ⋄ v : =v

Frame
R; K; P ⋄ t : T

R; K; P ∗ Q ⋄ t : T | Q

Function
R̂; K, x : value; P ∗ x@ T ⊢ t : U

R; K; (duplicable P) ∗ P ⋄ λx.t : T → U

ForallIntro
t is harmless

R; K, x : κ; P ⋄ t : T

R; K; ∀x : κ.P ⋄ t : ∀x : κ.T

ExistsIntro
R; K; P ⋄ v : [U/x]T

R; K; P ⋄ v : ∃x : κ.T

Cut
R2; K; P1 ∗ P2 ⋄ t : T

R1; K ⊩ P1

R1 ⋆ R2; K; P2 ⋄ t : T

ExistsElim
R; K, x : κ; P ⊢ t : T

R; K; ∃x : κ.P ⊢ t : T

SubLeft
K ⊢ P1 ≤ P2 R; K; P2 ⊢ t : T

R; K; P1 ⊢ t : T

SubRight
R; K; P ⊢ t : T1 K ⊢ T1 ≤ T2

R; K; P ⊢ t : T2

Application
R; K;Q ⊢ t : T

R; K; (v@ T → U) ∗ Q ⊢ v t : U

Spawn
R; K; (v1 @ T → U) ∗ (v2 @ T) ⊢ spawn v1 v2 : ⊤
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Selected typing rules

The kernel typing rules manipulate R abstractly.

R̂..;K, x : value;P ∗ x@T ⊢ t : U

R;K; (duplicable P) ∗ P ⊢ λx.t : T → U

R2;K;P1 ∗ P2 ⊢ t : T
R1;K ⊩ P1

R1 ⋆ R2
.. ;K;P2 ⊢ t : T

.
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Selected typing rules

The kernel typing rules manipulate R abstractly.

R̂..;K, x : value;P ∗ x@T ⊢ t : U

R;K; (duplicable P) ∗ P ⊢ λx.t : T → U

R2;K;P1 ∗ P2 ⊢ t : T
R1;K ⊩ P1

R1 ⋆ R2
.. ;K;P2 ⊢ t : T

..
cannot capture an arbitrary resource R
can capture its duplicable core R̂
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Selected typing rules

The kernel typing rules manipulate R abstractly.

R̂..;K, x : value;P ∗ x@T ⊢ t : U

R;K; (duplicable P) ∗ P ⊢ λx.t : T → U

R2;K;P1 ∗ P2 ⊢ t : T
R1;K ⊩ P1

R1 ⋆ R2
.. ;K;P2 ⊢ t : T

..
if a typing rule has two premises
then R must be split between them
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Subject reduction

Lemma (S.R., preliminary form)

s1 / t1 −→ s2 / t2 ..

s1 ∼ R1 ⋆ R′
1
..

R1;∅; empty ⊢ t1 : T ..

∃R2R
′
2
..


s2 ∼ R2 ⋆ R′

2
..

R2;∅; empty ⊢ t2 : T ..

R′
1 ◁ R′

2
..

. .
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Subject reduction

Lemma (S.R., preliminary form)

s1 / t1 −→ s2 / t2 ..

s1 ∼ R1 ⋆ R′
1
..

R1;∅; empty ⊢ t1 : T ..

∃R2R
′
2
..


s2 ∼ R2 ⋆ R′

2
..

R2;∅; empty ⊢ t2 : T ..

R′
1 ◁ R′

2
..

..

one thread takes a step

.
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Subject reduction

Lemma (S.R., preliminary form)

s1 / t1 −→ s2 / t2 ..

s1 ∼ R1 ⋆ R′
1
..

R1;∅; empty ⊢ t1 : T ..

∃R2R
′
2
..


s2 ∼ R2 ⋆ R′

2
..

R2;∅; empty ⊢ t2 : T ..

R′
1 ◁ R′

2
..

..

this thread's view is R1

the other threads' view is R′
1

.
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Subject reduction

Lemma (S.R., preliminary form)

s1 / t1 −→ s2 / t2 ..

s1 ∼ R1 ⋆ R′
1
..

R1;∅; empty ⊢ t1 : T ..

∃R2R
′
2
..


s2 ∼ R2 ⋆ R′

2
..

R2;∅; empty ⊢ t2 : T ..

R′
1 ◁ R′

2
..

..

this thread is well-typed
under its view

.
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Subject reduction

Lemma (S.R., preliminary form)

s1 / t1 −→ s2 / t2 ..

s1 ∼ R1 ⋆ R′
1
..

R1;∅; empty ⊢ t1 : T ..

∃R2R
′
2
..


s2 ∼ R2 ⋆ R′

2
..

R2;∅; empty ⊢ t2 : T ..

R′
1 ◁ R′

2
..

. .. this thread's view and the
other threads' view evolve
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Subject reduction

Lemma (S.R., preliminary form)

s1 / t1 −→ s2 / t2 ..

s1 ∼ R1 ⋆ R′
1
..

R1;∅; empty ⊢ t1 : T ..

∃R2R
′
2
..


s2 ∼ R2 ⋆ R′

2
..

R2;∅; empty ⊢ t2 : T ..

R′
1 ◁ R′

2
..

. .. the new machine state agrees
with the new views
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Subject reduction

Lemma (S.R., preliminary form)

s1 / t1 −→ s2 / t2 ..

s1 ∼ R1 ⋆ R′
1
..

R1;∅; empty ⊢ t1 : T ..

∃R2R
′
2
..


s2 ∼ R2 ⋆ R′

2
..

R2;∅; empty ⊢ t2 : T ..

R′
1 ◁ R′

2
..

. .. the thread remains well-typed
under its view
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Subject reduction

Lemma (S.R., preliminary form)

s1 / t1 −→ s2 / t2 ..

s1 ∼ R1 ⋆ R′
1
..

R1;∅; empty ⊢ t1 : T ..

∃R2R
′
2
..


s2 ∼ R2 ⋆ R′

2
..

R2;∅; empty ⊢ t2 : T ..

R′
1 ◁ R′

2
..

. .. the interference inflicted on
the other threads is tolerable
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Subject reduction

Theorem (Subject Reduction)

Reduction preserves well-typedness.

c1 −→ c2 ⊢ c1
⊢ c2
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Progress

A configuration c is acceptable if every thread:

• has reached an answer; or

• is able to make one step; or

• (after introducing locks) is waiting on a locked lock.

Theorem (Progress)

Every well-typed configuration is acceptable.
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Data race freedom

Cannot be stated for the kernel. We introduce references first.

There, writing requires an exclusive access right.

Hence, it is easy to prove that:

Theorem
A well-typed program cannot exhibit a data race.
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Outline

Threads, data races, and locks (by example)

Mezzo's architecture

The kernel and its proof (glimpses)

Conclusion
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Related work

Alias Types. Separation Logic. L3. (And a lot more.)

Views (Dinsdale-Young et al., 2013) are particularly relevant.

• extensible framework;

• monolithic machine state, composable views, agreement;

• while-language instead of a λ-calculus.

40 /42



A few lessons

• The good old syntactic approach to type soundness works.

• Formalization helps clarify and simplify. A lot.

• In the end, it is “just” affine λ-calculus.
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Thank you

More information in the paper and online:
http://gallium.inria.fr/~protzenk/mezzo-lang/

Try it out!
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Road map

..weakening.
substitution

.

affinity

. duplication.

stability

. classification.
decomposition

.

soundness of
subsumption

.

canonicalization

.

subject
reduction

.

progress

.

type soundness

1 / 7



Dealing with binding

In Coq, we use only one syntactic category.

Well-kindedness distinguishes values, terms, types, etc.

• avoids a quadratic number of substitution functions!

• makes it easy to deal with dependency.

Binding encoded via de Bruijn indices.

Re-usable library, dblib.

The main hygiene lemmas have >90 cases and 4-line proofs.
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Algebraic data types

data list a =
| Nil
| Cons { head: a; tail: list a }

data mutable mlist a =
| MNil
| MCons { head: a; tail: mlist a }
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Melding mutable lists

val rec meld_aux [a]
(xs: MCons { head: a; tail: mlist a },
consumes ys: mlist a) : () =
match xs.tail with
| MNil ->

xs.tail <- ys
| MCons ->

meld_aux (xs.tail, ys)
end

4 / 7



Concatenating immutable lists

val rec append_aux [a] (consumes (
dst: MCons { head: a; tail: () },
xs: list a, ys: list a

)) : (| dst @ list a) =
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst';
tag of dst <- Cons;
append_aux (dst', xs.tail, ys)

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end
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Regions

abstract region
val newregion: () -> region
abstract rref (rho : value) a
fact duplicable (rref rho a)
val newrref: (consumes x: a | rho @ region) -> rref rho a
val get: (r: rref rho a | duplicable a | rho @ region) -> a
val set: (r: rref rho a, consumes x: a | rho @ region) -> ()
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Adoption and abandon

val dfs [a] (g: graph a, f: a -> ()) : () =
let s = stack::new g.roots in
stack::work (s, fun (n: dynamic

| g @ graph a * s @ stack dynamic) : () =
take n from g;
if not n.visited then begin

n.visited <- true;
f n.content;
stack::push (n.neighbors, s)

end;
give n to g

)
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