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Mezzo in a few words

Mezzo is a high-level programming language, equipped with:

« algebraic data types;

« first-class functions;

» garbage collection;

e mutable state;

e shared-memory concurrency.

Its static discipline is based on permissions...
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Permissions by example

val rl = newref ()
(* r1 @ ref () *)
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For fun and
profit, of course!
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assert p @ (ref int, ref int) (* REJECTED *)
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Motivation

Imagine an imperative implementation of sets:

val make: [a]l] () -> set a
val insert: [a] (set a, consumes a) -> ()
val merge: [a] (set a, consumes set a) -> ()
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e let s = make() in ... produ
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e cannot domerge(sl, s2); inser , X);
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in independent threads.
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Permissions, in a nutshell

Like a program logic, Mezzo's static discipline is flow-sensitive.

* A current (set of) permission(s) exists at each program point.
 Different permissions exist at different points.
e There is no such thing as the type of a variable.

A permission has layout and ownership readings.

A permission is either duplicable or affine.
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What this talk is not about

The paper and talk do not discuss:

 algebraic data types, which describe tree-shaped data,
* (static) regions, which can describe non-tree-shaped data,
» adoption & abandon, a dynamic alternative to regions,

and much more (ICFP 2013).
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Algebraic data types

data list a =

| Nil 66
| Cons { head: a; tail: llstb(

data mutable mlist a =
| MNil

| MCons { hee: a,&gﬂist al
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Melding mutable lists

val rec meld aux [al]
(xs: MCons { head: a; tail: mlist a }, 6
consumes ys: mlist a) : () = e
match xs.tail with (
| MNil -> O
xs.tail <- ys 6
| MCons -> 60
meld_aux@ ', ys)
end
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Concatenating immutable lists

val rec append aux [a] (consumes (
dst: MCons { head: a; tail: () },

xs: list a, ys: list a
)) @ (| dst @ list a) =
match xs with 6

| Cons ->

let dst' = MCons { he%@ﬁead; tail = () } in

dst.tail <- dst';

tag of ds -@s
append_a@ix (d xs.tail, ys)

| Nil ->
dst.tail <- ys;
tag of dst <- Cons
end
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Regions

abstract region
val newregion: () -> region e

abstract rref (rho : value) a

fact duplicable (rref rho a

val newrref: (consumes X 5 @ reglon) -> rref rho a
val get: (r: rre p icable a | rho @ region) -> a
val set: (r: rfef r consumes x: a | rho @ region) -> ()
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Adoption and abandon

val dfs [a] (g: graph a, f: a -> ()) : =

let s = stack::new g.roots in
stack::work (s, fun (n: dynamic
| g @graph a * s a@ @ mic) : =

take n from g;

if not n.visited then bgo

n.visited <- true;

f n.conte
stack p<sh (r@ghbors, s)

give n to g

)
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What this talk is about

So, what are the paper and talk about?

« extend Mezzo with threads and locks;
» describe a modular, machine-checked proof of

e type soundness;
o data race freedom.
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A data race

open thread
val r = newref 0

val f (| r @ ref int) : () =

r:e=1Ir+1
val () =
spawn f ;

spawn f
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A data race
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Introducing synchronization

open thread

open lock

val r = newref 0

val 1 : lock (r @ ref int) = new()

val f () : () =
acquire 1;
r:=1I!r+1;
release 1

val () =
spawn f ;
spawn f
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Abstracting synchronization

(* A second-order function. *)

val hide : [a, b, s : perm] (
f : (consumes a | s) -> b |
consumes s

) -> (consumes a) -> b
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Abstracting synchronization

(* A second-order function. *)

val hide : [a, b, s : perm] (
f : (consumes a | s) -> b
consumes s

) -> (consumes a) -> b

hide takes a function f
which has a side effect on s
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Abstracting synchronization

(* A second-order function. *)

val hide : [a, b, s : perm] (
f : (consumes a | s) -> b |
consumes s

) -> (consumes a)

hide consumes s
which becomes owned by the lock
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Abstracting synchronization

(* A second-order function. *)

val hide : [a, b, s : perm] (
f : (consumes a | s) -> b |
consumes S

) -> (consumes a) -> b \\\--§§§=F

hide produces a new function
which has no advertised effect
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A synchronization pattern

open lock

val hide [a, b, s : perm] (
f : (consumes a | s) -> b |
consumes s
) : (consumes a) -> b =
let 1 : lock s = new () in
fun (consumes x : a) : b =
acquire 1;
let y = f x in
release 1;
y
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Introducing synchronization, revisited

open thread

open hide

val r = newref 0

val f (| r @ ref int) : () =
r:=1!r+1

val f = hide f
val () =

spawn f;
spawn f
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What is Mezzo?

A kernel:

¢ a A-calculus with threads;
« affine, polymorphic, value-dependent, with type erasure.

Several extensions:

e mutable state: references;
¢ hidden state: locks;
¢ dynamic ownership control: adoption and abandon.

All machine-checked in Coq (14KLOC).
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Modularity

We wish to prove that well-typed programs:

e do not go wrong;
e are data-race free.

This is trivial - true of all programs - in the kernel calculus!
Subject reduction and progress are non-trivial results.
We set up their proof so that it is robust in the face of extensions.
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Modularity

We parameterize the kernel with:

* a type of machine states s;
¢ a type of instrumented states R, or resources;
» which must form a monotonic separation algebra;

¢ a correspondence relation, s ~ R.

Subject reduction and progress hold for all such parameters.
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Pseudo-Modularity

The kernel is not parameterized w.r.t. the extensions.
We add the extensions, one after another, on top of the kernel.
So, the Coq code is monolithic. Fortunately,

» each extension is (morally) independent of the others;
¢ the key statements do not change with extensions;
¢ only new proof cases appear.

23/42



@ Threads, data races, and locks (by example)
@ Mezzo's architecture
@ The kernel and its proof (glimpses)

@ Conclusion

24/42



Values and terms

A fairly unremarkable untyped A-calculus with threads.

k == value|term|soup|... (Kinds)

n= x| At (Values)
t == v|vt|spawnvv (Terms)
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Operational semantics

initial configuration new configuration

s/ (Mxt)v —s /[v/x]t

s / Elt] — s’/ E[t]
ifs/t—s'/t

s / thread (t) — s’/ thread (t)
ifs/t—s"/t

S/tl”tg — 5 /t/1Ht2
ifs/ty —s /t

S/t1||t2 — s /tlutlz

ifs/ty— s/t
s / thread (D[spawn v; v3]) — s/ thread (D[()]) || thread (vi v2)
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Operational semantics

an abstract notion
of machine state

initial configuration new ¢ pnfiguration

s/ (Mxt)v — s Jlfv/x]t

s / Elt] — s’ 1/ E[t]
ifs/t—s'/t

s / thread (t) — s’/ thread (t)
ifs/t—s"/t

s/t t — s /]t
ifs/ty —s /t

S/tl”tg — s /tlutlz

ifs/ty— s/t
s / thread (D[spawn v; v3]) — s/ thread (D[()]) || thread (vi v2)
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Types and permissions

... | type | perm (Kinds)

x|=v|T—=TI[(T|P) (Types)
Vx:k.T|3x: kT

x|v@T|empty | P x P (Permissions)
Vx:k.P|3X:k.P
duplicable 0

TP

27142



The typing judgement

A traditional type system uses a list I" of type assumptions:
r=t:T
Mezzo splits it into a list K of kind assumptions and a permission P:
K.P-t:T

This can be read like a Hoare triple: K+ {P} t{T}.
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The typing judgement

A typing judgement about a running program (or thread) depends
on a resource R:
RK,PHEt:T

R is the thread's partial, instrumented view of the machine state...
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Resources

A resource is:

e partial: a resource could be, say, a heap fragment;

e jnstrumented: a resource could record whether each location
is mutable or immutable.
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Resources

A resource is:

e partial: a resource could be, say, a heap fragment;

e jnstrumented: a resource could record whether each location
is mutable or immutable.

At this stage, though, resources are abstract.
What properties must we require of them?
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Rl*RQ

D)

R1<]R2

Monotonic separation algebra

resource
e.g., an instrumented heap fragment
maps every address to 5, N, Xv, or Dv
conjunction
e.g., requires separation at mutable addresses
requires agreement at immutable addresses
duplicable core
e.g., throws away mutable addresses
keeps immutable addresses
tolerable interference (rely)
e.g., allows memory allocation
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Working with abstract resources

Star x is commutative and associative.
Ry x Ry ok implies Ry ok.

R *R=R.

Ri % Ry = R and R ok imply R; = R.
R x R = R implies R = R.

RxR=R.

R <R.

R, ok and Ry <1 Ry imply R» Ok.

R, < Ry implies R, < Rs.

rely preserves splits:

Rl*RQQR, R:1 %~ Ry ok
3RiR,, Ry » Ry = R'AR1 <Ry ARy <R
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A small set of typing rules

Frame

Singleton RiK:P o t:T

R;K;P o v:=v

Function
R;K,x : value; P x x@THt: U

R;K;PxQo t:T|Q

Forallintro
tis harmless
R;K,x:k;P o t: T

R;K;Vx: kP o t:Vx: kT

ExistsIntro
R;K;P o v: [U/X]T

R;K;P o v:3x:k.T

ExistsElim SubLeft
RiK,x: k;PHLEt: T Kt Py < Py RiK;Po Ht: T
R;K;3x: k. PHt: T R;K;Py Ht: T
Application
RiK;QHt:T Spawn

R;K; (vi@T — U)
R;K;(v@T - U) « QFvit: U

R; K; (duplicable P) x P o Xx.t: T — U

Cut
Ro;K;Py % P o t: T
Ri;K I Py

Ry * Ro;K;P2 o t: T
SubRight
R;K;PHt: Ty KTy <T2
RiK;PEHt:To

* (vo@T) F spawnvy vp : T
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Selected typing rules

The kernel typing rules manipulate R abstractly.
R Ro;K;Py x Po-t: T
R;K,x :value;P x x@THFHt: U Ri;KI- Py
R;K; (duplicable P) x PF M.t : T — U Ry x Ry;K;Po-t: T

34/42



Selected typing rules

The kernel typing rules manipulate R abstractly.

R Ro;K;Py x Po-t: T
R;{(value;P*X@Tl—t:U Ri;KI- Py

R;K;(duplﬁﬂ.&P)*\Pl—)\x.t:T%U Ry x Ry;K:Py-t: T

cannot capture an arbitrary resource R
can capture its duplicable core R
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Selected typing rules

The kernel typing rules manipulate R abstractly.

R Ro;K;Py x Po-t: T
R;K,x :value;P x x@THFHt: U Ri;KI- Py

R;K; (duplicable P) x PF M.t : T — U/* Ro;K;Py -t T

if a typing rule has two premises
then R must be split between them
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Subject reduction

Lemma (S.R., preliminary form)

S1 / ty — So / ty
S1 ~ R1 * R/l
Riy;T;empty -t : T
So ~ Ry % RIQ
JRoR, { Ro;;empty Hto: T
1 <Ry
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Subject reduction

one thread takes a step

Lemma (S.R., preliminary form)

S1 / ty — So / ty
S1 ~ R1 * Rll
Riy;T;empty -t : T
So ~ Ry % RIQ
JRoR, { Ro;;empty Hto: T
1 <Ry
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Subject reduction

this thread's view is Ry
the other threads' view is R}

Lemma (S.R., preliminary form)

S1 / ty — S /t
S1 ~ R1 * Rll
Riy;T;empty -t : T
So ~ Ry % RIQ
JRoR, { Ro;;empty Hto: T
1 <Ry
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Subject reduction

this thread is well-typed
under its view

Lemma (S.R., preliminary form)

S1 / ty — So / ty
S1 ~ R1 * Rll
Riy;T;empty -t : T
So ~ Ry % RIQ
JRoR, { Ro;;empty Hto: T
1 <Ry
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Subject reduction

Lemma (S.R., preliminary form)

S1 / ty — So / ty
S1 NR1 * Rll
Riy;T;empty -t : T
So ~ Ry % RIQ
Ro; &;empty Hty : T
/

this thread's view and the
other threads' view evolve
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Subject reduction

Lemma (S.R., preliminary form)

S1 / ty — So / ty
S1 ~ R1 * Rll
Riy;T;empty -t : T
So ~ Ry % RIQ
JRR, { Ro; ;empty Hth\ T
1 <Ry

the new machine state agrees
with the new views
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Subject reduction

Lemma (S.R., preliminary form)

S1 / ty — S / to
S1 ~ R1 * Rll
Riy;T;empty -t : T
So ~ Ry % RIQ
JRoR, { Ro;;empty Hto: T \

1 <Ry

the thread remains well-typed
under its view
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Subject reduction

Lemma (S.R., preliminary form)

S1 / ty — S / to
S1 ~ R1 * Rll
Riy;T;empty -t : T
So ~ Ry % RIQ
JRoR, { Ro;;empty Hto: T

| <R, \
the interference inflicted on
the other threads is tolerable
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Subject reduction

Theorem (Subject Reduction)

Reduction preserves well-typedness.

Ci1 — Co |_C1

FCQ
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Progress

A configuration c is acceptable if every thread:

¢ has reached an answer; or
¢ is able to make one step; or
* (after introducing locks) is waiting on a locked lock.

Theorem (Progress)

Every well-typed configuration is acceptable.
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Data race freedom

Cannot be stated for the kernel. We introduce references first.
There, writing requires an exclusive access right.
Hence, it is easy to prove that:

Theorem
A well-typed program cannot exhibit a data race.
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Related work

Alias Types. Separation Logic. L3. (And a lot more.)

Views (Dinsdale-Young et al., 2013) are particularly relevant.
» extensible framework;
¢ monolithic machine state, composable views, agreement;
* while-language instead of a A-calculus.
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A few lessons

* The good old syntactic approach to type soundness works.
e Formalization helps clarify and simplify. A lot.
¢ In the end, it is “just” affine A\-calculus.
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Thank you

More information in the paper and online:
http://gallium.inria.fr/~protzenk/mezzo-lang/

Try it out!
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Dealing with binding

In Coq, we use only one syntactic category.
Well-kindedness distinguishes values, terms, types, etc.

¢ avoids a quadratic number of substitution functions!
¢ makes it easy to deal with dependency.

Binding encoded via de Bruijn indices.
Re-usable library, dblib.
The main hygiene lemmas have >90 cases and 4-line proofs.
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http://gallium.inria.fr/~fpottier/dblib/README

data list a =
| Nil
| Cons { head: a; tail: list a }

data mutable mlist a =
| MNil
| MCons { head: a; tail: mlist a }

Algebraic data types
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Melding mutable lists

val rec meld aux [a]
(xs: MCons { head: a; tail: mlist a },
consumes ys: mlist a) : () =
match xs.tail with

| MNil ->

xs.tail <- ys
| MCons ->

meld aux (xs.tail, ys)
end
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Concatenating immutable lists

val rec append aux [a] (consumes (
dst: MCons { head: a; tail: () },
xs: list a, ys: list a
)) @ (| dst @ list a) =
match xs with
| Cons ->
let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst';
tag of dst <- Cons;
append_aux (dst', xs.tail, ys)
| Nil ->
dst.tail <- ys;
tag of dst <- Cons
end
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Regions

abstract region

val newregion: () -> region

abstract rref (rho : value) a

fact duplicable (rref rho a)

val newrref: (consumes x: a | rho @ region) -> rref rho a
val get: (r: rref rho a | duplicable a | rho @ region) -> a
val set: (r: rref rho a, consumes x: a | rho @ region) -> ()
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Adoption and abandon

val dfs [a] (g: graph a, f: a -> ()) : () =
let s = stack::new g.roots in
stack::work (s, fun (n: dynamic
| g @ graph a * s @ stack dynamic) : () =
take n from g;
if not n.visited then begin
n.visited <- true;
f n.content;
stack::push (n.neighbors, s)
end;
give n to g
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