A bird's eye view of MezZo

Francois Pottier Jonathan Protzenko
INRIA

MSR/INRIA, Nov 2012

1/25



What for?

@ How?

A tiny taste

Project status

2/25



Premise

The types of OCaml, Haskell, Java, C#, etc.:

» describe the structure of data,
* but do not distinguish trees and graphs,
¢ and do not control who has permission to read or write.

3/25



Question

Could a more ambitious static discipline:

 rule out more programming errors,
e and enable new programming idioms,
* while remaining reasonably simple and flexible?

4/25



Goals

We would like to rule out:

* representation exposure;
« data races;
« violations of object protocols;

and to enable:

¢ gradual initialization;
¢ (in certain cases) explicit memory re-use.

5/25



What for?

@ How?

A tiny taste

Project status

6/25



Basic principles

A variable x does not have a fixed type throughout its lifetime.
Instead,

e at each point in the scope of x,
* one may or may not have permission to use x in certain ways.

7125



Basic principles

The system imposes a global invariant: at any time,

e if x is a mutable object, there exists at most one permission to
read and write x ;

« if x is an immutable object, there may exist arbitrarily many
permissions to read x .

8/25



Basic principles

Why is this a useful discipline?
The uniqueness of read/write permissions:

* rules out representation exposure and data races;

« allows the type of an object to vary with time, which enables
the enforcement of object protocols, gradual initialization, etc.

9/25



Basic principles

Isn't this a restrictive discipline?
Yes, it is, but:

e there is no restriction on the use of immutable data;
¢ there is an escape hatch that involves dynamic checks.

10/25



@ What for?
@ How?
@ Atiny taste

@ Project status

11/25



Harmless sharing

Concatenating two immutable lists creates sharing:
. in

... in

concat(xs, ys) in

let xs : list int
let ys : list int
let zs : list int

The lists xs and zs have common elements.
The lists ys and zs have common elements and cells.
This is harmless. We would like to accept this code.

12/25



Potentially harmful sharing

What if the lists have mutable elements?

let xs : list (ref int) . in
let ys : list (ref int) ... in
let zs : list (ref int) = concat(xs, ys) in

Some elements are accessible via xs and zs, orvia ys and zs.
This is potentially dangerous.

We would like to accept this code yet prevent the programmer
from using (say) xs and zs as if they were physically disjoint.

13/25



Reasoning with permissions

In MezZo, the first code snippet gives rise to three permissions:

xs @ list int
ys @ list int
zs @ list int

All three lists can be freely used in the code that follows.

14/25



Reasoning with permissions

The first two lines of the second code snippet give rise to:

xs @ list (ref int)
ys @ list (ref int)

These permissions are consumed at line three, which gives rise to:

zs @ list (ref int)

At the end, zs can be used, but xs and ys have been invalidated.

15/25



How does this work?

The type of the function concat is:

[a]l] (consumes list a, consumes list a) -> list a

so a callis in principle type-checked as follows:

(* xs @ list t * ys @ list t * ... must exist here *)
let zs = concat(xs, ys) in
(* zs @ list t ¥ oo exist here *)

The available permissions vary with time.

16/25



How does this work?

The system knows that

e xs @ list int is a duplicable permission, whereas

e xs @ list (ref int) is not: itis an affine permission.
A caller of concat can give up one copy of xs @ list int and
keep one copy. The permission is effectively not consumed.
No such trick is possible with xs @ list (ref int) .

Thus, concat is type-checked once, but behaves differently at
different call sites.

17/25



How about mutable lists?

Mutable lists support in-place meld -ing:
[a]l] (consumes mlist a, consumes mlist a) -> mlist a
The permission xs @ mlist t is never duplicable, regardless of

the type t of the list elements, so a call to meld(xs, ys) always
invalidates the arguments xs and ys .

18/25



Type-theoretic ingredients

Beyond what has been illustrated here, MezZo has:
e permissions for composite data structures, which can be
decomposed and recombined,

e permissions that express must-alias and must-not-alias
information;

¢ a mechanism by which the existence of a permission can be
ascertained at runtime.

19/25



What for?

@ How?

A tiny taste

Project status

20/25



Who we are

The project started about one year ago and currently involves

e Jonathan Protzenko (Ph.D student),
e Thibaut Balabonski (post-doc researcher),
¢ and myself (INRIA researcher).

21/25



Where we are

We currently have:

» a formal definition and soundness proof for Core Mezo;
¢ a prototype type-checker.

22/25



What next?

In the short term, we would like to:

« stabilize and extend the definition of the language;

« work on type inference, which is tricky;

e write code! and evaluate the usability of the language;
e compile MezZo down to untyped OCaml;

e work on shared-memory concurrency.

23/25



What next?

Many as-yet-unanswered questions!

e What support for modularity?

* What about specifications & proofs of programs?

* What if we lack the manpower to grow a new language?
* Can we transfer these ideas to a mainstream language?

24 /25



Thank you

Please find more information online at
http://gallium.inria.fr/~protzenk/mezzo-1lang/

25/25


http://gallium.inria.fr/~protzenk/mezzo-lang/

Immutable lists

The algebraic data type of immutable lists.

data list a =
| Nil
| Cons { head: a; tail: list a }

26/25



Immutable list concatenation

val rec concat [al (consumes xs: list a,
consumes ys: list a) : list a =
match xs with

| Nil -> ys
| Cons ->
Cons { head = xs.head;
tail = concat (xs.tail, ys) }

end

27125



Mutable lists

The algebraic data type of mutable lists.

mutable data mlist a =
| MNil
| MCons { head: a; tail: mlist a }

28/25



Mutable list concatenation

val rec concatl [a]

(xs: MCons { head: a; tail: mlist a },
consumes ys: mlist a) : () =

match xs.tail with

| MNil -> xs.tail <- ys

| MCons -> concatl (xs.tail, ys)
end

val concat [a]l (consumes xs: mlist a,

consumes ys: mlist a) : mlist a =

match xs with
| MNil -> ys

| MCons -> concatl (xs, ys); Xxs
end

29/25



	What for?
	How?
	A tiny taste
	Project status
	Appendix

