
A bird's eye view of Mezzo

François Pottier Jonathan Protzenko

INRIA

MSR/INRIA, Nov 2012

1 / 25



Outline

What for?

How?

A tiny taste

Project status

2 / 25



Premise

The types of OCaml, Haskell, Java, C#, etc.:

• describe the structure of data,

• but do not distinguish trees and graphs,

• and do not control who has permission to read or write.

3 / 25



Question

Could a more ambitious static discipline:

• rule out more programming errors,

• and enable new programming idioms,

• while remaining reasonably simple and flexible?

4 / 25



Goals

We would like to rule out:

• representation exposure;

• data races;

• violations of object protocols;

and to enable:

• gradual initialization;

• (in certain cases) explicit memory re-use.

5 / 25



Outline

What for?

How?

A tiny taste

Project status

6 / 25



Basic principles

A variable x does not have a fixed type throughout its lifetime.
Instead,

• at each point in the scope of x ,

• one may or may not have permission to use x in certain ways.

7 / 25



Basic principles

The system imposes a global invariant: at any time,

• if x is a mutable object, there exists at most one permission to
read and write x ;

• if x is an immutable object, there may exist arbitrarily many
permissions to read x .

8 / 25



Basic principles

Why is this a useful discipline?

The uniqueness of read/write permissions:

• rules out representation exposure and data races;

• allows the type of an object to vary with time, which enables
the enforcement of object protocols, gradual initialization, etc.

9 / 25



Basic principles

Isn't this a restrictive discipline?

Yes, it is, but:

• there is no restriction on the use of immutable data;

• there is an escape hatch that involves dynamic checks.

10 / 25



Outline

What for?

How?

A tiny taste

Project status

11 / 25



Harmless sharing

Concatenating two immutable lists creates sharing:

let xs : list int = ... in
let ys : list int = ... in
let zs : list int = concat(xs, ys) in
...

The lists xs and zs have common elements.

The lists ys and zs have common elements and cells.

This is harmless. We would like to accept this code.

12 / 25



Potentially harmful sharing

What if the lists have mutable elements?

let xs : list (ref int) = ... in
let ys : list (ref int) = ... in
let zs : list (ref int) = concat(xs, ys) in
...

Some elements are accessible via xs and zs , or via ys and zs .

This is potentially dangerous.

We would like to accept this code yet prevent the programmer
from using (say) xs and zs as if they were physically disjoint.

13 / 25



Reasoning with permissions

In Mezzo, the first code snippet gives rise to three permissions:

xs @ list int
ys @ list int
zs @ list int

All three lists can be freely used in the code that follows.

14 / 25



Reasoning with permissions

The first two lines of the second code snippet give rise to:

xs @ list (ref int)
ys @ list (ref int)

These permissions are consumed at line three, which gives rise to:

zs @ list (ref int)

At the end, zs can be used, but xs and ys have been invalidated.

15 / 25



How does this work?

The type of the function concat is:

[a] (consumes list a, consumes list a) -> list a

so a call is in principle type-checked as follows:

(* xs @ list t * ys @ list t * ... must exist here *)
let zs = concat(xs, ys) in
(* zs @ list t * ... exist here *)

The available permissions vary with time.

16 / 25



How does this work?

The system knows that

• xs @ list int is a duplicable permission, whereas

• xs @ list (ref int) is not: it is an affine permission.

A caller of concat can give up one copy of xs @ list int and
keep one copy. The permission is effectively not consumed.

No such trick is possible with xs @ list (ref int) .

Thus, concat is type-checked once, but behaves differently at
different call sites.

17 / 25



How about mutable lists?

Mutable lists support in-place meld -ing:

[a] (consumes mlist a, consumes mlist a) -> mlist a

The permission xs @ mlist t is never duplicable, regardless of
the type t of the list elements, so a call to meld(xs, ys) always
invalidates the arguments xs and ys .

18 / 25



Type-theoretic ingredients

Beyond what has been illustrated here, Mezzo has:

• permissions for composite data structures, which can be
decomposed and recombined;

• permissions that express must-alias and must-not-alias
information;

• a mechanism by which the existence of a permission can be
ascertained at runtime.

19 / 25



Outline

What for?

How?

A tiny taste

Project status

20 / 25



Who we are

The project started about one year ago and currently involves

• Jonathan Protzenko (Ph.D student),

• Thibaut Balabonski (post-doc researcher),

• and myself (INRIA researcher).

21 / 25



Where we are

We currently have:

• a formal definition and soundness proof for Core Mezzo;

• a prototype type-checker.

22 / 25



What next?

In the short term, we would like to:

• stabilize and extend the definition of the language;

• work on type inference, which is tricky;

• write code! and evaluate the usability of the language;

• compile Mezzo down to untyped OCaml;

• work on shared-memory concurrency.

23 / 25



What next?

Many as-yet-unanswered questions!

• What support for modularity?

• What about specifications & proofs of programs?

• What if we lack the manpower to grow a new language?

• Can we transfer these ideas to a mainstream language?

24 / 25



Thank you

Please find more information online at
http://gallium.inria.fr/~protzenk/mezzo-lang/

25 / 25

http://gallium.inria.fr/~protzenk/mezzo-lang/


Immutable lists

The algebraic data type of immutable lists.

data list a =
| Nil
| Cons { head: a; tail: list a }

26 / 25



Immutable list concatenation

val rec concat [a] (consumes xs: list a,
consumes ys: list a) : list a =

match xs with
| Nil -> ys
| Cons ->

Cons { head = xs.head;
tail = concat (xs.tail, ys) }

end

27 / 25



Mutable lists

The algebraic data type of mutable lists.

mutable data mlist a =
| MNil
| MCons { head: a; tail: mlist a }

28 / 25



Mutable list concatenation

val rec concat1 [a]
(xs: MCons { head: a; tail: mlist a },
consumes ys: mlist a) : () =

match xs.tail with
| MNil -> xs.tail <- ys
| MCons -> concat1 (xs.tail, ys)
end

val concat [a] (consumes xs: mlist a,
consumes ys: mlist a) : mlist a =

match xs with
| MNil -> ys
| MCons -> concat1 (xs, ys); xs
end

29 / 25


	What for?
	How?
	A tiny taste
	Project status
	Appendix

