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Why study a store-passing translation?

A denotational semantics of an imperative language can be regarded
as a store-passing translation into some mathematical meta-language.
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A store-passing translation

In 1967, Strachey [2000] writes:

“Commands can be considered as functions which transform
[the store].”

Strachey’s semantics of commands is a store-passing translation.
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The monadic translation

Moggi [1991] views the store-passing translation as an instance of
the monadic translation.

A monad is given by a type operator M : ?→ ? together with two
operators:

return : ∀a. a→ M a
bind : ∀a b. M a→ (a→ M b)→ M b

which must satisfy the three monad laws (omitted).
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The state monad

For a fixed store type s, the type operator (State s ) is a monad,
known as the state monad.

State s a = s→ (a, s)

return : ∀s a. a→ State s a
= λx.λs.(x, s)

bind : ∀s a b.State s a→ (a→ State s b)→ State s b
= λf.λg.λs.let (x, s) = f s in g x s

get : ∀s a.State s a
= λs.(s, s)

put : ∀s a. a→ State s ()
= λx.λs.((), x)
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On the road to general references

Is there a store-passing translation for general references?

We are missing:

• dynamic memory allocation, and

• higher-order store.

Each of these features poses significant difficulties...
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Dynamic memory allocation – the monad

Imagine the store has n cells of base type, where n grows with time.

The type of the store changes with time. So, what is the translation
of the monad?

A computation may make assumptions about the existence and type
of certain cells. Thus, it accepts any store that is large enough to
satisfy these assumptions.

A computation may itself allocate new cells, so it returns a new
store that is larger than its input store.
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Dynamic memory allocation – the monad

In summary, the translation of the monad involves an extension
ordering over stores and a bounded ∀∃ pattern, roughly so:

JM τK = ∀s1 ≥ s, s1 → ∃s2 ≥ s1, (JτK, s2)

But where is s bound? The encoding of a type must be parameterized
with a store, roughly so:

JM τKs = ∀s1 ≥ s, s1 → ∃s2 ≥ s1, (JτKs2 , s2)

This implies the need for a monotonicity principle: a value that is
valid now should remain valid later. That is,

if s1 ≤ s2, then JτKs1 ≤ JτKs2 .
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Dynamic memory allocation – fragments

What is the extension ordering?

A store is a (tuple) type, of kind ?. Let a fragment be a store with
a hole at the end, that is, an object of kind ?→ ?.

Fragment concatenation is just function composition. A (prefix)
ordering over fragments is defined in terms of concatenation.

A fragment can be turned into a store by applying it to the () type.
Write store f = f ().
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Dynamic memory allocation – the monad

With these conventions in mind, the translation of the monad could
be written roughly so:

JM τKf = ∀f1, store (f@f1)→ ∃f2, (JτKf@f1@f2 , store (f@f1@f2))

The encoding of a type is now parameterized with a fragment.

The use of concatenation (an associative operation) allows expressing
bounded quantification in terms of ordinary quantification.

11 / 71



Dynamic memory allocation – summary

This is roughly what is needed to deal with dynamic memory
allocation with cells of base type.

In short, we need store descriptions that are extensible in width and
a notion of monotonicity.

This is hardly simple, but it gets worse with higher-order store...
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Higher-order store

The translation of a base type ignores its parameter. If a cell has
base type at the source level, then its type in the target calculus
remains fixed as the store grows.

If a cell has a computation type at the source level, then the type
of this cell in the target calculus changes as the store grows.

To explain this, one needs store descriptions that are extensible in
width and in depth.
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Higher-order store – worlds

Let us call a world such a doubly-open-ended store description.

W = ?→ (?→ ?)

Worlds represent points in time. We intend to set up an ordering on
worlds in terms of an appropriate notion of world composition.

But of what kind is the “depth” parameter of a world?

It is a point in time, that is, a world!

We seem to be looking at a recursive kind.
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Higher-order store – recursion

A semanticist would say: we are looking at a recursive domain
equation.

An equation of the form W = W → . . . arises in several semantic
models of general references [Schwinghammer et al., 2009,
Birkedal et al., 2009, Hobor et al., 2010].

Semanticists have dealt with this complexity for a long time, while
“syntacticists” have remained blissfully ignorant of it, thanks to the
miraculous notion of a store
typing [Wright and Felleisen, 1994, Harper, 1994], an ad hoc
recursive type that can be viewed as simultaneously closed and open
and that grows with time.
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From semantics back to syntax?

The present work can be viewed as an attempt to reverse-engineer
some of the semantic constructions in the literature and bring them
back in the realm of syntax.

To put this another way, the idea is to build a semantic model of
general references as the composition of:

• a type-preserving store-passing translation into some
intermediate language;

• a semantic model of this intermediate language.
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An answer to a challenge?

The present work can also be viewed as an answer to the challenge
of defining a type-preserving store-passing translation,

with the proviso that well-typedness must guarantee: no
out-of-bounds accesses to the store.
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Which recursive kinds?

So, we need a calculus with recursive kinds.

Do we want a calculus with all recursive kinds?

No. This would lead to a rather wild system where types can exhibit
arbitrary computational behavior.

Do we need a calculus with all recursive kinds?

No. It turns out that certain well-behaved recursive kinds suffice...
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A system of controlled recursion

Nakano’s system [2000, 2001] has certain, but not all, recursive
types.

Well-typed terms are not necessarily strongly normalizing, but are
productive.

It turns out that the patterns of recursion that are needed to
define worlds, world composition, etc. are well-typed in Nakano’s
system.
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The plan

In summary, the plan is:

1 define Fork, a variant of Fω equipped with Nakano’s system at
the kind level;

2 define a type-preserving store-passing translation of general
references into Fork;

3 (for semanticists only) build a model of Fork;

4 get filthy rich (!?).
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Types

Nakano’s types are co-inductively defined by:

κ ::= ? | κ→ κ | • κ

In fact, only well-formed, finite types are permitted...
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Types

A type is well-formed iff every infinite path infinitely often enters a
bullet.

In a finite presentation, this means that every cycle enters a bullet.
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Types

A type is finite iff every rightmost path is finite.

In a finite presentation, this means that every cycle enters the
left-hand side of an arrow.
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Subtyping

Subtyping is a pre-order and additionally validates the following laws:

κ′1 ≤ κ1 κ2 ≤ κ′2
κ1 → κ2 ≤ κ′1 → κ′2

κ ≤ κ′

• κ ≤ • κ′
κ ≤ • κ • (κ1 → κ2) Q • κ1 → • κ2

When types are finitely represented by a set of mutually recursive
equations, subtyping is (efficiently) decidable.
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Terms

Nakano’s terms are pure λ-terms:

τ ::= α | λα.τ | τ τ
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Type-checking

The type-checking rules are standard:

K ` α : K(α)
K; α : κ1 ` τ : κ2
K ` λα.τ : κ1 → κ2

K ` τ1 : κ1 → κ2
K ` τ2 : κ1

K ` τ1 τ2 : κ2

K ` τ : κ1 κ1 ≤ κ2
K ` τ : κ2
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Subject Reduction

Theorem (Subject Reduction)

K ` τ1 : κ and τ1 �� τ2 imply K ` τ2 : κ.

The proof relies on the following unusual lemma:

Lemma (Degradation)

K ` τ : κ implies • K ` τ : • κ.
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Productivity

Theorem (Productivity)

K ` τ : κ implies that τ admits a head normal form.

The proof, due to Nakano, uses realizability / logical relations...
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Productivity

Types are interpreted as sets of terms:

JκK0 = {τ}
J?Kj+1 = {τ | τ ��? α τ1 . . . τn}

Jκ1 → κ2Kj+1 = {τ1 | ∀k ≤ j + 1 ∀τ2 ∈ Jκ1Kk (τ1 τ2) ∈ Jκ2Kk}
J• κKj+1 = JκKj

This definition makes sense only because types are well-formed.

The sequence JκKj is monotonic and reaches a limit JκK =
⋂
j JκKj .

35 / 71



Productivity

The interpretation validates subtyping:

Lemma

κ1 ≤ κ2 implies Jκ1Kj ⊆ Jκ2Kj .

The interpretation validates type-checking:

Theorem

K ` τ : κ implies τ ∈ JκK.

The fact that every well-typed term admits a head normal form
follows.
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Böhm trees

As a consequence of Subject Reduction and Productivity, we have:

Corollary

Every well-typed term admits a maximal Böhm tree.
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Recursion

Let Y stand for λf.((λx.f (x x)) (λx.f (x x))).

The judgement ` Y : (κ→ κ)→ κ cannot be derived. Otherwise, the
term Y (λx.x), which does not have a head normal form, would be
well-typed, contradicting Productivity.

This judgement can be derived in simply-typed λ-calculus with
recursive types. The self-application (x x) requires x : κ′, where κ′

satisfies κ′ ≡ κ′ → κ. In Nakano’s system, this type is ill-formed.
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Recursion

Y stands for λf.((λx.f (x x)) (λx.f (x x))).

In Nakano’s system, one uses x : κ′, where κ′ ≡ • (κ′ → κ) ≡ • κ′ → • κ.

Thus, the self-application (x x) has type • κ.

Assuming f : • κ→ κ, we find that f (x x) has type κ. Thus, λx.f (x x)
has type κ′ → κ. By subtyping, it also has type • (κ′ → κ), that is,
κ′. Thus, the self-application (λx.f (x x)) (λx.f (x x)) has type κ.

This leads to ` Y : (• κ→ κ)→ κ.

An intuition is, only the contractive functions have fixed points.
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Recursion

Let µα.τ be sugar for Y (λα.τ). Then, the following rule is derivable:

K; α : • κ ` τ : κ
K ` µα.τ : κ
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Fork

Fω with recursive kinds, Fork for short, uses Nakano’s system at the
kind and type levels.

This yields a system with very expressive recursive types: a recursive
type is produced by a non-terminating, but productive, type-level
computation.
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Syntax

κ ::= . . . (as before)

τ ::= . . . (as before)
| → | () | ( , ) | ∀κ | ∃κ (type constants)

t ::= x | λx.t | t t (functions)
| () (unit)
| (t, t) | let (x, x) = t in t (pairs)
| Λα.t | t τ (universals)
| pack τ, t as τ | unpack α, x = t in t (existentials)
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Kind assignment

The kind assignment judgement K ` τ : κ is Nakano’s, extended with
axioms for the type constants:

1. K ` () : ?
2. K ` → : •?→ •?→ ?
3. K ` ( , ) : •?→ •?→ ?
4. K ` ∀κ : (κ→ •n ?)→ •n ?
5. K ` ∃κ : (κ→ •n ?)→ •n ?

Axioms 2 & 3 reflect the idea that → and ( , ) are type
constructors, as opposed to arbitrary type operators. They build
structure on top of their arguments, that is, they are contractive.

Due to this decision, the types that classify values have kind •n ? in
general. Axioms 4 & 5 reflect this.
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Notation

I write Γ ` τ :©κ when Γ ` τ : • nκ holds for some n.
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Type-checking

Var
Γ ` x : Γ(x)

Abs
Γ ` τ1 :©? Γ; x : τ1 ` t : τ2

Γ ` λx.t : τ1 → τ2

App
Γ ` t1 : τ1 → τ2 Γ ` t2 : τ1

Γ ` t1 t2 : τ2

Unit
Γ ` () : ()

( , )-Intro
Γ ` t1 : τ1 Γ ` t2 : τ2

Γ ` (t1, t2) : (τ1, τ2)

( , )-Elim
Γ ` t1 : (τ1, τ2)

Γ; x1 : τ1 ; x2 : τ2 ` t2 : τ

Γ ` let (x1, x2) = t1 in t2 : τ

∀-Intro
Γ; α : κ ` t : τ α # Γ

Γ ` Λα.t : ∀κ (λα.τ)

∀-Elim
Γ ` t : ∀κ τ1
Γ ` τ2 :©κ

Γ ` t τ2 : τ1 τ2

∃-Intro
Γ ` t : τ1 τ2

Γ ` ∃κ τ1 :©? Γ ` τ2 :©κ
Γ ` pack τ2, t as ∃κ τ1 : ∃κ τ1

∃-Elim
Γ ` t1 : ∃κ τ1 α # Γ, τ2
Γ; α : κ; x : (τ1 α) ` t2 : τ2

Γ ` unpack α, x = t1 in t2 : τ2

Conversion
Γ ` t : τ1

Γ ` τ2 :©? τ1 ≡ τ2
Γ ` t : τ2
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Some technical results

Definition (Well-formedness)

The empty typing environment is well-formed. The typing environment
Γ; α : κ is well-formed if Γ is well-formed and α # Γ. The typing
environment Γ; x : τ is well-formed if Γ is well-formed and Γ ` τ :©?.

Lemma (Well-formedness)

If Γ is well-formed, then Γ ` t : τ implies Γ ` τ :©?.
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Some technical results

Lemma (Degradation)

Γ1; α : κ; Γ2 ` t : τ implies Γ1; α : • κ; Γ2 ` t : τ.

Lemma (Type substitution)

Γ1; α : κ; Γ2 ` t : τ2 and Γ1 ` τ1 : κ imply
Γ1; [α 7� τ1]Γ2 ` [α 7� τ1]t : [α 7� τ1]τ2.

Corollary (Type substitution with degradation)

Γ1; α : κ; Γ2 ` t : τ2 and Γ1 ` τ1 :©κ imply
Γ1; [α 7� τ1]Γ2 ` [α 7� τ1]t : [α 7� τ1]τ2.
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More technical results

Lemma (Value substitution)

...

Lemma (Subject Reduction)

...

Lemma (Progress)

...
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Worlds

A world is a contractive function of worlds to fragments:

kind fragment = * -> *

kind world = later world -> fragment

That is, a world must produce some structure before invoking its
world argument.

There is a direct analogy with the metric approach used by some
semanticists [Schwinghammer et al., 2009, Birkedal et al., 2009].
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Worlds

World composition is recursively defined.

type o : world -> world -> world =

\w1 w2 x. w1 (w2 ‘o‘ x) ‘@‘ w2 x

Composition is associative:

lemma compose_associative:

forall w1 w2 w3.

(w1 ‘o‘ w2) ‘o‘ w3 = w1 ‘o‘ (w2 ‘o‘ w3)

The proof is automatic. In fact, it is not necessary to state the
lemma – the type-checker could find out that it must prove this.
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Semantic types

Just like a world, a semantic type is a contractive function of a
world.

kind stype = later world -> *

Let our source language be a monadic presentation of System F with
general references:

T ::= () | (T, T ) | T → T | ∀α.T | M T | ref T

We encode each of these connectives as a semantic type
transformer...
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Unit, pair, universal quantification

Here are the easy ones:

type unit : stype =

\x. ()

type pair : stype -> stype -> stype =

\a b. \x. (a x, b x)

type univ : (stype -> stype) -> stype =

\body : stype -> stype. \x.

forall a. body a x

The future world x is not used, only transmitted down.
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Necessity and arrow

A value is necessary if it is valid not only now, but also in every
future world:

type box : stype -> stype =

\a. \x.

forall y. a (x ‘o‘ y)

Functions require necessary arguments and produce necessary
results:

type arrow : stype -> stype -> stype =

\a b. \x. box a x -> box b x
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The monad

A computation requires a current store and produces a value and
store in some future world:

type monad : stype -> stype =

\a. \x.

store x -> outcome a x

type outcome : stype -> stype =

\a. \x.

exists y. (box a (x ‘o‘ y), store (x ‘o‘ y))
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The store

A store in world w is an array of necessary values:

type store : world -> * =

\w. forall x. array (w x)

A reference in world w is an index into such an array:

type ref : stype -> stype =

\a x. forall y. index (x y) (a (x ‘o‘ y))

What are arrays, what are indices?
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Arrays and indices

Arrays and indices can be implemented in Fω:

type array : later fragment -> *

type index : later fragment -> later * -> *

term array_empty : array fnil

term array_extend :

forall f data. array f -> data -> array (f ‘snoc‘ data)

term array_read :

forall f data. array f -> index f data -> data

term array_write :

forall f data. array f -> index f data -> data -> array f

term array_end_index :

forall f. array f -> forall data. index (f ‘snoc‘ data) data

term index_monotonic :

forall f1 f2 data. index f1 data -> index (f1 ‘@‘ f2) data
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Singleton worlds

When a new reference is allocated, the world grows by one cell:

type cell : stype -> later world -> world =

\a x y tail. (a (x ‘o‘ cell a x ‘o‘ y), tail)
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Allocating a new cell

Here is how the world changes when a new memory cell is allocated.

The following two functions respectively return the new store and the
address of the new cell:

term store_extend :

forall x a. store x -> box a x -> store (x ‘o‘ cell a x)

term store_end_index :

forall x a. store x -> ref a (x ‘o‘ cell a x)

Up to type abstractions and applications, The former is just
array_extend, while the latter is just array_end_index...
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Allocating a new cell

For instance:

term store_extend : forall x a. store x -> box a x -> store (x ‘o‘ cell a x) =

/\ x a.

\s : store x.

\v : box a x.

/\ y.

type cy = cell a x ‘o‘ y in

array_extend [x cy] [a (x ‘o‘ cy)] (s [cy]) (v [cy])

Mechanized type-checking is essential.
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Encoding the operations on references

It is now straightforward to encode these operations:

term new :

box (univ (\a. a ‘arrow‘ monad (ref a))) nil

term read :

box (univ (\a. ref a ‘arrow‘ monad a)) nil

term write :

box (univ (\a. (ref a ‘pair‘ a) ‘arrow‘ monad unit)) nil
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Encoding the monadic combinators

It is also straightforward to encode the monadic combinators:

term return :

box (univ (\a. a ‘arrow‘ monad a)) nil

term bind :

box (univ (\a. univ (\b.

(monad a ‘pair‘ (a ‘arrow‘ monad b)) ‘arrow‘ monad b

))) nil
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Statistics

The complete encoding is about 800 lines of kind/type/term
definitions, lemmas, and comments.

It is checked in 0.1 seconds.
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Conclusion

What conclusions can be drawn?

• The encoding exists.

• Semanticists do this on paper; here, it is machine-checked.

• You wouldn’t want to implement this in a compiler!

• Fork is an economical and expressive calculus.
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