
Hiding local state in direct style:
a higher-order anti-frame rule

François Pottier

January 28th, 2008

1 / 65

Contents

Introduction

Basics of the type system

A higher-order anti-frame rule

Applications

Conclusion

Bibliography

2 / 65

Hidden state

Many “objects” (or “modules”, “components”, “functions”) rely on a
piece of modifiable internal state, yet publish an informal specification
that does not reveal the existence of such a state.

3 / 65

Hidden state

For instance, a memory manager might maintain a linked list of freed
memory blocks.

Yet, clients need not, and wish not, know anything about it.

They need not even be told that the memory manager has a certain
abstract invariant.

Telling them so would force them to publish the fact that they require
and preserve this invariant. In short, every (direct or indirect) client of
the memory manager would have to declare itself as such! That would
not be modular.

4 / 65

Hiding versus abstraction

Hiding is not abstraction. Hiding pretends that there is no internal
state, while abstraction acknowledges that there is one, but makes its
type (and properties) abstract.

Both protect the internal state from interference by clients, and
protect clients from changes in the representation of the internal
state.

5 / 65

Hiding versus abstraction

Hiding offers the additional advantage that objects with internal state
appear as ordinary objects, hence can be untracked. It is not
necessary to ask how they are aliased, who owns them, or how they
internal state is threaded through client computations.

Abstraction offers the additional advantage that clients can reason
about state changes. The computational state, which has abstract
type, can be declared to represent some logical state, at a concrete
type. For instance, the internal state of a hash table can be declared
to represent a mathematical finite map.

In practice, both hiding and abstraction are useful, albeit in different
circumstances.

6 / 65

Hiding versus abstraction

Consider an object that produces a stream of the prime numbers.

If it is specified that each invocation returns the next prime number,
then the internal state can only be abstract.

If it is only specified that each invocation returns some prime number,
then the state can be hidden.

7 / 65

Hiding versus abstraction

Whether an object’s internal state can be hidden depends not on the
object’s actual behavior, but only on its specification.

As specifications become weaker, opportunities for hiding state increase!

When specifications are just types, which describe the structure of
data and the structure of the store, these opportunities are quite
numerous.

8 / 65

Towards a formalization

How could the concept of hidden state be made precise in a formal
framework for reasoning about programs?

In this talk, I attempt to provide an answer...

9 / 65

Towards a formalization

Which formal frameworks provide an appropriate setting in which to ask
(and answer) this question?

Any system that keeps track of aliasing and ownership properties, and
allows expressing pre- and post-conditions that describe the structure
of the store, should do.

Pick one of: Hoare logic / separation logic / bunched typing / type
systems with regions and capabilities / Hoare type theory /
you-name-it...

10 / 65

Towards a formalization

In this talk, I use the vocabulary of a type system for an ML-like
programming language [Charguéraud and Pottier, 2007].

It should be possible to transpose the main idea to another setting.
(If you think I should do so, please do come and talk to me!)

11 / 65

Contents

Introduction

Basics of the type system

A higher-order anti-frame rule

Applications

Conclusion

Bibliography

12 / 65

The host type system

This type system is the setting in which I develop a rule for hiding
state and prove (syntactic) type soundness.

The details of the type system are somewhat unimportant for this
talk, so I will flash them by...

13 / 65

Regions

A region ρ is a static name for a set of values.

The type [ρ] is the type of the values that inhabit the region ρ.

In this talk, there are only singleton regions, so a region ρ is a static
name for a value, and [ρ] is a singleton type.

14 / 65

Capabilities

A singleton capability {ρ : θ} is a static token that serves two roles.

First, it carries a memory type θ, which describes the structure and
extent of the memory area to which the value ρ gives access. Second,
it represents ownership of this area.

For instance, {ρ : ref int} asserts that the value ρ is the address of
a reference cell, and asserts ownership of this cell.

Capabilities are linear: they are never duplicated.

15 / 65

Capabilities (summary)

On top of singleton capabilities, one builds composite capabilities:

C ::= ∅ empty heap
| {ρ : θ} singleton heap
| C1 ∧ C2 (separating) conjunction
| ∃ρ.C embedded region
| C1 ⊗ C2 (explained later on)

There is a clear analogy between capabilities and separation logic
assertions.

16 / 65

Memory types

Here is a summary of memory types:

θ ::= ⊥ | unit | θ1 + θ2 | θ1 × θ2 data
| σ1 → σ2 functions
| [ρ] indirection via a region
| ref θ reference cell
| C ∧ θ embedded capability
| ∃ρ.θ embedded region
| θ ⊗ C (explained later on)

Memory types express ownership, so they are linear.

17 / 65

Value types (summary)

Values receive value types:

τ ::= ⊥ | unit | τ1 + τ2 | τ1 × τ2 data
| σ1 → σ2 functions
| [ρ] indirection via a region
| τ ⊗ C (explained later on)

Values are non-linear: they can be discarded or duplicated at will.

Value types form a subset of memory types, deprived of references and
embedded capabilities.

18 / 65

Judgements about values

Judgements about values take the form:

Γ ` v : τ

Type environments Γ associate value types with variables.

Values do not involve computation, which is why this judgement form
does not involve any capabilities, either as input or as output.

19 / 65

Judgements about terms

Judgements about terms take the form:

Γ ; C ` t : σ

The capability C and the computation type σ respectively describe the
initial and final shapes of the store. Judgements about terms are
analogous to Hoare triples in separation logic.

Computation types are:

σ ::= τ | C ∧ σ | ∃ρ.σ | σ ⊗ C

20 / 65

Typing rules for references

References are tracked: allocation produces a singleton capability, which
is later required for access.

ref : τ → ∃ρ.{ρ : ref τ} [ρ]
get : {ρ : ref τ} [ρ] → {ρ : ref τ} τ
set : {ρ : ref τ1} ([ρ] × τ2) → {ρ : ref τ2} unit

21 / 65

Contents

Introduction

Basics of the type system

A higher-order anti-frame rule

Applications

Conclusion

Bibliography

22 / 65

The first-order frame rule

The first-order frame rule states that, if a term behaves correctly in a
certain store, then it also behaves correctly in a larger store, and
does not affect the part of the store that it does not know about:

Γ ; C2 ` t : σ

Γ ; (C1 ∧ C2) ` t : (C1 ∧ σ)

This rule can also take the form of a simple subtyping axiom:

σ1 → σ2 ≤ (C ∧ σ1) → (C ∧ σ2)

23 / 65

The first-order frame rule

The frame rule makes a capability unknown to a term, while known to
its context.

To hide a piece of local state is the exact dual: to make a capability
known to a term, yet unknown to its context.

24 / 65

Hidden state via frame rules

In a programming language with higher-order functions, one could hope
to be able to exploit the duality between terms and contexts.

By viewing the context as a term, a continuation, one could perhaps
use a frame rule to hide a piece of local state.

This is the approach of Birkedal, Torp-Smith, and Yang [2006], who
follow up on earlier work by O’Hearn, Yang, and Reynolds [2004].

25 / 65

Hidden state via frame rules

Imagine that we have a provider, a term of type:

C ∧ ((C ∧ unit) → (C ∧ int))

The provider initially establishes C and returns a function that requires
C and preserves it.

This could be the type of a stream of integers, with internal state.

26 / 65

Hidden state via frame rules

We now wish to hide C and pretend that the provider is an ordinary
function, of type unit → int.

Applying the frame rule to the provider would not help.

We must apply the frame rule to the client.

27 / 65

Hidden state via frame rules

Imagine the client is a term of type:

(unit → int) → a

This client is explicitly abstracted over the provider. The type a is
some answer type.

The client does not know about the invariant C. It views the provider
as an ordinary function, without side effects.

28 / 65

Hidden state via frame rules

The first-order frame rule alone does not help type-check the function
application (client provider).

This is where Birkedal et al.’s higher-order frame rule [2006] comes
into play. The rule guarantees:

(unit → int) → a ≤ (C ∧ (C ∧ unit → C ∧ int)) → (C ∧ a)

That is, if C holds initially and if the provider preserves C, then, the
client will unwittingly preserve it as well.

29 / 65

Hidden state via frame rules

After applying the higher-order frame rule, the client has type:

(C ∧ (C ∧ unit → C ∧ int)) → (C ∧ a)

Recall that the provider has type:

C ∧ ((C ∧ unit) → (C ∧ int))

So the function application (client provider) is in fact well-typed, and
has type C ∧ a.

30 / 65

Hidden state via frame rules

In a modular setting, the client is unknown. One must abstract the
provider over the client. If one admits the subtyping axiom C ≤ ∅, then
the value:

λclient.(client provider)

has type:
((unit → int) → a) → a

This is the double negation of the desired type.

We succeeded, but were led to use continuation-passing style.

31 / 65

Hidden state via frame rules

Is this approach to hidden state realistic?

I claim not: continuation-passing style is not practical.

What is a direct-style analogue of the higher-order frame rule?

32 / 65

Towards a higher-order anti-frame rule

We need a (higher-order) anti-frame rule, that is, a rule that explains
hidden local state without requiring a switch to continuation-passing
style.

33 / 65

The higher-order frame rule

Let me first recall the higher-order frame rule.

Its general form is:
σ ≤ σ ⊗ C

The type σ ⊗ C (“σ under C”) describes the same behavior as σ , and
additionally requires C to be available at every interaction between the
term and its context.

34 / 65

The higher-order frame rule

The operator · ⊗ C makes C a new pre-condition and a new
post-condition of every arrow within its left-hand argument:

(σ1 → σ2) ⊗ C = (C ∧ (σ1 ⊗ C)) → (C ∧ (σ2 ⊗ C))

The operator · ⊗ C commutes with products, sums, references, etc. It
vanishes at base types.

35 / 65

Towards a higher-order anti-frame rule

A reasonable approximation of the anti-frame rule is:

C ∧ (σ ⊗ C) ≤ σ (unsound)

The rule states that:

• Term must guarantee C when abandoning control to Context;

• then, C will hold whenever Context has control, even though
Context does not know about C;

• thus, Term may assume C when receiving control from Context.

36 / 65

Towards a higher-order anti-frame rule

The candidate rule on the previous slide is sound only for closed terms
that run in an empty store.

In general, interaction between Term and Context takes place also via
the function values found in the environment or in the store.

As a result, the type environment and the type of the store too must
have internal and external versions.

37 / 65

A higher-order anti-frame rule

A sound version of the rule is:

Anti-frame
Γ ⊗ C1 ; C2 ⊗ C1 ` t : C1 ∧ (σ ⊗ C1)

Γ ; C2 ` t : σ

This is dual to the frame rule: the invariant C1 is known inside,
unknown outside.

38 / 65

Type soundness

The type system is proven sound via a standard syntactic argument,
which involves subject reduction and progress theorems.

A key lemma is Revelation: a valid judgement remains valid after a
previously hidden invariant R is revealed.

Lemma (Revelation)

Γ ` v : τ implies Γ ⊗ R ` v : τ ⊗ R
Γ ; C ` t : σ implies Γ ⊗ R ; R ∧ (C ⊗ R) ` t : R ∧ (σ ⊗ R)

39 / 65

Contents

Introduction

Basics of the type system

A higher-order anti-frame rule

Applications

Conclusion

Bibliography

40 / 65

Applications

If there is time, I would like to present three applications of the
anti-frame rule:

• untracked references, in the style of ML;

• untracked lazy thunks;

• a generic fixed point combinator.

41 / 65

Untracked references

In this type system, references are tracked: a reference cannot be
read or written unless an appropriate capability is presented. This is
heavy – capabilities are linear – but allows strong update.

In ML, references are untracked: no capability is required to read or
write a cell, and references can be aliased. This is lightweight, but the
type of a reference must remain fixed forever.

42 / 65

Untracked references

Tracked and untracked references have different qualities, so it seems
pragmatically desirable for a programming language to offer both.

The good news is, in theory, untracked references can be encoded in
terms of tracked references and the anti-frame rule.

43 / 65

Untracked references

The following two slides present the encoding.

For simplicity, the first slide shows integer references. The second slide
presents the general case of references to an arbitrary value type α.

44 / 65

Untracked integer references

def type uref = – a non-linear type!

(unit → int) × (int → unit)

let mkuref : int → uref =
λ(v : int).
let ρ, (r : [ρ]) = ref v in – got { ρ: ref int }
hide R = { ρ: ref int } outside of
let uget : (R ∧ unit) → (R ∧ int) =
λ(). get r

and uset : (R ∧ int) → (R ∧ unit) =
λ(v : int). set (r, v)

in (uget, uset) – this pair has type uref ⊗ R
– to the outside, uref

45 / 65

Generic untracked references

def type uref α = – parameterize over α
(unit → α) × (α → unit)

let mkuref : ∀α.α → uref α =
λ(v : α).
let ρ, (r : [ρ]) = ref v in – got { ρ: ref α }
hide R = { ρ: ref α } ⊗ R outside of – got { ρ: ref α } ⊗ R
let uget : (R ∧ unit) → (R ∧ (α ⊗ R)) = – that is, R
λ(). get r – also { ρ: ref (α ⊗ R) }

and uset : (R ∧ (α ⊗ R)) → (R ∧ unit) =
λ(v : α ⊗ R). set (r, v)

in (uget, uset) – type: (uref α) ⊗ R
– to the outside, uref α

46 / 65

Lazy thunks

I now define lazy thunks, which are built once and can be forced any
number of times.

Thunks are untracked and can be freely aliased. Yet, the type system
guarantees that each thunk is evaluated at most once.

A thunk contains a hidden reference to an internal state with three
possible colors (unevaluated, being evaluated, evaluated). Any attempt
to ignore the dangers of re-entrancy and use only two colors would be
ill-typed, by virtue of the anti-frame rule.

47 / 65

Lazy thunks – part 1

def type thunk α =
unit → α

def type state γ α = – internal state:

W (γ ∧ unit) + G unit + B α – white/grey/black

let mkthunk : ∀γα.(γ ∧ ((γ ∧ unit) → α)) → thunk α =
λ(f : (γ ∧ unit) → α). – got γ
let ρ, (r : [ρ]) = ref (W ()) in – got { ρ: ref (state γ α) }
hide R = { ρ: ref (state γ α) } ⊗ R outside of
· – got R
· – f: ((γ ∧ unit) → α) ⊗ R
· – f: (R ∧ (γ ⊗ R) ∧ unit) → (R ∧ (α ⊗ R))

48 / 65

Lazy thunks – part 2

let force : (R ∧ unit) → (R ∧ α ⊗ R) =
λ(). – state γ α = W (γ ∧ unit) + G unit + B α
case get r of – got R = { ρ: ref (state γ α) } ⊗ R
| W () → – got { ρ: ref (W unit + G ⊥ + B ⊥) } ∧ (γ ⊗ R)
set (r, G ()); – got R ∧ (γ ⊗ R)
let v : (α ⊗ R) = f() in – got R; (γ ⊗ R) was consumed by f

set (r, B v); – got R
v

| G () → fail – without γ ⊗ R, invoking f is forbidden

| B (v : α ⊗ R) → v
in force – force: (thunk α) ⊗ R

– to the outside, thunk α

49 / 65

A fixed point combinator

The fixed point combinator ties a knot in the store in the style of
Landin.

It is perhaps not very surprising, but illustrates:

• a use of the anti-frame rule at order 3;

• a delayed initialization, via a strong update;

• a hidden invariant that does not hold upon entry, but does hold
upon exit, of the hide construct.

50 / 65

A fixed point combinator

let fix : ∀α1α2.((α1 → α2) → (α1 → α2)) → α1 → α2 =
λ(f : (α1 → α2) → (α1 → α2)).
let ρ, (r : [ρ]) = ref () in – got { ρ: ref unit }
hide R = { ρ: ref (α1 → α2) } ⊗ R outside of
· – haven’t got R yet!

let g : (α1 → α2) ⊗ R = – g invokes !r

λ(x : α1 ⊗ R). get r x – within g, got R
in let h : (α1 → α2) ⊗ R = – h invokes f, routing recursive calls to g

λ(x : α1 ⊗ R). f g x – f: ((α1 → α2) → (α1 → α2)) ⊗ R
in set (r, h); – a strong update establishes R
h – got R now, as required by anti-frame

– h: (α1 → α2) ⊗ R
– to the outside, α1 → α2

51 / 65

Contents

Introduction

Basics of the type system

A higher-order anti-frame rule

Applications

Conclusion

Bibliography

52 / 65

Conclusion

In summary, a couple of key ideas are:

• a practical rule for hiding state must be in direct style;

• it is safe for a piece of hidden state to be untracked, as long as
its invariant holds at every interaction between Term and Context.

There are more details in the paper [Pottier, 2008].

53 / 65

Future work

Here are a few directions for future research:

• formally relate frame and anti-frame via a CPS transform;

• extend the functional interpretation developed with Charguéraud in
the absence of anti-frame.

54 / 65

Appendix: typing rules for values

var
(x : τ) ∈ Γ

Γ ` x : τ

unit

Γ ` () : unit

inj

Γ ` v : τi

Γ ` (inji v) : (τ1 + τ2)

prim

p : τ

Γ ` p : τ

pair

Γ ` v1 : τ1 Γ ` v2 : τ2

Γ ` (v1, v2) : (τ1 × τ2)

fun
(Γ, x : τ) ; C ` t : σ

ρ̄ # Γ, σ

Γ ` (λx. t) : (∃ρ̄.(C ∧ τ)) → σ

55 / 65

Appendix: typing rules for terms

val
Γ ` v : τ

Γ ; C ` v : C ∧ τ

app

Γ ` v : σ1 → σ2
Γ ; C ` t : σ1

Γ ; C ` (v t) : σ2

sub-left
Γ ; C2 ` t : σ
C1 ≤ C2

Γ ; C1 ` t : σ

sub-right
Γ ; C ` t : σ1
σ1 ≤ σ2

Γ ; C ` t : σ2

∃ρ-elim
Γ ; C ` t : σ ρ # Γ, σ

Γ ; (∃ρ.C) ` t : σ

frame
Γ ; C2 ` t : σ

Γ ; (C1 ∧ C2) ` t : (C1 ∧ σ)

anti-frame
Γ ⊗ C1 ; C2 ⊗ C1 ` t : C1 ∧ (σ ⊗ C1)

Γ ; C2 ` t : σ

56 / 65

Appendix: some subtyping rules

func : τ ≡ ∃ρ.{ρ : τ} [ρ]

free : C ≤ ∅

embed-rgn : {ρ1 : ∃ρ2.θ} ≡ ∃ρ2.{ρ1 : θ}
embed-cap : {ρ1 : C ∧ θ} ≡ C ∧ {ρ1 : θ}

57 / 65

Appendix: pairs

proj1 : {ρ : τ1 × θ2} [ρ] → {ρ : τ1 × θ2} τ1

focus-pair1 : {ρ : θ1 × θ2} ≡ ∃ρ1.{ρ : [ρ1] × θ2}{ρ1 : θ1}

58 / 65

Appendix: sums

case : {ρ : θ1 + θ2} ([ρ]
× ((∃ρ1.{ρ : [ρ1] + ⊥}{ρ1 : θ1} [ρ1]) → σ)
× ((∃ρ2.{ρ : ⊥ + [ρ2]}{ρ2 : θ2} [ρ2]) → σ)) → σ

sub-sum1 : {ρ : θ1 + ⊥} ≤ {ρ : θ1 + θ2}
focus-sum1 : {ρ : θ1 + ⊥} ≡ ∃ρ1.{ρ : [ρ1] + ⊥}{ρ1 : θ1}

59 / 65

Revelation: excerpt of proof

Here is the case of an application:

Γ ` v : σ1 → σ2
Γ ; C ` t : σ1

Γ ; C ` (v t) : σ2
becomes

Γ ⊗ R ` v : (σ1 → σ2) ⊗ R
Γ ⊗ R ; R ∧ (C ⊗ R) ` t : R ∧ (σ1 ⊗ R)

Γ ⊗ R ; R ∧ (C ⊗ R) ` (v t) : R ∧ (σ2 ⊗ R)

This is still a valid application, thanks to the equality:

(σ1 → σ2) ⊗ R = (R ∧ (σ1 ⊗ R)) → (R ∧ (σ2 ⊗ R))

60 / 65

How Revelation is used

The gist of the subject reduction proof is that anti-frame extrudes up
through evaluation contexts:

AF

∆

Γ ⊗ R ; C ⊗ R ` t : R ∧ (σ ⊗ R)

Γ ; C ` t : σ

· · ·

Γ′ ; C′ ` E[t] : σ′

∆

Γ ⊗ R ; C ⊗ R ` t : R ∧ (σ ⊗ R)

· · · ⊗ R

Γ′ ⊗ R ; R ∧ (C′ ⊗ R) ` E[t] : R ∧ (σ′ ⊗ R)

Γ′ ; C′ ` E[t] : σ′ AF

The proof is immediate: apply Revelation to (the type derivation for) the
evaluation context E[·].

61 / 65

How Revelation is used

This proof technique backs up the intuition that an application of the
anti-frame rule amounts to an application of the higher-order frame
rule to the evaluation context.

Note: I am quite confident that the type system is sound, but am not
done writing the proof yet.

62 / 65

Contents

Introduction

Basics of the type system

A higher-order anti-frame rule

Applications

Conclusion

Bibliography

63 / 65

Bibliography I

(Most titles are clickable links to online versions.)

Birkedal, L., Torp-Smith, N., and Yang, H. 2006.
Semantics of separation-logic typing and higher-order frame rules
for Algol-like languages.
Logical Methods in Computer Science 2, 5 (Nov.).

Charguéraud, A. and Pottier, F. 2007.
Functional translation of a calculus of capabilities.
Submitted.

O’Hearn, P., Yang, H., and Reynolds, J. C. 2004.
Separation and information hiding.
In ACM Symposium on Principles of Programming Languages (POPL).
268–280.

64 / 65

http://arxiv.org/pdf/cs.LO/0610081
http://arxiv.org/pdf/cs.LO/0610081
http://cristal.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf
http://www.dcs.qmul.ac.uk/~ohearn/papers/separation-and-hiding.pdf

[II

Bibliography]Bibliography

Pottier, F. 2008.
Hiding local state in direct style: a higher-order anti-frame rule.
Submitted.

65 / 65

http://cristal.inria.fr/~fpottier/publis/fpottier-antiframe-2008.pdf

	Introduction
	Basics of the type system
	A higher-order anti-frame rule
	Applications
	Conclusion
	Bibliography

