
Static name control for FreshML

François Pottier

May 28th, 2007

Outline

1 Introduction

2 What do we prove and how?

3 A complete example

4 Conclusion

What is FreshML?

Everyone in this room has seen some variant of this archetypical
FreshML type definition:

type term =
| Var of atom
| Abs of 〈atom〉term
| App of term × term

In short, FreshML [Pitts and Gabbay, 2000] extends ML with
primitive expression- and type-level constructs for atoms and
abstractions.

What is the point?

The point is to allow transformations to be defined in a natural style:

1 fun sub accepts a , t , s =
2 case s of
3 | Var (b) →
4 i f a = b then t else Var (b)
5 | Abs (b , u) →
6 Abs (b , sub (a , t , u))
7 | App (u , v) →
8 App (sub (a , t , u) , sub (a , t , v))
9 end

The dynamic semantics of FreshML dictates that, on line 5, the
name b is automatically chosen fresh for both a and t. The term u
is renamed accordingly. As a result, no capture can occur.

FreshML abstractions are opaque

Shinwell and Pitts [2005] have shown that the encodings of two
alpha-equivalent terms are observationally equivalent.

That is, an abstraction effectively hides the identity of its bound
atom.

FreshML is impure

Unfortunately, not every FreshML function denotes a mathematical
function, because fresh name generation is a computational effect.

Can you spot the flaw in this code snippet?

fun eta reduce accepts t =
case t of
| Abs (x , App (e , Var (y))) →

i f x = y then eta reduce (e) else next case
| . . .

A slogan

Ideally, a FreshML compiler should check that freshly generated names
do not escape, or, in other words, that every function is pure.

Paraphrasing a famous quote – thanks, Dale – the compiler should
ensure that

there is (in the end) no such thing as a free name!

The required check is exactly the same as in Berghofer and Urban’s
nominal package.

Towards domain-specific program proof

Just like type-checking, the task is in principle easy, but overwhelming
for a human. It is a prime candidate for automation.

It is, however, slightly more ambitious than traditional type-checking.
We are looking at a kind of domain-specific program proof.

Manual specifications (preconditions, postconditions, etc.) will
sometimes be required, but all proofs will be fully automated.

Contribution

My contribution is to:

• introduce a simple logic for reasoning about values and sets of
names, equipped with a (slightly conservative) decision procedure;

• allow logical assertions to serve as preconditions and
postconditions and to appear within algebraic data type
definitions;

• exploit alphaCaml’s flexible language for defining algebraic data
types with binding structure.

Outline

1 Introduction

2 What do we prove and how?

3 A complete example

4 Conclusion

Where proof obligations arise

Wherever we write fresh x in e, we get:

• a hypothesis that x is fresh for all pre-existing objects;

• a proof obligation that x is fresh for the result of e.

An analogous phenomenon takes place when matching against an
abstraction pattern.

This is the well-known freshness condition for binders.

A simple example

Here is an excerpt of the capture-avoiding substitution function:

fun sub accepts a , t , s =
case s of
| Abs (b , u) →

Abs (b , sub (a , t , u))
| . . .

Matching against Abs yields the hypothesis b # a, t, s and the proof
obligation b # Abs(b, sub(a, t, u)) – a tautology, since b is never in the
support of Abs(b, . . .).

A more subtle example

Here is an excerpt of a “β0-reduction” function for λ-terms:

fun reduce accepts t =
case t of
| App (Abs (x , u) , Var (y)) →

reduce (sub (x , Var (y) , u))
| . . .

Proving that x is not in the support of the value produced by the
right-hand side requires some knowledge about the semantics of
capture-avoiding substitution.

Providing a postcondition

This knowledge is provided via an explicit postcondition:

fun sub accepts a , t , s
produces u where free (u) ⊆ free (t) ∪ (free (s) \ free (a)) =

. . .

This produces a new hypothesis within reduce and new proof
obligations within sub.

free denotes the free atoms (or support) function. It is defined at
every type.

Benefits inside reduce

First, the benefit:

fun reduce accepts t =
case t of
| App (Abs (x , u) , Var (y)) →

reduce (sub (x , Var (y) , u))
| . . .

The postcondition for sub, together with the (free) hypothesis that x
is fresh for y, tells us that x is fresh for sub(x, Var(y), u).

Furthermore, by (recursive) assumption, reduce is pure and has empty
support, so x is fresh for the entire right-hand side, as desired.

Obligations inside sub

Then, the obligations:

fun sub accepts a , t , s
produces u where free (u) ⊆ free (t) ∪ (free (s) \ free (a)) =
case s of
| Var (b) →

i f a = b then t else Var (b)
| . . .

The postcondition is propagated down into each branch of the case
and if constructs and instantiated where a value is returned. For
instance, inside the Var/else branch, one must prove

free(Var(b)) ⊆ free(t) ∪ free(s) \ free(a)

At the same time, branches give rise to new hypotheses. Inside the
Var/else branch, we have s = Var(b) and a 6= b.

The decision procedure

How do we check that

s = Var(b)
a 6= b

}
imply free(Var(b)) ⊆ free(t) ∪ free(s) \ free(a) ?

Well, s = Var(b) implies free(s) = free(Var(b)) by congruence, and
free(Var(b)) is free(b) by definition.

Furthermore, since a and b have type atom, a 6= b is equivalent to
free(a) # free(b).

The decision procedure

There remains to check that

free(s) = free(b)
free(a) # free(b)

}
imply free(b) ⊆ free(t) ∪ free(s) \ free(a)

No knowledge of the semantics of free is required to prove this, so
let us replace free(a) with A, free(b) with B, and so on...

(A, B, S, T denote finite sets of atoms.)

The decision procedure

There remains to check that

S = B
A # B

}
imply B ⊆ T ∪ S \ A

This is initially an assertion about finite sets of atoms, but one can
prove that its truth value is unaffected if we interpret it in the
2-point algebra of Booleans:

(¬S ∨ B) ∧ (¬B ∨ S)
¬(A ∧ B)

}
imply ¬B ∨ T ∨ (S ∧ ¬A)

So, the decision problem reduces to SAT.

(The reduction is incomplete. See the paper for the fine print!)

Outline

1 Introduction

2 What do we prove and how?

3 A complete example

4 Conclusion

Normalization by evaluation

As a slightly more advanced example, here is a version of
normalization by evaluation of untyped λ-terms in 50 lines of code.

Source terms

Source terms are just λ-terms.

1 type term =
2 | TVar of atom
3 | TLam of 〈 atom × inner term 〉
4 | TApp of term × term

Nothing new, except I now use alphaCaml syntax: in TLam(x, t), the
atom x is bound within the term t.

Semantic values and environments

Semantic values are very much like source terms, except
λ-abstractions carry an explicit environment.

6 type va lue =
7 | VVar of atom
8 | VClosure of 〈 env × atom × inner term 〉
9 | VApp of va lue × va lue

10

11 type env binds =
12 | ENi l
13 | ECons of env × atom × outer va lue

In VClosure(env, x, t), the atoms in bound(env), as well as the atom
x, are bound within the term t.

The keyword binds means that the type env is intended to appear
within abstraction brackets 〈·〉.

Evaluation 1

Evaluation of a term t under an environment env produces a value v,
whose support is predicted by an explicit postcondition.

15 fun evaluate accepts env , t produces v
16 where free (v) ⊆ outer (env) ∪ (free (t) \ bound(env))
17 = case t of
18 | TVar (x) →
19 case env of
20 | ENi l →
21 VVar (x)
22 | ECons (ta i l , y , v) →
23 i f x = y then v else evaluate (ta i l , t) end
24 end

When t is a variable, the environment is looked up, in a
straightforward way.

(continued on next slide)

Evaluation 2

When t is a λ-abstraction, a closure is constructed.

25 | TLam (x , t) →
26 VClosure (env , x , t)

The binding structure of this closure is such that, in this case,
evaluate’s postcondition is trivially satisfied!

(continued on next slide)

Evaluation 3

When t is an application, each side is reduced in turn. If a β-redex
appears, it is reduced by evaluating the closure’s body under an
appropriate environment.

27 | TApp (t1 , t2) →
28 let v1 = evaluate (env , t1) in
29 let v2 = evaluate (env , t2) in
30 case v1 of
31 | VClosure (cenv , x , t) →
32 evaluate (ECons (cenv , x , v2) , t)
33 | v1 →
34 VApp (v1 , v2)
35 end
36 end

Note that, on line 32, writing env instead of cenv, or failing to
create a binding for x, would cause the code to be rejected, even
though it would still be type-correct!

Decompilation

Decompilation (reification) translates a semantic value back to a
source term.

38 fun decompile accepts v produces t
39 = case v of
40 | VVar (x) →
41 TVar (x)
42 | VClosure (cenv , x , t) →
43 TLam (x , decompile (evaluate (cenv , t)))
44 | VApp (v1 , v2) →
45 TApp (decompile (v1) , decompile (v2))
46 end

In λ-abstraction case, the body is evaluated, without introducing an
explicit binding for x, so that x remains a symbolic name. evaluate’s
postcondition guarantees that the names in the domain of cenv do
not escape.

Normalization

Last, normalization is the composition of evaluation and decompilation.

48 fun normalize accepts t produces u
49 = decompile (evaluate (ENil , t))

The system accepts these definitions: normalize denotes a
mathematical function of terms to (⊥ or) terms.

Outline

1 Introduction

2 What do we prove and how?

3 A complete example

4 Conclusion

Summary

During this talk, I have argued in favor of semi-automated, static
name control for FreshML.

A toy implementation exists and has been used to prove the
correctness of a few standard code manipulation algorithms, involving
flat environments, nested contexts, nested patterns, etc.

See the paper [Pottier, 2007] for details, examples, and a
comparison with related work.

Future work

In the future, I would like to:

• extend the current toy implementation with first-class functions,
mutable state, exceptions, extra primitive operations, etc.;

• combine the decision procedure with a general-purpose
automated first-order theorem prover.

References

Pitts, A. M. and Gabbay, M. J. 2000.
A metalanguage for programming with bound names modulo
renaming.
In International Conference on Mathematics of Program
Construction (MPC). Lecture Notes in Computer Science, vol.
1837. Springer Verlag, 230–255.

Pottier, F. 2007.
Static name control for FreshML.
In IEEE Symposium on Logic in Computer Science (LICS).
To appear.

Shinwell, M. R. and Pitts, A. M. 2005.
On a monadic semantics for freshness.
Theoretical Computer Science 342, 28–55.

http://www.cl.cam.ac.uk/~amp12/papers/metpbn/metpbn.pdf
http://www.cl.cam.ac.uk/~amp12/papers/metpbn/metpbn.pdf
http://cristal.inria.fr/~fpottier/publis/fpottier-pure-freshml.pdf
http://www.cl.cam.ac.uk/users/amp12/papers/monsf/monsf-jv.pdf

	Introduction
	What do we prove and how?
	A complete example
	Conclusion

