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Motivation

Our programming languages do not support abstract syntax with
binders in a satisfactory way.

Hand-coding the operations that deal with lexical scope
(capture-avoiding substitution, etc.) is tedious and error-prone.

How about a more declarative, robust, automated approach?

– cf. Shinwell’s Fresh O’Caml, Cheney’s FreshLib.
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Three facets

Let’s distinguish three facets of the problem:

I a specification language,

I an implementation technique,

I an automated translation of the former to the latter.

In this talk, I emphasize the first aspect.
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Prior art

There have been a few proposals to enrich algebraic specification
languages with names and abstractions.

An abstraction usually takes the form 〈a〉e, or 〈a1, . . . , an〉e, or, as
in Fresh Objective Caml, 〈e1〉e2.

Abstraction is always binary: the names (or atoms) a that appear
on the left-hand side are bound, and their scope is the expression e
that appears on the right-hand side.
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Example: pure λ-calculus

Pure λ-calculus:
M := a | MM | λa.M

is modelled in Fresh Objective Caml as follows:

bindable type var

type term =
| EVar of var
| EApp of term ∗ term
| ELam of 〈var〉term

François Pottier An overview of alphaCaml



Introduction A specification language Implementation techniques Translating specifications Conclusion 8

A more delicate example

Let’s add simultaneous definitions:

M ::= . . . | let a1 = M1 and . . . and an = Mn in M

The atoms ai are bound, so they must lie within the abstraction’s
left-hand side. The terms Mi are outside the abstraction’s lexical
scope, so they must lie outside of the abstraction:

type term =
| ...
| ELet of term list ∗ 〈var list〉term
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Another delicate example

Simultaneous recursive definitions pose a similar problem:

M ::= . . . | letrec a1 = M1 and . . . and an = Mn in M

The terms Mi are now inside the abstraction’s lexical scope, so they
must lie within the abstraction’s right-hand side:

type term =
| ...
| ELetRec of 〈var list〉(term list ∗ term)
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The problem

The root of the problem is the assumption that lexical and physical
structure should coincide.
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A solution

Within an abstraction, alphaCaml distinguishes three basic
components: binding occurrences of names, expressions that lie within
the abstraction’s lexical scope, and expressions that lie outside the
scope.

These components are assembled using sums and products, giving
rise to a syntactic category of so-called patterns. Abstraction
becomes unary and holds a pattern.

t ::= unit | t × t | t + t | atom | 〈u〉 Expression types
u ::= unit | u × u | u + u | atom | inner t | outer t Pattern types
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Back to pure λ-calculus

Pure λ-calculus is modelled in alphaCaml as follows:

sort var

type term =
| EVar of atom var
| EApp of term ∗ term
| ELam of 〈lamp〉

type lamp binds var =
atom var ∗ inner term
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A second look at simultaneous definitions

Simultaneous definitions are modelled without difficulty:

type term =
| ...
| ELet of 〈letp〉

type letp binds var =
binding list ∗ inner term

type binding binds var =
atom var ∗ outer term
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More advanced examples

Abstract syntax for patterns in an Objective Caml-like programming
language could be declared like this:

type pattern binds var =
| PWildcard
| PVar of atom var
| PRecord of pattern StringMap.t
| PInjection of [ constructor ] ∗ pattern list
| PAnd of pattern ∗ pattern
| POr of pattern ∗ pattern
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Three known techniques

1. de Bruijn indices. Require shifting, which is fragile. No freshening.
Generic equality and hashing functions respect α-equivalence.

2. Atoms. Require freshening upon opening abstractions. No
shifting. Require custom equality and hashing functions.

3. Pollack mix: free names as atoms and bound names as indices.
Analogous to 2, except generic equality and hashing respect
α-equivalence.

alphaCaml follows 2.
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Some more details

Atoms are represented as pairs of an integer and a string. The
latter is used only as a hint for display.

Sets of atoms and renamings are encoded as Patricia trees.

Renamings are suspended and composed at abstractions, which allows
linear-time term traversals.

Even though the fresh atom generator has state, closed terms can
safely be marshalled to disk.
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Types

The specification of pure λ-calculus is translated down to Objective
Caml as follows. Atoms and abstractions are abstract.

type var = Var.Atom.t

type term =
| EVar of var
| EApp of term ∗ term
| ELam of opaque lamp

and lamp =
var ∗ term

and opaque lamp
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Code

Opening an abstraction automatically freshens its bound atoms.

val open lamp : opaque lamp → lamp
val create lamp : lamp → opaque lamp

This enforces Barendregt’s informal convention.

More boilerplate is generated for computing sets of free or bound
atoms, applying renamings, helping clients succinctly define
transformations (such as capture-avoiding substitution), etc.
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Status

alphaCaml is available. There are very few known users so far.

The distribution comes with two demos:

I a naı̈ve typechecker and evaluator for F≤
I a naı̈ve evaluator for a calculus of mixins (Hirschowitz et al.)

These limited experiments are encouraging.
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Limitations

One must go through open functions to examine abstractions. Deep
pattern matching is impossible.

Clients can write meaningless code, such as a function that pretends
to collect the bound atoms in an expression.
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Towards alpha-(your-favorite-prover-here)?

How about translating a specification language like alphaCaml’s into
theorems (recursion and induction principles) and proofs?

– cf. Pitts, Urban and Tasson, Norrish...
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