
Introduction A specification language Implementation techniques Translating specifications Conclusion 1

An overview of alphaCaml

François Pottier

September 2005

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 2

Introduction

A specification language

Implementation techniques

Translating specifications

Conclusion

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 3

Motivation

Our programming languages do not support abstract syntax with
binders in a satisfactory way.

Hand-coding the operations that deal with lexical scope
(capture-avoiding substitution, etc.) is tedious and error-prone.

How about a more declarative, robust, automated approach?

– cf. Shinwell’s Fresh O’Caml, Cheney’s FreshLib.

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 4

Three facets

Let’s distinguish three facets of the problem:

I a specification language,

I an implementation technique,

I an automated translation of the former to the latter.

In this talk, I emphasize the first aspect.

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 5

Introduction

A specification language

Implementation techniques

Translating specifications

Conclusion

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 6

Prior art

There have been a few proposals to enrich algebraic specification
languages with names and abstractions.

An abstraction usually takes the form 〈a〉e, or 〈a1, . . . , an〉e, or, as
in Fresh Objective Caml, 〈e1〉e2.

Abstraction is always binary: the names (or atoms) a that appear
on the left-hand side are bound, and their scope is the expression e
that appears on the right-hand side.

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 7

Example: pure λ-calculus

Pure λ-calculus:
M := a | MM | λa.M

is modelled in Fresh Objective Caml as follows:

bindable type var

type term =
| EVar of var
| EApp of term ∗ term
| ELam of 〈var〉term

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 8

A more delicate example

Let’s add simultaneous definitions:

M ::= . . . | let a1 = M1 and . . . and an = Mn in M

The atoms ai are bound, so they must lie within the abstraction’s
left-hand side. The terms Mi are outside the abstraction’s lexical
scope, so they must lie outside of the abstraction:

type term =
| ...
| ELet of term list ∗ 〈var list〉term

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 9

Another delicate example

Simultaneous recursive definitions pose a similar problem:

M ::= . . . | letrec a1 = M1 and . . . and an = Mn in M

The terms Mi are now inside the abstraction’s lexical scope, so they
must lie within the abstraction’s right-hand side:

type term =
| ...
| ELetRec of 〈var list〉(term list ∗ term)

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 10

The problem

The root of the problem is the assumption that lexical and physical
structure should coincide.

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 11

A solution

Within an abstraction, alphaCaml distinguishes three basic
components: binding occurrences of names, expressions that lie within
the abstraction’s lexical scope, and expressions that lie outside the
scope.

These components are assembled using sums and products, giving
rise to a syntactic category of so-called patterns. Abstraction
becomes unary and holds a pattern.

t ::= unit | t × t | t + t | atom | 〈u〉 Expression types
u ::= unit | u × u | u + u | atom | inner t | outer t Pattern types

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 12

Back to pure λ-calculus

Pure λ-calculus is modelled in alphaCaml as follows:

sort var

type term =
| EVar of atom var
| EApp of term ∗ term
| ELam of 〈lamp〉

type lamp binds var =
atom var ∗ inner term

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 13

A second look at simultaneous definitions

Simultaneous definitions are modelled without difficulty:

type term =
| ...
| ELet of 〈letp〉

type letp binds var =
binding list ∗ inner term

type binding binds var =
atom var ∗ outer term

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 14

More advanced examples

Abstract syntax for patterns in an Objective Caml-like programming
language could be declared like this:

type pattern binds var =
| PWildcard
| PVar of atom var
| PRecord of pattern StringMap.t
| PInjection of [constructor] ∗ pattern list
| PAnd of pattern ∗ pattern
| POr of pattern ∗ pattern

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 15

Introduction

A specification language

Implementation techniques

Translating specifications

Conclusion

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 16

Three known techniques

1. de Bruijn indices. Require shifting, which is fragile. No freshening.
Generic equality and hashing functions respect α-equivalence.

2. Atoms. Require freshening upon opening abstractions. No
shifting. Require custom equality and hashing functions.

3. Pollack mix: free names as atoms and bound names as indices.
Analogous to 2, except generic equality and hashing respect
α-equivalence.

alphaCaml follows 2.

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 17

Some more details

Atoms are represented as pairs of an integer and a string. The
latter is used only as a hint for display.

Sets of atoms and renamings are encoded as Patricia trees.

Renamings are suspended and composed at abstractions, which allows
linear-time term traversals.

Even though the fresh atom generator has state, closed terms can
safely be marshalled to disk.

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 18

Introduction

A specification language

Implementation techniques

Translating specifications

Conclusion

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 19

Types

The specification of pure λ-calculus is translated down to Objective
Caml as follows. Atoms and abstractions are abstract.

type var = Var.Atom.t

type term =
| EVar of var
| EApp of term ∗ term
| ELam of opaque lamp

and lamp =
var ∗ term

and opaque lamp

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 20

Code

Opening an abstraction automatically freshens its bound atoms.

val open lamp : opaque lamp → lamp
val create lamp : lamp → opaque lamp

This enforces Barendregt’s informal convention.

More boilerplate is generated for computing sets of free or bound
atoms, applying renamings, helping clients succinctly define
transformations (such as capture-avoiding substitution), etc.

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 21

Introduction

A specification language

Implementation techniques

Translating specifications

Conclusion

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 22

Status

alphaCaml is available. There are very few known users so far.

The distribution comes with two demos:

I a naı̈ve typechecker and evaluator for F≤
I a naı̈ve evaluator for a calculus of mixins (Hirschowitz et al.)

These limited experiments are encouraging.

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 23

Limitations

One must go through open functions to examine abstractions. Deep
pattern matching is impossible.

Clients can write meaningless code, such as a function that pretends
to collect the bound atoms in an expression.

François Pottier An overview of alphaCaml

Introduction A specification language Implementation techniques Translating specifications Conclusion 24

Towards alpha-(your-favorite-prover-here)?

How about translating a specification language like alphaCaml’s into
theorems (recursion and induction principles) and proofs?

– cf. Pitts, Urban and Tasson, Norrish...

François Pottier An overview of alphaCaml

	Introduction
	A specification language
	Implementation techniques
	Translating specifications
	Conclusion

