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Types are good

A type is a concise description of the behavior of a program
fragment.

Typechecking provides safety or security guarantees.

It also encourages modularity and abstraction.
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Type inference is good

Types can be extremely cumbersome when they have to be explicitly
and repeatedly provided.

This leads to (partial or full) type inference...

... which is sometimes hard, but so... addictive.
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Constraints are elegant

Type inference problems are naturally expressed in terms of
constraints made up of predicates on types, conjunction, existential
and universal quantification, and possibly more.

This allows reducing type inference to constraint solving.
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Mandatory type annotations can help

Constraint solving can be intractable or undecidable for some
(interesting) type systems.

In that case, mandatory type annotations can help. Full type
inference is abandoned. In return, the reduction of (now partial) type
inference to constraint solving is preserved.

One might wish to go further...
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Stratified type inference

Local shape inference can be used to propagate type information in
ad hoc ways through the program and automatically produce some of
the required annotations.

This leads to stratified type inference, a pragmatic approach to hard
type inference problems.
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Overview

The talk is planned as follows:

1. Constraint-based type inference for ML

2. Stratified type inference for generalized algebraic data types
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Part I

Type inference for ML
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The simply-typed λ-calculus

Hindley and Milner’s type system
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Specification

The simply-typed λ-calculus is specified using a set of rules that
allow deriving judgements:

Var

Γ ` x : Γ(x)

Abs
Γ; x : τ1 ` e : τ2

Γ ` λx.e : τ1 → τ2

App

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

The specification is syntax-directed.
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Substitutions versus constraints

Traditional presentations of type inference are based on
substitutions, which means working with most general unifiers,
composition, and restriction.

Reasoning in terms of constraints means working with equations,
conjunction, and existential quantification.

Let’s use the latter.
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Constraints

In order to reduce type inference to constraint solving, we introduce
a constraint language:

C ::= τ = τ | C ∧ C | ∃α.C

Constraints are interpreted by defining when a valuation φ satisfies a
constraint C.

Constraint solving is first-order unification.
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Constraint generation

Type inference is reduced to constraint solving by defining a
mapping J·K of pre-judgements to constraints.

JΓ ` x : τK = Γ(x) = τ
JΓ ` λx.e : τK = ∃α1α2.(JΓ; x : α1 ` e : α2K ∧ α1 → α2 = τ)

JΓ ` e1 e2 : τK = ∃α.(JΓ ` e1 : α → τK ∧ JΓ ` e2 : αK)
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Constraints, revisited

How about letting the constraint solver, instead of the constraint
generator, deal with environments?

Let’s enrich the syntax of constraints:

C ::= . . . | x = τ | def x : τ in C

The idea is to interpret constraints in such a way as to validate
the equivalence law

def x : τ in C ≡ [τ/x]C

The def form is an explicit substitution form.
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Constraint generation, revisited

Constraint generation is now a mapping of an expression e and a
type τ to a constraint Je : τK.

Jx : τK = x = τ

Jλx.e : τK = ∃α1α2.
(

def x : α1 in Je : α2K
α1 → α2 = τ

)
Je1 e2 : τK = ∃α.(Je1 : α → τK ∧ Je2 : αK)

Look ma, no environments!

The point of introducing the def form will become apparent in Hindley
and Milner’s type system...
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The simply-typed λ-calculus

Hindley and Milner’s type system
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Specification

Three new typing rules are introduced in addition to those of the
simply-typed λ-calculus:

Gen
Γ ` e : τ ᾱ # ftv(Γ)

Γ ` e : ∀ᾱ.τ

Inst
Γ ` e : ∀ᾱ.τ
Γ ` e : [~τ/~α]τ

Let
Γ ` e1 : σ Γ; x : σ ` e2 : τ

Γ ` let x = e1 in e2 : τ

Type schemes now occur in environments and judgements.
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Constraints

Let’s extend the syntax of constraints so that a variable x can
stand for a type scheme.

To avoid mingling constraint generation and constraint solving, we
allow type schemes to carry constraints.

Turning a constraint into a (constrained) type scheme is then a
purely syntactic construction—no solving is required.
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Constraints, continued

The syntax of constraints and constrained type schemes is:

C ::= τ = τ | C ∧ C | ∃α.C | x � τ | def x : ς in C
ς ::= ∀ᾱ[C].τ

The idea is to interpret constraints in such a way as to validate
the equivalence laws

def x : ς in C ≡ [ς/x]C

(∀ᾱ[C].τ) � τ′ ≡ ∃ᾱ.(C ∧ τ = τ′)
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Constraint generation

Constraint generation is modified as follows:

Jx : τK = x � τ

Jlet x = e1 in e2 : τK = def x : ∀α[Je1 : αK].α in Je2 : τK

The constrained type scheme ∀α[Je1 : αK].α is principal for e1...
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Statement

Theorem (Soundness and completeness)

Let Γ be an environment whose domain is fv(e). The expression e is
well-typed relative to Γ iff

def Γ in ∃α.Je : αK

is satisfiable.
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Taking constraints seriously

Constraints are suitable for use in an efficient and modular
implementation, because:

I constraint generation has linear complexity;

I constraint generation and constraint solving are separate;

I the constraint language remains simple as the programming
language grows.
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Part II

Generalized algebraic data types
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Introducing generalized algebraic data types

Typechecking: MLGI

Simple, constraint-based type inference: MLGX

Local shape inference
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Example

Here is typed abstract syntax for a simple object language.

Lit :: int → term int
Inc :: term int → term int
IsZ :: term int → term bool
If :: ∀α.term bool → term α → term α → term α

Pair :: ∀αβ.term α → term β → term (α × β)
Fst :: ∀αβ.term (α × β) → term α
Snd :: ∀αβ.term (α × β) → term β

This is not an ordinary algebraic data type...
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Example, continued

This definition allows writing an evaluator that performs no tagging
or untagging of object-level values, that is, no runtime checks:

µ(eval : ∀α.term α → α).λt.
case t of
| Lit i → (∗ α = int ∗) i
| Inc t → (∗ α = int ∗) eval t + 1
| IsZ t → (∗ α = bool ∗) eval t = 0
| If b t e → if eval b then eval t else eval e
| Pair a b → (∗ ∃α1α2.α = α1 × α2 ∗) (eval a, eval b)
| Fst t → fst (eval t)
| Snd t → snd (eval t)
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From type inference to constraint solving

In the presence of generalized algebraic data types, reducing type
inference to constraint solving remains reasonably straightforward.

For eval, the constraint looks like this, after several simplification
steps:

∀α.


α = int ⇒ int = α // Lit
. . .
∀α1α2.α = α1 × α2 ⇒ α1 × α2 = α // Pair
. . .


This eventually simplifies down to true, so eval is well-typed.

It looks as if there is no problem?
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Implications of implication

Adding implication to the constraint language yields the first-order
theory of equality of trees, whose satisfiability problem is decidable,
but intractable.

For eval, solving seemed easy because enough explicit information was
available.

Furthermore, introducing implication means that constraints no longer
have most general unifiers, as the next example shows...
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Implications of implication, continued

What types does this function admit?

Eq :: ∀α.eq α α

cast =
∀αβ.λ(w : eq α β).λ(x : α).
case w of
Eq → (∗ α = β ∗) x
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Implications of implication, continued

All three type schemes below are correct:

∀αβ.eq α β → α → α
∀αβ.eq α β → α → β

∀γ.eq int bool → int → γ

but none is principal! The principal constrained type scheme produced
by constraint solving would be

∀αβγ[α = β ⇒ α = γ].eq α β → α → γ

which indeed subsumes the previous three.

The system does not have principal types in the standard sense.
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A solution

I am now about to present a solution where principal types are
recovered by means of mandatory type annotations and where a local
shape inference layer is added so as to allow omitting some of these
annotations.

This is joint work with Yann Régis-Gianas.
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Introducing generalized algebraic data types

Typechecking: MLGI

Simple, constraint-based type inference: MLGX

Local shape inference
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MLGI

Let’s first define the programs that we deem sound and would like to
accept, without thinking about type inference.

This is MLGI—ML with generalized algebraic data types in implicit
style.

MLGI is Core ML with polymorphic recursion, generalized algebraic
data types, and explicit type annotations.
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Specification

MLGI’s typing judgments take the form

E, Γ ` e : σ

where E is a system of type equations.

Most of the rules are standard, modulo introduction of E...
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Specification, continued

E is exploited via implicit type conversions:

α = int, Γ ` i : int α = int  int = α

α = int, Γ ` i : α

The symbol  stands for constraint entailment.
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Specification, continued

Pair a b : term α ` (α1α2, α = α1 × α2, a : α1; b : α2)
α1α2 # ftv(Γ, α) α = α1 × α2, (Γ; a : α1; b : α2) ` e : α

true, Γ ` (Pair a b).e : term α → α

Inside each clause, confronting the pattern with the (actual) type of
the scrutinee yields new (abstract) type variables, type equations, and
environment entries.

Determining E and inferring types are interdependent activities...

François Pottier Where is ML type inference headed?



Simple, constraint-based type inference: MLGX 37

Introducing generalized algebraic data types

Typechecking: MLGI

Simple, constraint-based type inference: MLGX

Local shape inference
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MLGX

Let’s require sufficiently many type annotations to ensure that E is
known at all times, without any guessing. Let’s also make all type
conversions explicit.

This is MLGX—ML with generalized algebraic data types in explicit
style.
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Specification

E, Γ ` (e : term α) : term α
∀i E, Γ ` (pi : term α).ei : term α → α

E, Γ ` case (e : term α) of p1.e1 . . . pn.en : α

We require a type annotation at case constructs and pass it down
to the rule that examines individual clauses...
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Specification, continued

The rule that checks clauses now exploits the type annotation:

Pair a b : term α ` (α1α2, α = α1 × α2, a : α1; b : α2)
α1α2 # ftv(Γ, α) α = α1 × α2, (Γ; a : α1; b : α2) ` e : α

true, Γ ` (Pair a b : term α).e : term α → α

The pattern is now confronted with the type annotation to determine
which new type equations arise. No guessing is involved.
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Specification, continued

E is now exploited only through an explicit coercion form:

α = int, Γ ` i : int α = int  int = α

α = int, Γ ` (i : (int . α)) : α

This rule is syntax-directed.
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Type inference for MLGX

Type inference for MLGX decomposes into two separate tasks:

I compute E everywhere and check that every explicit coercion is
valid;

I forget E and follow the standard reduction to constraint solving.
A coercion (int . α) is just a constant of type int → α.

No implication constraints are involved. MLGX has principal types.

In short, MLGX marries type inference for Hindley and Milner’s type
system with typechecking for generalized algebraic data types. I
believe its design is robust.
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Programming in MLGX

In MLGX, eval is written:

µ(eval : ∀α.term α → α).∀α.λt.
case (t : term α) of
| Lit i → (i : (int . α))
| Inc t → (eval t + 1 : (int . α))
| IsZ t → (eval t = 0 : (bool . α))
| If b t e → if eval b then eval t else eval e
| Pair α1 α2 a b → ((eval a, eval b) : (α1 × α2 . α))
| Fst β2 t → fst (eval t)
| Snd β1 t → snd (eval t)

This is nice, but redundant... how about some local shape inference?
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Introducing generalized algebraic data types

Typechecking: MLGI

Simple, constraint-based type inference: MLGX

Local shape inference
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Shapes

Shapes are defined by
s ::= γ̄.τ

The flexible type variables γ̄ (bound within τ) represent unknown or
polymorphic types.

That is, the shape γ.γ → γ adequately describes the integer
successor function as well as the polymorphic identity function.

This shape is much more precise than γ1γ2.γ1 → γ2, which describes
any function.
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Shapes, continued

Shapes can have free type variables; these are interpreted as known
types. For instance, the shape

γ.α × γ

describes a pair whose first component has type α, where the type
variable α was explicitly and universally bound by the programmer, and
whose second component has unknown type.
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Ordering shapes

Shapes are equipped with a standard instantiation ordering.

For instance,
(γ1.α × γ1) � (γ2.α × (α → γ2))

The uninformative shape γ.γ, written ⊥, is the least element.
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Ordering shapes, continued

When two shapes have an upper bound, they have a least upper
bound, computed via first-order unification.

For instance,
(γ.γ → γ) t (γ.int → γ) = int → int

This allows local shape inference to find that “applying the identity
function to an integer yields an integer” – reasoning that requires
instantiation.

Yet, this use of unification is local, because flexible type variables are
never shared between shapes.
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Algorithm Z, judgements

Here is a very rough overview of a shape inference algorithm.

Judgements take the form

E, Γ ` e ↓ s ↑ s′  e′

where Γ (which maps variables to shapes) and s are provided, while s′

is inferred and at least as informative, that is, s � s′ holds.
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Algorithm Z, mission statement

The transformed term e′ is identical to e, except

I type coercions are inserted at variables and at case clauses,

I new type annotations are inserted around case scrutinees,

I existing type annotations are normalized.
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Algorithm Z, in one slide

This is an instance of the rule that deals with clauses:

. . . α = α1 × α2, (Γ; a : α1; b : α2) ` e ↓ α1 × α2  e′

true, Γ ` (Pair α1 α2 a b : term α).e ↓ α
 (Pair α1 α2 a b).(e′ : (α1 × α2 . α))

The clause is expected to return a value of type α. The equation
α = α1 × α2 is available inside it. The body e is examined with the
normalized expected shape α1 × α2. We insert an explicit coercion to
let MLGX know about the equation that we are exploiting.
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Programming in MLGX

This explains roughly how the surface language version of eval is
transformed into:

µ?(eval : ∀α.term α → α).λt.
case (t : term α) of
| Lit i → (i : (int . α))
| Inc t → (eval t + 1 : (int . α))
| IsZ t → (eval t = 0 : (bool . α))
| If b t e → if eval b then eval t else eval e
| Pair α1 α2 a b → ((eval a, eval b) : (α1 × α2 . α))
| Fst α2 t → fst (eval t)
| Snd α1 t → snd (eval t)
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Soundness

Theorem (Soundness for Algorithm Z)

Assume e has type σ in MLGI. If Z infers that e has shape s and
rewrites e into e′, then s � σ holds and e′ has type σ in MLGI.

The transformed program can be ill-typed in MLGX, but never because
Z inserted incorrect annotations.

It’s still unclear how relevant this theorem is in practice, but I like it.
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Part III

Conclusion
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Constraint-based type inference

Constraint-based type inference is a versatile tool that can deal with
many language features while relying on a single constraint solver.

The solver’s implementation can be complex, but its behavior remains
predictable because it is correct and complete with respect to the
logical interpretation of constraints.
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Mandatory type annotations

Some constraint languages have intractable or undecidable
satisfiability problems.

Instead of relying on an incomplete constraint solver, I suggest
modifying the constraint generation process so as to take advantage
of user-provided hints—typically, mandatory type annotations.
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Stratified type inference

If the necessary hints are so numerous that they become a burden,
a local shape inference algorithm can be used to automatically
produce some of them.

Although its design is usually ad hoc, it should remain predictable if
it is sufficiently simple.
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Thank you.
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Some questions

I is stratified type inference the way of the future, or a pis aller?

I is local shape inference really predictable?

I how do we explain type errors in a stratified system?

I can we allow some inferred type information to be fed back into
shape inference, without losing predictability?
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