Osiris: an Iris-based program logic for OCaml.

ARNAUD DABY-SEESARAM (ENS Paris-Saclay, France)

FrANGOIS POTTIER (Inria, Paris, France)
ARMAEL GUENEAU (Inria, Laboratoire Méthodes Formelles, France)

8 September 2023

1/19

General Context.

Context
@ Some verification tools are based on:

automatic solvers,
(manual) deductive reasoning about programs.

@ Coq is a proof assistant ;

@ Iris is a Coq framework for separation logic and program verification.

2/19

General Context.

Context
@ Some verification tools are based on:

automatic solvers,
(manual) deductive reasoning about programs.

@ Coq is a proof assistant ;

@ Iris is a Coq framework for separation logic and program verification.

Why choose Iris 7
Builtin proof techniques to help program verification. Iris handles:
@ divergent programs,
programs manipulating a heap,

(]
@ programs with higher order functions,
(]

Osiris allows users to use most Iris features.

2/19

Program Verification

Program specification.

@ Pre-condition: condition under which the program is proven safe ;

@ Post-condition: provides information on the result of a computation.

Specification of length:
{v represents the list 1}

call length v
{Ares. "res = length of the list 17}

3/19

Program Verification

Program specification.

@ Pre-condition: condition under which the program is proven safe ;

@ Post-condition: provides information on the result of a computation.

Specification of length:
{v represents the list 1}
call length v
{Ares. "res = length of the list 17}

To verify a program should ensure:
@ its safety = no crash,
@ its progress = it is not stuck,

@ the respect of its post-condition ¢.

3/19

Previous Work and contributions.

Previous Work
@ CFML2 allows interactive proofs of OCaml programs in Coq.

@ Iris has been instantiated with small ML-like languages,

@ Other projects have used lIris to reason about specific aspects of OCaml:

Project Aspect of the language

Cosmo Multicore OCaml and weak-memory
iris-time-proofs Time complexity in presence of lazy
Hazel Effect Handlers

Space-Lambda Garbage Collection

Our contributions.
@ a proof methodology to prove OCaml programs,
@ an original semantics for OCaml,

@ a program logic using Iris.

4/19

In this talk

@ Proof methodology: how to verify an OCaml program?
@ Structure of Osiris:

» an original semantics for OCaml,
» a program logic built on Iris — Coq tactics.

@ Osiris is still a prototype at the moment. J

5/19

Proof Methodology

Methodology:
@ translate OCaml files into Coq files,
@ write specifications of the files (seen as modules) and their functions,

@ prove these specifications.

6/19

Translation tool.

Translation process:
@ retrieve the Typed-Tree of the OCaml file to translate (using compilerlibs),

(* Content of [file.ml] *)
let cst = 10

7/19

Translation tool.

Translation process:
@ retrieve the Typed-Tree of the OCaml file to translate (using compilerlibs),

(* Content of [file.ml] *)
let cst = 10

@ translate the Typed-Tree into an Osiris AST,

MkStruct [ILet (Bindingl (PVar "cst") (EInt 10))]

7/19

Translation tool.

Translation process:
@ retrieve the Typed-Tree of the OCaml file to translate (using compilerlibs),

(* Content of [file.ml] x*)
let cst = 10

@ translate the Typed-Tree into an Osiris AST,

MkStruct [ILet (Bindingl (PVar "cst") (EInt 10))]

© print the module-expression into a Coq file.

Definition _File : mexpr :=
MkStruct [ILet (Bindingl (PVar "cst") (EInt 10))].

7/19

Example: a toy module. (1)

module Toy = struct
let rec length 1 =
match 1 with
|l —o
| 2 1 =1+ lengthl

let 1ily = [1; 2; 3; 4]

let len = length 1lily
end

8/19

Example: a toy module. (I1)

module Toy = struct
le%agiijegfﬁl: Specification of the module:
[- 1= 1+ lengthl @ it contains a function length;
tev My = [20 3; 4] @ the function length satisfies the aforementioned

let len = length lily specification,
end

9/19

Example: a toy module. (I1)

module Toy = struct
le%agiijegfﬁilz Specification of the module:
- 1= 14 lengtnl @ it contains a function length;

tev My = [20 3; 4] @ the function length satisfies the aforementioned

let len = length lily specification.
end .

Verification of a module.
@ evaluate the module-expression,
< The evaluation contains breakpoints, e.g. at:

function calls,
let-bindings.
@ use tactics to make progress if need be.

< e.g. heap manipulations, non-deterministic constructs of the semantics.

9/19

Example: Proof script.

module Toy = struct
let rec length 1 =
match 1 with
| I —o0
| _ 1 =1+ lengthl

let 1ily = [1; 2; 3; 4]
let len = length 1
end

wp. (* < starts the evaluation of [Toyl. *)

(x The evaluation stops after the body of [length]. *)
oSpecify "length" (* I want to prove that [length] *)
spec_length (* satisfies [spec_length]. x)

"#Hlen"!. (* Please remember this fact as "Hlen".

{ (* Omitted. *) }

(* The evaluation starts again...
and stops after the evaluation of [1; 2; 3; 4]. %)
wp_continue. (* Nothing to do here. *)

(* The evaluation starts once more...

and stops on the function call [length 1lily] *)
wp_use "Hlen". (x Use "Hlen". *)
(* Omitted : introduction of the result. *)

(* [len] is about to be added to the environment
= this is a breakpoint for the evaluation. *)
wp_continue. (* Nothing to do here. *)

(x Osiris has all the ingredients and can finish the proof.

oModuleDone.

*)

*)

10/19

Description of the tool.

Goal

Prove programs using Coq tactics.

Steps
© Give meaning to the syntax,
— define an operational semantics for OCaml.
@ Define reasoning rules to reason about this semantics,
< these rules are proven once and for all.
© Define Coq tactics to exploit these rules.
— the tactics rely on aforementioned rules = they are correct by construction.

11/19

Motivation for an ample-step semantics.

Most Iris projects use a small-step semantics.

Small-step semantics —— Iris-provided program logic

This is appealing. .. but OCaml is a large language.

12/19

Motivation for an ample-step semantics.

Most Iris projects use a small-step semantics.

Small-step semantics —— Iris-provided program logic

This is appealing. .. but OCaml is a large language.

A small-step semantics for OCaml semantics is large.

Number of transitions due to the many constructions of the language.
—>e.g. pattern-matching, ADTs, records, modules.
Non-Determinism the order of evaluation of expressions is not defined, and some
expressions can be erased ;
— e.g. function calls, tuples, dynamic checks.

Solution.

A semantics in two steps, each tackling one of these issues.

12/19

Ample-step semantics.

Definition: Ample-step semantics

@ Evaluate OCaml expressions in a smaller language micro A ;

Fixpoint eval : env — expr — micro val.
Definition call : val — val — micro val.

micro A describes generic computations of type A.

@ Provide a small-step semantics to micro A.

Inductive step : store * micro A — store * micro A — Prop.

13/19

Definition of micro A.

Inductive micro A :=

| Ret (a: A4)
ras nductive code : Type — Type — Type :=
Crash Ind i de : T T T:
| Next (* code X Y : Type of a system call.
ar ml : micro m2 : micro : type of the parameter of the syst. call,
P A1 A2 1 i Al 2 i A2 X f th f th 11
(k : Al x A2 — micro A) Y : type of the returned value. *)
(ko : unit — micro A) (x Provides:
| Stop {X Y} (c: code XY) (x: X) - Non-deterministic binary choice ;
k: Y — micro A) - heap manipulation ;

(ko : unit — micro A). - potential divergence. *)

(a) Computations of type A. (b) System calls, implementing OCaml features.

Figure: Definition of micro A.

@ Par is used to model non-determinism, not parallelism. J

14/19

Example

(* Evaluation of a function call. x*)
eval 7 (EApp el e2) =

15/19

Proofs of programs.

To prove an expression e

is to prove
after (evalne) {¢}

@ evalne :micro val,

@ after ensures safety, etc.

16/19

Proofs of programs.

To prove an expression e

is to prove

after (evalmne) {¢}

@ evalne :micro val,

@ after ensures safety, etc.

A Selection of reasoning rules

after (mi) {é1} after (m) {42}

¢ (a) Vvi va.1 (1) ~* $2 (v1) —* after (k (v, v2)) {4}
after (Ret (a)) {¢} PAR after (Par (mi, ma, k, ko)) {¢}
ALLOC > (V0L — v — after (k (£)) {¢})

after (Stop (CAlloc, v, k, ko)) {¢}

16/19

An alternative Program Logic for pure programs.

Définition : simp

simp mi mp £ «The computation m; can be simplified into my.»

after and simp

simp my mo after (m) {¢}

SIMP after (m) {6}

Two uses of simp:

@ Program specification: Let £ be an OCaml function represented by the Gallina
function f and a be represented by a.
simp (call f a) (Ret (fa))
@ Program simplification: simp (eval n 1+2+3+4+5) (Ret 15).
—_— —

8 function calls

17/19

Short- and long-term goals for Osiris.

Short-term goal

To add support for more OCaml constructs and features.

(Very) long-term goal

Osiris might some day incorporate previous work:
Hazel, Cosmo, iris-time-proofs or Space-Lambda.

We are far from this!
@There is still a lot of work to be done before we can even begin to think about it.

v

18/19

Conclusion

Osiris currently supports:

@ modules and sub-modules,
@ for-loops,
immutable records, .)
@ manipulation of references,

°

@ function calls,
@ ADTs and pattern-matching.

°

recursive functions,

— Note: we need more tests about these constructs.

Future work
We have yet to understand how:
@ pure modules and functions should be specified and used;

@ to specify modules;

— we have used two styles of specifications, but neither is fully satisfying yet.
@ to describe dependencies;

— There is still work to do to make the tool more ergonomic, and some uncertainties

wrt. some semantic choices.

19/19

Separation Logic and Iris.

["Yl " Separation Logic
Pyl > Iris

» Main menu

1/20

A few words on Separation Logic.

In Separation Logic. . .

@ Notion of resources, describing various logical information.
@ Propositions are called «assertionsy.

@ An assertion holds iff resources at hand satisfy it. e.g.

W' £ ownership of i tons of wood.»

Two additional operators:
@ Separating conjunction () :
W40 - W30 % WIO

@ Magic Wand () :

W2 - w2 W

2/20

A few words on Iris.

Iris is a framework for Separation Logic. It is written, proven and usable in Coq.

Iris” logic is modal and step-indexed
@ Persistence modality OJP: 0P = OP % P.
@ /ater modality > P: P will hold at the next logical step.

@ Fancy-Update modality 51}352 P: P and invariants whose name appear in & hold,
under the assumption that all invariants whose name occurs in & hold.

@ Basic-Update modality ébP: allows to update the ghost state before proving P.

Proof techniques provided by lIris

resources Users can define their own resources ;

invariants EIN is a logical black box containing P. The name N is associated
with the box ;

induction de Léb (O (>P — P)) — P.

3/20

Weakest Precondition.

[> Highly simplified, simplified and exact definition of after

[" Y > Adequacy theorem

» Main menu

4/20

Definition of after.

Very simplified version: no heap, no invariant.

Weakest Precondition

@ If dv.m = Ret (v), then
after (m) {®} £ &(v)

@ Otherwise
after (m) {®} £
T3m’. m~> m' %
VYm'. Tm o~ m'7 =
>after (m/) {2}
v
[> Main menu J

5/20

Definition of after.

Simplified version: there is a heap, but still no invariants.

Logical Heap

For any physical heap o, S (o) is an assertion describing the heap. It is provided by Iris.

4

Weakest Precondition
@ If 3v.m = Ret (v), then
after (m) {} 2 Vo. S (0) + S () * P (v)
@ Otherwise
after (m) {#} 2 Vo. S (o) =
r3o’, m'. (o, m) ~ (a’, m')"*
Vo', m'. m(a, m) ~ (a', m')" —x

>S (U') x after (m') {2}

5/20

Definition of after.

Real definition of after.

Logical Heap

For any physical heap o, S (o) is an assertion describing the heap. It is provided by Iris

v

Weakest Precondition
@ If 3v.m = Ret (v), then
afters (m) {$} £ Vo. S(0) ~+ By g S(0) * P (v)
@ Otherwise
afters (m) {®} 2 Vo. S (0) =
By T30, m'. (o, m) ~ (0'/, m)
Vo', m'. (o, m) ~ (o/, m')7 -

ML= =) (0/) * afterg (m') {2}

v

5/20

Adequacy theorem for after.

Adequacy theorem

Let A be a type, m; and m, terms of type micro A, o, a heap, n a natural integer, and
1) a pure proposition.

If the configuration (), m1) reduces in n steps to (o,, m,), and if the following assertion
holds:

FB+3(® : A— iProp X) .aftert (my) {@}*(afterT (S(oT)*mT) {o} =+ 1By "V

then 1 is true.

Corollary : Progress and respect of the post-condition.

Let A be a type, m1 and m, terms of type micro A, o, a heap, n a natural integer and
1 a pure post-condition (i.e. of type A — Prop).
If (@, m1) reduces to (n, ms) in n steps, and that the following assertion holds:

F V (hypothesis granted access to resources) .aftert (m1) {Av. " (v)7}

then the configuration (o, my) is not stuck, i.e. either m, is a value, or (o, my) can

—I/

step. Moreover, if m, is a value v, then ¢ (v) holds.

6/20

Examples: programs verifies with Orisis.

[} > Counter

["J *> Records

» Main menu

7/20

Monotone counters.

Y coce
o TETD

Y * Proof

. QD

» Main menu

8/20

Counters : code

module Counter = struct
let make () = ref 0

let incrc=c:=lc+1
let set c v = assert (lc <=v);
ci=v
let get c =lc
end

9/20

Counters (uc) : code

open Counters
let do2 (f: 'a— 'b)(a:'a): 'bx'b=(fa, fa)
let count_for n =
let ¢, ¢’ = do2 Counter.make () in (¥ !c = lc’ = 0 *)
Counter.set ¢’ n ;
for i =1tondo
Counter.incr c;
Counter.set ¢’ (n + i) (* [c] stores i and [c’] stores (n + i). *)
done;

(x As [c] stores [n] and [c’] stores [n+n] after the for-loop, the difference
is [n]. %)
assert (Counter.get ¢’ — Counter.get ¢ =n) ;

(* Return [n] *)
Counter.get c

let count_rec n =
let ¢ = Counter.make () in
let rec aux i =
let () = assert (0 <=1i) in
match i with
| 0 — Counter.get c
| _ — Counter.incr c; aux (i — 1)
in aux n

let () = assert (2 = count_for 2)
let () = assert (2 = count_rec 2)

10/20

Counters : Specification. |

Definition is_counter (n: nat) (v: val) : iProp ¥:=
J (£ : loc), v =H#LxL —#n.

Definition make_spec (vmake : val) : iProp Y:=
OWP call vmake #() {{ Ares, is_counter O res }}.

Definition get_spec (vget : val) : iProp ¥:=
OV (v: val) (n: nat),
is_counter n v —x* WP call vget v {{ Ares, "res = #n" xis_counter nv }}.

Definition incr_spec (vincr : val) : iProp X:=
OV (v: val) (n: nat),
is_counter n v —x*
WP call vincr v {{ Ares, "res = VUnit" *is_counter (Sn) v }}.

Definition set_spec (vset : val) : iProp ¥:=

OV (v : val),
WP call vset v {{
Ares,
V (nm: nat),

"(n <= m)%nat™ —

representable n”' —

representable m™ —

is_counter n v —x

WP call res #m {{ Ares, "res = VUnit" xis_countermv }} }}.

11/20

Counters : Specification. |l

Definition Counter_specs : spec val :=
SpecModule

Auto

[
("make", SpecImpure NoAuto make_spec) ;
("get", SpecImpure NoAuto get_spec) ;
("incr", SpecImpure NoAuto incr_spec) ;
("set", SpecImpure NoAuto set_spec)

emp%]I.

Definition Counter_spec : val —iProp X:=
Av, (0 satisfies_spec Counter_specs v)%I.

Definition File_spec (v : val) : iProp ¥:=
Osatisfies_spec
(SpecModule Auto [("Counter", SpecImpure NoAuto Counter_spec)] emp%I) v.

12/20

Counters : proof

Lemma File_correct :
WP eval_mexpr n_Counters {{ File_spec }}.
Proof using Hn osirisGS0 ¥n.
oSpecify "make" make_spec vmake "#Hmake" !|.
{ iIntros "I>".
@oCall unfold; wp_bind; wp_continue.
wp_alloc £"[H¢ _1".
iExists £.
iSplit; first equality.
by cbn. }

oSpecify "incr" incr_spec vincr "#Hincr" |
{ iIntros "!>" (? n) "(%Ll&— &HL)".
call. wp_load "H{". wp_store "HC".
replace (VInt (repr (n + 1))) with (#(S n)); last first.
{ simpl. do 2 f_equal; lia. }
prove_counter. }

oSpecify "set" set_spec vset "#Hset" |.

{G& ...}

oSpecify "get" get_spec vget "#Hget" |
{ iIntros "!>"(? nc) "(%L&— &HL)".
call. wp_load "H{". prove_counter. }

oSpecify "Counter" Counter_spec vCounter "#7" |.
{ iModIntro. wp_prove_spec. }

iModIntro; wp_prove_spec.
Qed.

13/20

Records

° =D
I Soeciication:
o aID

14 /20

Records : code

let r_elt:r = {
i = 10;
b = true;

let flipr = { rwithb=not r.b }
let lily = [r_elt; flip r_elt]
let r_valr =

match r.b with

| true > rix2—1

| false — r.i

let sum rl1 r2 =
r_val rl + r_val r2

let rec is_odd_naive n =
assert (n >=0);
if n > 1 then
is_odd_naive (n—2)
else begin
ifn=0
then false
else true
end

let is_oddn =nmod 2 =0

type nat =
| o
| S of nat

let rec is_odd' = function
| 0 — true
| Sn — not (is_odd’ n)

15/20

Records : specifications |

(* (2) Definition of some values; useful to write the specs below. *)
Definition enc_r_elt : val := #{| b := true; i := 10 |}.

Definition enc_r_elt': val := #{|b := false; i := 10|}.

Definition enc_lily : val := #[enc_r_elt; enc_r_elt'].

(* (3) Definition of specifications. *)
Definition is_equal (v res: val) : iProp ¥:= 0" res = v .

(* [flip] negates [b] in records of type [{ b: bool; i: int}]. *)
Definition flip_spec (v : val) : iProp ¥:=
OV (b: bool) (i: z), WP call v #{|b:=b;i:=1i |} {{ Ar, is_equal r #{| b :=negbb; i := i |} }}.

(* [r_val_spec] performs a different arithmetic computation depending on the
fiels [b] of a record. *)

Definition r_val_pure (r:R):Z:= (* ... %)

Definition r_val_spec (r_val: val): iProp ¥:=
OV (r: R), WP call r_val #r {{ Aresult, is_equal result #(r_val_purer) }}.

Definition sum_pure (rl r2: R) : Z :=r_val_pure rl + r_val_pure r2.
Definition sum_spec (vsum: val) : iProp ¥:=
0OV (r1 r2: R),
WP call vsum #r1 {{
A vpart,
WP call vpart #r2 {{
Ares,
is_equal res #(sum_pure rir2) }} }}.

16/20

Records : specifications |l

Fixpoint is_odd_pure (n: nat) : bool := (* ... *)
Definition is_odd_spec (vis_odd: val) : iProp ¥:=
OV (n: nat), WP call vis_odd #n {{ is_equal #(is_odd_pure n) }}.

(x Specification of the module. *)
Definition A :=
[
("sum", sum_spec) ;
("r_val", r_val_spec) ;
("1ily", is_equal enc_lily) ;
("£lip", flip_spec) ;
("r_elt", is_equal enc_r_elt) ;
("is_odd’", is_odd_spec)

17/20

records : Proof. |

Lemma Records_spec :
let m:= EnvCons "Stdlib" Stdlib $
EnvNil in
WP eval_mexpr n_Records {{ module_spec A}}.
Proof.
intros 7. wp.
simpl. wp.

(x [r_elt] is a known value. *)
wp_bind. wp_continue. wp_bind.

(x [flip] has the expected spec. *)
oSpecify "flip" flip_spec vflip "#Hflip".
{ iIntros "!>" (b i); wp.

wp_continue.

simpl.

wp. equality. }
wp_bind.

(* [flip] is applied to [r_elt]. *)

wp.

replace
(VRecord (EnvCons VTrue (EnvCons "i" (VInt (int.repr 10)) EnvNil)))
with #{| b := true; i := 10 |}; last reflexivity.
wp_use "Hflip". iIntros (? <). wp_bind.

18/20

records : Proof. |l

(* [1ily] has the expected value. *)
wp_continue. wp_bind.

(* [r_vall has the expected value. *)

oSpecify "r_val" r_val_spec vr_val "#Hr_val".

{ iIntros "!>" ([[|]] i]); wp; wp_bind; wp_continue; wp_bind; wp_continue; iPureIntro; equality. }
wp_bind.

(* [sum] is given the trivial spec for now. *)
oSpecify "sum" sum_spec vsum "#Hsum".
{ iIntros "!>" ([b1 i1] [b2 i2]).

wp.
do 2 wp_continue.
wp_par; (x ... %).}

wp_continue. wp_bind.

(* [is_odd] is given the trivial spec for now. *)
oSpecify "is_odd" trivial_spec vis_odd "#7"; first done. wp_bind.

oSpecify "is_odd’" is_odd_spec vis_odd' "#His_odd’".

(o3

(x Every spec has been proven: [wp_module_spec] can finish the proof. *)
wp_module_spec.
Time Qed.

19/20

Extra slides

[Y > Separation Logic and Iris
[Y > Weakest Precondition WP
o

20/20

	Appendix

