Static Name Control for FreshML

Francois Pottier
INRIA

Francois.Pottier@inria.fr

Abstract State of the art This deficiency is a known problem. Pitts
and Gabbay attacked it by equipping FreshML 2000 [9]
FreshML extends ML with constructs for declaring and with a static “freshness inference” system whose purpose
manipulating abstract syntax trees that involve names andwas to rule out all impure uses of the fresh name generation
statically scoped binders. It is impure: name generation facility. FreshML 2000 achieves this goal, but is too conser
is an observable side effect. In practice, this means thatvative. For this reason, static name control was abandoned
FreshML allows writing programs that create fresh names by Shinwell, Pitts, and Gabbay in later work [16].

and unintentionally fail to bind them. Followinginthe steep The problem is not specific to FreshML. To the best of
of early work by Pitts and Gabbay, this paper defines Pure my knowledge, it is shared by most meta-programming lan-
FreshML, a subset of FreshML equipped with a static proof gyages in existence today. One exception is MetaML [14],
system that guarantees purity. Pure FreshML relies on a which avoids the problem in an interesting way. In Meta-
rich binding specification language, on user-provided as- ML, the idiom (fn 2 = “¢) generates fresh name, denoted
sertions, expressed in a logic that allows reasoning about py the meta-variable, evaluates the expressienproduc-
values and about the names that they Contain, andona Con'ing an abstract syntax trqe> that can contain free occur-
servative, automatic decision procedure for this logidslt rences of the name denoted byandbindsthat name by
argued that Pure FreshML can express non-trivial syntax- constructing the abstract syntax trée = = ¢), which is
manipulating algorithms. returned. In this design, the operationsgeineratingand
bindingnames cannot be separated. This guarantees purity,
but comes at a heavy cost in expressiveness: it is often use-
1 Introduction ful, or necessary, to view these operations as separate. For
a similar reason, MetaML allows theonstructionof code

FreshML [16, 15] extends ML with constructs for declar- fragments, but not theld,econstructlon It do_es not offer
an analogue of FreshML&ase construct, which inspects a

ing and manipulating abstract syntax trees that involve © . .

names and statically scoped binders. FreshML aims to be P'ece Qf abstrgct syntax V|a.pattern matching. In FreshML,

better meta-programming language than ML by allowing a matching against gab;tractlonpatterngeneratesa fresh

programming style that closely reflects the standard, sem;j-"ame. but does ndsindit.

informal practice of reasoning “up te-conversion”. Caml (pronounced: “alphaCaml”) [10] can be thought
Unfortunately, FreshML igmpure in the sense that fresh ~ Of as a tool that provides much of the power of FreshML

name generation is an observable side effect. For instancel0 Objective Caml users. The tool accepts so-calie-

in FreshML, one can introduce a type dfterms and de- ing specificationsthat is, algebraic data type declarations,

names of a\-term [9, Figure 1]. Such a function is ac- bound. The tool turns these specifications into Objective

cepted, and produces twitistinct sets of names if applied Caml type declarations and code. By relying on Objec-

twice to the same term! This is undesirable: one would like tive Caml's abstract types, it is able to guarantee that atom
to be able to define onlpure functions, that is, functions of different sorts are not mixed, and that abstractions (in

mapa-equivalent arguments te-equivalent results. FreshML's sense) are not violated—that is, their bound
As another facet of the same problem, a FreshML meta-atoms are “freshened” when they are deconstructed. How-

program can construct terms that accidentally contain un-€ver, the tool contains no type system or proof system of its

bound names. Again, this is undesirable: one would like to OWn, SO it cannot guarantee that its fresh name generation

be warned by the compiler when a meta-proggenerates facility is used in a pure manner.

a fresh name, but fails to eventuabiind it. Other pieces of related work are discussegian

Towards a solution This paper presents Pure FreshML, gram:normalization by evaluatio(t5). The full paper con-

a version of FreshML equipped with a static discipline for tains another exampleconversion toA-normal form[12,
enforcing purity. | refer to this discipline aspgoof system §6.2].

rather than a type system, because it is very much like a Normalization by evaluation is an interesting benchmark
Hoare logic for proving properties of programs. Through- because it makes non-trivial use of names and environ-
out the paper, | use the words “pure” and “purity” in a some- ments. Itis used by Shinwest al.[16], who stress the ease
what non-standard fashion: in a “pure” program, name gen-with which it is expressed in FreshML. They point out that
eration is not an observable side effect, but non-termonati it is not accepted by FreshML 2000’s static “freshness in-
remains possible. ference” system [9], and that even a manual proof of its cor-

The proof system is layered on top of a conventional rectness is “far from immediate” [16]. Up to a few changes
type systemwhich, in this paper, is a system of simple and annotations, it expressible in Pure FreshML.
types. Enriching the type system with more features, such
as ML- or System F-style polymorphism, would be straight-
forward. In fact, the proof system is almost entirely inde-
pendent of the underlying type system. The only connection
between the two resides in the interpretation of conssaint
(§3), which is typed: that is, the type of a variable can influ-
ence the meaning of a constraint. If desired, the type syste
can have type inference: the presence of the proof syste
does not prevent that.

The proof system is inspired by Pitts and Gabbay’s
“freshness inference” system [9], but is significantly more
expressive, thanks to three new ingredients.

First, the system relies on a logic that combines Boolean

Road map The paper is laid out as follows. Firsi2),
I introduce the syntax of Pure FreshML, its operational se-
mantics, and a simple type system, which statically prevent
most errors, but doasot prevent incorrect uses of the name
mgenerator. ThengB), | define the syntax and interpretation
of constraints, as well as a conservative decision proeedur
Mor entailment problems. Equipped with these tools, | in-
troduce the proof systent4) and prove that it statically
preventsall errors. An example is presentedsb. The pa-
per ends with discussions of related and future waik (
§7). All proofs, as well as many details and digressions,
are omitted in this extended abstract. The interested reade

constraints over sets of atoms, equations between valuegS again referred to the full version of the paper [12]. An

and the primitive functiofia, "?"SO known asupport.wh|ch early prototype implementation, together with severalecod
maps a value to the set of its free atoms. The judgements

of the proof system involve Hoare-style triples of the form samples, is available onfine [11].
{H} e{P}, whereH is a constraint—a precondition—and
Pis a parameterized constraint—a postcondition. The logic2 Pure FreshML
comes with a fully automated decision procedure for entail-
ment problems, which is sound, and slightly conservative. 2.1 Syntax

Second, the system allows explicit assertions to be pro-
vided by the programmer. Function definitions are anno-
tated with optionapreconditionsandpostconditions Sim-
ilarly, let constructs carry an optional postcondition. Last
data constructor declarations carry an optianard

The syntax of Pure FreshML appears in Figure 1. Itis
similar to the calculi of Pittget al.[9, 16], up to the omission
' of first-class functions (se§ for a discussion).
Values v include variablese, the unit value(), pairs

| Last, thel(s)ystem relies ono?w(ljs blqg!ng shpecmcanon (v,v), injectionsK v, whereK ranges over data construc-
anguage [10] as a means of describing how names ar ors, and binaryabstractions({z) v, where the variable:

bound. The_ need for an expressive_ bindi_ng specification 4. stes an atom—that is, an object-level name. In an ab-
language arises not only When (_jea!lng with complex ab- straction(z) v, the variabler is not bound: this is a free
stract syntax, but also when defining internal data strestur occurrence ofr. Patterng are shallow and form a subset
that involve names, such as evaluation environme§g} (of values The;I/ are required to be linear

and nested, name-capturing contexts EE22]. In order to facilitate the formulation of the proof sys-
tem, a couple of simplifications are built into the syntax.
Expressiveness Due to space restrictions, this extended First, the actual argument of a function call, as well as the
abstract describes a version of Pure FreshML equipped withscrutinee of aase construct, must be values. This require-
ordinary (as opposed to generalized) algebraic data typesment, which is reminiscent afi-normal form [3], is met

and with FreshML's (as opposed ta@l's) binding speci- by introducinglet forms to name the results of intermedi-
fication language. The missing features are described in theate computations. Second, thase construct only has one
full version of the paper [15]. branch, guarded by a shallow pattern. Two exception forms,

In this paper, | demonstrate the expressiveness of the fullnext and fail, together with atry construct, allow encod-
language by presenting a small but non-trivial example pro-ing generalcase constructs featuring an arbitrary number

aQ
=
|

\\'
|

o \lnM e
I

Syntactic objects

x| ()|
0l

v
case p = v thene
absurd | next | fail
try e else e
fresh z in e
if t =2 theneelsee
let x where C'=c¢ine
f(v)
fun f(z where C') : z where C' = ¢
(see§3.1)
atom |unit | 7 x 7| § | (atom) T
e|Tyw:T

(v,0) | Kv | (z)v

Semantic objects

GI()||(w7w)||Kw|<a>w
6|S;F -
Sle | S/w

Mapping values to semantic values

if p(z) is an atom

Figure 1. Syntax of Pure FreshML

well et al's later work [16],fresh is just an effectful primi-
tive operation. It seems that only the first form can be given
a pure semantics, so it is naturally the one | adopt.

Thelet form is standard, except for the asserti@n In
let x where C' = e in eq, the variabler is bound inC'
andes. The constrain€ acts as a postcondition feg, and
must in general be explicitly supplied by the user. (Auto-
matically computing a strongest postcondition for an arbi-
trary expression is not possible, because the constrajiut lo
is too weak—for instance, it lacks existential quantifica-
tion.) Yet, in certain common cases, the translation from
the surface language down to the kernel language can make
up an appropriate constraint. For instance; ifs a valuev,
thenx = v is the strongest postcondition.df is a function
call f(v), then the postcondition associated wjthinstan-
tiated withv andz, is the strongest postcondition.

A program is composed of a set of mutually recursive
toplevel function definitions. Each such definition takes th
form fun f(z; where C1) : zo where Cy = e, wherex;
is bound withinCy, Cs, ande, while x5 is bound only
within Cs. This defines a function whose preconditio@is
and whose postcondition ¢s,.

2.2 Operational semantics

| have pointed out that, in an abstractior) v, the vari-
ablex is not bound irv. Yet, an intuitive understanding of
the semantics of FreshML dictates that, when this abstrac-
tion is evaluated, the atom denoted:byecomes bounih
the value denoted by. In order to formalize this intuition,
| introduce a distinct syntactic categorys#mantic values
written w (Figure 1).

Semantic values do not contain variables, but contain
atomsa, drawn from a countably infinite sét, and contain

of branches and deep (nested) patterns. These simplificagpstractions of the forrfu) w, wherea is considered bound
tions make Pure FreshML, as presented here, a kernel laniy). The set offree atomsf a semantic value, written
guage. In practice, one would offer an unrestricted surfacefa(y), is defined in the obvious way. It is also known as the
language and define a translation from the surface languageupportof w. An atoma is fresh forsome syntactic entity
down to the kernel language. This is done in my prototype when it is not among the free atoms of that entity.

implementation.

Expressions can build values via™and deconstruct
them via ‘case p = v then €”, where the variables ip are
considered bound withia. The execution of @&ase con-
struct aborts, by raisingext, if p does not match. next
is an exception that is caught withte construct fail is an
exception that cannot be caughibsurd asserts that the cur-
rent program point is unreachable. It is somewhat similar for all variables in scope.

to fail, but is statically checked, so, in a valid program, it is

Valueswv contain variables, but not atoms, while seman-
tic valuesw contain atoms, but not variables. Values are
turned into semantic values vémultaneousubstitution of
semantic values faall free variables. In order to maintain
a strict segregation between values and semantic valuees, th
operational semantics relies stacks which, among other
roles, represent a deferred substitution of semantic salue

A stacks is a sequence dfamesF (Figure 1). The pres-

never executed. As in Pitts and Gabbay's paper [9].ithe ence of the frame on the stack means thafrash construct
construct is specialized: it compares two atoms for equalit was entered, that the freshly generated atom isnd that
The fresh construct generates a fresh atom. As in Pitts thefresh construct was not exited yet. The frame means
and Gabbay’s original work [9], the atom is bound to a vari- that the left-hand side of &t construct was entered. The
ablex whose scope is the expressiarin contrast, in Shin-

value of the left-hand side, when available, will be bound

S/v— S/S(v) 1)
S/case () = v thene — S/e if S(v)=1() (2)
S/case (x1,x2) = vthen e — S; 21 = wy;20 = wa /e if S(v) = (wy,w2) (3)
S/case Kjx =vthene — S;x =w/e if S(v) = KowandK; = K, 4)
S/case K; x = v then e — S/next if S(v) = KywandK; # K, (5)
S/case (1) xo = v then e — S;a;21 = a;x9 = w/e if S(v) = (a) w anda fresh forS (6)
S/try ey else ea — S ea/eq @)
S;e/next — S/e (8)

S; F/next — S/next except if the previous rule applies 9)
S; F/fail — S/fail (10)
S/fresh zine — S;a;2 =a/e if a fresh forS (11)
S/if 1 = x5 then e; else ea — S/eq if S(x1) =a; andS(z2) = as anda; = as (12)
S/if 1 = x5 then e; else eg — S/eq if S(x1) =a; andS(z2) = as anda; # as (13)
S/let x where C' = ey in eg — S;x.ea/e; (14)
S/f(v) — Sz = S(v)/e if fun f(x1) ...=e (15)
S;a/w — S/w if a fresh forw (16)
S;xefw — S;x=w/e (17)
S;z=w'/w— S/w (18)
S;e/w — S/w (19)

Figure 2. Operational semantics

to z in the evaluation oé. Note thatz is considered bound

within e. The framer = w means that is currently bound A stackS can be viewed as a valuation, defined by the
to the semantic value. The framee means that ary con- collection of all frames of the form = w within S. Thus,

struct was entered, and was not exited yet. If the exceptiong valuev that is closed under a stackcan be turned into a
next is raised, it will be caught anelwill be evaluated; if, semantic value (v).

on the other hand, a value is returneayill be discarded. The small-step operational semantics of Pure FreshML
| define thedomainof a framefl” as follows. The domain s given by a binary reduction relation over configurations

of a is a; the domain ofr = w is z; the domain ofzr.e (Figure 2). The rules may seem numerous, but are simple. |

and ofe is empty. The domain of a stackis the ordered now explain some of them.

sequence of variables and atoms obtained by concatenating Reduction rule 1 turns a valuginto a semantic value: it

the domains of the frames that makeipA syntacticentity g appjicable only ifS(v) is defined. Reduction rules 2-6,
is closed undefS when its free variables and free atoms are 12-13, and 15 also exploit this mechanism.

members of the domain Gf. Reduction rule 11 states that evaluatirfgesh 2 in ¢”

A configurationis of the formS/e or 5/w, wheree and ¢reates a fresh atom, augments the stack with two new
w are closed unde§. The variables and atoms in the do- frames, which separately record the fact thatas created
main of S are considered bound in such a configuration, so gnd the fact that was bound taz, and proceeds with the
that configurations are closed.résultis a configuration of oyajuation ofe. When and ife eventually reduces to a se-
the forme/w or €/next or ¢/fail. mantic valuew, these two stack frames are popped by re-

A valuationp is a finite mapping of variables to seman- duction rules 18 and 1frovideda does not appear free
tic values. It is lifted to a mapping of values to semantic in w. This requirement is directly inspired by Gabbay and
values (Figure 1). Note that a syntactic abstractionw is Pitts’ treatment of “locally fresh atoms” [4, Remark 6.4].
mapped down to a semantic abstract{pfx)) p(v), where When the side condition of reduction rule 16 is violated,
the atomp(«) is now bound in the semantic valy¢v). If no reduction is possible: the configuratiSna/w is stuck.
p(z) happens not to be an atom, thg{x) v) is undefined. This corresponds to an incorrect use of fhah construct,

Such a situation is ruled out by the type systéJ).

which one would like to statically prevent.

Reduction rules 2—6 describe pattern matching. In partic-

ular, reduction rule 5 states that the failure of patterncimat
ing causes the exceptioext to be raised. Reduction rule 6
states that matching against an abstraction patterhzs
causes a fresh atomto be generated, just as ifash con-
struct had been evaluated [9, 16, 15].

of all applications ofa (§3.3), and switch from the Boolean
algebraP (A) to the Boolean algebi& (§3.4). The decision
procedure is sound, but incomplete. There are two sources
of incompleteness, discussedsB2 ands3.3.

3.1 Syntax and interpretation

The semantics is pure, in the sense that it does notrely on Here is the syntax afet expressionsandconstraintsC':
global state, as would be necessary if the creation of fresh

atoms was an uncontrolled side effect [16]. Here, the stack
discipline ensures that the dynamic extent of a fresh atom

does not exceed the static scope offifeeh construct. Ac-
cording to this semantics, a program that attempts to exploi

fresh in an impure manner goes wrong: it reduces to a stuck

configuration. Thus, the slogan “valid programs cannot go
wrong”, which | establish later (Theorem 4.3), means that
valid programs are in fact pure.

2.3 Type system

| equip Pure FreshML with a conventional system of
simple types [16]. The proof system relies on it in only two
ways: to guarantee that only well-formed values appear in
constraints, and to obtain information about the support of
a variable, based on its typg3(3).

The types (Figure 1) are Pitts’ nominal arities {2, 2].
Every data constructoK carries a signature of the form
T — §, whereé is a data type. Every functiofi carries a
signature of the forrr; — 75. The definition of the type
system appears in the full version of this paper [12].

Theorem 2.1 (Subject reduction) A well-typed configura-
tion can reduce only to a well-typed configuration. ©

Theorem 2.2 (Partial Progress)A well-typed, irreducible
configuration is either a result, or of the for8yabsurd, or
of the formS; a/w, wherea occurs free inw. o

The statement of Theorem 2.2 pinpoints the basic is-

sue that this paper addresses: a conventional type system
does not guarantee that a Pure FreshML program cannot go

wrong. A well-typed Pure FreshML prograzango wrong,
either by attempting to execute ahsurd statement, or by
letting afresh-bound atom escape its static scope.

3 Constraints

I now present the constraint logic and the decision proce-
dure for entailment problems that underlie Pure FreshML'’s
proof system. This is done in several steps. | first introduce
the syntax and interpretation of constrair§3.(). Then, |
present a sound, conservative decision procedure forl-entai
ment problems. It is defined via a reduction to SAT, in three
steps: elimination of all value equatiorf3(2), elimination

S
C H

JI0|AsNs|sUs| s
D|s£D|v=v]|CAC

fa(v
The set expressiosy \ s2, as well as the constraintalse
true, s; C so, $1 = S92, ands; # s, can be viewed as sugar.
The last of these stands f@#; N s2) = (). Set expressions
denote sets of atoms, that is, elements of the Boolean al-
gebraP(A). Constraints are conjunctions afomic con-
straints set emptiness (or non-emptiness) assertions and
value equations.

Constraints are typed. For a constrafnitto be well-
typed under environmeit, (i) if a valuev appears within
C, thenv must be well-typed unddr, and (i) if a value
equationv; = vy appears withinC, thenv; and v, must
have the same type undér Throughout the paper, | manip-
ulate constraints without explicitly mentioning under wlii
type environment’ they are to be considered.

A valuation p respectsa type environment' if it maps
every variabler in the domain ofl" to a semantic value of
type I'(x). The satisfaction judgement - C'is defined
when C' is well-typed unded’ and p respectsl’. | omit
its formal definition. In short, the interpretation of a vatu
underpis p(v) (Figure 1). The symbdh maps the semantic
values intoP(A). Value equations are interpreted in terms
of equality of semantic values (which, at atom abstractions
involves a-equivalence). Satisfiability and entailmentare
defined in the standard way. | write C whenC' is satisfi-
able and”; IF Cy when(entailsCs.

3.2 Eliminating value equations

| assume that the right-hand side of every entailment
problem is a set constraint (as opposed to a value equation).
That is, a value equation can only be a hypothesis, not a
goal. All problems emitted by the proof systemé&ih sat-
isfy this assumption. Then, entailment problems are easily
reduced to satisfiability problems.

I now explain how to reduce an arbitrary constraihto
a constrainC” that contains no value equations, in such a
way that, if C' is satisfiable, then so i€”. This transfor-
mation issoundin the sense that, modulo the reduction of
entailment down to satisfiability, it leads to a consenativ
decision procedure for entailment problems.

The idea is simple: first, examine the value equations in
C and discover as many of their consequences as possible,

including new value equations and new set constraints; then
drop all value equations.

The first step can be viewed as a closure computation
defined by the following rules:

U1 = V2 — U2 = U1
V] = V2 NV = VU3 — U] = U3
- / o
(Ul,vl) - (02702) — v1 = v2 AUy = Uy
KUlzKU2—>’U1 = Uy
Ky v = Kyvy — false if K1 # Ks
vy = vy — fa(vy) = fa(vy)

As a result, only applications of the forfa(z) remain.
Second, each occurrencefafz), wherex has typer, is

,rewritten as follows:

1. if every semantic value of type has empty support,
thenfa(z) is replaced witH);

2. if no semantic value of type has empty support, then
fa(x) is replaced with a set variabl¥, and the con-
junct X # () is added to the constraint;

It is clear that each of the rules preserves the interpreta- 3. otherwisefa(x) is replaced with a set variabl€.

tion of the constraint, so this step is sound and complete.

One rule that | have purposely omitted, because it is not
interpretation-preserving, is the following:

<$1> v = <$2> Vo — 1 = Toa NV = Vg (unsound)

This rule is incorrect, because equality of abstraction®is
syntactic—that is the whole point of abstractions!

The second step consists in dropping all value equations.

It is clearly sound. It is also incomplete, because of the
missing closure rule for abstractions.

3.3 Eliminating applications of fa

I now explain how to reduce a constrai@t (without
value equations) to a Boolean constraifitin such a way
that, if C' is satisfiable, thed” is satisfiable as well, when
interpreted oveP(A).

The syntax oBoolean constraintss as follows:

S

C

X|0|1]sAs|sVs]|s
s=0|s£0|CAC

Here, X ranges over a new category Bbolean variables

Boolean constraints can be interpreted over any Boolean al-

gebra. In particular, when they are interpreted 6véh), a
Boolean variableX denotes a set of atoms. (In that case, |
also refer taX as aset variable) When they are interpreted
over the two-point algebrg = {0, 1}, such a variable de-
notes a truth value.

An atomic constraint of the forra = 0 is positive an
atomic constraint of the form # 0 is negative A conjunc-
tion of atomic constraints that contains at most one negativ
conjunct issimple

In order to perform the reduction announced above, only
one transformation is required: to replace all applicatioh
thefa symbol with set variables. This is done is two steps.

First, applications ofa are reduced:

fa(()) — @
fa((v1,v2)) — fa(vr) Ufa(vz)
fa(Kv) fa(v)
fa((z) v) — fa(v) \ fa(z)

The basic idea behind this transformation resides in tig thi
rule: fa(x) is considered an unknown set of atoms, so a set
variable, writtenX, is introduced to stand for it. (I assume

a one-to-one correspondence between variablaad set
variablesX.) The result is a Boolean constraint. Rules 1
and 2 are not required for the transformation to be sound.
Instead, they help bring it “closer to completeness”. | now
discuss each of these two rules, as well as the issue of in-
completeness, in turn.

Rule 1 states that, if has typer and if every value of
type T has empty support, théa(xz) must be empty. (Pitts
and Gabbay [9] refer to such a typeas “pure”.) This is
the case ifr is a base type, such &sol, int, or string. It
is also the case if is a data type and if one can prove,
by structural induction, that all values of typdnave empty
support. Such a proof is easily automated, so that it is de-
cidable whether rule 1 is applicable.

Rule 2 is, in a way, the dual of rule 1. It is applicable,
for instance, ifr is atom, or a data type of non-empty lists
of atoms. In that caséa(x) is replaced with a set variable
X, as in rule 3, but, in addition, the hypothesis # (is
introduced.

This rule is important because it is the only source of
negative hypotheses in the entire system. If it was removed,
then all of the entailment problems produced by the proof
system would carry positive hypotheses only. Why would
that be a problem? Notice that the positive Boolean con-
straints that the system produces are somewhat peculiar.
Because they exploit the connectigsJ, \, but do not ex-
ploit the connectived\ and—, they are always satisfied by
the valuation that maps every Boolean variabld toT his
means that, in the absence of rule 2, the current set of hy-
pothesed? would always be satisfiable. So, the entailment
assertionH I+ falsewould never hold, and the expression
absurd would never be accepted by the proof system (see
rule ABSURDIn Figure 3). In short, negative hypotheses of
the form X # () are required in order to establish absurdity.

The transformation performed in the second step is not
complete: it can turn an unsatisfiable constraint into a sat-
isfiable Boolean constraint. For instancegijfz;, andxs

have typeatom, then the constraint

fa(.fEl) +# fa(.fEQ) A\
fa(zq) Ufa(zy) C fa(z)

is unsatisfiable, because it requifagr) to have cardinal 2,
which is impossible—the support of an atom is a singleton.
Yet, it is reduced to the Boolean constraint

XiNXo=0A
XiUX, C XA
XAONXT #DANXy # 0

which is satisfiable oveP(A)—take X; = {a1}, X2 =
{az}, and X {a1,a2}, wherea; anda, are distinct

4.1 Presentation

The proof system consists of three main judgements,
which concern patterns, expressions, and function defini-
tions (Figure 3).

Judgements about expressions are of the faxmk-
{H}e{P}. Ais a set of all variables currently in scope,
and includes the free variables of | implicitly assume
that e is well-typed under a type environment whose do-
main isA. H is a constraint. It represents a precondition,
that is, a hypothesis. (I usé andH for constraints.)P is a
predicate: a constraint, parameterized over one varidble.
represents a postcondition, that is, a goal.

| sometimes explicitly writeAz.C' for a parameterized

atoms. In summary, the decision procedure does distinguishrconstraint: then, the parameterstands for the result of
between empty and non-empty sets of atoms, but is unablehe expressiore. When P is \z.C, | write P(v) for

to reason about cardinality.
3.4 Satisfiability of Boolean constraints

I now focus on the satisfiability problem for Boolean
constraints (as defined §3.3) interpreted over the Boolean
algebraP(A).

Marriott and Odersky [5] have shown that any Boolean
algebra of infinite height is weakly independent. This
means that satisfiability of arbitrary constraints reduces
satisfiability of simple constraints:

Lemma 3.1 LetC be a conjunction of positive atomic con-
straints. The constraint’ A s; ZO0A ... A s, # 0, where

n > 0, is satisfiable ovefP(A) if and only if each of the
simple constraint& A s; # 0 is satisfiable oveP(A). <

There remains to explain how to decide whether a simple

constraint is satisfiable. | establish the following result

Lemma 3.2 A simple constraint is satisfiable ovEx(A) if
and only if it is satisfiable oveB. o

When interpreted oveb, the atomic constraint # 0 is
equivalent ta(—s) = 0. As a result, determining whether a
constraint is satisfiable ovér is exactly the Boolean satis-
fiability problem SAT.

4 A proof system

| now define the proof system that lies at the heart of

[z — v]C, wherev is a value. | writeC'[-] for the predi-
cate\z.C[x], wherex is chosen fresh fo€'. | write true

for the predicate\z.true. | write P, A P for the predicate
Az.(Py(x) A\ Po(z)), wherez is fresh forP, and Px.

Rule VALUE states that the tripl¢H } v { P} is satisfied
if and only if the preconditior{ entails that the value sat-
isfies the postconditiof. Its premise, an entailment judge-
ment, represents a proof obligation.

Rule FREsH augmentsH with the hypothesisa(x) #
fa(A). (I write fa(A) for the symbolic union of alfa(y),
wherey ranges over\.) This means that the support of
can safely be assumed disjoint with the support of every pre-
existing variable. RESH also augments the postcondition
with the new goafa(x) # fa(-), that is, the atom: should
not appear in the support of the result that is eventually pro
duced by thédresh construct. This goal clearly reflects the
side condition of reduction rule 16.

Rule Caske describes what can be assumed, and what
must be proved, when a valueis successfully matched
against a patterp. First, the equatiop = v can be as-
sumed. Second, an extra hypothdg$isand an extra godP’
are derived from the pattegn using either ASTRACTION-
PATTERN or OTHER-PATTERN. Whenp is an abstraction
pattern(x;) xo, H' states that; can be assumed to be fresh
and P’ states that:; must not appear in the result of eval-
uatinge, just as ifxy wasfresh-bound. Wherp is another
pattern form,H’ and P’ are empty.

Rule IF augmentsH, in each branch, with a constraint
that reflects the outcome of the dynamic test. Becayse
andzo have typeatom, fa(z1) # fa(z2) is equivalent to,

Pure FreshML. It can be viewed as an algorithm that ex- and can be used instead &(x,) # fa(x2), a disequation

tracts proof obligations out of a Pure FreshML program.
Each proof obligation is an entailment problem and is dis-
charged using the decision procedure;®f As explained

that the constraint language is not directly able to express
Rule LETWHERE usesAz.C, where(C' is supplied by
the user, as a postcondition fer, and makeg&’ A fa(z) C

there, the decision procedure needs access to type informafa(A) a new hypothesis for the continuatiep

tion. However, the proof systeper sedoes not, so | do not
keep track of types in this section.

Rule Der states that the body of a function must be
checked under the preconditigry and postconditiorCs

ABSTRACTION-PATTERN OTHER-PATTERN VALUE
p Z (v1) 2 HIF P(v)

At {fa(z1) # fa(A)} (z1) 2 {fa(z1) # fa-)}

A F {true} p {true} A+ {H}v{P}
CAsE
dom(p) fresh fOI‘A7 I{7 v, P A F {H/}p {P/} ABSURD
A,dom(p) F {HAH ANp=v}e{P AP} H I+ false ZE:TH p
AF {H)case p = v then ¢ { P} A {H} absurd { P} {H]) next {P}
TRY FRESH
AF{H}e {P} x fresh forA, H, P
Z\t - At {H} ey {P} A,z b {H Afa(z) # fa(A)} e {P Afa(z) # fa(-)}
{H} fail {7} AF{H}try e else e5 {P} A+ {H}fresh z in e {P}
IF LETWHERE
AF{H Nfa(z1) =fa(za)} e1 {P} x freshforA, H, P A+ {H} e {Xz.C}
A+ {H Nfa(xq) # fa(xs) } ex { P} A,z {HAC Nfa(z) Cfa(A)}ex { P}
A+ {H}if 21 = xq then e else e; { P} AF {H}let 2 where C' = e; in ey { P}
CALL DEF
H IF pre(f)(v) x1 F{C1} e{Axy.C5} pre(f) = Az1.Cy
H I post(f)(v,-) = P post(f) = A(z1, 22).(C2 A fazz) C fa(z1))
A+ {H} f(v){P} F fun f(x1 where Cy) : 22 where Cs = e

Figure 3. The proof system

that were provided by the user. It also defines the notationsThe three main changes are: the code is defunctionalized;

“pre(f)” and “post(f)” used in rule Q\LL. the binding structure of closures and environments is ex-
pressed using &ml’'s specification language (not formally
4.2 Soundness presented in this paper, see [10] and [$3]); andevals

carries an explicit postcondition.

The combination of the type system and proof system The effect of defunctionalization is that the data con-
is sound with respect to the operational semantics. This isstructorL (line 7) carries a triple of an environment, an
proven via standard subject reduction and progress resultsatom, and a term, instead of a first-class function.

A configuration isvalid when it is accepted by the type sys- The typeenvis a “pattern type”, in @ml parlance; this
tem and proof system. is indicated by thévinds keyword on line 14. This means

. that, in a value of typeny, such as:
Theorem 4.1 (Subject Reduction)A valid configuration yp

can reduce only to a valid configuration. o env=ECong. .. ECongENIil, x;, Vi) ..., X, Vp),
Theorem 4.2 (Progress)A valid, irreducible configuration the atoms, . . ., X,, are considered dsnding occurrences
is a result. o Then, by definition, the set expressibaundenv) denotes

) i i the set of atomg{xy,...,x,}. According to theouter
Corollary 4.3 (Soundness)A valid configuration cannot keyword in the definition oECons(line 16), the values
go wrong. ° v,...,v, lie outsidethe scope of these atoms. Then, by

definition, the set expressiautereny) denotes the set of
atomsfa(vy) U ... Ufa(v,).

According to the placement of the abstraction brackets
and of theinner keyword in the definition oL (line 7),
within a value of the form:

5 lllustration

I now briefly present a small but non-trivial program that
is accepted by the proof system: normalization by evalu-
ation (Figure 4). It is adapted from Shinwelt al. [16]. v=L(enyxt),

0N OO A W N

O W d GO ad A S DDA DNDDDOE®WEMWEERNNNNRNNNRNRNNRNERERRR B BB PR
PO 0O ®NOOhWONRPEOOGC®O®IDINEN®OVURLOOG®NOGOEDORL,OO©®~NoO AR ONRO®©O®®NO®AS®IRNR O O©

type lam =
| Var of
| Lam of
| App of

atom
(atomx inner lam)
lam x lam

type sem=
| L of (envx atomx inner lam)
| N of neu

type neu=
| V of atom
| A of neux sem

type env binds =
| ENil
| EConsof envx atomx outer sem

fun reify accepts s produces t =
case s of
| L (env, y, t)—
fresh x in
Lam (x, reify (evals (ECons(env, y, N (V (x))), t)))
| N (n) —
reifyn (n)
end

fun reifyn accepts n produces t =
case n of
| \% (X) —
Var (x)
| A (n, d) —
App (reifyn (n), reify (d))
end

fun evals accepts env, t produces v
where free(v) C outer(env) U (free(t) \ bound(env)) =
case t of
| Var (x) —
case env of
| ENil —
N (V (x))
| ECons (tail , y, v) —
if x=y then v
else evals (tail, t) end
end
| Lam (x, t) —
L (env, x, t)
| App (11, t2) —
case evals (env, t1) of
| L (ceny, x, t)—
evals (ECons (cenv, x, evals (env, t2)), t)
‘ N (n) —
N (A (n, evals (env, t2)))
end
end

fun eval accepts t produces s =
evals (ENil, t)

fun normalize accepts t produces u =
reify (eval (t))

Figure 4. A sample program: NBE
the atoms irboundeny), as well as the atom, are consid-
ered bound within the teriin That is, by definition:
fa(v) = outerfeny U (fa(t) \ (boundeny U {x})).

This explains why the proof obligation associated with
the deconstruction ofam on line 46 succeeds. Decon-
structing Lam yields a “fresh” atomx, which one must

L(env x, t). The fact thatx is “fresh” means, in particular,
thatx is not in the support oény, which by definition in-
cludesouter(eny). By exploiting the above displayed equa-
tion, one finds thak is not in the support of(env x, t), as
desired. This fact is proved automatically by the conserva-
tive decision procedure @f3.

The proof obligation on line 46 corresponds, in part, to
the obligation that FreshML 2000 was not able to automat-
ically discharge [16, figure 7, lines 26—27]. By declaring
that the data constructdr carries an abstraction, | have
been able to get away with the deconstructiorLam Of
course, as a result, new proof obligations appear wherever
L is deconstructed (lines 20 and 50). Both require exploit-
ing a non-trivial property oevals which is expressed as a
postcondition.

The functionevalsexpects a pair of an environmegnv
and a ternt, and evaluateswithin the context ofenv. As
one might expect, any atom that appears in the suppdart of
as well as in the domain a#nvis substituted out, which
means that, ievalsproduces a result, then (line 36):

fa(v) C outerfeny) U (fa(t) \ boundenv))

This property is not automatically inferred by the system—
it is a loop invariant—so it has to be explicitly provided.
Then, it is easily checked.

6 Related work

This paper was inspired by Pitts and Gabbay’s work on
static “freshness inference” for FreshML [9]. Pitts and Gab
bay’s algorithm attempts tinfer freshness assertions about
values and expressions, or, equivalently, to infer an appro
imation of the support of values and expressions. The proof
system presented in this paper is oriented purely towards
checking For this reason, explicit assertions must some-
times be provided dgt constructs.

Pasalic and Linger [7] exploit the programming language
mega to define a data type that represents the abstract syn-
tax of an object language, expressed in de Bruijn notation.
The data type is parameterized in a way that guarantees that
out-of-range de Bruijn indices cannot be constructed. The
syntax of the object language includes non-trivial binding
structures (patterns). Donnelly and Xi [2] explore a simila
approach in the programming language ATS.

Schirmannet al’'s V-calculus [13] is a core meta-
programming language where object-level terms are en-
coded using higher-order abstract syntax. There are no
object-level names: both object-level and meta-level ab-
stractions bind meta-variables. Object-level substtuti
is application of object-level abstractions. A type system
guarantees that meta-variables cannot escape their dtope.

prove does not appear in the support of the right-hand sideis quite different from the proof system presented in this

paper. The constructz.e introduces a new meta-variahte

and at the same time requires the result of evaluatitg

depend only on meta-variables that were bound priar.to
This requirement is encoded via stacks of typing contexts
and via a “box” type constructor that prevents exploiting

the topmost context.

MetaOCaml relies on environment classifiers [17] to tell
which code fragments are closed. An environment classi- [2]
fier is a type variable that abstracts a set of names. The code
type constructor is parameterized with an environment clas
sifier. This allows the type system to keep track, in a conser-
vative way, of which names appear free in a code fragment. 3]
Closed code fragments are recognized by the fact that they

are polymorphic in their environment classifier.

Nanevski's calculug® [6] is inspired by FreshML, and,
like Pure FreshML, provides a static discipline for enforc-
ing purity. This is done by explicitly keeping track of the
support of every value, and exploiting this information to
ensure that freshly-created names do not escape. An impor-

tant difference betweert’ and Pure FreshML is that’ lets

the type systentarry the support information, by param-
eterizing the “code” type constructor with a set of names,

while Pure FreshML relies on a separateof systenand

requires no changes to the type system. | believe that the
latter approach is lighter (for instance, Nanevski’s “supp
polymorphism” comes for free here) and potentially more
expressive, because constraints can express propehars ot
than approximations of the support of certain values. An-
other design difference is that’ is ahomogeneous, multi-
level staged programming language, while FreshML is a
heterogeneoumeta-programming language. This means,
for instance, that Nanevski does not distinguish between [10]
meta-level\-abstraction and object-level name abstraction.

7 Future work

Many features must be added in order to turn Pure
FreshML into a realistic meta-programming language. Here [13]

are a few; see the full paper [12] for more:

First-class functionsl am confident that first-class func-
tions can be introduced without difficulty. This requires ex
tending the grammar of types with function types, carry-
ing a precondition and a postcondition. Furthermore, Pitts
and Gabbay [9] remarked that the support of a function is
a subset of the combined support of its free variables. This [15]
approximation can be exploited to conservatively elimgnat

applications ofato A-abstractions.

Mutable state Shared, modifiable references offer new

ways for atoms to escape their scope. Calcaginal. [1]

attack the problem in the setting of MetaML and offer a so- [17]

lution that requires references to contalnsedcode frag-

ments. An analogous restriction—to require references to
contain values oémpty suppor—would be easy to enforce

in Pure FreshML, via proof obligations.

References

[1] C. Calcagno, E. Moggi, and T. Sheard. Closed types for a

safe imperative MetaML Journal of Functional Program-
ming 13(3):545-571, May 2003.

K. Donnelly and H. Xi. Combining higher-order abstract
syntax with first-order abstract syntax in ATS. ACM
Workshop on Mechanized Reasoning about Languages with
Variable Binding pages 58-63, 2005.

C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The
essence of compiling with continuations. ACM Confer-
ence on Programming Language Design and Implementa-
tion (PLDI), pages 237-247, 1993.

M. J. Gabbay and A. M. Pitts. A new approach to abstract
syntax with variable bindingrormal Aspects of Computing
13(3-5):341-363, July 2002.

K. Marriott and M. Odersky. Negative Boolean constraint
Technical Report 94/203, Monash University, Aug. 1994.

] A. Nanevski. Meta-programming with names and necessity

Technical Report CMU-CS-02-123R, School of Computer
Science, Carnegie Mellon University, Nov. 2002.

PaSalic and N. Linger. Meta-programming with typed
object-language representations. livternational Confer-
ence on Generative Programming and Component Engi-
neering (GPCE)pages 136-167, Oct. 2004.

[8] A. M. Pitts. Alpha-structural recursion and inducticlour-

nal of the ACM 53:459-506, 2006.

[9] A. M. Pitts and M. J. Gabbay. A metalanguage for pro-

gramming with bound names modulo renaminglriterna-
tional Conference on Mathematics of Program Construction
(MPC), volume 1837 of_ecture Notes in Computer Science
pages 230-255. Springer Verlag, 2000.

F. Pottier. An overview of @ml. In ACM Workshop on ML
volume 148(2) oElectronic Notes in Theoretical Computer
Sciencepages 27-52, Mar. 2006.

F. Pottier. Prototype implementation of Pure FreshNtn.
2007.

F. Pottier. Static name control for FreshML, full vesj
Jan. 2007.

C. Schlurmann, A. Poswolsky, and J. Sarnat. TRe
calculus: Functional programming with higher-order encod
ings. Technical Report YALEU/DCS/TR-1272, Yale Uni-
versity, Nov. 2004.

T. Sheard. Using MetaML: A staged programming lan-
guage. InAdvanced Functional Programming/olume
1608 ofLecture Notes in Computer Scienpages 207—239.
Springer Verlag, Sept. 1998.

M. R. Shinwell and A. M. Pitts. On a monadic semantics for
freshnessTheoretical Computer Sciencg42:28-55, 2005.

] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML:

Programming with binders made simple. ACM Inter-
national Conference on Functional Programming (ICFP)
pages 263-274, Aug. 2003.

W. Taha and M. F. Nielsen. Environment classifiers. In
ACM Symposium on Principles of Programming Languages
(POPL), pages 26-37, Jan. 2003.

