
Static Name Control for FreshML

François Pottier
INRIA

Francois.Pottier@inria.fr

Abstract

FreshML extends ML with constructs for declaring and
manipulating abstract syntax trees that involve names and
statically scoped binders. It is impure: name generation
is an observable side effect. In practice, this means that
FreshML allows writing programs that create fresh names
and unintentionally fail to bind them. Following in the steps
of early work by Pitts and Gabbay, this paper defines Pure
FreshML, a subset of FreshML equipped with a static proof
system that guarantees purity. Pure FreshML relies on a
rich binding specification language, on user-provided as-
sertions, expressed in a logic that allows reasoning about
values and about the names that they contain, and on a con-
servative, automatic decision procedure for this logic. Itis
argued that Pure FreshML can express non-trivial syntax-
manipulating algorithms.

1 Introduction

FreshML [16, 15] extends ML with constructs for declar-
ing and manipulating abstract syntax trees that involve
names and statically scoped binders. FreshML aims to be a
better meta-programming language than ML by allowing a
programming style that closely reflects the standard, semi-
informal practice of reasoning “up toα-conversion”.

Unfortunately, FreshML isimpure, in the sense that fresh
name generation is an observable side effect. For instance,
in FreshML, one can introduce a type ofλ-terms and de-
fine a function that purports to construct “the” set ofbound
names of aλ-term [9, Figure 1]. Such a function is ac-
cepted, and produces twodistinct sets of names if applied
twice to the same term! This is undesirable: one would like
to be able to define onlypure functions, that is, functions
mapα-equivalent arguments toα-equivalent results.

As another facet of the same problem, a FreshML meta-
program can construct terms that accidentally contain un-
bound names. Again, this is undesirable: one would like to
be warned by the compiler when a meta-programgenerates
a fresh name, but fails to eventuallybind it.

State of the art This deficiency is a known problem. Pitts
and Gabbay attacked it by equipping FreshML 2000 [9]
with a static “freshness inference” system whose purpose
was to rule out all impure uses of the fresh name generation
facility. FreshML 2000 achieves this goal, but is too conser-
vative. For this reason, static name control was abandoned
by Shinwell, Pitts, and Gabbay in later work [16].

The problem is not specific to FreshML. To the best of
my knowledge, it is shared by most meta-programming lan-
guages in existence today. One exception is MetaML [14],
which avoids the problem in an interesting way. In Meta-
ML, the idiom〈fn x ⇒ ẽ〉 generatesa fresh name, denoted
by the meta-variablex, evaluates the expressione, produc-
ing an abstract syntax tree〈t〉 that can contain free occur-
rences of the name denoted byx, andbinds that name by
constructing the abstract syntax tree〈fn x ⇒ t〉, which is
returned. In this design, the operations ofgeneratingand
bindingnames cannot be separated. This guarantees purity,
but comes at a heavy cost in expressiveness: it is often use-
ful, or necessary, to view these operations as separate. For
a similar reason, MetaML allows theconstructionof code
fragments, but not theirdeconstruction: it does not offer
an analogue of FreshML’scase construct, which inspects a
piece of abstract syntax via pattern matching. In FreshML,
matching against anabstractionpatterngeneratesa fresh
name, but does notbind it.

Cαml (pronounced: “alphaCaml”) [10] can be thought
of as a tool that provides much of the power of FreshML
to Objective Caml users. The tool accepts so-calledbind-
ing specifications, that is, algebraic data type declarations,
enriched with information on where and how atoms are
bound. The tool turns these specifications into Objective
Caml type declarations and code. By relying on Objec-
tive Caml’s abstract types, it is able to guarantee that atoms
of different sorts are not mixed, and that abstractions (in
FreshML’s sense) are not violated—that is, their bound
atoms are “freshened” when they are deconstructed. How-
ever, the tool contains no type system or proof system of its
own, so it cannot guarantee that its fresh name generation
facility is used in a pure manner.

Other pieces of related work are discussed in§6.

1

Towards a solution This paper presents Pure FreshML,
a version of FreshML equipped with a static discipline for
enforcing purity. I refer to this discipline as aproof system,
rather than a type system, because it is very much like a
Hoare logic for proving properties of programs. Through-
out the paper, I use the words “pure” and “purity” in a some-
what non-standard fashion: in a “pure” program, name gen-
eration is not an observable side effect, but non-termination
remains possible.

The proof system is layered on top of a conventional
type system, which, in this paper, is a system of simple
types. Enriching the type system with more features, such
as ML- or System F-style polymorphism, would be straight-
forward. In fact, the proof system is almost entirely inde-
pendent of the underlying type system. The only connection
between the two resides in the interpretation of constraints
(§3), which is typed: that is, the type of a variable can influ-
ence the meaning of a constraint. If desired, the type system
can have type inference: the presence of the proof system
does not prevent that.

The proof system is inspired by Pitts and Gabbay’s
“freshness inference” system [9], but is significantly more
expressive, thanks to three new ingredients.

First, the system relies on a logic that combines Boolean
constraints over sets of atoms, equations between values,
and the primitive functionfa, also known assupport, which
maps a value to the set of its free atoms. The judgements
of the proof system involve Hoare-style triples of the form
{H} e {P}, whereH is a constraint—a precondition—and
P is a parameterized constraint—a postcondition. The logic
comes with a fully automated decision procedure for entail-
ment problems, which is sound, and slightly conservative.

Second, the system allows explicit assertions to be pro-
vided by the programmer. Function definitions are anno-
tated with optionalpreconditionsandpostconditions. Sim-
ilarly, let constructs carry an optional postcondition. Last,
data constructor declarations carry an optionalguard.

Last, the system relies on Cαml’s binding specification
language [10] as a means of describing how names are
bound. The need for an expressive binding specification
language arises not only when dealing with complex ab-
stract syntax, but also when defining internal data structures
that involve names, such as evaluation environments (§5)
and nested, name-capturing contexts [12,§6.2].

Expressiveness Due to space restrictions, this extended
abstract describes a version of Pure FreshML equipped with
ordinary (as opposed to generalized) algebraic data types
and with FreshML’s (as opposed to Cαml’s) binding speci-
fication language. The missing features are described in the
full version of the paper [12,§5].

In this paper, I demonstrate the expressiveness of the full
language by presenting a small but non-trivial example pro-

gram:normalization by evaluation(§5). The full paper con-
tains another example:conversion toA-normal form[12,
§6.2].

Normalization by evaluation is an interesting benchmark
because it makes non-trivial use of names and environ-
ments. It is used by Shinwellet al. [16], who stress the ease
with which it is expressed in FreshML. They point out that
it is not accepted by FreshML 2000’s static “freshness in-
ference” system [9], and that even a manual proof of its cor-
rectness is “far from immediate” [16]. Up to a few changes
and annotations, itis expressible in Pure FreshML.

Road map The paper is laid out as follows. First (§2),
I introduce the syntax of Pure FreshML, its operational se-
mantics, and a simple type system, which statically prevents
most errors, but doesnot prevent incorrect uses of the name
generator. Then (§3), I define the syntax and interpretation
of constraints, as well as a conservative decision procedure
for entailment problems. Equipped with these tools, I in-
troduce the proof system (§4) and prove that it statically
preventsall errors. An example is presented in§5. The pa-
per ends with discussions of related and future work (§6,
§7). All proofs, as well as many details and digressions,
are omitted in this extended abstract. The interested reader
is again referred to the full version of the paper [12]. An
early prototype implementation, together with several code
samples, is available online [11].

2 Pure FreshML

2.1 Syntax

The syntax of Pure FreshML appears in Figure 1. It is
similar to the calculi of Pittset al.[9, 16], up to the omission
of first-class functions (see§7 for a discussion).

Values v include variablesx, the unit value(), pairs
(v, v), injectionsK v, whereK ranges over data construc-
tors, and binaryabstractions〈x〉 v, where the variablex
denotes an atom—that is, an object-level name. In an ab-
straction〈x〉 v, the variablex is not bound: this is a free
occurrence ofx. Patternsp are shallow and form a subset
of values. They are required to be linear.

In order to facilitate the formulation of the proof sys-
tem, a couple of simplifications are built into the syntax.
First, the actual argument of a function call, as well as the
scrutinee of acase construct, must be values. This require-
ment, which is reminiscent ofA-normal form [3], is met
by introducinglet forms to name the results of intermedi-
ate computations. Second, thecase construct only has one
branch, guarded by a shallow pattern. Two exception forms,
next and fail, together with atry construct, allow encod-
ing generalcase constructs featuring an arbitrary number

2

Syntactic objects

v ::= x | () | (v, v) | K v | 〈x〉 v
p ::= () | (x, x) | K x | 〈x〉x
e ::= v

| case p = v then e
| absurd | next | fail

| try e else e
| fresh x in e
| if x = x then e else e
| let x where C = e in e
| f(v)

fd ::= fun f(x where C) : x where C = e
C,H ::= (see§3.1)

τ ::= atom | unit | τ × τ | δ | 〈atom〉 τ
Γ ::= ǫ | Γ; x : τ

Semantic objects

w ::= a | () | (w, w) | K w | 〈a〉w
F ::= a | x.e | x = w | e
S ::= ǫ | S; F
c ::= S/e | S/w

Mapping values to semantic values

ρ(()) = ()

ρ((v1, v2)) = (ρ(v1), ρ(v2))

ρ(K v) = K ρ(v)

ρ(〈x〉 v) = 〈ρ(x)〉 ρ(v) if ρ(x) is an atom

Figure 1. Syntax of Pure FreshML

of branches and deep (nested) patterns. These simplifica-
tions make Pure FreshML, as presented here, a kernel lan-
guage. In practice, one would offer an unrestricted surface
language and define a translation from the surface language
down to the kernel language. This is done in my prototype
implementation.

Expressions can build values via “v” and deconstruct
them via “case p = v then e”, where the variables inp are
considered bound withine. The execution of acase con-
struct aborts, by raisingnext, if p does not matchv. next

is an exception that is caught with atry construct.fail is an
exception that cannot be caught.absurd asserts that the cur-
rent program point is unreachable. It is somewhat similar
to fail, but is statically checked, so, in a valid program, it is
never executed. As in Pitts and Gabbay’s paper [9], theif

construct is specialized: it compares two atoms for equality.
The fresh construct generates a fresh atom. As in Pitts

and Gabbay’s original work [9], the atom is bound to a vari-
ablex whose scope is the expressione. In contrast, in Shin-

well et al.’s later work [16],fresh is just an effectful primi-
tive operation. It seems that only the first form can be given
a pure semantics, so it is naturally the one I adopt.

The let form is standard, except for the assertionC. In
let x where C = e1 in e2, the variablex is bound inC
ande2. The constraintC acts as a postcondition fore1, and
must in general be explicitly supplied by the user. (Auto-
matically computing a strongest postcondition for an arbi-
trary expression is not possible, because the constraint logic
is too weak—for instance, it lacks existential quantifica-
tion.) Yet, in certain common cases, the translation from
the surface language down to the kernel language can make
up an appropriate constraint. For instance, ife1 is a valuev,
thenx = v is the strongest postcondition. Ife1 is a function
call f(v), then the postcondition associated withf , instan-
tiated withv andx, is the strongest postcondition.

A program is composed of a set of mutually recursive
toplevel function definitions. Each such definition takes the
form fun f(x1 where C1) : x2 where C2 = e, wherex1

is bound withinC1, C2, and e, while x2 is bound only
within C2. This defines a function whose precondition isC1

and whose postcondition isC2.

2.2 Operational semantics

I have pointed out that, in an abstraction〈x〉 v, the vari-
ablex is not bound inv. Yet, an intuitive understanding of
the semantics of FreshML dictates that, when this abstrac-
tion is evaluated, the atom denoted byx becomes boundin
the value denoted byv. In order to formalize this intuition,
I introduce a distinct syntactic category ofsemantic values,
writtenw (Figure 1).

Semantic values do not contain variables, but contain
atomsa, drawn from a countably infinite setA, and contain
abstractions of the form〈a〉w, wherea is considered bound
in w. The set offree atomsof a semantic valuew, written
fa(w), is defined in the obvious way. It is also known as the
supportof w. An atoma is fresh forsome syntactic entity
when it is not among the free atoms of that entity.

Valuesv contain variables, but not atoms, while seman-
tic valuesw contain atoms, but not variables. Values are
turned into semantic values viasimultaneoussubstitution of
semantic values forall free variables. In order to maintain
a strict segregation between values and semantic values, the
operational semantics relies onstacks, which, among other
roles, represent a deferred substitution of semantic values
for all variables in scope.

A stackS is a sequence offramesF (Figure 1). The pres-
ence of the framea on the stack means that afresh construct
was entered, that the freshly generated atom isa, and that
thefresh construct was not exited yet. The framex.e means
that the left-hand side of alet construct was entered. The
value of the left-hand side, when available, will be bound

3

S/v −→ S/S(v) (1)

S/case () = v then e −→ S/e if S(v) = () (2)

S/case (x1, x2) = v then e −→ S; x1 = w1; x2 = w2/e if S(v) = (w1, w2) (3)

S/case K1 x = v then e −→ S; x = w/e if S(v) = K2 w andK1 = K2 (4)

S/case K1 x = v then e −→ S/next if S(v) = K2 w andK1 6= K2 (5)

S/case 〈x1〉x2 = v then e −→ S; a; x1 = a; x2 = w/e if S(v) = 〈a〉w anda fresh forS (6)

S/try e1 else e2 −→ S; e2/e1 (7)

S; e/next −→ S/e (8)

S; F/next −→ S/next except if the previous rule applies (9)

S; F/fail −→ S/fail (10)

S/fresh x in e −→ S; a; x = a/e if a fresh forS (11)

S/if x1 = x2 then e1 else e2 −→ S/e1 if S(x1) = a1 andS(x2) = a2 anda1 = a2 (12)

S/if x1 = x2 then e1 else e2 −→ S/e2 if S(x1) = a1 andS(x2) = a2 anda1 6= a2 (13)

S/let x where C = e1 in e2 −→ S; x.e2/e1 (14)

S/f(v) −→ S; x1 = S(v)/e if fun f(x1) . . . = e (15)

S; a/w −→ S/w if a fresh forw (16)

S;x.e/w −→ S; x = w/e (17)

S;x = w′/w −→ S/w (18)

S; e/w −→ S/w (19)

Figure 2. Operational semantics

to x in the evaluation ofe. Note thatx is considered bound
within e. The framex = w means thatx is currently bound
to the semantic valuew. The framee means that atry con-
struct was entered, and was not exited yet. If the exception
next is raised, it will be caught ande will be evaluated; if,
on the other hand, a value is returned,e will be discarded.

I define thedomainof a frameF as follows. The domain
of a is a; the domain ofx = w is x; the domain ofx.e
and ofe is empty. The domain of a stackS is the ordered
sequence of variables and atoms obtained by concatenating
the domains of the frames that make upS. A syntactic entity
is closed underS when its free variables and free atoms are
members of the domain ofS.

A configurationis of the formS/e or S/w, wheree and
w are closed underS. The variables and atoms in the do-
main ofS are considered bound in such a configuration, so
that configurations are closed. Aresult is a configuration of
the formǫ/w or ǫ/next or ǫ/fail.

A valuationρ is a finite mapping of variables to seman-
tic values. It is lifted to a mapping of values to semantic
values (Figure 1). Note that a syntactic abstraction〈x〉 v is
mapped down to a semantic abstraction〈ρ(x)〉 ρ(v), where
the atomρ(x) is now bound in the semantic valueρ(v). If
ρ(x) happens not to be an atom, thenρ(〈x〉 v) is undefined.

Such a situation is ruled out by the type system (§2.3).

A stackS can be viewed as a valuation, defined by the
collection of all frames of the formx = w within S. Thus,
a valuev that is closed under a stackS can be turned into a
semantic valueS(v).

The small-step operational semantics of Pure FreshML
is given by a binary reduction relation over configurations
(Figure 2). The rules may seem numerous, but are simple. I
now explain some of them.

Reduction rule 1 turns a valuev into a semantic value; it
is applicable only ifS(v) is defined. Reduction rules 2–6,
12–13, and 15 also exploit this mechanism.

Reduction rule 11 states that evaluating “fresh x in e”
creates a fresh atoma, augments the stack with two new
frames, which separately record the fact thata was created
and the fact thatx was bound toa, and proceeds with the
evaluation ofe. When and ife eventually reduces to a se-
mantic valuew, these two stack frames are popped by re-
duction rules 18 and 16,provideda does not appear free
in w. This requirement is directly inspired by Gabbay and
Pitts’ treatment of “locally fresh atoms” [4, Remark 6.4].
When the side condition of reduction rule 16 is violated,
no reduction is possible: the configurationS; a/w is stuck.
This corresponds to an incorrect use of thefresh construct,

4

which one would like to statically prevent.
Reduction rules 2–6 describe pattern matching. In partic-

ular, reduction rule 5 states that the failure of pattern match-
ing causes the exceptionnext to be raised. Reduction rule 6
states that matching against an abstraction pattern〈x1〉x2

causes a fresh atoma to be generated, just as if afresh con-
struct had been evaluated [9, 16, 15].

The semantics is pure, in the sense that it does not rely on
global state, as would be necessary if the creation of fresh
atoms was an uncontrolled side effect [16]. Here, the stack
discipline ensures that the dynamic extent of a fresh atom
does not exceed the static scope of thefresh construct. Ac-
cording to this semantics, a program that attempts to exploit
fresh in an impure manner goes wrong: it reduces to a stuck
configuration. Thus, the slogan “valid programs cannot go
wrong”, which I establish later (Theorem 4.3), means that
valid programs are in fact pure.

2.3 Type system

I equip Pure FreshML with a conventional system of
simple types [16]. The proof system relies on it in only two
ways: to guarantee that only well-formed values appear in
constraints, and to obtain information about the support of
a variable, based on its type (§3.3).

The types (Figure 1) are Pitts’ nominal arities [8,§2.2].
Every data constructorK carries a signature of the form
τ → δ, whereδ is a data type. Every functionf carries a
signature of the formτ1 → τ2. The definition of the type
system appears in the full version of this paper [12].

Theorem 2.1 (Subject reduction)A well-typed configura-
tion can reduce only to a well-typed configuration. ⋄

Theorem 2.2 (Partial Progress)A well-typed, irreducible
configuration is either a result, or of the formS/absurd, or
of the formS; a/w, wherea occurs free inw. ⋄

The statement of Theorem 2.2 pinpoints the basic is-
sue that this paper addresses: a conventional type system
does not guarantee that a Pure FreshML program cannot go
wrong. A well-typed Pure FreshML programcango wrong,
either by attempting to execute anabsurd statement, or by
letting afresh-bound atom escape its static scope.

3 Constraints

I now present the constraint logic and the decision proce-
dure for entailment problems that underlie Pure FreshML’s
proof system. This is done in several steps. I first introduce
the syntax and interpretation of constraints (§3.1). Then, I
present a sound, conservative decision procedure for entail-
ment problems. It is defined via a reduction to SAT, in three
steps: elimination of all value equations (§3.2), elimination

of all applications offa (§3.3), and switch from the Boolean
algebraP(A) to the Boolean algebraB (§3.4). The decision
procedure is sound, but incomplete. There are two sources
of incompleteness, discussed in§3.2 and§3.3.

3.1 Syntax and interpretation

Here is the syntax ofset expressionss andconstraintsC:

s ::= fa(v) | ∅ | A | s ∩ s | s ∪ s | ¬s
C, H ::= s = ∅ | s 6= ∅ | v = v | C ∧ C

The set expressions1 \ s2, as well as the constraintsfalse,
true, s1 ⊆ s2, s1 = s2, ands1 # s2 can be viewed as sugar.
The last of these stands for(s1 ∩ s2) = ∅. Set expressions
denote sets of atoms, that is, elements of the Boolean al-
gebraP(A). Constraints are conjunctions ofatomic con-
straints: set emptiness (or non-emptiness) assertions and
value equations.

Constraints are typed. For a constraintC to be well-
typed under environmentΓ, (i) if a valuev appears within
C, thenv must be well-typed underΓ, and (ii) if a value
equationv1 = v2 appears withinC, thenv1 andv2 must
have the same type underΓ. Throughout the paper, I manip-
ulate constraints without explicitly mentioning under which
type environmentΓ they are to be considered.

A valuationρ respectsa type environmentΓ if it maps
every variablex in the domain ofΓ to a semantic value of
type Γ(x). The satisfaction judgementρ ⊢ C is defined
when C is well-typed underΓ and ρ respectsΓ. I omit
its formal definition. In short, the interpretation of a valuev
underρ isρ(v) (Figure 1). The symbolfamaps the semantic
values intoP(A). Value equations are interpreted in terms
of equality of semantic values (which, at atom abstractions,
involvesα-equivalence).Satisfiabilityand entailmentare
defined in the standard way. I write⊢ C whenC is satisfi-
able andC1
 C2 whenC1 entailsC2.

3.2 Eliminating value equations

I assume that the right-hand side of every entailment
problem is a set constraint (as opposed to a value equation).
That is, a value equation can only be a hypothesis, not a
goal. All problems emitted by the proof system in§4 sat-
isfy this assumption. Then, entailment problems are easily
reduced to satisfiability problems.

I now explain how to reduce an arbitrary constraintC to
a constraintC′ that contains no value equations, in such a
way that, if C is satisfiable, then so isC′. This transfor-
mation issoundin the sense that, modulo the reduction of
entailment down to satisfiability, it leads to a conservative
decision procedure for entailment problems.

The idea is simple: first, examine the value equations in
C and discover as many of their consequences as possible,

5

including new value equations and new set constraints; then,
drop all value equations.

The first step can be viewed as a closure computation,
defined by the following rules:

v1 = v2 → v2 = v1

v1 = v2 ∧ v2 = v3 → v1 = v3

(v1, v
′
1
) = (v2, v

′
2
) → v1 = v2 ∧ v′

1
= v′

2

K v1 = K v2 → v1 = v2

K1 v1 = K2 v2 → false if K1 6= K2

v1 = v2 → fa(v1) = fa(v2)

It is clear that each of the rules preserves the interpreta-
tion of the constraint, so this step is sound and complete.
One rule that I have purposely omitted, because it is not
interpretation-preserving, is the following:

〈x1〉 v1 = 〈x2〉 v2 → x1 = x2 ∧ v1 = v2 (unsound)

This rule is incorrect, because equality of abstractions isnot
syntactic—that is the whole point of abstractions!

The second step consists in dropping all value equations.
It is clearly sound. It is also incomplete, because of the
missing closure rule for abstractions.

3.3 Eliminating applications of fa

I now explain how to reduce a constraintC (without
value equations) to a Boolean constraintC′ in such a way
that, if C is satisfiable, thenC ′ is satisfiable as well, when
interpreted overP(A).

The syntax ofBoolean constraintsis as follows:

s ::= X | 0 | 1 | s ∧ s | s ∨ s | ¬s
C ::= s = 0 | s 6= 0 | C ∧ C

Here,X ranges over a new category ofBoolean variables.
Boolean constraints can be interpreted over any Boolean al-
gebra. In particular, when they are interpreted overP(A), a
Boolean variableX denotes a set of atoms. (In that case, I
also refer toX as aset variable.) When they are interpreted
over the two-point algebraB = {0, 1}, such a variable de-
notes a truth value.

An atomic constraint of the forms = 0 is positive; an
atomic constraint of the forms 6= 0 is negative. A conjunc-
tion of atomic constraints that contains at most one negative
conjunct issimple.

In order to perform the reduction announced above, only
one transformation is required: to replace all applications of
the fa symbol with set variables. This is done is two steps.

First, applications offa are reduced:

fa(()) → ∅
fa((v1, v2)) → fa(v1) ∪ fa(v2)

fa(K v) → fa(v)
fa(〈x〉 v) → fa(v) \ fa(x)

As a result, only applications of the formfa(x) remain.
Second, each occurrence offa(x), wherex has typeτ , is

rewritten as follows:

1. if every semantic value of typeτ has empty support,
thenfa(x) is replaced with∅;

2. if no semantic value of typeτ has empty support, then
fa(x) is replaced with a set variableX, and the con-
junctX 6= ∅ is added to the constraint;

3. otherwise,fa(x) is replaced with a set variableX.

The basic idea behind this transformation resides in the third
rule: fa(x) is considered an unknown set of atoms, so a set
variable, writtenX, is introduced to stand for it. (I assume
a one-to-one correspondence between variablesx and set
variablesX.) The result is a Boolean constraint. Rules 1
and 2 are not required for the transformation to be sound.
Instead, they help bring it “closer to completeness”. I now
discuss each of these two rules, as well as the issue of in-
completeness, in turn.

Rule 1 states that, ifx has typeτ and if every value of
typeτ has empty support, thenfa(x) must be empty. (Pitts
and Gabbay [9] refer to such a typeτ as “pure”.) This is
the case ifτ is a base type, such asbool, int, or string. It
is also the case ifτ is a data typeδ and if one can prove,
by structural induction, that all values of typeδ have empty
support. Such a proof is easily automated, so that it is de-
cidable whether rule 1 is applicable.

Rule 2 is, in a way, the dual of rule 1. It is applicable,
for instance, ifτ is atom, or a data type of non-empty lists
of atoms. In that case,fa(x) is replaced with a set variable
X, as in rule 3, but, in addition, the hypothesisX 6= ∅ is
introduced.

This rule is important because it is the only source of
negative hypotheses in the entire system. If it was removed,
then all of the entailment problems produced by the proof
system would carry positive hypotheses only. Why would
that be a problem? Notice that the positive Boolean con-
straints that the system produces are somewhat peculiar.
Because they exploit the connectives∅, ∪, \, but do not ex-
ploit the connectivesA and¬, they are always satisfied by
the valuation that maps every Boolean variable to∅. This
means that, in the absence of rule 2, the current set of hy-
pothesesH would always be satisfiable. So, the entailment
assertionH
 falsewould never hold, and the expression
absurd would never be accepted by the proof system (see
rule ABSURD in Figure 3). In short, negative hypotheses of
the formX 6= ∅ are required in order to establish absurdity.

The transformation performed in the second step is not
complete: it can turn an unsatisfiable constraint into a sat-
isfiable Boolean constraint. For instance, ifx, x1, andx2

6

have typeatom, then the constraint

fa(x1) # fa(x2) ∧
fa(x1) ∪ fa(x2) ⊆ fa(x)

is unsatisfiable, because it requiresfa(x) to have cardinal 2,
which is impossible—the support of an atom is a singleton.
Yet, it is reduced to the Boolean constraint

X1 ∩ X2 = ∅ ∧
X1 ∪ X2 ⊆ X ∧
X 6= ∅ ∧ X1 6= ∅ ∧ X2 6= ∅

which is satisfiable overP(A)—takeX1 = {a1}, X2 =
{a2}, and X = {a1, a2}, wherea1 and a2 are distinct
atoms. In summary, the decision procedure does distinguish
between empty and non-empty sets of atoms, but is unable
to reason about cardinality.

3.4 Satisfiability of Boolean constraints

I now focus on the satisfiability problem for Boolean
constraints (as defined in§3.3) interpreted over the Boolean
algebraP(A).

Marriott and Odersky [5] have shown that any Boolean
algebra of infinite height is weakly independent. This
means that satisfiability of arbitrary constraints reducesto
satisfiability of simple constraints:

Lemma 3.1 LetC be a conjunction of positive atomic con-
straints. The constraintC ∧ s1 6= 0 ∧ . . . ∧ sn 6= 0, where
n > 0, is satisfiable overP(A) if and only if each of the
simple constraintsC ∧ si 6= 0 is satisfiable overP(A). ⋄

There remains to explain how to decide whether a simple
constraint is satisfiable. I establish the following result:

Lemma 3.2 A simple constraint is satisfiable overP(A) if
and only if it is satisfiable overB. ⋄

When interpreted overB, the atomic constraints 6= 0 is
equivalent to(¬s) = 0. As a result, determining whether a
constraint is satisfiable overB is exactly the Boolean satis-
fiability problem SAT.

4 A proof system

I now define the proof system that lies at the heart of
Pure FreshML. It can be viewed as an algorithm that ex-
tracts proof obligations out of a Pure FreshML program.
Each proof obligation is an entailment problem and is dis-
charged using the decision procedure of§3. As explained
there, the decision procedure needs access to type informa-
tion. However, the proof systemper sedoes not, so I do not
keep track of types in this section.

4.1 Presentation

The proof system consists of three main judgements,
which concern patterns, expressions, and function defini-
tions (Figure 3).

Judgements about expressions are of the form∆ ⊢
{H} e {P}. ∆ is a set of all variables currently in scope,
and includes the free variables ofe. I implicitly assume
that e is well-typed under a type environment whose do-
main is∆. H is a constraint. It represents a precondition,
that is, a hypothesis. (I useC andH for constraints.)P is a
predicate: a constraint, parameterized over one variable.It
represents a postcondition, that is, a goal.

I sometimes explicitly writeλx.C for a parameterized
constraint: then, the parameterx stands for the result of
the expressione. When P is λx.C, I write P (v) for
[x 7→ v]C, wherev is a value. I writeC[·] for the predi-
cateλx.C[x], wherex is chosen fresh forC. I write true
for the predicateλx.true. I write P1 ∧ P2 for the predicate
λx.(P1(x) ∧ P2(x)), wherex is fresh forP1 andP2.

Rule VALUE states that the triple{H} v {P} is satisfied
if and only if the preconditionH entails that the valuev sat-
isfies the postconditionP . Its premise, an entailment judge-
ment, represents a proof obligation.

Rule FRESH augmentsH with the hypothesisfa(x) #
fa(∆). (I write fa(∆) for the symbolic union of allfa(y),
wherey ranges over∆.) This means that the support ofx
can safely be assumed disjoint with the support of every pre-
existing variable. FRESH also augments the postcondition
with the new goalfa(x) # fa(·), that is, the atomx should
not appear in the support of the result that is eventually pro-
duced by thefresh construct. This goal clearly reflects the
side condition of reduction rule 16.

Rule CASE describes what can be assumed, and what
must be proved, when a valuev is successfully matched
against a patternp. First, the equationp = v can be as-
sumed. Second, an extra hypothesisH ′ and an extra goalP ′

are derived from the patternp, using either ABSTRACTION-
PATTERN or OTHER-PATTERN. Whenp is an abstraction
pattern〈x1〉 x2, H ′ states thatx1 can be assumed to be fresh
andP ′ states thatx1 must not appear in the result of eval-
uatinge, just as ifx1 wasfresh-bound. Whenp is another
pattern form,H ′ andP ′ are empty.

Rule IF augmentsH , in each branch, with a constraint
that reflects the outcome of the dynamic test. Becausex1

andx2 have typeatom, fa(x1) # fa(x2) is equivalent to,
and can be used instead of,fa(x1) 6= fa(x2), a disequation
that the constraint language is not directly able to express.

Rule LETWHERE usesλx.C, whereC is supplied by
the user, as a postcondition fore1, and makesC ∧ fa(x) ⊆
fa(∆) a new hypothesis for the continuatione2.

Rule DEF states that the body of a function must be
checked under the preconditionC1 and postconditionC2

7

ABSTRACTION-PATTERN

∆ ⊢ {fa(x1) # fa(∆)} 〈x1〉x2 {fa(x1) # fa(·)}

OTHER-PATTERN

p 6≡ 〈x1〉x2

∆ ⊢ {true} p {true}

VALUE

H
 P (v)

∆ ⊢ {H} v {P}

CASE

dom(p) fresh for∆,H, v, P ∆ ⊢ {H ′} p {P ′}
∆, dom(p) ⊢ {H ∧ H ′ ∧ p = v} e {P ∧ P ′}

∆ ⊢ {H} case p = v then e {P}

ABSURD

H
 false

∆ ⊢ {H} absurd {P}

NEXT

∆ ⊢ {H} next {P}

FAIL

∆ ⊢ {H} fail {P}

TRY

∆ ⊢ {H} e1 {P}
∆ ⊢ {H} e2 {P}

∆ ⊢ {H} try e1 else e2 {P}

FRESH

x fresh for∆, H, P
∆, x ⊢ {H ∧ fa(x) # fa(∆)} e {P ∧ fa(x) # fa(·)}

∆ ⊢ {H} fresh x in e {P}

IF

∆ ⊢ {H ∧ fa(x1) = fa(x2)} e1 {P}
∆ ⊢ {H ∧ fa(x1) # fa(x2)} e2 {P}

∆ ⊢ {H} if x1 = x2 then e1 else e2 {P}

LETWHERE

x fresh for∆, H, P ∆ ⊢ {H} e1 {λx.C}
∆, x ⊢ {H ∧ C ∧ fa(x) ⊆ fa(∆)} e2 {P}

∆ ⊢ {H} let x where C = e1 in e2 {P}

CALL

H
 pre(f)(v)
H
 post(f)(v, ·) ⇒ P

∆ ⊢ {H} f(v) {P}

DEF

x1 ⊢ {C1} e {λx2.C2} pre(f) = λx1.C1

post(f) = λ(x1, x2).(C2 ∧ fa(x2) ⊆ fa(x1))

⊢ fun f(x1 where C1) : x2 where C2 = e

Figure 3. The proof system

that were provided by the user. It also defines the notations
“pre(f)” and “post(f)” used in rule CALL .

4.2 Soundness

The combination of the type system and proof system
is sound with respect to the operational semantics. This is
proven via standard subject reduction and progress results.
A configuration isvalid when it is accepted by the type sys-
tem and proof system.

Theorem 4.1 (Subject Reduction)A valid configuration
can reduce only to a valid configuration. ⋄

Theorem 4.2 (Progress)A valid, irreducible configuration
is a result. ⋄

Corollary 4.3 (Soundness)A valid configuration cannot
go wrong. ⋄

5 Illustration

I now briefly present a small but non-trivial program that
is accepted by the proof system: normalization by evalu-
ation (Figure 4). It is adapted from Shinwellet al. [16].

The three main changes are: the code is defunctionalized;
the binding structure of closures and environments is ex-
pressed using Cαml’s specification language (not formally
presented in this paper, see [10] and [12,§5]); and evals
carries an explicit postcondition.

The effect of defunctionalization is that the data con-
structorL (line 7) carries a triple of an environment, an
atom, and a term, instead of a first-class function.

The typeenvis a “pattern type”, in Cαml parlance; this
is indicated by thebinds keyword on line 14. This means
that, in a value of typeenv, such as:

env= ECons(. . . ECons(ENil, x1, v1) . . . , xn, vn),

the atomsx1, . . . , xn are considered asbinding occurrences.
Then, by definition, the set expressionbound(env) denotes
the set of atoms{x1, . . . , xn}. According to theouter
keyword in the definition ofECons(line 16), the values
v1, . . . , vn lie outsidethe scope of these atoms. Then, by
definition, the set expressionouter(env) denotes the set of
atomsfa(v1) ∪ . . . ∪ fa(vn).

According to the placement of the abstraction brackets
and of theinner keyword in the definition ofL (line 7),
within a value of the form:

v = L(env, x, t),

8

1 type lam =
2 | Var of atom
3 | Lam of 〈 atom× inner lam 〉
4 | App of lam × lam
5

6 type sem=
7 | L of 〈 env× atom× inner lam 〉
8 | N of neu
9

10 type neu =
11 | V of atom
12 | A of neu× sem
13

14 type env binds =
15 | ENil
16 | ECons of env× atom× outer sem
17

18 fun re i fy accepts s produces t =
19 case s of
20 | L (env, y , t) →
21 fresh x in
22 Lam (x , re i fy (evals (ECons (env, y , N (V (x))) , t)))
23 | N (n) →
24 rei fyn (n)
25 end
26

27 fun rei fyn accepts n produces t =
28 case n of
29 | V (x) →
30 Var (x)
31 | A (n, d) →
32 App (rei fyn (n) , re i fy (d))
33 end
34

35 fun evals accepts env, t produces v
36 where free (v) ⊆ outer (env) ∪ (free (t) \ bound(env)) =
37 case t of
38 | Var (x) →
39 case env of
40 | ENil →
41 N (V (x))
42 | ECons (ta i l , y , v) →
43 i f x = y then v
44 else evals (ta i l , t) end
45 end
46 | Lam (x , t) →
47 L (env, x , t)
48 | App (t1 , t2) →
49 case evals (env, t1) of
50 | L (cenv, x , t) →
51 evals (ECons (cenv, x , evals (env, t2)) , t)
52 | N (n) →
53 N (A (n, evals (env, t2)))
54 end
55 end
56

57 fun eval accepts t produces s =
58 evals (ENil , t)
59

60 fun normalize accepts t produces u =
61 re i fy (eval (t))

Figure 4. A sample program: NBE

the atoms inbound(env), as well as the atomx, are consid-
ered bound within the termt. That is, by definition:

fa(v) = outer(env) ∪
(

fa(t) \ (bound(env) ∪ {x})
)

.

This explains why the proof obligation associated with
the deconstruction ofLam on line 46 succeeds. Decon-
structing Lam yields a “fresh” atomx, which one must
prove does not appear in the support of the right-hand side

L(env, x, t). The fact thatx is “fresh” means, in particular,
that x is not in the support ofenv, which by definition in-
cludesouter(env). By exploiting the above displayed equa-
tion, one finds thatx is not in the support ofL(env, x, t), as
desired. This fact is proved automatically by the conserva-
tive decision procedure of§3.

The proof obligation on line 46 corresponds, in part, to
the obligation that FreshML 2000 was not able to automat-
ically discharge [16, figure 7, lines 26–27]. By declaring
that the data constructorL carries an abstraction, I have
been able to get away with the deconstruction ofLam. Of
course, as a result, new proof obligations appear wherever
L is deconstructed (lines 20 and 50). Both require exploit-
ing a non-trivial property ofevals, which is expressed as a
postcondition.

The functionevalsexpects a pair of an environmentenv
and a termt, and evaluatest within the context ofenv. As
one might expect, any atom that appears in the support oft
as well as in the domain ofenv is substituted out, which
means that, ifevalsproduces a resultv, then (line 36):

fa(v) ⊆ outer(env) ∪ (fa(t) \ bound(env))

This property is not automatically inferred by the system—
it is a loop invariant—so it has to be explicitly provided.
Then, it is easily checked.

6 Related work

This paper was inspired by Pitts and Gabbay’s work on
static “freshness inference” for FreshML [9]. Pitts and Gab-
bay’s algorithm attempts toinfer freshness assertions about
values and expressions, or, equivalently, to infer an approx-
imation of the support of values and expressions. The proof
system presented in this paper is oriented purely towards
checking. For this reason, explicit assertions must some-
times be provided atlet constructs.

Pašalić and Linger [7] exploit the programming language
Ωmega to define a data type that represents the abstract syn-
tax of an object language, expressed in de Bruijn notation.
The data type is parameterized in a way that guarantees that
out-of-range de Bruijn indices cannot be constructed. The
syntax of the object language includes non-trivial binding
structures (patterns). Donnelly and Xi [2] explore a similar
approach in the programming language ATS.

Scḧurmann et al.’s ∇-calculus [13] is a core meta-
programming language where object-level terms are en-
coded using higher-order abstract syntax. There are no
object-level names: both object-level and meta-level ab-
stractions bind meta-variables. Object-level substitution
is application of object-level abstractions. A type system
guarantees that meta-variables cannot escape their scope.It
is quite different from the proof system presented in this

9

paper. The constructνx.e introduces a new meta-variablex
and at the same time requires the result of evaluatinge to
depend only on meta-variables that were bound prior tox.
This requirement is encoded via stacks of typing contexts
and via a “box” type constructor that prevents exploiting
the topmost context.

MetaOCaml relies on environment classifiers [17] to tell
which code fragments are closed. An environment classi-
fier is a type variable that abstracts a set of names. The code
type constructor is parameterized with an environment clas-
sifier. This allows the type system to keep track, in a conser-
vative way, of which names appear free in a code fragment.
Closed code fragments are recognized by the fact that they
are polymorphic in their environment classifier.

Nanevski’s calculusν� [6] is inspired by FreshML, and,
like Pure FreshML, provides a static discipline for enforc-
ing purity. This is done by explicitly keeping track of the
support of every value, and exploiting this information to
ensure that freshly-created names do not escape. An impor-
tant difference betweenν� and Pure FreshML is thatν� lets
the type systemcarry the support information, by param-
eterizing the “code” type constructor with a set of names,
while Pure FreshML relies on a separateproof systemand
requires no changes to the type system. I believe that the
latter approach is lighter (for instance, Nanevski’s “support
polymorphism” comes for free here) and potentially more
expressive, because constraints can express properties other
than approximations of the support of certain values. An-
other design difference is thatν� is ahomogeneous, multi-
level staged programming language, while FreshML is a
heterogeneousmeta-programming language. This means,
for instance, that Nanevski does not distinguish between
meta-levelλ-abstraction and object-level name abstraction.

7 Future work

Many features must be added in order to turn Pure
FreshML into a realistic meta-programming language. Here
are a few; see the full paper [12] for more:

First-class functions. I am confident that first-class func-
tions can be introduced without difficulty. This requires ex-
tending the grammar of types with function types, carry-
ing a precondition and a postcondition. Furthermore, Pitts
and Gabbay [9] remarked that the support of a function is
a subset of the combined support of its free variables. This
approximation can be exploited to conservatively eliminate
applications offa to λ-abstractions.

Mutable state. Shared, modifiable references offer new
ways for atoms to escape their scope. Calcagnoet al. [1]
attack the problem in the setting of MetaML and offer a so-
lution that requires references to containclosedcode frag-
ments. An analogous restriction—to require references to
contain values ofempty support—would be easy to enforce

in Pure FreshML, via proof obligations.

References

[1] C. Calcagno, E. Moggi, and T. Sheard. Closed types for a
safe imperative MetaML.Journal of Functional Program-
ming, 13(3):545–571, May 2003.

[2] K. Donnelly and H. Xi. Combining higher-order abstract
syntax with first-order abstract syntax in ATS. InACM
Workshop on Mechanized Reasoning about Languages with
Variable Binding, pages 58–63, 2005.

[3] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The
essence of compiling with continuations. InACM Confer-
ence on Programming Language Design and Implementa-
tion (PLDI), pages 237–247, 1993.

[4] M. J. Gabbay and A. M. Pitts. A new approach to abstract
syntax with variable binding.Formal Aspects of Computing,
13(3–5):341–363, July 2002.

[5] K. Marriott and M. Odersky. Negative Boolean constraints.
Technical Report 94/203, Monash University, Aug. 1994.

[6] A. Nanevski. Meta-programming with names and necessity.
Technical Report CMU-CS-02-123R, School of Computer
Science, Carnegie Mellon University, Nov. 2002.

[7] Pašalić and N. Linger. Meta-programming with typed
object-language representations. InInternational Confer-
ence on Generative Programming and Component Engi-
neering (GPCE), pages 136–167, Oct. 2004.

[8] A. M. Pitts. Alpha-structural recursion and induction.Jour-
nal of the ACM, 53:459–506, 2006.

[9] A. M. Pitts and M. J. Gabbay. A metalanguage for pro-
gramming with bound names modulo renaming. InInterna-
tional Conference on Mathematics of Program Construction
(MPC), volume 1837 ofLecture Notes in Computer Science,
pages 230–255. Springer Verlag, 2000.

[10] F. Pottier. An overview of Cαml. In ACM Workshop on ML,
volume 148(2) ofElectronic Notes in Theoretical Computer
Science, pages 27–52, Mar. 2006.

[11] F. Pottier. Prototype implementation of Pure FreshML,Jan.
2007.

[12] F. Pottier. Static name control for FreshML, full version,
Jan. 2007.

[13] C. Scḧurmann, A. Poswolsky, and J. Sarnat. The∇-
calculus: Functional programming with higher-order encod-
ings. Technical Report YALEU/DCS/TR-1272, Yale Uni-
versity, Nov. 2004.

[14] T. Sheard. Using MetaML: A staged programming lan-
guage. InAdvanced Functional Programming, volume
1608 ofLecture Notes in Computer Science, pages 207–239.
Springer Verlag, Sept. 1998.

[15] M. R. Shinwell and A. M. Pitts. On a monadic semantics for
freshness.Theoretical Computer Science, 342:28–55, 2005.

[16] M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML:
Programming with binders made simple. InACM Inter-
national Conference on Functional Programming (ICFP),
pages 263–274, Aug. 2003.

[17] W. Taha and M. F. Nielsen. Environment classifiers. In
ACM Symposium on Principles of Programming Languages
(POPL), pages 26–37, Jan. 2003.

10

