

Getting Started with xspim

1

Getting Started with

xspim

If you are going to use

xspim

 on UNIX or Linux, this is the first section to read. If
you are going to use

PCSpim

 on Microsoft Windows, skip to the next section and
start there.

After you read this section, be sure to take a look at the "SPIM Command-Line
Options" section to see how to accomplish the same thing with

spim

 commands.
To start

xspim

, type

xspim

 in response to your system’s prompt (

%

):

% xspim

 On your system,

xspim

 may be kept in an unusual place, and you may need to
execute a command first to add that place to your search path. Your instructor
should tell you how to do this.

When

xspim

 starts up, it pops up a large window on your screen (see
Figure A.9.1). The window is divided into five panes:

■

The top pane is called the

register display

. It shows the values of all registers
in the MIPS CPU and FPU. This display is updated whenever your program
stops running.

■

The pane below contains the

control buttons

 to operate

xspim

. These but-
tons are discussed below, so we can skip the details for now.

■

The next pane, called the

text segments

, displays instructions from both your
program and the system code that is loaded automatically when

xspim

 starts
running. Each instruction is displayed on a line that looks like

[0x00400000] 0x8fa40000 lw $4, 0($29) ; 89: lw $a0, 0($sp)

The first number on the line, in square brackets, is the hexadecimal mem-
ory address of the instruction. The second number is the instruction’s
numerical encoding, again displayed as a hexadecimal number. The third
item is the instruction’s mnemonic description. Everything following the
semicolon is the actual line from your assembly file that produced the
instruction. The number 89 is the line number in that file. Sometimes
nothing is on the line after the semicolon. This means that the instruction
was produced by SPIM as part of translating a pseudoinstruction into more
than one actual MIPS instruction.

■

The next pane, called the

data and stack segments

, displays the data loaded
into your program’s memory and the data on the program’s stack.

■

The bottom pane is the

SPIM messages

 that

xspim

 uses to write messages.
This is where error messages appear.

2

Getting Started with xspim

FIGURE A.9.1 SPIM’s X-window interface:

xspim

.

xspim

quit

PC
Status

R0
R1
R2
R3
R4
R5
R6
R7

FP0
FP2
FP4
FP6

(r0)
(at)
(v0)
(v1)
(a0)
(a1)
(a2)
(a3)

=
=
=
=
=
=
=
=

=
=
=
=

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

0.000000
0.000000
0.000000
0.000000

=
=

00000000
00000000

EPC
HI

=
=

00000000
00000000

Cause
LO

=
=

00000000
00000000

BadVaddr = 00000000

R8
R9
R10
R11
R12
R13
R14
R15

FP8
FP10
FP12
FP14

(t0)
(t1)
(t2)
(t3)
(t4)
(t5)
(t6)
(t7)

=
=
=
=
=
=
=
=

=
=
=
=

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

0.000000
0.000000
0.000000
0.000000

R16
R17
R18
R19
R20
R21
R22
R23

FP16
FP18
FP20
FP22

(s0)
(s1)
(s2)
(s3)
(s4)
(s5)
(s6)
(s7)

=
=
=
=
=
=
=
=

=
=
=
=

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

0.000000
0.000000
0.000000
0.000000

R24
R25
R26
R27
R28
R29
R30
R31

FP24
FP26
FP28
FP30

(t8)
(s9)
(k0)
(k1)
(gp)
(sp)
(s8)
(ra)

=
=
=
=
=
=
=
=

=
=
=
=

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

0.000000
0.000000
0.000000
0.000000

print

load

breakpt

run

help

step

terminal

clear

mode

set value

Text segments

 Data segments

[0x00400000]
[0x00400004]
[0x00400008]
[0x0040000c]
[0x00400010]
[0x00400014]
[0x00400018]
[0x0040001c]

0x8fa40000
0x27a50004
0x24a60004
0x00041080
0x00c23021
0x0c000000
0x3402000a
0x0000000c

lw $4, 0($29)
addiu $5, $29, 4
addiu $6, $5, 4
sll $2, $4, 2
addu $6, $6, $2
jal 0x00000000 [main]
ori $2, $0, 10
syscall

lw $a0, 0($sp)
addiu $al, $sp, 4
addiu $a2, $al, 4
sll $v0, $a0, 2
addu $a2, $a2, $v0
jal main
li $v0 10
syscall

;
;
;
;
;
;
;
;

89:
90:
91:
92:
93:
94:
95:
96:

[0x10000000] ... [0x10010000] 0x00000000
[0x10010004]
[0x10010010]
[0x10010020]
[0x10010030]
[0x10010040]
[0x10010050]
[0x10010060]
[0x10010070]

0x74706563
0x72727563
0x000a6465
0x0000205d
0x61206465
0x642f7473
0x555b2020
0x73736572

0x206e6f69
0x61206465
0x495b2020
0x20200000
0x65726464
0x20617461
0x696c616e
0x206e6920

0x636f2000
0x6920646e
0x7265746e
0x616e555b
0x69207373
0x63746566
0x64656e67
0x726f7473

0x726f6e67
0x74707572
0x6e67696c
0x6e69206e
0x00205d68
0x64646120
0x00205d65

SPIM Version 5.9 of January 17, 1997
Copyright (c) 1990–1997 by James R. Larus (larus@cs.wisc.edu)
All Rights Reserved.
See the file README for a full copyright notice.

General registers

Double floating-point registers

Single floating-point registers

Register
display

Control
buttons

Text
segments

Data and
stack
segments

SPIM
messages

Getting Started with xspim

3

Let’s see how to load and run a program. The first thing to do is to click on the

load

 button (the second one in the first row of buttons) with the left mouse but-
ton. Your click tells

xspim

 to pop up a small prompt window that contains a box
and two or three buttons. Move your mouse so the cursor is over the box, and
type the name of your file of assembly code. Then click on the button labeled

assembly

file

 within that prompt window. If you change your mind, click on
the button labeled

abort

command

, and

xspim

 gets rid of the prompt window.
When you click on

assembly

file

,

xspim

 gets rid of the prompt window, then
loads your program and redraws the screen to display its instructions and data.
Now move the mouse to put the cursor over the scrollbar to the left of the text seg-
ments, and click the left mouse button on the white part of this scrollbar. A click
scrolls the text pane down so you can find all the instructions in your program.

To run your program, click on the

run

 button in

xspim

’s control button pane.
It pops up a prompt window with two boxes and two buttons. Most of the time,
these boxes contain the correct values to run your program, so you can ignore
them and just click on

ok

. This button tells

xspim

 to run your program. Notice
that when your program is running,

xspim

 blanks out the register display pane
because the registers are continually changing. You can always tell whether

xspim

is running by looking at this pane. If you want to stop your program, make sure
the mouse cursor is somewhere over

xspim

’s window and type control-C. This
causes

xspim

 to pop up a prompt window with two buttons. Before doing any-
thing with this prompt window, you can look at registers and memory to find out
what your program was doing. When you understand what happened, you can
either continue the program by clicking on

continue

 or stop your program by
clicking on

abort

command

.
If your program reads or writes from the terminal,

xspim

 pops up another
window called the

console

. All characters that your program writes appear on the
console, and everything that you type as input to your program should be typed
in this window.

Suppose your program does not do what you expect. What can you do? SPIM
has two features that help debug your program. The first, and perhaps the most
useful, is single-stepping, which allows you to run your program an instruction at
a time. Click on the button labeled

step

 and another prompt window pops up.
This prompt window contains two boxes and three buttons. The first box asks for
the number of instructions to step every time you click the mouse. Most of the
time, the default value of 1 is a good choice. The other box asks for arguments to
pass to the program when it starts running. Again, most of the time you can
ignore this box because it contains an appropriate value. The button labeled

step

runs your program for the number of instructions in the top box. If that number
is 1,

xspim

 executes the next instruction in your program, updates the display,
and returns control to you. The button labeled

continue

 stops single-stepping

4

Getting Started with xspim

and continues running your program. Finally,

abort

command

 stops single-step-
ping and leaves your program stopped.

What do you do if your program runs for a long time before the bug arises? You
could single-step until you get to the bug, but that can take a long time, and it is
easy to get so bored and inattentive that you step past the problem. A better alter-
native is to use a

breakpoint

, which tells

xspim

 to stop your program immediately
before it executes a particular instruction. Click on the button in the second row
of buttons marked

breakpoints

. The

xspim

 program pops up a prompt win-
dow with one box and many buttons. Type in this box the address of the instruc-
tion at which you want to stop. Or, if the instruction has a global label, you can
just type the name of the label. Labeled breakpoints are a particularly convenient
way to stop at the first instruction of a procedure. To actually set the breakpoint,
click on

add

. You can then run your program.
When SPIM is about to execute the breakpointed instruction,

xspim

 pops up a
prompt with the instruction’s address and two buttons. The

continue

 button con-
tinues running your program, and

abort

command

 stops your program. If you
want to delete a breakpoint, type in its address and click on

delete

. Finally,

list

tells xspim to print (in the bottom pane) a list of all breakpoints that are set.
Single-stepping and setting breakpoints will probably help you find a bug in

your program quickly. How do you fix it? Go back to the editor that you used to
create your program and change it. To run the program again, you need a fresh
copy of SPIM, which you get in two ways. Either you can exit from xspim by
clicking on the quit button, or you can clear xspim and reload your program. If
you reload your program, you must clear the memory, so remnants of your previ-
ous program do not interfere with your new program. To do this, click on the but-
ton labeled clear. Hold the left mouse button down and a two-item menu will
pop up. Move the mouse so the cursor is over the item labeled memory & reg-
isters and release the button. This causes xspim to clear its memory and regis-
ters and return the processor to the state it was in when xspim first started. You
can now load and run your new program.

The other buttons in xspim perform functions that are occasionally useful.
When you are more comfortable with xspim, you should look at the description
below to see what they do and how they can save you time and effort.

