
Algebrai
 Stru
tures and Dependent Re
ordsVirgile Prevosto1;2, Damien Doligez1, and Thérèse Hardin1;21 I.N.R.I.A � Projet Mos
ovaB.P. 105 � F-78153 Le Chesnay, Fran
eDamien.Doligez�inria.fr2 L.I.P. 6 � Equipe SPI8 rue du Cap. S
ott � 75015 PARIS, Fran
e[therese.hardin,virgile.prevosto℄�lip6.frAbstra
t. In mathemati
s, algebrai
 stru
tures are de�ned a

ordingto a rather stri
t hierar
hy: rings
ome up after groups, whi
h rely them-selves on monoids, and so on. In the Fo
 proje
t, we represent thesestru
tures by spe
ies. A spe
ies is made up of algorithms as well as proofsthat these algorithms meet their spe
i�
ations, and it
an be built fromexisting spe
ies through inheritan
e and re�nement me
hanisms.To avoid in
onsisten
ies, these me
hanisms must be used
arefully. Inthis paper, we re
all the
onditions that must be ful�lled when goingfrom a spe
ies to another, as formalized by S. Boulmé in his PhD [?℄. Wethen show how these
onditions
an be
he
ked through a stati
 analysisof the Fo

ode. Finally, we des
ribe how to translate Fo
 de
larationsinto Coq.1 Introdu
tion1.1 The Fo
 Proje
tAlthough
omputer algebra is based upon strong mathemati
al grounds, errorsare not so rare in
urrent
omputer algebra systems. Indeed, algorithms may bevery
omplex and there is an abundan
e of
orner
ases. Moreover, pre
ondi-tions may be needed to apply a given algorithm and errors
an o

ur if thesepre
onditions are not
he
ked.In the Fo
 language1, any implementation must
ome with a proof of its
orre
tness. This in
ludes of
ourse pre- and post-
ondition statements, butalso proofs of purely mathemati
al theorems. In a
omputer algebra library, asingle proof is of little use by itself. Indeed numerous algorithms, and thus theirproofs,
an be reused in slightly di�erent
ontexts. For example a tool writtenfor groups
an be used in rings, provided that the system knows every ring isa group. Thus, we need a
ompletely formalized representation of the relationsbetween the mathemati
al stru
tures, whi
h will serve as a
ommon frameworkfor both proofs and implementations.In his PhD thesis [?℄, S. Boulmé gives a formal spe
i�
ation of both the hi-erar
hy of the library and the tools used to extend it. This formalization of the1 http:www-spi.lip6.fr/�fo

spe
i�
ation, brie�y presented below (Se
. 2), points out that some invariantsmust be preserved when extending an existing stru
ture. In parti
ular, the de-penden
ies between the fun
tions and the properties of a given stru
ture mustbe analyzed
arefully, as well as dependen
ies between stru
tures.We have elaborated a syntax that allows the user to write programs, state-ments and proofs. This syntax is restri
tive enough to prevent some in
onsis-ten
ies, but not all. In this paper we des
ribe the
ore features of this syntax(Se
. 3), and present
ode analyses to dete
t remaining in
onsisten
ies (Se
. 4).Then, we show how to use the results of this analysis to translate Fo
 sour
esinto Coq, in order to have Fo
 proofs veri�ed by the Coq system (Se
 5).1.2 Fo
's Ground Con
eptsSpe
ies. Spe
ies are the nodes of the hierar
hy of stru
tures that makes up thelibrary. They
orrespond to the algebrai
 stru
tures in mathemati
s. A spe
ies
an be seen as a set of methods, whi
h are identi�ed by their names. In par-ti
ular, there is a spe
ial method,
alled the
arrier, whi
h is the type of therepresentation of the underlying set of the algebrai
 stru
ture.Every method
an be either de
lared or de�ned. De
lared methods introdu
ethe
onstants and primitive operations. Moreover, axioms are also representedby de
lared methods, as would be expe
ted in view of the Curry-Howard iso-morphism. De�ned methods represent implementations of operations and proofsof theorems. The de
laration of a method
an use the
arrier.As an example, a monoid is built upon a set represented by its
arrier. It hassome de
lared operations, (spe
i�ed by their signature), namely =, +, and zero.These operations must satisfy the axioms of monoids, whi
h are expressed in Fo
by properties. We
an then de�ne a fun
tion, double , su
h that double(x) = x+x,and prove some theorems about it, for instan
e that double(zero) = zero.Interfa
e. An interfa
e is atta
hed to ea
h spe
ies: it is simply the list of all themethods of the spe
ies
onsidered as only de
lared. As S. Boulmé pointed out,erasing the de�nitions of the methods may lead to in
onsisten
ies. Indeed, someproperties may depend on previous de�nitions, and be
ome ill-typed if thesede�nitions are erased. This is explained in more detail in se
tion 2.2. Interfa
es
orrespond to the point of view of the end-user, who wants to know whi
hfun
tions he
an use, and whi
h properties these fun
tions have, but doesn't
are about the details of the implementation.Colle
tion. A
olle
tion is a
ompletely de�ned spe
ies. This means that every�eld must be de�ned, and every parameter instantiated. In addition, a
olle
tionis �frozen�. Namely, it
annot be used as a parent of a spe
ies in the inheri-tan
e graph, and its
arrier is
onsidered an abstra
t data type. A
olle
tionrepresents an implementation of a parti
ular mathemati
al stru
ture, su
h as(Z;+; �) implemented upon the GMP library.

Parameters. We also distinguish between �atomi
� spe
ies and �parameterized�spe
ies. There are two kinds of parameters: entities and
olle
tions. For instan
e,a spe
ies of matri
es will take two integers (representing its dimensions) as pa-rameters. These integers are entities of some
olle
tion. For its
oe�
ients, thespe
ies of matri
es will also take a
olle
tion as argument, whi
h must have atleast the features spe
i�ed by the interfa
e of ring. Of
ourse, it
an be a ri
herstru
ture, a field for instan
e.A spe
ies s1 parameterized by an interfa
e s2
an
all any method de
laredin s2. Thus, the parameter must be instantiated by a
ompletely de�ned spe
ies,i.e. a
olle
tion.2 Constraints on Spe
ies De�nitionS. Boulmé, in [?℄, spe
i�ed di�erent
onditions that must be ful�lled when build-ing the spe
ies hierar
hy. These
onditions are required to de�ne a model of thehierar
hy in the
al
ulus of indu
tive
onstru
tions. By building a
ategori
almodel of the hierar
hy, S. Boulmé also showed that they were ne
essary
ondi-tions. One of the obje
tives of this paper is to show how the implementation ofFo
 ful�lls these
onditions.2.1 De
l- and Def- Dependen
iesWe will now present these
onditions through an example. We
an take forinstan
e the spe
ies of setoid, a set with an equality relation. More pre
isely,the spe
ies has the following methods: a
arrier rep, an abstra
t equality eq, anda property eq_refl stating that eq is re�exive. From eq, we de�ne its negationneq, and prove by the theorem neq_nrefl that it is irre�exive. Using a Coq-likesyntax, we
an represent setoid like this:8>>>>>><>>>>>>:rep : Seteq : rep �> rep �> Propneq : rep �> rep �> Prop := [x; y : rep℄(not (eq x y))eq_refl : (x : rep)(eq x x)neq_nrefl : (x : rep)(not (neq x x)) :=[x : rep; H : (not (eq x x))℄(H (eq_refl x))
9>>>>>>=>>>>>>;Thanks to the Curry-Howard isomorphism, fun
tions and spe
i�
ations aretreated the same way. We must �rst verify that the methods have well-formedtypes. In addition, the body of every de�ned method must have the type given inits de
laration. We
an remark that the order in whi
h we introdu
e the methodsof the spe
ies is important: in order to write the type of eq, we must know thatthere exists a Set
alled rep. Similarly, the body of neq refers to eq, as does theproperty eq_refl. These three
ases are very similar: a method m2 uses m1,and in order to type
he
k m2, we need m1 in the typing environment. In this
ase, we speak of a de
l-dependen
y of m2 upon m1.

On the other hand, in order to type
he
k neq_nrefl, it is not enough to havethe type of neq in the environment. Indeed, we must know that it is de�ned as(not (eq x y)), be
ause hypothesis H in the body of neq_nrefl must mat
hthe de�nition of neq. Thus, neq must be unfolded during the type
he
king ofneq_nrefl. We identify this
ase as a def-dependen
y. When dealing with in-heritan
e, this new kind of dependen
y has a major drawba
k: if we want torede�ne neq in a spe
ies that inherits from setoid, then we will have to providea new proof for neq_nrefl. There is no su
h problem with de
l-dependen
ies :the de�nition of neq remains valid for any de�nition of eq, provided it has theright type.2.2 Purely Abstra
t Interfa
eDef-dependen
ies do not o

ur only in proofs. They
an also appear at the levelof types. For instan
e, take the following spe
ies de�nition (again in a Coq-likesyntax, O being a
onstant of type nat).frep : Set := nat; p : (9x : rep j x = O)gHere, in order to a

ept the property p as well-typed, we have to know that repis an alias of nat. If we remove the de�nition of rep, then the resulting interfa
eis
learly in
onsistent. Thus we
annot a

ept su
h a spe
ies de�nition, be
auseany spe
ies must re
eive a valid interfa
e. In a
orre
tly written spe
ies, thetype of a method
annot def-depend upon another method. This restri
tion wasidenti�ed by S. Boulmé when representing spe
ies by re
ords with dependent�elds.3 SyntaxIn this se
tion, we present the
ore syntax of Fo
 and an intuitive explanationof its semanti
s. The
omplete syntax is built upon the
ore syntax by addingsynta
ti
 sugar without
hanging its expressive power, so the properties of the
ore language are easily extended to the full language. In the rest of the paper,we will use the following
onventions
on
erning variable names. Lambda-boundvariables, fun
tion names and method names are usually denoted by x or y.Spe
ies names are denoted by s, and
olle
tion names by
. There is also akeyword, self , whi
h
an be used only inside a spe
ies s. It represents the �
ur-rent�
olle
tion (thus self is a
olle
tion name), allowing to
all its methods byself !x (see 3.5).3.1 Typestype ::=
 j � j type �> type j type * typeA type
an be a
olle
tion name
 (representing the
arrier of that
olle
tion),a type variable �, or a fun
tion or a produ
t type.

3.2 Expressions and Propertiesidenti�er ::= x, yde
laration ::= x [in type ℄expression ::= x j
!x j fun de
laration �> expressionj expression(expression { ,expression }*)j let [re
 ℄ de
laration = expression in expressionAn expression
an be a variable (x; y), a method x of some
olle
tion
,a fun
tional abstra
tion, a fun
tion appli
ation, or a lo
al de�nition with anexpression in its s
ope.Properties are boolean expressions with �rst-order quanti�ers:prop ::= expr j prop and prop j prop or prop j prop ! prop j not propj all x in type, prop j ex x in type, prop3.3 Fields of a Spe
iesdef_�eld ::= let de
laration = expressionj let re
 { de
laration = expression; }+j rep = type j theorem x : prop proof: [deps ℄ proofde
l_�eld ::= sig x in type j rep j property x : prop�eld ::= def_�eld j de
l_�elddeps ::= { (de
l: j def:) { x }* }*A �eld � of a spe
ies is usually a de
laration or a de�nition of a methodname. In the
ase of mutually re
ursive fun
tions, a single �eld de�nes severalmethods at on
e (using the let re
 keyword).The
arrier is also a method, introdu
ed by the rep keyword. Ea
h spe
iesmust have exa
tly one rep �eld.The proof language (the proof entry of the grammar) is
urrently under de-velopment. For the time being, proofs
an be done dire
tly in Coq, although theproperties themselves are translated automati
ally. The dependen
ies (Se
. 2) ofa proof must be stated expli
itely in the deps
lause of a theorem de�nition.3.4 Spe
ies and Colle
tion De�nitionsspe
ies_def ::= spe
ies s [(parameter { , parameter }*) ℄[inherits spe
ies_expr { , spe
ies_expr }* ℄= { �eld ; }* end
olle
tion_def ::=
olle
tion
 implements spe
ies_exprparameter ::= x in typej
 is spe
ies_exprspe
ies_expr ::= s j s (expr_or_
oll { , expr_or_
oll }*)expr_or_
oll ::=
 j expressionA spe
ies_expr is a spe
ies identi�er (for an atomi
 spe
ies), or a spe
iesidenti�er applied to some arguments (for a parameterized spe
ies). The argu-ments
an be
olle
tions or expressions. A

ordingly, in the de
laration of aparameterized spe
ies, a formal parameter
an be a variable (with its type) or

a
olle
tion name (with its interfa
e, whi
h is a spe
ies_expr). A
olle
tion def-inition is simply giving a name to a spe
ies_expr.3.5 Method and Variable NamesAs pointed out in [?℄, method names
an not be �-
onverted, so that they mustbe distinguished from variables. The notation self !x synta
ti
ally enfor
es thisdistin
tion, as we
an remark in the following example.let y = 3;;spe
ies a (x in int) = let y = 4; let z = x; let my y = self !y; end
olle
tion a imp implements a(y)Here, a imp!z returns 3, while a imp!my y returns 4.3.6 A Complete ExampleWe will illustrate the main features of Fo
 with an example of spe
ies de�nition.Assume that the spe
ies setoid and monoid have already been de�ned, andthat we have a
olle
tion integ that implements Z. We now de�ne the
artesianprodu
ts of two setoids and of two monoids.spe
ies
artesian setoid(a is setoid, b is setoid)inherits setoid =rep = a * b;let eq = fun x �> fun y �> and(a!eq(fst(x),fst(y)),b!eq(snd(x),snd(y)));theorem refl : all x in self, self !eq(x,x)proof :def: eq;{* (* A Coq s
ript that
an use the definition of self!eq *) *} ;endspe
ies
artesian monoid(a1 is monoid, b1 is monoid)inherits monoid,
artesian setoid(a1,b1) =let bin op = fun x �> fun y �>let x1 = fst(x) in let x2 = snd(x) inlet y1 = fst(y) in let y2 = snd(y) in
reate pair(a!bin op(x1,y1),b!bin op(x2,y2));let neutral =
reate pair(a!neutral,b!neutral);end
olle
tion z square implements
artesian monoid(integ,integ)

4 Finding and Analyzing Dependen
iesAs said above, the syntax of Fo
 prevents some kinds of in
onsisten
ies, but notall. To eliminate the remaining ones, we perform a stati
 analysis on the spe
iesde�nitions.4.1 Informal Des
ription of Stati
 AnalysisGiven a spe
ies de�nition, we must verify that it respe
ts the following
on-straints.� All expressions must be well-typed in an ML-like type system. Rede�nitionsof methods must not
hange their type.� When
reating a
olle
tion from a spe
ies, all the �elds of the spe
ies mustbe de�ned (as opposed to simply de
lared).� The rep �eld must be present or inherited in every spe
ies.� Re
ursion between methods is forbidden, ex
ept within a let re
 �eld.4.2 Classifying MethodsAs said in se
tion 2, when de�ning a spe
ies s, it is important to �nd the de-penden
ies of a method x upon the other methods of s, in order to
he
k the
orre
tness of s. It is synta
ti
ally impossible for some dependen
ies to o

ur inFo
 sour
e. For instan
e, we
an not write a type that depends upon a fun
tionor a property, so that the
arrier of s never depends upon another method. Thus,while in the work of S. Boulmé there is only one sort of method, we distinguishhere three kinds of methods: the
arrier, the fun
tions, and the spe
i�
ations.Ea
h of these
an be de
lared or de�ned.All the dependen
ies that
an be found in a Fo
 de�nition are summed up inFig. 1. In parti
ular, note that a def-dependen
y
an o

ur between a statement
concrete type body

abstract type

proofdefined

declared

carrier function

signature

specification

decl−dependency def−dependency

statement

Fig. 1. Possible Dependen
ies Between Methods

and the
arrier. Indeed, the example of se
tion 2.2
an be written in Fo
:spe
ies a =rep = nat;property p : ex x in self, base eq(x,0);endwhere base_eq is the built-in equality primitive.Sin
e we want to have a fully abstra
t interfa
e for ea
h spe
ies written inFo
, su
h a spe
ies de�nition will be reje
ted by the dependen
y analysis.4.3 Identifying the Dependen
iesThe dependen
ies between the various kinds of methods
annot be
omputedin a uniform way. For instan
e, the de
l-dependen
ies of a fun
tion body b arefound by simply listing all sub-expressions of the form self !m in b. On the otherhand, to identify a def-dependen
y of b upon rep, we need to type
he
k b. Wewill now des
ribe the
omputation of the dependen
ies.Synta
ti
 Criterion. We mention here all the dependen
ies that are found bysimply looking at the Abstra
t Syntax Tree (AST) of the method.� m1 is a fun
tion body and m2 is a fun
tion (either de
lared or de�ned): m1de
l-depends upon m2 if self!m2 is a sub-expression of m1.� m1 is a statement and m2 a fun
tion: m1 de
l-depends upon m2 if self!m2is a sub-expression of m1.� m1 is a proof and m2 a fun
tion or a statement: m1 de
l-depends upon m2 ifm2 appears in the de
l
lause of m1. It def-depends upon m2 if m2 appearsin the def
lause of m1.Typing Criterion. Some dependen
ies require a �ner analysis to be
aught.This is done in the typing phase (Se
. 4.7) and
on
erns the dependen
ies uponrep.� m1 de
l-depends upon rep if the type of a subexpression ofm1
ontains self.� m1 def-depends upon rep if rep is de�ned to � , and when typing m1, auni�
ation step uses the equality self = � . In this
ase, the uni�
ation returnsself.Notations. *m1+s is the set of names upon whi
h m1,
onsidered as a methodof the spe
ies s, de
l-depends. Similarly, **m1++s is the set of names upon whi
hm1 def-depends. rep is
onsidered as a name. Note that **m1++s � *m1+s.4.4 Name uni
ityA name
an not belong to two distin
t �elds of a spe
ies body. We take this
on-dition as an invariant, whi
h is easy to
he
k synta
ti
ally. From a programmingpoint of view, su
h situation would be an error, sin
e one of the two de
larations(or de�nitions) would be ignored.

Notations. Let N (�) be the names of methods introdu
ed in a �eld � (only onename when no mutual re
ursion), and D (�), the names that are introdu
ed ina �eld de�nition. In the following, we will
onsider this general form of a spe
iesde�nition (defspe
), whi
h respe
ts the invariant:spe
ies s inherits s1; : : : sn = �1 : : : �m,su
h that 8i; j � m;N (�i) \ N (�j) = ;.Then we de�ne the set of names of the spe
ies s byN (s) = n[i=1N (si)! [0� m[j=1N (�j)1A4.5 Binding of a methodLet x 2 N (s). The binding Bs(x) of x is, roughly speaking, the body of thede�nition of x, if any. But, in
ase of multiple inheritan
e, x may be asso
iatedto several inherited de�nitions. Then Bs(x) is the last su
h de�nition in the orderspe
i�ed by the inherits
lause.De�nition 1 (binding of a method). Let s be a spe
ies de�ned by defspe
,and x 2 N (s). Bs(x), Is(x) and D (s) are re
ursively de�ned as follows.� if 8i � n; x =2 D (si) ^ 8j � m; x =2 D (�j) then Bs(x) = ?.� if 9i � m; �i is let x = expr then Bs(x) = expr, and Is(x) = n+ 1.� if 9i � m; �i is let re
 fx1 = expr1 : : : xl = expr lg, and xj = x thenBs(x) = expr j and Is(x) = n+ 1� if 9i � m; �i is theorem x : :::proof then Bs(x) = proof , and Is(x) = n+1� else let i0 be the greatest index su
h that x 2 D (si0) then Bs(x) = Bsi0 (x),and Is(x) = i0D (s) = fx 2 N (s);Bs(x) 6= ?g4.6 Normal Form of a Spe
iesTo ensure that a spe
ies s meets all the
onstraints, we
ompute its normal form(def. 3), in whi
h inheritan
e resolution, dependen
y analysis and typing areperformed. A spe
ies in normal form has no inherits
lause, and all its �eldsare ordered in su
h a way that a �eld depends only upon the pre
eding ones.Sin
e rep has no dependen
ies, we
hoose rep as the �rst �eld of the nor-mal form. Then, any other �eld may depend upon rep. To study dependen
iesbetween fun
tions, we distinguish between let and let re
 de�nitions. If m1and m2 are de�ned inside the same let re
 �eld, they are allowed to mutuallydepend upon ea
h other � provided that a termination proof is given2. Thus, fora let re
 de�nition �, the mutual dependen
ies between the methods mi of �are not re
orded in *mi+s.2 Note that this termination proof def-depends upon m1 and m2.

De�nition 2 (well-formedness).A spe
ies s de�ned by defspe
is said to be well-formed if:� the si are well-formed.� All the de�nitions are well-typed.� The di�erent �elds introdu
e di�erent names:8i; j; i 6= j) N (�i) \ N (�j) = ;� A given de�nition de
l-depends only upon previous �elds:8i � n;8x 2 N (�i); *x+s � i�1[j=1N (�j)Requiring that de�nitions are well-typed implies that def-dependen
ies are
orre
tly handled. Indeed, type
he
king will fail if the de�nition is missing.De�nition 3 (normal form). A spe
ies s is said to be in normal form if it iswell-formed and it has no inherits
lause.De�nition 4.
hanged(y; x) is a relation over N (s), s being de�ned byspe
ies s inherits s1 : : : sm = �1 : : : �n end
hanged (y; x) () �9j > Is(x); y 2 D (sj) ^ Bsj (y) 6= BIs(x)(y)�_ (9k; y 2 D (�k) ^ Is(x) 6= n+ 1)Theorem 1 (normal form of well-formed spe
ies). For ea
h well-formedspe
ies s, there exists a spe
ies nfs, whi
h is in normal form and enjoys thefollowing properties:� names: N (nfs) = N (s)� de�ned names: D (nfs) � D (s)� de�nitions: 8x 2 D (nfs) ;Bs(x) = Bnfs(x)� 8x 2 D (s) nD (nfs) ; 9y 2 **x++s s:t:� y =2 D (nfs) or� y 2 D (nfs) and
hanged (y; x).The last
lause ensures that we erase as few method bindings as possible,namely only the ones that def-depend upon methods that have
hanged duringinheritan
e lookup, or upon a method that must itself be erased.The proof gives all the steps of the stati
 analysis performed on spe
ies(inheritan
e lookup, dependen
y analysis and typing). In the proof, we assimilatea spe
ies in normal form and the ordered sequen
e of all its methods. s1�s2denotes the
on
atenation of two sequen
es.Let norm(si) be a normal form of si. We �rst build the following sequen
e:W 1 = norm(s1)�:::�norm(sn)�[�1; :::; �m℄. W 1 may
ontain several o

ur-ren
es of the same name, due to multiple inheritan
e or rede�nition. To solvesu
h
on�i
ts, we introdu
e a fun
tion =, whi
h merges two �elds sharing somenames.

� If the two �elds �1 and �2 are de
larations, �1 = �2 is a de
laration too. Ifonly one of the �eld is de�ned, = takes this de�nition. If both �1 and �2 arede�nitions, then = sele
ts �2.� Two let re
 �elds �1 and �2
an be merged even if they do not introdu
eexa
tly the same sets of names, be
ause you
an inherit a let re
 �eld andthen rede�ne only some of its methods (keeping the inherited de�nition forthe others), or even add some new methods to this re
ursion. Merging twolet re
 �elds is not given for free, though. Indeed, it implies that the userprovides a new termination proof, that involves all the methods de�ned in�1 = �2.Our analysis builds a sequen
e W 2 of de�nitions from W 1 = �1 : : : �n, start-ing with W 2 = ;. This is done with a loop; ea
h iteration examines the �rst �eldremaining in W 1 and updates W 1 and W 2 . The loop ends when W 1 is empty.The loop body is the following:Let W 1 = �1;X and W 2 = 1 : : : m� if N (�1) \ ([mi=1N (i)) = ; then W 1 X and W 2 (1 : : : n; �1): if theanalyzed �eld does not have any name in
ommon with the ones alreadypro
essed, we
an safely add it at the end of W 2 .� else let i0 be the smallest index su
h that N (�1) \ N (i0) 6= ;, then wedo W 1 ((�1 = i0);X) and W 2 (1 : : : i0�1; i0+1 : : : m). In the
aseof mutually re
ursive de�nitions, �1
an have some names in
ommon withmore than one i, so that �1= i0 is kept in W 1 . In addition, we abstra
t allthe �elds f igi>i0 su
h that 9x 2 N (�1); y 2 N (i); y <defs x, where <defsis the transitive
losure of **�++s.The
omplete proof that this algorithm
omputes e�e
tively a well-formednormal form that satis�es the
onditions of theorem 1
an be found in [?℄. Infa
t, the algorithm
an be applied to any spe
ies, provided that �elds
an bereordered a

ording to the last
lause of def. 3. If it su

eeds, then s is indeedwell-formed. If it fails, the de�nition of s is in
onsistent, and thus reje
ted.4.7 Typing a Normal FormOn
e inheritan
e resolution and dependen
y analyses have been done, we haveto type the de�nitions of a spe
ies in normal form. The typing algorithm forfun
tions is basi
ally the same as the Hindley-Milner type inferen
e algorithmused in the ML family of languages. We also
he
k that spe
i�
ations are well-typed, but the veri�
ation of proofs is left to Coq (Se
. 5).The only tri
k here is that types must be preserved through inheritan
e sothat, if a method is rede�ned, we have to
he
k that the inferred type for thenew de�nition is
ompatible with the old one. Moreover, we may dete
t a def-dependen
y upon rep, as said in 4.3, while typing the statement of a propertyor a theorem. In this
ase, we must reje
t the spe
ies de�nition, as explained inSe
. 2.2, sin
e su
h a spe
ies
an not have a fully abstra
t interfa
e.The typing inferen
e rules are given in [?℄.

4.8 Parameterized Spe
iesLet s be a parameterized spe
ies, written spe
ies s(
 is a) : : : where
 is a freshname. The typing environment of the body of s
ontains a binding (
;A(a;
)),where A(a;
) is an interfa
e de�ned as follows.If a = fxi : �i = eigi=1::n, thenA(a;
) = hxi : �i[self
℄ii=1::nA
olle
tion parameter may be instantiated by a ri
her stru
ture than ex-pe
ted. For instan
e, polynomials must be de�ned over a ring, but may perfe
tlybe given a �eld instead. So we de�ne a sub-spe
ies relation 4 in order to instan-tiate a
olle
tion parameter with arguments of the right interfa
e.De�nition 5 (sub-spe
ies). Let Ts(x) be the type of x in s. Let s1, s2 be twospe
ies. s1 4 s2 () N (s2) � N (s1) ^ 8x 2 N (s2); Ts1(x) = Ts2(x)Thanks to the type
onstraints during inheritan
e lookup, if a inherits fromb, then a 4 b. Sin
e only the types of the methods are
on
erned, the relation iseasily extended to interfa
es.5 Certi�
ation: the translation into Coq5.1 Interfa
esAs in [?℄ interfa
es are represented by Coq's Re
ords, and
olle
tions by in-stan
es of the
orresponding Re
ords. In Coq, a Re
ord is a n-uple in whi
hevery
omponent is expli
itly named:Re
ord my re
ord := { label 1 : type 1; label 2 : type 2; . . . }.The main issue here is that we are dealing with dependent Re
ords: type_2
anuse label_1, as in the following example:Re
ord
omparable :={ my type : Set; less than : my type �> my type �> Prop }.So the order in whi
h the di�erent labels appear is important.We de�ne a Re
ord type in Coq, whi
h denotes the interfa
e of the spe
ies.If the spe
ies is fxi : �i = eig, then the Re
ord is de�ned asRe
ord name_spe
 : Type := mk_spe
fxi : �igWe expli
itly give all the �elds of the Re
ord, in
luding the inherited ones. Theyhave to be given in the order of the normal form be
ause de
l-dependen
ies
anbe present even at the level of types.We also provide
oer
ions between the Re
ord we have just built andthe Re
ord(s)
orresponding to the interfa
e(s) of the father spe
ies. Su
h
oer
ions re�e
t the inheritan
e relations of Fo
.

5.2 Spe
iesUnlike [?℄, a spe
ies s is not represented by a MixDRe
, that is a Re
ord thatmix
on
rete and abstra
t �elds. For any method m de�ned in s, we introdu
e amethod generator, genm. If a method is inherited, the
orresponding generatorhas been de�ned in a pre
eding spe
ies, and does not need to be re
ompiled.This o�ers a kind of modularity.For instan
e, in the following spe
iesspe
ies a =sig eq in self �> self �> bool;let neq = fun x �> fun y �> notb(self !eq(x,y));endThe method generator for neq is�abst_T : Set:�abst_eq : abst_T� > abst_T� > bool:�x; y : abst_T:notb(abst_eq x y)Then, ea
h spe
ies that inherits from setoid
an use this de�nition of neq,instantiating abst_eq with its own de�nition of eq. This way, we
an handlelate-binding.More formally, Let � be a normal form of a spe
ies s, (sequen
e � = fxi :�i = eig of methods). Let e be an expression o

uring in a �eld � (e being ade
laration, a statement, a binding, or a proof). We de�ne below � e e, whi
h isthe minimal environment needed to type
he
k e (or �). Due to def-dependen
ies,e
an not simply sele
t the methods � depends upon. Ea
h time � def-dependsupon , we must also keep the methods upon whi
h itself de
l-depends.De�nition 6 (Minimal Environment). Let � = fxi : �i = eig and e be anexpression. � e e is the environment needed to type
he
k e, and is de�ned asfollows. � u e = fxj : �j = new_ej jxj 2 *e+ ^ (xj : �j = ei) 2 �gwhere new_ej = � ej if xj 2 **e++? otherwiseU1 = � u eUk+1 = Uk [[(xj :�j=ej)2Uk� u ej� e e = [k>0Ukwhere fx : � = ?g [fx : � = eg = fx : � = eg

We turn now to the translation of the de�nition d of a method y in Coq,a

ording to the environment � e d. This is done by re
ursion on the stru
tureof the environment. [d℄
oq is the straightforward translation of d in Coq, ea
h
all self!x being repla
ed by the introdu
ed variable abst_s.De�nition 7 (Method Generator).J;; dK = [d℄
oqJfx : � = e; lg; dK = Let abst_x : � := (genx abst_x i)in Jl; dKJfx : � = ?; lg; dK = �abst_x : �: Jl; dKwhere genx = J� e Bs(x);Bs(x)K and abst_x is a fresh name.The se
ond
ase treats def-dependen
ies. The method x being de�ned in � asfx : � = eg has already been
ompiled to Coq. Thus its method generatorgenx has been obtained by abstra
ting the names xi of � e Bs(x) (note that� e Bs(x) � � e d). Here, genx is applied to the
orresponding abst_xi.The third
ase
on
erns �simple� de
l-dependen
ies. We only abstra
t x.5.3 Colle
tionsColle
tions are de�ned using the method generators. Namely, if
 implementss = fxi : �i = eig, the Coq translation is the following:De�nition
_x1 := gen_x1:: : :De�nition
_xn := (gen_xn (JxnKs):De�nition
 := (mk_s
_x1 : : :
_xn):where JxKs = fxi 2 N (s)j (xi; �i;?) 2 �eBs(x)g. JxKs represents the de�nitionsthat must be provided to the method generator in order to de�ne x. mk_s isthe fun
tion that generates the re
ord
orresponding to the interfa
e of s.5.4 ParametersA natural way to handle parameters in Coq would be to
reate fun
tions thattake Re
ords as arguments and return Re
ords. For instan
e, (the interfa
e of)a
artesian produ
t
an be de�ned like this:Re
ord
artesian [A, B : basi
 obje
t℄ : Type :={ T : Set; fst : T �> A . . .}Another solution is to take the parameters as the �rst �elds of the Re
ord:Re
ord
artesian : Type :={ A : basi
 obje
t; B: basi
 obje
t; . . .}

These two translations are quite similar for Coq. In the �rst one,
artesianwill be a parameterized type, while it is not the
ase in the se
ond one: A and Bare only the �rst two arguments of its unique
onstru
tor. The se
ond solutionseems to have some pra
ti
al advantages over the �rst one:� Parameters
an be a

essed dire
tly as �elds of the re
ord� Fields a

esses (the equivalent of methods
all) do not need extra arguments,as it would be the
ase in the �rst solution.� Coer
ions between parameterized re
ords are easier to de�ne too.� More important, it re�e
ts the fa
t that
olle
tions
an not have parameters:in an implementation of
artesian, the �elds A and B must be de�ned aswell as T and fst.6 Related WorkOther proje
ts use Coq's Re
ords to represent algebrai
 stru
ture. In parti
u-lar, L. Pottier [?℄ has developed quite a large mathemati
al library, up to �elds.H. Geuvers and the FTA proje
t [?℄ have de�ned abstra
t and
on
rete repre-sentations of reals and
omplex numbers. In addition, R. Polla
k [?℄ and G. Be-tarte [?℄ have given their own embedding of dependent re
ords in Type Theory.We
an also mention Imps [?℄, a proof system whi
h aims at providing a
ompu-tational support for mathemati
al proofs. However, none of these works in
ludea
omputational
ounterpart, similar to the O
aml translation of Fo
. P. Ja
k-son [?℄ implemented a spe
i�
ation of multivariate polynomials in Nuprl. Hisapproa
h is quite di�erent from Fo
, as in his formalism, a group
an not bedire
tly
onsidered as a monoid, for instan
e.7 Con
lusion and Future WorkTo sum up, we
an say that Fo
 has now a
hieved a quite good expressivepower. The stati
 analyses that are dis
ussed in Se
. 4 have been implemented[?℄ in a
ompiler that generates Coq and O
aml
ode. An important numberof mathemati
al stru
tures have been implemented, and performan
es are good.It seems to us that we provide a well-adapted framework to prove the prop-erties needed for ea
h spe
ies' implementation. It it is now ne
essary to de�nea proof language for Fo
, dedi
ated to users of
omputer algebra systems. Thisis
urrently under development.Building mathemati
al stru
tures requires the whole power of the Cal
ulusof Indu
tive Constru
tions, but higher-order features are mostly needed only tohandle dependen
ies. On
e we have su

eeded to build an appropriate environ-ment, the proofs themselves stay in �rst order logi
 most of the time. This maylead to a quite high level of automatization in the proof part of the proje
t,leading to proofs in dedu
tion modulo [?, ?℄. We
ould then try to delegate somepart of the proofs to rewriting tools. Similarly, it would be interesting to o�erpowerful tools that allow the user of Fo
 to de�ne his own Fo
 proof ta
ti
s.

D. Delahaye's PhD [?℄ presents very promising developments in this area andmay be of great help here. From the Curry-Howard point of view this futurework is the
ounterpart in the proof universe of the basi
 expressions of the Fo
language.Referen
es[1℄ G. Betarte. Dependent Re
ord Types and Formal Abstra
t Reasoning: Theory andPra
ti
e. PhD thesis, University of Göteborg, 1998.[2℄ S. Boulmé, T. Hardin, and R. Rioboo. Polymorphi
 data types, obje
ts, modulesand fun
tors: is it too mu
h ? Resear
h Report 14, LIP6, 2000. available at<http://www.lip6.fr/reports/lip6.2000.014.html>.[3℄ S. Boulmé. Spé
i�
ation d'un environnement dédié à la programmation
erti�éede bibliothèques de Cal
ul Formel. PhD thesis, Université Paris 6, de
ember 2000.[4℄ B. Bu
hberger and all. A survey on the theorema proje
t. In W. Kue
hlin, editor,Pro
eedings of ISSAC'97. ACM Press, 1997.[5℄ D. Delahaye. Con
eption de langages pour dé
rire les preuves et les automatisa-tions dans les outils d'aide à la preuve. PhD thesis, Université Paris 6, 2001.[6℄ G. Dowek, T. Hardin, and C. Kir
hner. Theorem proving modulo. Resear
hReport 3400, INRIA, 1998.[7℄ G. Dowek, T. Hardin, and C. Kir
hner. Hol-��: an intentional �rst-order ex-pression of higher-order logi
. Mathemati
al Stru
tures in Computer S
ien
e,11(1):21�45, 2001.[8℄ W. M. Farmer, J. D. Guttman, and F. J. Thayer. The imps user's manual. Te
h-ni
al Report M-93B138, The mitre Corporation, 202 Burlington Road, Bedford,MA 01730-1420, USA, November 1995. Available at ftp://math.harvard.edu/imps/do
/.[9℄ H. Geuvers, R. Polla
k, F. Wiedijk, and J. Zwanenburg. The algebrai
 hierar
hyof the fta proje
t. In Pro
eedings of the Cal
ulemus Workshop, 2001.[10℄ R. Harper and M. Lillibridge. A type-theoreti
 approa
h to higher-order moduleswith sharing. In 21st Symposium on Prin
iple of Programming Languages, 1994.[11℄ P. Ja
kson. Exploring abstra
t algebra in
onstru
tive type theory. In Pro
eedingsof 12th International Conferen
e on Automated Dedu
tion, July 1994.[12℄ R. Polla
k. Dependently typed re
ords for representing mathemati
al stru
tures.In TPHOLs'00. Springer-Verlag, 2000.[13℄ L. Pottier.
ontrib algebra pour
oq, mars 1999. <http://pauilla
.inria.fr/
oq/
ontribs-eng.html>.[14℄ V. Prevosto, D. Doligez, and T. Hardin. Overview of the Fo

ompiler. to appearas a resear
h report, LIP6, 2002. available at <http://www-spi.lip6.fr/�prevosto/papiers/fo
2002.ps.gz>.[15℄ The Coq Development Team. The Coq Proof Assistant Referen
e Manual. ProjetLogiCal, INRIA-Ro
quen
ourt � LRI Paris 11, Nov. 1996.

