Algebraic Structures and Dependent Records

Virgile Prevosto!?, Damien Doligez!, and Thérése Hardin'-2

! IN.R.I.A - Projet Moscova
B.P. 105 — F-78153 Le Chesnay, France
Damien.Doligez@inria.fr
2 L.I.P. 6 — Equipe SPI
8 rue du Cap. Scott — 75015 PARIS, France
[therese.hardin,virgile.prevosto] @lip6.fr

Abstract. In mathematics, algebraic structures are defined according
to a rather strict hierarchy: rings come up after groups, which rely them-
selves on monoids, and so on. In the Foc project, we represent these
structures by species. A species is made up of algorithms as well as proofs
that these algorithms meet their specifications, and it can be built from
existing species through inheritance and refinement mechanisms.

To avoid inconsistencies, these mechanisms must be used carefully. In
this paper, we recall the conditions that must be fulfilled when going
from a species to another, as formalized by S. Boulmé in his PhD [?]. We
then show how these conditions can be checked through a static analysis
of the Foc code. Finally, we describe how to translate Foc declarations
into CoQ.

1 Introduction

1.1 The Foc Project

Although computer algebra is based upon strong mathematical grounds, errors
are not so rare in current computer algebra systems. Indeed, algorithms may be
very complex and there is an abundance of corner cases. Moreover, precondi-
tions may be needed to apply a given algorithm and errors can occur if these
preconditions are not checked.

In the Foc language!, any implementation must come with a proof of its
correctness. This includes of course pre- and post- condition statements, but
also proofs of purely mathematical theorems. In a computer algebra library, a
single proof is of little use by itself. Indeed numerous algorithms, and thus their
proofs, can be reused in slightly different contexts. For example a tool written
for groups can be used in rings, provided that the system knows every ring is
a group. Thus, we need a completely formalized representation of the relations
between the mathematical structures, which will serve as a common framework
for both proofs and implementations.

In his PhD thesis [?], S. Boulmé gives a formal specification of both the hi-
erarchy of the library and the tools used to extend it. This formalization of the

! http:www-spi.lip6.fr/ “foc

specification, briefly presented below (Sec. 2), points out that some invariants
must be preserved when extending an existing structure. In particular, the de-
pendencies between the functions and the properties of a given structure must
be analyzed carefully, as well as dependencies between structures.

We have elaborated a syntax that allows the user to write programs, state-
ments and proofs. This syntax is restrictive enough to prevent some inconsis-
tencies, but not all. In this paper we describe the core features of this syntax
(Sec. 3), and present code analyses to detect remaining inconsistencies (Sec. 4).
Then, we show how to use the results of this analysis to translate FOC sources
into CoQ, in order to have Foc proofs verified by the CoQ system (Sec 5).

1.2 Foc’s Ground Concepts

Species. Species are the nodes of the hierarchy of structures that makes up the
library. They correspond to the algebraic structures in mathematics. A species
can be seen as a set of methods, which are identified by their names. In par-
ticular, there is a special method, called the carrier, which is the type of the
representation of the underlying set of the algebraic structure.

Every method can be either declared or defined. Declared methods introduce
the constants and primitive operations. Moreover, axioms are also represented
by declared methods, as would be expected in view of the Curry-Howard iso-
morphism. Defined methods represent implementations of operations and proofs
of theorems. The declaration of a method can use the carrier.

As an example, a monoid is built upon a set represented by its carrier. It has
some declared operations, (specified by their signature), namely =, 4+, and zero.
These operations must satisfy the axioms of monoids, which are expressed in Foc
by properties. We can then define a function, double, such that double(x) = z+z,
and prove some theorems about it, for instance that double(zero) = zero.

Interface. An interface is attached to each species: it is simply the list of all the
methods of the species considered as only declared. As S. Boulmé pointed out,
erasing the definitions of the methods may lead to inconsistencies. Indeed, some
properties may depend on previous definitions, and become ill-typed if these
definitions are erased. This is explained in more detail in section 2.2. Interfaces
correspond to the point of view of the end-user, who wants to know which
functions he can use, and which properties these functions have, but doesn’t
care about the details of the implementation.

Collection. A collection is a completely defined species. This means that every
field must be defined, and every parameter instantiated. In addition, a collection
is “frozen”. Namely, it cannot be used as a parent of a species in the inheri-
tance graph, and its carrier is considered an abstract data type. A collection
represents an implementation of a particular mathematical structure, such as
(Z,+, %) implemented upon the GMP library.

Parameters. We also distinguish between “atomic” species and “parameterized”
species. There are two kinds of parameters: entities and collections. For instance,
a species of matrices will take two integers (representing its dimensions) as pa-
rameters. These integers are entities of some collection. For its coefficients, the
species of matrices will also take a collection as argument, which must have at
least the features specified by the interface of ring. Of course, it can be a richer
structure, a field for instance.

A species s; parameterized by an interface s, can call any method declared
in so. Thus, the parameter must be instantiated by a completely defined species,
i.e. a collection.

2 Constraints on Species Definition

S. Boulmeé, in [?], specified different conditions that must be fulfilled when build-
ing the species hierarchy. These conditions are required to define a model of the
hierarchy in the calculus of inductive constructions. By building a categorical
model of the hierarchy, S. Boulmé also showed that they were necessary condi-
tions. One of the objectives of this paper is to show how the implementation of
Foc fulfills these conditions.

2.1 Decl- and Def- Dependencies

We will now present these conditions through an example. We can take for
instance the species of setoid, a set with an equality relation. More precisely,
the species has the following methods: a carrier rep, an abstract equality eq, and
a property eq_refl stating that eq is reflexive. From eq, we define its negation
neq, and prove by the theorem neq_nref1 that it is irreflexive. Using a CoQ-like
syntax, we can represent setoid like this:

rep : Set
eq: rep —> rep —> Prop
neq : rep —> rep —> Prop := [x,y:rep|(not (eq x y))
eq refl : (x:rep)(eqx x)
neq nrefl : (x:rep)(not (neqx x)) =
[x : rep; H: (not (eq x x))](H (eq_refl x))

Thanks to the Curry-Howard isomorphism, functions and specifications are
treated the same way. We must first verify that the methods have well-formed
types. In addition, the body of every defined method must have the type given in
its declaration. We can remark that the order in which we introduce the methods
of the species is important: in order to write the type of eq, we must know that
there exists a Set called rep. Similarly, the body of neq refers to eq, as does the
property eq_refl. These three cases are very similar: a method m2 uses ml,
and in order to typecheck m2, we need ml in the typing environment. In this
case, we speak of a decl-dependency of m2 upon ml.

On the other hand, in order to typecheck neq_nrefl, it is not enough to have
the type of neq in the environment. Indeed, we must know that it is defined as
(not (eq x y)), because hypothesis H in the body of neq_nrefl must match
the definition of neq. Thus, neq must be unfolded during the typechecking of
neq_nrefl. We identify this case as a def-dependency. When dealing with in-
heritance, this new kind of dependency has a major drawback: if we want to
redefine neq in a species that inherits from setoid, then we will have to provide
a new proof for neq_nrefl. There is no such problem with decl-dependencies:
the definition of neq remains valid for any definition of eq, provided it has the
right type.

2.2 Purely Abstract Interface

Def-dependencies do not occur only in proofs. They can also appear at the level
of types. For instance, take the following species definition (again in a CoQ-like
syntax, 0 being a constant of type nat).

{rep: Set := nat; p: (Ix:rep|x = 0)}

Here, in order to accept the property p as well-typed, we have to know that rep
is an alias of nat. If we remove the definition of rep, then the resulting interface
is clearly inconsistent. Thus we cannot accept such a species definition, because
any species must receive a valid interface. In a correctly written species, the
type of a method cannot def-depend upon another method. This restriction was
identified by S. Boulmé when representing species by records with dependent
fields.

3 Syntax

In this section, we present the core syntax of FOC and an intuitive explanation
of its semantics. The complete syntax is built upon the core syntax by adding
syntactic sugar without changing its expressive power, so the properties of the
core language are easily extended to the full language. In the rest of the paper,
we will use the following conventions concerning variable names. Lambda-bound
variables, function names and method names are usually denoted by z or y.
Species names are denoted by s, and collection names by c. There is also a
keyword, self, which can be used only inside a species s. It represents the “cur-
rent” collection (thus self is a collection name), allowing to call its methods by
self!x (see 3.5).

3.1 Types
type == ¢ | a | type —> type | type * type

A type can be a collection name ¢ (representing the carrier of that collection),
a type variable «, or a function or a product type.

3.2 Expressions and Properties

identifier ::=z, y
declaration ::= z [in type |

expression ::= z | clz | fun declaration —> expression
| expression(expression { ,expression }*)
| let [rec | declaration = expression in expression
An expression can be a variable (x,y), a method x of some collection c,
a functional abstraction, a function application, or a local definition with an
expression in its scope.
Properties are boolean expressions with first-order quantifiers:
prop ::= ezpr | prop and prop | prop or prop | prop — prop | not prop
| all z in type, prop | ex z in type, prop

3.3 Fields of a Species

def field ::= let declaration = expression
| let rec { declaration = expression; }+
| rep = type | theorem z : prop proof: [deps | proof
decl field ::=sig z in type | rep | property z : prop
field ::= def field | decl_field
deps ::={ (decl: | def:) { z }* }*

A field ¢ of a species is usually a declaration or a definition of a method
name. In the case of mutually recursive functions, a single field defines several
methods at once (using the let rec keyword).

The carrier is also a method, introduced by the rep keyword. Each species
must have exactly one rep field.

The proof language (the proof entry of the grammar) is currently under de-
velopment. For the time being, proofs can be done directly in C0Q, although the
properties themselves are translated automatically. The dependencies (Sec. 2) of
a proof must be stated explicitely in the deps clause of a theorem definition.

3.4 Species and Collection Definitions

species _def ::= species s [(parameter { , parameter }*) |
[inherits species expr { , species_expr }* |
= { field; }* end
collection _def ::= collection ¢ implements species_ expr
parameter ::= z in type
| cis species_expr
species_expr ::= s | s (expr_or_coll {, expr_or_coll }*)
expr_or_coll ::= ¢ | expression
A species_expr is a species identifier (for an atomic species), or a species
identifier applied to some arguments (for a parameterized species). The argu-
ments can be collections or expressions. Accordingly, in the declaration of a
parameterized species, a formal parameter can be a variable (with its type) or

a collection name (with its interface, which is a species_expr). A collection def-
inition is simply giving a name to a species_ expr.

3.5 Method and Variable Names

As pointed out in [?], method names can not be a-converted, so that they must
be distinguished from variables. The notation self!x syntactically enforces this
distinction, as we can remark in the following example.

let y = 3;;
species a (x in int) = let y = 4; let z = x; let my_y = selfly; end
collection a_imp implements a(y)

Here, a_imp!z returns 3, while a_imp!my_y returns 4.

3.6 A Complete Example

We will illustrate the main features of FOC with an example of species definition.
Assume that the species setoid and monoid have already been defined, and
that we have a collection integ that implements Z. We now define the cartesian
products of two setoids and of two monoids.

species cartesian_setoid(a is setoid, b is setoid)
inherits setoid =
rep — a * b;
let eq = fun x —> fun y —> and(aleq(fst(x),fst(y)),bleq(snd(x),snd(y)));
theorem refl : all x in self, selfleq(x,x)
proof:
def: eq;
{* (% 4 Coq script that can use the definition of selflfeq *) *} ;
end

species cartesian monoid(al is monoid, bl is monoid)
inherits monoid, cartesian_setoid(al,bl) =
let bin_op = fun x —> fun y —>
let x1 = fst(x) in let x2 = snd(x) in
let y1 = fst(y) in let y2 = snd(y) in
create_pair(albin_op(x1,y1),b'bin_op(x2,y2));
let neutral = create_pair(alneutral,blneutral);
end

collection z_square implements cartesian monoid(integ,integ)

4 Finding and Analyzing Dependencies

As said above, the syntax of FOC prevents some kinds of inconsistencies, but not
all. To eliminate the remaining ones, we perform a static analysis on the species
definitions.

4.1 Informal Description of Static Analysis

Given a species definition, we must verify that it respects the following con-
straints.

All expressions must be well-typed in an ML-like type system. Redefinitions

of methods must not change their type.

— When creating a collection from a species, all the fields of the species must
be defined (as opposed to simply declared).

— The rep field must be present or inherited in every species.

Recursion between methods is forbidden, except within a let rec field.

4.2 Classifying Methods

As said in section 2, when defining a species s, it is important to find the de-
pendencies of a method z upon the other methods of s, in order to check the
correctness of s. It is syntactically impossible for some dependencies to occur in
Foc source. For instance, we can not write a type that depends upon a function
or a property, so that the carrier of s never depends upon another method. Thus,
while in the work of S. Boulmé there is only one sort of method, we distinguish
here three kinds of methods: the carrier, the functions, and the specifications.
Each of these can be declared or defined.

All the dependencies that can be found in a Foc definition are summed up in
Fig. 1. In particular, note that a def-dependency can occur between a statement

carrier function specification

declared | abstract type -//ﬁsignawm statement

defined concrete type body - - proof ,"
I I 2
-<— decl-dependency <--- def-dependency

Fig. 1. Possible Dependencies Between Methods

and the carrier. Indeed, the example of section 2.2 can be written in Foc:

species a —

rep — nat;

property p : ex x in self, base_eq(x,0);
end

where base_eq is the built-in equality primitive.
Since we want to have a fully abstract interface for each species written in
Foc, such a species definition will be rejected by the dependency analysis.

4.3 Identifying the Dependencies

The dependencies between the various kinds of methods cannot be computed
in a uniform way. For instance, the decl-dependencies of a function body b are
found by simply listing all sub-expressions of the form self!m in b. On the other
hand, to identify a def-dependency of b upon rep, we need to typecheck b. We
will now describe the computation of the dependencies.

Syntactic Criterion. We mention here all the dependencies that are found by
simply looking at the Abstract Syntax Tree (AST) of the method.

— iy is a function body and mes is a function (either declared or defined): m
decl-depends upon my if self!m, is a sub-expression of m;.

— my is a statement and mo a function: m; decl-depends upon ms if self!ms
is a sub-expression of m;.

— my is a proof and my a function or a statement: m; decl-depends upon m if
my appears in the decl clause of m;. It def-depends upon ms if my appears
in the def clause of m;.

Typing Criterion. Some dependencies require a finer analysis to be caught.
This is done in the typing phase (Sec. 4.7) and concerns the dependencies upon
rep.
— my decl-depends upon rep if the type of a subexpression of m; contains self.
— my def-depends upon rep if rep is defined to 7, and when typing m;, a

unification step uses the equality self = 7. In this case, the unification returns
self.

Notations. [m, [, is the set of names upon which m, considered as a method
of the species s, decl-depends. Similarly, {m; [J, is the set of names upon which
my def-depends. rep is considered as a name. Note that {{m;{J, C [mJ,.

4.4 Name unicity

A name can not belong to two distinct fields of a species body. We take this con-
dition as an invariant, which is easy to check syntactically. From a programming
point of view, such situation would be an error, since one of the two declarations
(or definitions) would be ignored.

Notations. Let N(¢) be the names of methods introduced in a field ¢ (only one
name when no mutual recursion), and D (¢), the names that are introduced in
a field definition. In the following, we will consider this general form of a species
definition (defspec), which respects the invariant:

species s inherits s1,...5, = ¢1 ... 0,

such that Vi, j < m,N(¢;) NN (¢;) = 0.

Then we define the set of names of the species s by

vor= (Ut) v Uwien

Jj=1

4.5 Binding of a method

Let x € N(s). The binding Bs(z) of x is, roughly speaking, the body of the
definition of z, if any. But, in case of multiple inheritance, x may be associated
to several inherited definitions. Then B(z) is the last such definition in the order
specified by the inherits clause.

Definition 1 (binding of a method). Let s be a species defined by defspec,
and x € N(s). Bs(x), Is(x) and D (s) are recursively defined as follows.

—ifVi<n, £ ¢ D(s;)) AVj<m, x ¢ D(¢;) then Bs(x) = L.

— if 3i <m, ¢; is let x = expr then Bs(z) = expr, and Iy(z) =n + 1.

—if 3 < m, ¢; is let rec {1 = expry...x; = expr;}, and x; = x then
Bs(x) = expr; and Ly(z) =n +1

— if 3 < m, ¢; is theorem x : ...proof then Bs(x) = proof, and Is(x) =n+1

— else let iy be the greatest index such that x € D (s;,) then Bs(z) = Bs, (),
and Is(x) =i

D(s) = {z € N(s), By(a) # L}

4.6 Normal Form of a Species

To ensure that a species s meets all the constraints, we compute its normal form
(def. 3), in which inheritance resolution, dependency analysis and typing are
performed. A species in normal form has no inherits clause, and all its fields
are ordered in such a way that a field depends only upon the preceding ones.

Since rep has no dependencies, we choose rep as the first field of the nor-
mal form. Then, any other field may depend upon rep. To study dependencies
between functions, we distinguish between let and let rec definitions. If my
and me are defined inside the same let rec field, they are allowed to mutually
depend upon each other — provided that a termination proof is given?. Thus, for
a let rec definition ¢, the mutual dependencies between the methods m; of ¢
are not recorded in {m;,.

2 Note that this termination proof def-depends upon m; and mo.

Definition 2 (well-formedness).
A species s defined by defspecis said to be well-formed if:

— the s; are well-formed.
All the definitions are well-typed.
— The different fields introduce different names:

Vi, jyi#j = N(g:) NN(¢;) =0
— A given definition decl-depends only upon previous fields:

Vi <n,Vz e N(¢), 2§, C L_J N(¢;)

j=1

Requiring that definitions are well-typed implies that def-dependencies are
correctly handled. Indeed, typechecking will fail if the definition is missing.

Definition 3 (normal form). A species s is said to be in normal form if it is
well-formed and it has no inherits clause.

Definition 4. changed(y,z) is a relation over N(s), s being defined by

species s inherits sy ...sy;, = ¢1... 0, end

changed(y,z) <= (3j > Ly(2), y € D(s;) A By, (y) # Bu,()(y))
vV (3k,y €D(¢r) Nls(z) #n+1)

Theorem 1 (normal form of well-formed species). For each well-formed
species s, there exists a species nfs, which is in normal form and enjoys the
following properties:

— names: N (nfs) = N(s)
defined names: D (nfs) C D (s)
definitions: Vo € D (nfs) , Bs(x) = Bnyss(2)
Vo € D(s)\D(nfs),3y € [z, s.t.

o y & D(nfs) or

e y € D(nfs) and changed(y,x).

The last clause ensures that we erase as few method bindings as possible,
namely only the ones that def-depend upon methods that have changed during
inheritance lookup, or upon a method that must itself be erased.

The proof gives all the steps of the static analysis performed on species
(inheritance lookup, dependency analysis and typing). In the proof, we assimilate
a species in normal form and the ordered sequence of all its methods. s;@s,
denotes the concatenation of two sequences.

Let norm(s;) be a normal form of s;. We first build the following sequence:
Wi = norm(s1)Q...Qnorm(s,)@Q[dr, ..., ¢m]. Wi may contain several occur-
rences of the same name, due to multiple inheritance or redefinition. To solve
such conflicts, we introduce a function ©, which merges two fields sharing some
names.

— If the two fields ¢; and ¢, are declarations, ¢1 © ¢- is a declaration too. If
only one of the field is defined, © takes this definition. If both ¢; and ¢, are
definitions, then © selects ¢s.

— Two let rec fields ¢; and ¢ can be merged even if they do not introduce
exactly the same sets of names, because you can inherit a let rec field and
then redefine only some of its methods (keeping the inherited definition for
the others), or even add some new methods to this recursion. Merging two
let rec fields is not given for free, though. Indeed, it implies that the user
provides a new termination proof, that involves all the methods defined in

1 O 2.

Our analysis builds a sequence Wy of definitions from W; = ¢, ... ¢y, start-
ing with Wy =). This is done with a loop; each iteration examines the first field
remaining in W; and updates W; and W,. The loop ends when W; is empty.
The loop body is the following;:

Let Wi = ¢y, X and Wy = ¢y ... ¢y,

— if N(¢1) N (U N (1)) = 0 then Wy «+ X and W < (¢1 ... ¢p, ¢1): if the
analyzed field does not have any name in common with the ones already
processed, we can safely add it at the end of Ws.

— else let igp be the smallest index such that N (¢1) NN (¢;,) # 0, then we
do Wy « ((é1 © ¢4,),X) and Wy + (1 ... 0ig—1,Vig+1 - - - ¥). In the case
of mutually recursive definitions, ¢; can have some names in common with
more than one v;, so that ¢; Sy, is kept in W; . In addition, we abstract all
the fields {1;}i>i, such that 3z € N(¢1), y € N(¥;),y <% z, where <2
is the transitive closure of {[-ff,.

The complete proof that this algorithm computes effectively a well-formed
normal form that satisfies the conditions of theorem 1 can be found in [?]. In
fact, the algorithm can be applied to any species, provided that fields can be
reordered according to the last clause of def. 3. If it succeeds, then s is indeed
well-formed. If it fails, the definition of s is inconsistent, and thus rejected.

4.7 Typing a Normal Form

Once inheritance resolution and dependency analyses have been done, we have
to type the definitions of a species in normal form. The typing algorithm for
functions is basically the same as the Hindley-Milner type inference algorithm
used in the ML family of languages. We also check that specifications are well-
typed, but the verification of proofs is left to CoqQ (Sec. 5).

The only trick here is that types must be preserved through inheritance so
that, if a method is redefined, we have to check that the inferred type for the
new definition is compatible with the old one. Moreover, we may detect a def-
dependency upon rep, as said in 4.3, while typing the statement of a property
or a theorem. In this case, we must reject the species definition, as explained in
Sec. 2.2, since such a species can not have a fully abstract interface.

The typing inference rules are given in [?].

4.8 Parameterized Species

Let s be a parameterized species, written species s(c is a) ... where ¢ is a fresh
name. The typing environment of the body of s contains a binding (¢, A(a, ¢)),
where A(a, ¢) is an interface defined as follows.

If a ={z; : 7 = €;}i=1..n, then

A(a,c) = (z; : 7i[self «)

i=l..n

A collection parameter may be instantiated by a richer structure than ex-
pected. For instance, polynomials must be defined over a ring, but may perfectly
be given a field instead. So we define a sub-species relation < in order to instan-
tiate a collection parameter with arguments of the right interface.

Definition 5 (sub-species). Let T;(x) be the type of x in s. Let s1, s2 be two
species.

51 X 82 <= N(s2) CN(s1) AVr € N(s2), Ty, (z) = Ty, ()

Thanks to the type constraints during inheritance lookup, if a inherits from
b, then a < b. Since only the types of the methods are concerned, the relation is
easily extended to interfaces.

5 Certification: the translation into CoqQ

5.1 Interfaces

As in [?] interfaces are represented by CoQ’s Records, and collections by in-
stances of the corresponding Records. In C0oQ, a Record is a n-uple in which
every component is explicitly named:

Record my_record := { label_1 : type_1; label 2 : type_2; ... }.

The main issue here is that we are dealing with dependent Records: type_2 can
use label_1, as in the following example:

Record comparable :=
{ my_type : Set; less_than : my_type —> my_type —> Prop }

So the order in which the different labels appear is important.

We define a Record type in CoQ, which denotes the interface of the species.
If the species is {x; : 7; = ¢;}, then the Record is defined as

Record name spec: Type :=mk_spec{z; : 7;}

We explicitly give all the fields of the Record, including the inherited ones. They
have to be given in the order of the normal form because decl-dependencies can
be present even at the level of types.

We also provide coercions between the Record we have just built and
the Record(s) corresponding to the interface(s) of the father species. Such
coercions reflect the inheritance relations of Foc.

5.2 Species

Uunlike [?], a species s is not represented by a MizDRec, that is a Record that
mix concrete and abstract fields. For any method m defined in s, we introduce a
method generator, gen,,. If a method is inherited, the corresponding generator
has been defined in a preceding species, and does not need to be recompiled.
This offers a kind of modularity.

For instance, in the following species

species a =

sig eq in self —> self —> bool;

let neq = fun x —> fun y —> notb(selfleq(x,y));
end

The method generator for neq is
Aabst T : Set.Aabst _eq: abst T — > abst T'— > bool.
Az, y : abst_T.notb(abst _eq x y)

Then, each species that inherits from setoid can use this definition of neq,
instantiating abst_eq with its own definition of eq. This way, we can handle
late-binding.

More formally, Let X' be a normal form of a species s, (sequence X' = {z; :
7; = €;} of methods). Let e be an expression occuring in a field ¢ (e being a
declaration, a statement, a binding, or a proof). We define below X me, which is
the minimal environment needed to typecheck e (or ¢). Due to def-dependencies,
M can not simply select the methods ¢ depends upon. Each time ¢ def-depends
upon %, we must also keep the methods upon which ¢ itself decl-depends.

Definition 6 (Minimal Environment). Let ¥ = {x; : 7, = e;} and e be an
expression. X M e is the environment needed to typecheck e, and is defined as
follows.

YNe={z;:17j =new_ejlzj €lefSA(x; : 7 =€) € X}

ej if z; € [leff

where new e; = .
- {J_ otherwise

U =XnNe
U1 =Ur U U X Ney
(zj:1j=e;)€Uy
Sme=|J U
k>0

where {r:7=1L}U{z:7=e}={z:7=¢€}

We turn now to the translation of the definition d of a method y in CoQ,
according to the environment X' md. This is done by recursion on the structure
of the environment. [d]coq is the straightforward translation of d in CoQ, each
call selflz being replaced by the introduced variable abst_s.

Definition 7 (Method Generator).
[9,d] = [d]coq
[{z: 7 =¢;1},d] = Let abst_z : 7 := (gen, abst_x,)in[l,d]
[{z:7=1;1},d] = Aabst_z : 7.[l,d]
where gen, = [X M Bs(z), Bs(x)] and abst_x is a fresh name.

The second case treats def-dependencies. The method z being defined in X' as
{z : 7 = e} has already been compiled to CoQ. Thus its method generator
gen, has been obtained by abstracting the names z; of ¥ M Bs(x) (note that
Y mBs(z) C XY md). Here, gen, is applied to the corresponding abst ;.

The third case concerns —simple— decl-dependencies. We only abstract x.

5.3 Collections

Collections are defined using the method generators. Namely, if ¢ implements
s = {z; : 7; = ¢;}, the Coq translation is the following:

Definition c_z; := gen_z,.

Definition c_z, := (gen_z,, ([z,]s)-
Definition c:= (mk_sc_zy ...c_z,).

where [z]s = {z; € N(s)| (z;, 7, L) € YMBs(z)}. [2]s represents the definitions
that must be provided to the method generator in order to define z. mk_s is
the function that generates the record corresponding to the interface of s.

5.4 Parameters

A natural way to handle parameters in CoQ would be to create functions that
take Records as arguments and return Records. For instance, (the interface of)
a cartesian product can be defined like this:

Record cartesian [A, B : basic_object| : Type :=
{T:Set; fst : T —> A ...}

Another solution is to take the parameters as the first fields of the Record:

Record cartesian : Type =
{ A : basic_object; B: basic_object; ...}

These two translations are quite similar for CoQ. In the first one, cartesian
will be a parameterized type, while it is not the case in the second one: A and B
are only the first two arguments of its unique constructor. The second solution
seems to have some practical advantages over the first one:

— Parameters can be accessed directly as fields of the record

— Fields accesses (the equivalent of methods call) do not need extra arguments,
as it would be the case in the first solution.

— Coercions between parameterized records are easier to define too.

— More important, it reflects the fact that collections can not have parameters:
in an implementation of cartesian, the fields A and B must be defined as
well as T and fst.

6 Related Work

Other projects use CoQ’s Records to represent algebraic structure. In particu-
lar, L. Pottier [?] has developed quite a large mathematical library, up to fields.
H. Geuvers and the FTA project [?] have defined abstract and concrete repre-
sentations of reals and complex numbers. In addition, R. Pollack [?] and G. Be-
tarte [?] have given their own embedding of dependent records in Type Theory.
We can also mention Imps [?], a proof system which aims at providing a compu-
tational support for mathematical proofs. However, none of these works include
a computational counterpart, similar to the OCAML translation of Foc. P. Jack-
son [?] implemented a specification of multivariate polynomials in Nuprl. His
approach is quite different from FocC, as in his formalism, a group can not be
directly considered as a monoid, for instance.

7 Conclusion and Future Work

To sum up, we can say that FOC has now achieved a quite good expressive
power. The static analyses that are discussed in Sec. 4 have been implemented
[?] in a compiler that generates COQ and OCAML code. An important number
of mathematical structures have been implemented, and performances are good.

It seems to us that we provide a well-adapted framework to prove the prop-
erties needed for each species’ implementation. It it is now necessary to define
a proof language for Foc, dedicated to users of computer algebra systems. This
is currently under development.

Building mathematical structures requires the whole power of the Calculus
of Inductive Constructions, but higher-order features are mostly needed only to
handle dependencies. Once we have succeeded to build an appropriate environ-
ment, the proofs themselves stay in first order logic most of the time. This may
lead to a quite high level of automatization in the proof part of the project,
leading to proofs in deduction modulo [?, ?]. We could then try to delegate some
part of the proofs to rewriting tools. Similarly, it would be interesting to offer
powerful tools that allow the user of FOC to define his own Foc proof tactics.

D. Delahaye’s PhD [?] presents very promising developments in this area and
may be of great help here. From the Curry-Howard point of view this future
work is the counterpart in the proof universe of the basic expressions of the Foc
language.

References

1]
2]

3]
4]
[5]
[6]
7]

18]

19]
[10]
[11]
[12]
[13]

[14]

[15]

G. Betarte. Dependent Record Types and Formal Abstract Reasoning: Theory and
Practice. PhD thesis, University of Géteborg, 1998.

S. Boulmé, T. Hardin, and R. Rioboo. Polymorphic data types, objects, modules
and functors: is it too much 7 Research Report 14, LIP6, 2000. available at
<http://www.lip6.fr /reports/1ip6.2000.014.html>.

S. Boulmé. Spécification d’un environnement dédié & la programmation certifiée
de bibliothéques de Calcul Formel. PhD thesis, Université Paris 6, december 2000.
B. Buchberger and all. A survey on the theorema project. In W. Kuechlin, editor,
Proceedings of ISSAC’97. ACM Press, 1997.

D. Delahaye. Conception de langages pour décrire les preuves et les automatisa-
tions dans les outils d’aide a la prewve. PhD thesis, Université Paris 6, 2001.

G. Dowek, T. Hardin, and C. Kirchner. Theorem proving modulo. Research
Report 3400, INRIA, 1998.

G. Dowek, T. Hardin, and C. Kirchner. Hol-Ao: an intentional first-order ex-
pression of higher-order logic. Mathematical Structures in Computer Science,
11(1):21-45, 2001.

W. M. Farmer, J. D. Guttman, and F. J. Thayer. The imPs user’s manual. Tech-
nical Report M-93B138, The MITRE Corporation, 202 Burlington Road, Bedford,
MA 01730-1420, USA, November 1995. Available at ftp://math.harvard.edu/
imps/doc/.

H. Geuvers, R. Pollack, F. Wiedijk, and J. Zwanenburg. The algebraic hierarchy
of the fta project. In Proceedings of the Calculemus Workshop, 2001.

R. Harper and M. Lillibridge. A type-theoretic approach to higher-order modules
with sharing. In 21st Symposium on Principle of Programming Languages, 1994.
P. Jackson. Exploring abstract algebra in constructive type theory. In Proceedings
of 12th International Conference on Automated Deduction, July 1994.

R. Pollack. Dependently typed records for representing mathematical structures.
In TPHOLs’00. Springer-Verlag, 2000.

L. Pottier. contrib algebra pour coq, mars 1999. <http://pauillac.inria.fr/coq/
contribs-eng.html>.

V. Prevosto, D. Doligez, and T. Hardin. Overview of the FOC compiler. to appear
as a research report, LIP6, 2002. available at <http://www-spi.lip6.fr/ prevosto/
papiers/foc2002.ps.gz>.

The Coq Development Team. The Coq Proof Assistant Reference Manual. Projet
LogiCal, INRIA-Rocquencourt — LRI Paris 11, Nov. 1996.

