
Proc. 20th Symp. Principles of Programming Languages, 1993, pages 113{123.A concurrent, generational garbage collectorfor a multithreaded implementation of MLDamien Doligez Xavier Leroy�Ecole Normale Sup�erieure and INRIA Rocquencourt�AbstractThis paper presents the design and implementation of a\quasi real-time" garbage collector for Concurrent CamlLight, an implementation of ML with threads. Thistwo-generation system combines a fast, asynchronouscopying collector on the young generation with a non-disruptive concurrent marking collector on the old gen-eration. This design crucially relies on the ML compile-time distinction between mutable and immutable ob-jects.1 IntroductionThis paper presents the design and implementation of agarbage collector for Concurrent Caml Light, an imple-mentation of the ML language that provides multiplethreads of control executing concurrently in a sharedaddress space.Garbage collection | the automatic reclamation ofunused memory space | is one of the most problem-atic components of run-time systems for multi-threadedlanguages. The naive \stop-the-world" approach, whereall threads synchronously stop executing the user's pro-gram to perform garbage collection, is clearly inade-quate, since it introduces synchronization between oth-erwise independent threads. For instance, this can re-sult in all threads being blocked for some time if onethread is in the middle of a lengthy, uninterruptibleoperation when garbage collection starts. This con-travenes one of the main motivations for having mul-tiple threads: to reduce the response time of interactiveapplications. To achieve this goal, a promising direc-tion is to run the garbage collector concurrently withthe threads that execute the user's program, with aslittle synchronization as possible between the collectorand the mutators (the threads executing the user's pro-gram).�Authors' address: INRIA Rocquencourt, B. P. 105, 78153Le Chesnay, France. E-mail: Damien.Doligez@inria.fr,Xavier.Leroy@inria.fr.

A number of concurrent collectors have been de-scribed in the literature, such as the concurrent mark-and-sweep algorithm [11, 15, 5], which requires no syn-chronization with the mutators, at the price of a moder-ate overhead on the mutators. However, these designsseem unable to meet the memory demands of typicalML programs. ML programs tend to have high alloca-tion rates, but many allocated objects have a short lifespan. This is due in part to the ML language itself,which encourages a programming style where many in-termediate structures are built; and in part to somecompilation techniques [1, 10] that result in heap allo-cation for large amounts of environments and controlstructures.The garbage collection technique most adapted to thisallocation pro�le is generation scavenging [24], that con-centrates reclamation e�ort on recently allocated ob-jects. However, the e�cient implementation of genera-tion scavenging requires the ability to relocate objectsby copying between the memory areas that hold thevarious \generations" of objects. Performing relocationwhile the mutators are running is problematic: we mustensure that the mutators are aware of the relocation,and do not try to access a relocated object at its old,invalid address. Some designs rely on tests when deref-erencing a heap pointer [23, 4]; others, on an extra indi-rection word for each heap object [8, 20]; others, on vir-tual memory page protections [2]. All three approachesentail a signi�cant run-time penalty on the mutators,unless special hardware or special system software isused.The memory management system presented in thispaper is an attempt to circumvent this weakness ofconcurrent copying collectors by relying on speci�c fea-tures of the ML language. This system has two gener-ations, with a fast, asynchronous copying collector onthe young generation, and a non-disruptive concurrentmarking collector on the old generation. The aforemen-tioned di�culties with copying are avoided by splittingthe young generation into areas attached to the muta-tors, each area being accessed by one mutator only. ThePage 1

performance issue with concurrent mark-and-sweep isavoided by the fact that the allocation rate in the oldgeneration is low, since most short-lived objects are re-claimed by the copying collectors. This combinationresults in quasi real-time performance for memory al-location, while keeping the overhead on the mutatorslow.This design relies crucially on two features of ML.First, the ML type system distinguishes at compile-timebetween mutable objects (that can be physically mod-i�ed) and immutable objects. Second, duplicating im-mutable objects is semantically transparent. The �rstpoint makes it possible to have di�erent allocation poli-cies for mutable and immutable objects. The secondpoint allows copying the object residing in the privatearea of a mutator at arbitrary times.The remainder of this paper is organized as follows.Section 2 brie
y describes the Concurrent Caml Lightsystem. Section 3 presents the memory organization;the concurrent aspects of the system (the mark-and-sweep major collector) are detailed in section 4. Sec-tion 5 comments on some experimental results. Sec-tion 6 discusses some directions for further work. Fi-nally, section 7 compares our design with some otherconcurrent collectors.2 Concurrent Caml LightConcurrent Caml Light is an extension of Caml Light[12, 16], the authors' implementation of the ML lan-guage, with concurrency primitives. The concurrencymodel is lightweight processes (threads) with sharedmemory. The synchronization tools are locks and con-ditions. (Figure 1 shows the Caml Light interface tothe module providing the concurrency primitives.) Thisis the model provided by the C Threads library underthe Mach operating system [9]. On top of these con-currency primitives, we can to implement higher-levelconcurrency abstractions such as channels and events[22, 6].The ML language is a conventional imperative lan-guage with functions as �rst-class values and strongstatic typing [21, 17]. From the standpoint of mem-ory management, the ML language has two distinctivefeatures that are crucial to the design described here.The �rst feature is that not all ML data structures canbe modi�ed in-place. That is, the updating primitivesprovided by the language operate only on speci�c datatypes, either built-in (such as references and arrays)or specially declared (such as the Caml record typeswith \mutable" �elds). This fact, combined with strongstatic typing, ensures a clear separation at compile-timebetween mutable objects (that can be physically up-dated) and immutable objects (that can only be read

type process;;value fork : (unit -> 'a) -> processand exit : unit -> 'aand join : process -> unitand detach : process -> unitand yield : unit -> unitand self : unit -> process;;type mutex;;type condition;;value new_mutex : unit -> mutexand new_condition : unit -> conditionand lock : mutex -> unitand unlock : mutex -> unitand try_lock : mutex -> booland signal : condition -> unitand broadcast : condition -> unitand wait : condition -> mutex -> unit;;Figure 1: The interface to the module thread providingthe concurrency primitivesonce constructed). This permits di�erent allocationpolicies for mutable and immutable objects; our designtakes advantage of this fact.Another important feature of ML is that it does notspecify any generic physical equality primitive similar toeq in Lisp. The provided equality primitive implementsstructural equality on immutable objects, and physicalequality on mutable objects. Consequently, there is noway to test two immutable objects for physical equality.Combined with the fact that immutable objects cannotbe modi�ed in-place, this means that it is always seman-tically correct to duplicate an immutable structure: theoriginal structure and its copy cannot be distinguishedby any program. Our collector does indeed duplicateimmutable structures and keeps the two copies alive forsome time | strange as it may sound for a system thatis supposed to reclaim memory space.3 Overview of the memory orga-nizationThe memory heap is organized as follows. (See �gure 2.)First, there is a large, common heap shared between allthreads. All threads can allocate, read, and update ob-jects in the shared heap. Then, each thread possessesits own, small, private heap (typically 32K). On a mod-ern shared-memory architecture with large, write-backcaches, we expect the private heap to remain in one andonly one cache most of the time, thereby causing verylittle bus tra�c when it is accessed. This assumes thatthe system scheduler is clever enough to tie each threadto a single processor whenever possible. Page 2

Major heap

Minor heaps

Stacks

1 2 3

Threads

Global
variablesFigure 2: Memory organization3.1 Two generationsEach thread treats the two heaps it can access (theshared heap and its own private heap) as two gener-ations: the private heap contains the young genera-tion; the shared heap contains the old generation. Eachthread allocates immutable objects in its own privateheap. Mutable objects are handled di�erently, as weshall see below. This allocation does not require anysynchronization with the other threads.When the private heap becomes full, the correspond-ing thread stops and performs a minor collection: itcopies all live objects in the private heap to the sharedheap. Live objects are those that are pointed to by thememory roots of the thread (the registers and the stacksof the machine), as well as their descendents. This copy-ing makes the whole private heap available again forprivate allocation. Consequently, allocation in the pri-vate heap is performed linearly, and requires only onepointer comparison and one pointer increment. A mi-nor collection can be performed at any time, regardlessof the status of the other mutator threads. The onlysynchronization required is when allocating the copiedobjects in the shared heap.Major collection on the shared heap is performed bya dedicated thread, which runs concurrently with themutator (and minor collection) threads. It uses the con-current mark and sweep algorithmdescribed by Dijkstraet al. [11]. We postpone a complete discussion of thealgorithm and the cooperation between the major col-lector thread and the other threads to the next section.Since the major collector does not move objects, no syn-chronization is required when accessing or modifying anobject in the shared heap, either for the major collectorthread or for the mutator threads. Race conditions canresult in a dead object not being collected by the cur-rent major collection cycle; but they cannot result in alive object being reclaimed.If the available space in the shared heap drops to zerobefore the major collection cycle is over, then the muta-

tor threads attempt to enlarge the shared heap, by ex-tending the process address space, instead of waiting forthe major collection to �nish. We want to avoid block-ing the mutator threads as much as possible. Blockingis only required in the unlikely case where the virtualmemory is exhausted.3.2 Copy on updateThe design outlined above assumes that there are nopointers from the shared heap to a private heap, norfrom one private heap to another private heap. Other-wise, a private heap could contain objects that are live,but not directly reachable from the roots of the corre-sponding threads. Without special treatment, a pointerfrom the shared heap to a private heap can be createdby updating an \old" mutable object, residing in theshared heap, with a pointer to a newly created struc-ture, that still resides in a private heap; and a pointerbetween two private heaps can then be created by read-ing the mutable object from another thread.This situation is avoided by copying the transmittedprivate object to the main shared heap and storing inthe old mutable object a pointer to the copy, instead of apointer to the original private object. The descendentsof the transmitted object that reside in the private heapare recursively copied, too. This copying is very similarto a minor collection with only one root, the transmittedobject. Indeed, it stores forwarding pointers from thecopied objects to their copies, just as the minor collec-tor does, so that the next minor collection will not copythese objects again, but reuse their copies.1 Therefore,this \copy on update" strategy does not waste time: wejust do some of the next minor collection right away.Also, it avoids the complexity of maintaining a remem-bered set of old objects that contain pointers to theyoung generation [24].3.3 Allocation of mutable objectsUntil the next minor collection, the thread that createdthe transmitted object can access both the original, pri-vate object and its copy in shared memory: the originalobject can still be reached through the memory rootsof the thread, since we haven't updated the roots ofthe thread; the copy can be accessed by dereferencingthe mutable object in which it was stored. Therefore,we must ensure that the two objects are semanticallyequivalent. This is the case if both objects contain onlyimmutable structures; then, as pointed out in the pre-vious section, no constructions in the ML language candistinguish one from the other. This is no longer true1To implement this, the objects in the private heaps have oneextra header word, to store a forwarding pointer without destroy-ing the object. This extra word is stripped when the object iscopied to the major heap. Page 3

whiteblue

grayblack

allocate

allocate

allocate

sweep

sweep

sweep

mark

mark updateFigure 3: Color transitionsif the original object contains a mutable structure, be-cause it would be duplicated during the copying process.This could lead to an update of the two mutable struc-tures by two di�erent objects, breaking the equivalencebetween the transmitted object and its copy.To avoid this situation, it su�ces to allocate mutableobjects directly in the main, shared heap. Then, theywill never be copied, since they already reside in theshared heap. This makes copying semantically trans-parent. Of course, a performance penalty is incurred:allocation in the shared heap is more expensive thanallocation in the private heap, because of the requiredsynchronization and free-list searching. However, mostML programs allocate relatively few mutable objects,and they tend to have a longer life span than average.This keeps the overhead reasonable.4 The concurrent collectorThe major collector implements the concurrent markand sweep algorithm described by Dijkstra et al. [11].In this section, we recall the basics of the algorithm,adapt it to our situation (Dijkstra et al. made somesimplifying assumptions to keep correctness proofs man-ageable), and show how the mutator threads cooperatewith the concurrent collector.In this section, each thread along with its minor col-lector is considered a mutator thread by the major col-lector. The major collector will be called \the collector",and the mutator threads (and their minor collectors)will be called \the mutators".The major collector does not essentially depend onthe existence of the minor collectors. It only needssome way of asking a given mutator to mark the objectspointed to by its roots. In our design, this marking isperformed by the minor collectors.4.1 Four-color markingEach object in the shared heap has one of four colors:white, gray, black, or blue. White denotes objects thathave not yet been visited by the marking phase. Gray

denotes objects that have been visited, but whose sonshave not yet been visited. Black denotes objects thathave been visited, and whose sons have been visited too.Blue is used for the free list objects: blue objects arealways ignored by the collector.2The color of a block evolves as summarized in �gure 3.The marking phase sets to black all reachable objects.To do so, it sets the roots to gray and repeatedly �ndsa gray object and marks it. Marking an object meanssetting it to black, and shading its sons. Shading meanssetting the object to gray if it is white. The sweepingphase reclaims all white objects, setting them to blueand adding them to the free list. It also resets all blackobjects to white. Allocation in the heap turns blue ob-jects back to white, gray or black, depending on therelative states of the collector and mutator, as detailedbelow.4.2 The collection phasesThe collector proceeds in three phases: root enumera-tion, end of marking, and sweeping. The root enumera-tion and end of marking together constitute the markingphase.At the beginning of the root enumeration phase, thecollector sets a global
ag to signal the beginning ofthe marking phase. It then shades the global variables,and asks each mutator to shade its roots. During thisphase, the collector also begins to �nd gray objects andmark them as described above.3 The root enumerationends when the collector has obtained the roots of thelast mutator. The collector then completes the markingphase by repeatedly marking gray objects until no moreremain.When the marking phase is �nished, the collector ex-amines each heap object in turn. All black objects areset to white. All white objects are free; they are set toblue and inserted into the free list (or collapsed with thepreceding free object, if adjacent). Some objects mighthave been set to gray by the mutators since the end ofthe marking phase. These objects are also set to white.The marking phase assumes that no object is blackwhen it starts, and it ensures that all reachable objectsare black or gray when it stops. More precisely:� all objects that are reachable from the roots of amutator at the time the mutator shades its roots,or that become reachable after that time, are blackat the end of the marking phase.2In theory, the color blue is not needed: it su�ces to considerthe free-list head as a memory root, and the free-list blocks asregular reachable blocks. However, the blue color avoids the extracost of tracing and coloring the free-list blocks.3To quickly �nd the next gray object, a cache of recentlyshaded objects is maintained, avoiding the cost of an actual scan-ning of the heap in most cases. Page 4

start
marking

update pop shade the roots
of this thread

stack
another
thread

Figure 4: What happens if we do not shade the new valueObjects can become reachable by allocation and by in-place modi�cation, which are performed by the muta-tors concurrently with the collection. These operationstherefore require some cooperation with the collector, asdescribed below. The sweeping phase assumes that allreachable objects are black or gray when it starts, and itensures that only unreachable objects are inserted intothe free list, and that no black objects remain when itstops. Again, allocation and in-place modi�cation re-quire some cooperation with the collector, in order toavoid setting objects to black.These preconditions and postconditions ensure thecorrectness of the collector: only unreachable objectsare ever inserted into the free list. The completeness(all unreachable objects are eventually inserted into thefree list) stems from the following facts:� no unreachable object ever becomes reachableagain� there are no blue objects outside of the free list� all white objects unreachable at the start of themarking phase remain white� all white objects are inserted into the free list bythe sweeping phase� gray objects that are unreachable at the beginningof the mark phase become black during marking,then white during sweeping, and are reclaimed bythe next collection cycle.4.3 Concurrent allocation and modi�ca-tionAs explained in [11], the mutators have to take thecollector state into account when performing in-placemodi�cation on heap objects. Otherwise, updating analready black object could result in a reachable objectthat remains white at the end of marking. This prob-lem is further complicated by the fact that the set ofroots is not �xed during the collection: mutators can

push and pop pointers on their local stacks without anycooperation with the collector.To avoid this kind of situations, the modi�cation op-eration must shade both the old and the new value ofthe modi�ed �eld. Shading the new value ensures thatit will be recognized as reachable by the collector, evenif all other pointers to the new value disappear (e.g., bypopping the last pointer from a stack). Shading the oldvalue ensures that it will be recognized as reachable bythe collector, in case some pointers to the old value arestill kept on some stack.In the simpli�ed setting described in [11] (a �xed setof roots), shading either the old or the new value is suf-�cient. This is not true in our case. Assume we do notshade the new value. Since the collector starts markingobjects before having obtained all roots, a mutator canmodify a black object by storing a pointer to a whiteobject which is only reachable from the local stack, thenpop all pointers to this white object before shading itsroots. This results in a reachable object that remainswhite. This kind of pointer smuggling is illustrated in�gure 4. Now, assume we do not shade the old value.The mutator could give its roots, then push a white �eldof a white object onto its stack, then overwrite that �eld.This results in a white object that is reachable from thestack. (See �gure 5.)This coloring at modi�cation time is only necessaryduring the marking phase. For the sake of e�ciency,we do not perform it during the sweeping phase, avoid-ing the creation of gray objects that would survive acomplete collection cycle before being reclaimed.Concurrent allocation raises similar issues: the newlyallocated objects must be assigned the right color, de-pending on the collector status. During the markingphase, objects are allocated black. This is justi�ed bythe fact that the allocated objects become reachable,and their sons were already reachable, hence will even-tually be set to black. Setting the allocated objects togray would also be correct, but the marking phase mightnot terminate.During the sweeping phase, objects are allocatedPage 5

shade the roots
of this thread

push update sweepfinish
marking

stack

Figure 5: What happens if we do not shade the old valuewhite if they have already been swept, and gray oth-erwise, to avoid immediate deallocation.4.4 Synchronization issuesThe coloring scheme described above has one interest-ing property: it is always safe to set an object to gray.Of course, setting many objects to gray is ine�cient,since an unreachable gray object will not be reclaimedat the end of the current collection cycle, but only at theend of the next cycle. However, this fact allows us toavoid synchronization whenever the resulting race con-dition can only end up in making an object gray insteadof the intended color.This trick is used in the modi�cation and allocationprocedures, to test the collector status without locking.For instance, the coloring of newly allocated blocks isimplemented as follows:1. if phase = marking then2. set the object to black;3. if phase = sweeping then4. set the object to gray;5. else6. if address(object) < sweep pointer then7. set the object to white;8. else9. set the object to gray;There are two race conditions between this code andthe collector. First of all, the collector may enter thesweeping phase between lines 1 and 2. Then, the objectcould incorrectly be set to black after being swept. Inthis case, lines 3 and 4 set the object back to gray, whichmeets the preconditions of the next marking phase. Thecollector must synchronize with all mutators before en-tering the marking phase, hence line 4 is guaranteed tocomplete before the next marking cycle. The other racecondition is that the sweep pointer can change after thetest in line 6. However, the sweep pointer is monotoni-cally increasing, hence the race condition can only result

in executing line 9 instead of line 7, i.e. in setting theobject to gray instead of white, which is safe.4.5 Interface with the minor collectorThe shading of roots is performed by a variant of theminor collector that sets to gray all objects copied tothe major heap, as well as all root objects that are al-ready in the major heap. This requires little extra workcompared with a normal minor collection.Hence, the least disruptive technique for getting theroots is to set a
ag telling the minor collectors to shadethe roots, and wait for all the mutators to complete aminor collection. However, a mutator can execute aprogram that does not allocate; it can also be blockedon a lock, or waiting for input or output. In the formercase (looping mutator), the major collector interruptsthe mutator and forces a premature minor collection.In the latter case (blocked mutator), the major collectorperforms the copying and shading itself; this is similarto a minor collection, except that the minor heap is notemptied. The major collector also has to make sure themutator does not resume execution before the copyingand shading is complete. This is the most disruptiveinteraction between the collector and a mutator, but itis infrequent.5 Experimental resultsWe have implemented the collector described above ina prototype ML system derived from Caml Light re-lease 0.4. It runs on an Encore Multimax with fourteenNS32532 processors, under the Mach operating system.Each processor is rated at about 6 MIPS, and has a256 K write-back cache. The Caml Light system is afast bytecode interpreter; it runs 4 to 8 times slowerthan the SML of New Jersey native-code compiler. Toput the timings below in perspective, an application ofthe identity function takes about 15 �s. The measure-ments used 32 K private heaps, that easily �t into thePage 6

Test program Knuth- Pipelined Parallel SIMPLEBendix compiler compiler (30� 30)Number of threads 15 3 12 6.4 (avg)Proportion of updates requiring copying 96 % 43 % 36 % 96 %Major GC load 32 % 16 % 39 % 10 %Minor GC, average 2.9 ms 2.3 ms 6.3 ms 2.1 msMinor GC, worst-case 64 ms 180 ms 110 ms 360 msCopy-on-update, average 260 �s 37 �s 55 �s 70 �sCopy-on-update, worst-case 70 ms 6.9 ms 31 ms 20 msFree-list locking, average 60 �s 19 �s 1.6 ms 54 �sFree-list locking, worst-case 17 ms 220 �s 110 ms 25 msFigure 6: Average performancecaches, along with the run-time system and the byte-code program.In this section, we comment on some measurementsperformed on this implementation. We have used thefollowing test programs:� A parallel implementation of the Knuth-Bendixcompletion algorithm. The program comprises �f-teen threads, and performs lots of interprocess com-munication via shared mutable data structures.� A pipelined version of the Caml Light compiler,with one thread for the lexical analyzer, one for theparser, and one for the remainder of the compiler.This program is a typical example of the producer-consumer model. The amount of communicationis respectable, though less important than in theparallel Knuth-Bendix program.� A parallel version of the Caml Light compiler, thatsimultaneously compiles several �les, each �le beingcompiled sequentially by one thread. There is verylittle communication between the threads. Our testruns twelve compilers in parallel.� The SIMPLE numerical benchmark from Appel'sbook [1], parallelized by Morriset and Tolmach [19].This program is typical Fortran code translated toML, and makes very heavy use of mutable arrays.The parallel version relies on \futures", that is, lazystructures with speculative evaluation.The measurements have two goals: �rst, estimate thelatency of memory operations such as allocation and in-place modi�cation; second, determine whether the ma-jor collector keeps up with a high number of active mu-tators. For the �rst point, we have measured how longthe mutators are interrupted by (1) minor collections,(2) copy on update operations, and (3) direct allocationin the major heap, which requires synchronization. For

the second point, we take advantage of the fact thatthe major collector does not run continuously, but onlywhen the amount of free space in the shared heap dropsbelow a certain threshold (15% of the total heap size, inthe experiments). Hence, the running time of the majorcollector compared with the execution time of the wholeprogram gives an estimate of the load of the major col-lector.The results are given in �gure 6. The load of themajor collector appears to be below 5% per mutator.This suggests that our design should scale to about 20mutators. These results hold for the four realistic pro-grams considered here. However, on arti�cial examplesthat do nothing but allocate mutable objects, the majorcollector cannot keep up with as few as four mutators.This is an experimental con�rmation of the initial as-sumption that real ML programs do not allocate muchmutable data.The average latency times are remarkably low. Mostminor collections complete in less than 10 ms. The copy-on-update strategy makes the cost of an assignment pro-portional to the size of the assigned value (with the sizeof the private heap as upper bound) in the worst case; inpractice, assignment remains reasonably e�cient, evenin programs such as the Knuth-Bendix benchmark, thattransmit large structures through mutable objects. Fi-nally, the last case where a mutator can be delayed ona memory operation is when it accesses the free list toallocate objects directly in the shared heap: free list ac-cesses must be mutually exclusive. To lower contention,each thread maintains its own small, private free list.The private free lists are replenished from the main freelist when a request cannot be satis�ed. Transfers fromthe main free list to a private free list are performed alarge chunk at a time, to keep their frequency low. Thisstrategy works well on three of our test programs, butdoes not avoid a certain amount of contention for theparallel compiler. Page 7

0

10

20

30

40

50

60

0.1 1 10 100 1000

R
el

at
iv

e
fr

eq
ue

nc
y

(%
)

Time (ms)

Minor collections

Knuth-Bendix
Pipelined compiler

Parallel compiler
SIMPLE

0
10
20
30
40
50
60
70
80
90

0.01 0.1 1 10 100

R
el

at
iv

e
fr

eq
ue

nc
y

(%
)

Time (ms)

Copy on update

Knuth-Bendix
Pipelined compiler

Parallel compiler
SIMPLE

0
10
20
30
40
50
60
70
80
90

100

0.01 0.1 1 10 100

R
el

at
iv

e
fr

eq
ue

nc
y

(%
)

Time (ms)

Contention for free-list access

Knuth-Bendix
Pipelined compiler

Parallel compiler
SIMPLE

Figure 7: Latency distribution Page 8

From these results, we conclude that our designachieves good response time, and is adequate for inter-active applications. However, it does not achieve truereal-time performance: there is no guaranteed upperbound on the time taken by memory operations. Asmall number of these operations take much longer thanthe average time. This can be seen on �gure 7, whichplots the distribution of execution times for the threememory operations. For instance, a minor collectioncan take as much as 360 ms, in the worst-case whereall objects in the minor heap are alive. Similarly, somecopy-on-update operations may need to copy (almost)all objects from the minor heap. There is a trade-o� be-tween maximal latency and garbage collection overhead:the worst-case latency can be lowered by reducing thesize of the private heaps, but this results in more timespent in minor collections, and an increased load on themajor collector.6 ExtensionsThe memory management system described above canbe extended in several ways. The �rst direction is toparallelize the major collection, in order to keep upwith more active mutators. The sweeping phase canstraightforwardly be parallelized, since the heap is al-ready divided in medium-sized chunks (256 K), whichcan be swept by independent threads. The markingphase can also be performed concurrently by severalthreads, though achieving good balance is more deli-cate.Another area of improvement is the \weight" ofthreads. Since each thread has its own stack and itsown private heap, thread creation is a relatively ex-pensive operation: starting a Concurrent Caml Lightthread takes about 3 ms, which is commensurate withthe time it takes to start a Mach thread (about 1 ms),but still too important for applications that spawn alarge number of short-lived threads. For these appli-cations, a promising direction is to adopt the two-levelscheme outlined in [19], where the user-level threads aremultiplexed on top of a small number of kernel threads.Each kernel thread has its own private heap, and time-shares between a number of user-level threads. User-level threads can freely share a private heap, providedthat the memory operations on the private heap aremutually exclusive, which the user-level scheduler caneasily guarantee.Finally, the concurrent collector described above canbe simpli�ed into an incremental, generational collec-tor for uniprocessors. The idea is to perform a smallpart of the major collection at each minor collection.Since there is only one private heap, copy-on-update isno longer mandatory, and we can maintain a remem-bered set instead. We have integrated this incremental

collector in the release 0.5 of the Caml Light system.7 Related workThe system described in this paper is related to twotrends in research on garbage collection. The �rst trenddeals with concurrent variants of the classical mark-sweep algorithm, with as little synchronization as pos-sible between the mutator and the collector [15, 11, 5].The emphasis here is on proving the correctness of theproposed algorithms, rather than on practicality and ef-�ciency. To our knowledge, none of these designs hasmade its way into an actual run-time system. There aregood reasons to believe that collectors based on thesedesigns would not be able to keep up with typical MLprograms. Hickey and Cohen [14] provide some theoret-ical evidence of this problem. This problem is avoidedin our system by the use of generation scavenging, thatgreatly reduces the allocation rate as viewed by the con-current mark-and-sweep collector.A di�erent approach to the parallelization of themark-sweep algorithm is described by Boehm et al. [7].Their algorithm requires no cooperation from the muta-tors; instead they rely on virtual memory protections tokeep track of modi�cations performed by the mutators.Their collector overlaps most of its work with the muta-tor activity but it has to stop the mutators to �nish themarking phase. The resulting pauses are short (about100 ms) but still one order of magnitude longer than inour system on average. Moreover, their technique muststop all mutators simultaneously, introducing a spuri-ous global synchronization point between all threads.Avoiding this phenomenon was one of our main goals.The second trend is the practical implementation ofconcurrent or incremental copying collectors. The �rstsuch collectors were described by Steele [23] and Baker[4], and later extended to generations [18] and to multi-ple mutators [13]. This algorithm requires a test on eachheap pointer dereferencing, which imposes considerableoverhead on the mutator, unless special hardware isused. A variant proposed by Brooks [8] replaces this testby a systematic indirection. On stock hardware, thistechnique slightly reduces the overhead, at the expenseof one extra word per heap object. North and Reppy [20]have extended this technique with generations. Appel,Ellis and Li [2] propose to use virtual-memory protec-tions to implement Baker's algorithm without tests onstock hardware. Their technique relies on sophisticatedvirtual memory primitives, which most widespread op-erating systems do not provide in an e�cient way [3].Thus, concurrent purely copying garbage collection hasnot yet been implemented on stock hardware and stan-dard operating systems without major overhead on themutators. Our mixed design avoids this di�culty by re-stricting the copying to unshared objects, which cannotPage 9

be accessed concurrently.8 ConclusionsWe have described a memory management system fora multithreaded implementation of ML that achievesquasi real-time performance with low overhead on themutators. This system relies crucially on the compile-time separation of mutable and immutable objects. Inthe case of ML-like languages, this separation is ensuredby the type system, therefore demonstrating an unex-pected spin-o� of strong, static typing in the area ofgarbage collection. This technique can also be appliedto dynamically-typed languages such as Scheme, as longas separate allocation primitives are provided for muta-ble cons cells and immutable cons cells, and similarlyfor other data types.AcknowledgmentsWe would like to thank Ian Jacobs for his careful proof-reading, and Greg Morriset for sending us the SIMPLEbenchmark.References[1] A. W. Appel. Compiling with continuations. Cam-bridge University Press, 1992.[2] A. W. Appel, J. R. Ellis, and K. Li. Real-time con-current collection on stock multiprocessors. SIG-PLAN Notices, 23(7):11{23, 1988.[3] A. W. Appel and K. Li. Virtual memory primitivesfor user programs. Technical Report CS-TR-276-90, Princeton University, 1990.[4] H. G. Baker. List processing in real time on a serialcomputer. Commun. ACM, 21(4):280{294, 1978.[5] M. Ben-Ari. Algorithms for on-the-
y garbage col-lection. ACM Trans. Prog. Lang. Syst., 6(3):333{344, 1984.[6] B. Berthomieu. Implementing CCS: the LCS ex-periment. Technical report 89425, LAAS, Dec.1989.[7] H. J. Boehm, A. J. Demers, and S. Shenker. Mostlyparallel garbage collection. SIGPLAN Notices,26(6):157{164, 1991.[8] R. A. Brooks. Trading data space for reduced timeand code space in real-time garbage collection onstock hardware. In Lisp and Functional Program-ming 1984, pages 256{262. ACM Press, 1984.

[9] E. C. Cooper and R. P. Draves. C threads. Techni-cal report CMU-CS-88-154, Carnegie Mellon Uni-versity, 1988.[10] G. Cousineau, P.-L. Curien, and M. Mauny. Thecategorical abstract machine. Science of ComputerProgramming, 8(2):173{202, 1987.[11] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S.Sholten, and E. F. M. Ste�ens. On-the-
y garbagecollection: an exercice in cooperation. Commun.ACM, 21(11):966{975, 1978.[12] X. L. et al. The Caml Light system, release 0.6.Software and documentation distributed by anony-mous FTP on ftp.inria.fr, 1993.[13] R. H. Halstead. Implementation of Multilisp: Lispon a multiprocessor. In Lisp and Functional Pro-gramming 1984, pages 9{17. ACM Press, 1984.[14] T. Hickey and J. Cohen. Performance analysisof on-the-
y garbage collection. Commun. ACM,27(11):1143{1154, 1984.[15] H. T. Kung and S. W. Song. An e�cient parallelgarbage collection system and its correctness proof.In Foundations of Computer Science 1977, pages120{131. IEEE Computer Society Press, 1977.[16] X. Leroy. The ZINC experiment: an economicalimplementation of the ML language. Technical re-port 117, INRIA, 1990.[17] R. Milner, M. Tofte, and R. Harper. The de�nitionof Standard ML. The MIT Press, 1990.[18] D. A. Moon. Garbage collection in a large Lispsystem. In Lisp and Functional Programming 1984,pages 235{246. ACM Press, 1984.[19] J. G. Morriset and A. Tolmach. A portable multi-processor interface for Standard ML of New Jersey.Technical report CMU-CS-92-155, Carnegie MellonUniversity, 1992.[20] S. C. North and J. H. Reppy. Concurrent garbagecollection on stock hardware. In Functional Pro-gramming Languages and Computer Architecture1987, volume 242 of Lecture Notes in ComputerScience, pages 113{133. Springer-Verlag, 1987.[21] L. C. Paulson. ML for the working programmer.Cambridge University Press, 1991.[22] J. H. Reppy. CML: a higher-order concurrent lan-guage. SIGPLAN Notices, 26(6):294{305, 1991.[23] G. L. Steele Jr. Multiprocessing compactifyinggarbage collection. Commun. ACM, 18(9):495{508, 1975. Page 10

[24] D. Ungar. Generation scavenging: a non-disruptivehigh performance storage reclamation algorithm.In Software Engineering Symposium on PracticalSoftware Development Environments, pages 157{167. ACM Press, 1984.

Page 11

