Hashconsing in an I ncrementally Garbage-Collected System
A Story of Weak Pointersand Hashconsing in OCaml 3.10.2

Pascal Cuog

CEA LIST, Software Reliability Labs,
91191 Gif-sur-Yvette Cedex, France

Pascal.Cuoq@cea.fr

Abstract

This article describes the implementations of weak pointereak
hashtables and hashconsing in version 3.10.2 of the Olggctiml
system, with focus on several performance pitfalls and- thaliu-
tions.

Categories and Subject Descriptors D2.3 [Software Engineer-
ing]: Coding Tools and Techniques

General Terms Design, Performance

Keywords OCaml, garbage collection, weak pointers, weak refer-
ences, weak hashtables, hash-consing, maximal sharing

1. Introduction

This article describes the implementations of weak pointereak
hashtables and hashconsing in OCaml. None of these corarepts
novel. Weak pointers have existed in some LISP implemeantsti
for a long time (Haible 2005; Goto 1974). The subtitle refers
more precisely to OCaml’s implementation of these featwbch

is much more recent (Leroy 1997). Despite the long history of
weak references, subtle performance issues were notitkd finst
OCaml implementation when it was confronted with real usee T
3.10.2 version of the OCaml system (Leroy et al. 2007) fixés al
the issues that have been encountered at the time of thimgvrit
Hashconsing in OCaml (Filliatre and Conchon 2006), basetthen
provided weak arrays and weak hashtables, now works rgliabl
and is employed in heavy duty applications, such as autamate
theorem proving (Bonichon et al. 2007; Conchon and Contejea
2006) and abstract interpretation analysis (Frama-C dpwent

Damien Doligez

INRIA
Domaine de Voluceau, BP 105
78153 Le Chesnay, France

Damien.Doligez@inria.fr

hashconsing, are difficult to get right for a conjunction wft
reasons. Firstly, a wide class of bugs in the implementatiaveak
pointers only cause some values to remain in memory for tog,lo
and have no other, more obvious, ill side-effects. Secontlig
hard to predict the expected speedup when adding hashgdosin
program, which makes it difficult to tell that it is less tharcould
have been. This article describes the issues that were fandd
the solutions that were provided in the process of makingrolGa
weak hashtables, and the underlying weak arrays, scale up.

This article provides some insights into OCaml’s Garbagk Co
lector’'s implementation. This may be of interest to any OQano-
grammer who ever interfaced OCaml and C code and was left won-
dering why the Ocaml reference manual needed to be so strict o
the subject. However, the issues described here are ndfisgiec
functional languages, they should be applicable to otheguages
that provide weak references such as Python (Beazley arsliRos
1999) or Java (Gosling et al. 2000).

The considerations to take into account when making thecehoi
of a Garbage Collection technique are described in (Wil€92)L
Following the terminology used there, the Garbage Collg@«)
implemented in the current versions of OCaml is both geirat
and incremental.

This article starts with an overview of the inner workings of
OCaml’s GC (section 2), providing context and vocabulanytfie
rest of the discussion. The “weak pointer” feature is désctiin
section 3, while the implementation of this feature in OCai®@IC
is discussed in section 4. OCaml provides a higher-levestroat
built upon weak pointers, weak hashtables. The interfadbexe
weak hashtables is described in section 5. An example of use o
these weak hashtables for hashconsing is provided in se6tio

team 2008). What is more, these changes have gone unnoticednd in section 7, this example is used to illustrate the Ipttaat
by most OCaml developers, even the developers of some of theshould be avoided when implementing weak hashtables.ddegti

aforementioned heavy duty applications, because therenbas
been any programmer-visible interface change associatetet
fixes that were taking place under the hood. In fact, weaktpsn
in a functional language, when they are provided expressijlow

*This work has been supported by the french RNTL project CAT
ANRO5RNTL00301

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

ML'08, September 21, 2008, Victoria, BC, Canada.
Copyright(© 2008 ACM 978-1-60558-062-3/08/09. . . $5.00

describes a different possible implementation for weaktsdues,
and section 9 benchmarks the two implementations, eachwith
OCaml’s 3.09.3 and OCaml’s 3.10.2 runtimes.

2. Garbage collection in OCaml

The heap of an OCaml program is divided intavénor heap
whence newly requested blocks are always allocated provius
they are small enough, andnaajor heap where live blocks from
the minor heap are copied when the minor heap is full.

The blocks that are allocated in both heaps contain the numbe
of words that was requested by the ML program that allocatenht
— for instance, two words for €onscell — plus a header word
that the GC uses for bookkeeping. The header word is divided i
bitfields respectively dedicated to storing thiee of the block, a
tag containing some rough type information about the contefits o
the block, and a 2-bitolor used by the GC for tracking reachable



blocks. The files implementing OCaml's GC can be found in the
directorybyterun in OCaml’s distribution (Leroy et al. 2007).

For scoping reasons, because the blocks in the minor heap are
more recent than the blocks in the major heap, one might think
that there would be no references from the major heap to thermi
heap. There can actually be a few such references, firstiusec
it is not exactly true that blocks in the minor heap are always
more recent than blocks in the major heap: big blocks areatibul
directly into the major heap, and these can reference abltieks
already allocated in the minor heap at that time. Anothesaea
why there can be references from the major heap to the minor
heap is that OCaml allows some values to be mutated: a cell in
the major heap may be modified in-place and the address of a
more recent block in the minor heap can be written there. én th
implementation, these two causes for the existence of@aifitom

the major heap to the minor heap are the same one, because big

blocks are initialized using the samedify macro that also serves
for in-place modifications.

When the minor heap is full — when there is no free space left
to allocate new blocks from — minor collectiontakes place. A
minor collection makes space available again in the minaphmsy
copying the live blocks from the minor heap to the major heap.
Since it follows that everything left in the minor heap is dethe
GC can then re-use the minor heap in its entirety.

The addresses of locations in the major heap where a poirer t
block in the minor heap has been written are calledé¢ngembered
set (Wilson 1992). In OCaml’s implementation, the remembered
set is stored in a structure calledf_table. Keeping this table
up-to-date is one job of theodify macro. Maintaining this table
of locations is necessary to determine which blocks in theomi
heap are alive at the time of doing a minor collection, and als
in order to be able to update these locations when the blagks a
consequently moved to the major heap. At the time of doing a
minor collection, the live blocks are found by recursivevénsal,
starting with theref_table, and the part of the stack that is recent
enough to possibly contain pointers to the minor heap. Thema
heap does not need to be examined in its entirety in order ® do
minor collection.

The major heap is garbage-collected with what is essentall
incrementaMark and Sweeplgorithm. Slices ofnajor collection
are done just after each minor collection.

Figure 1 shows a simplified view of the memory of an OCaml
program. If a minor GC is triggered in this state, blocks A &d
will be copied to the major heap (and the root referencesamth
will be updated); block F will also be copied to the major heap
and the reference inside L will be updated; then the wholeomin
heap will be cleared (leaving B, D, E, and G behind), as wethas
ref_table. Note that J is not reclaimed at this point, since it is in
the major heap and thus not subject to minor collection. Gméy
major GC can deallocate it.

3. Weak pointers, weak arrays

Weak pointergHaible 2005) constitute one of the advanced fea-
tures that a GC can have. They provide the possibility ofnding

a pointer to a block without making the block automaticaliyea

Of course, when accessing such a pointer, the program mag-be n
tified that this block has been reclaimed, which may causeesom
interesting race conditions. In OCaml, the functitwak . get that
accesses a weak pointer to an object of typeturns a value of type

t option — that is, one ofSome (v) or None. WhenWeak.get
returnsNone, it means that the GC has determined that the value

roots

\ N\
\ \ minor heap
A B C D E F G
1]
ref
table
Y A /
H | L/ <l |

major heap

Figurel. OCaml memory layout

allows the GC to reclaim the memory used by the cache “when
necessary”. Although this example is the first one that ggrito
mind when reading the (somewhat dry) corresponding section
the reference manual, it should be remembered as an exafmple o
how not to use weak pointers. Indeed, the GC is always retigim
memory! It does not know, and it is not its role to care, if thelwe

is actually very small compared to the amount of memory afségl

from the system, and if it makes the program much faster. llt wi
bluntly reclaim the memory used by the so-called smart cache
when the time comes. Additionally, there are no guaranteed a
concerning the time it takes for a dead block to be reclaimed b
most GCs. While having an upper bound on this time is desrabl
and some specialized GCs attempt to provide one (Baker 1878)
does not make much sense to expect a lower bound on this time.
Improving the GC so that it would reclaim any dead block very
quickly without unreasonable overhead would be an imprearmm
made in good faith — and probably with a good bit of thinking.
Still, such an improvement would slow down any program that
relies on weak pointers for caching.

Useful examples of the use of weak pointers are examplesawher
the values referenced by weak pointers may also be refatence
through non-weak pointers. Let us here emphasize that bl
are referenced by weak pointers are not reclaimed if theglae
referenced normally. This gives us our first valid examplass of
weak pointers, the poor marfmalized block Finalization (Leroy
et al. 2007) is another advanced feature that a GC can pravide
gives the possibility to execute a specific function whenazlbis
reclaimed. If a GC does not provide this feature but provideak
pointers, it is possible to emulate finalization in the casens
the finalization function does not need to get the (dead)kolsc
argument, by keeping a weak pointer to the block to be findlize
Its disappearance can then be detected by polling. Tryidg this
with a normal pointer would result in keeping the block aliwich
would defeat the purpose of finalization.

Another, more direct example of the usefulness of weak point
can be found in the implementation in any garbage-collelzed

referenced by the weak pointer had become unreachable by con guage of an interpreter for a garbage-collected languaggt¢R-

ventional pointers, and has reclaimed it.
An often mentioned example of use of weak pointers is that of
the implementation of a “smart cache” (Chailloux et al. 20®0at

Jones et al. 1999; Elliott and Hudak 1997). In this case, fiois-
sible for the interpreted language to piggy-back onto thst hem-
guage’s memory management, saving the interpreter’s mmgiéer



the trouble of writing his own GC. The fact that the interpret
language’s values (say, synchronous processes) are suglplys
from the host language makes this implementation schenme eve
more desirable. This gives the two languages a chance @booll
rate closely. For instance, the standard library of the lamgfuage
is thus conveniently available from the interpreted lamgua

However, if the interpreted language needs to maintairt aflis
living processes, a difficulty appears with the desirablpl@men-
tation scheme proposed above. Keeping this list can be s&ges
for any kind of bookkeeping — for instance, to inform all tig re-
active processes that a synchronous clock shared by akof tras
advanced. The intention, however, is likely to be that “dining
(i.e. referenced) processes should receive the signatippssed
to the strategy of “keeping every process alive so that it rean
ceive the signal”. The latter is a kind of memory leak. It isety
what happens if an ordinary, non-weak data structure is tsed
store the list of processes. Weak pointers are the standartion
to this difficulty: in order to allow processes to be garbagbected
when they are no longer referenced from other processesathe
structure where they are enumerated should use weak re¢srém
them.

Hashconsing is another example of the use of weak pointers.

Hashconsing is a technique that employs a hashtable to rberem
all the value of a given type that have been created. This way,
it is possible, when the program is about to create a new \@flue
typet, to check in the hashtable if this exact value does not ajread
exist, and to use the existing value if it does, thus ensumagi-
mal sharing In some applications, hashconsing can improve both
memory usage and computation times because the maximaighar
property also makes it cheap to determine if two values analeq
However, when hashconsing is implemented without takimg o&
using weak pointers, there is a memory leak problem: thetabkh
then causes all the values of typé remain in memory even when
they are no references to them except the one from the héshtab
But in fact, the maximal sharing property does not requirketep
every value of type in memory indefinitely! When one such value
has ceased to be useful, it can safely be collected, bedazeseal-
ways be created again later. For this reason, weak refesshosild

be used at some point when implementing hashconsing. Gfell t
uses for weak pointers, hashconsing will receive the mostbn

in this article.

In OCaml, there is a two-word memory overhead for allocating
a single weak pointer, but this overhead does not increase fo
additional weak pointers in the same block. The primitiviestouct
provided is therefore that offeak arrays so that, when it is not
otherwise too constraining, several weak pointers canlbeaéd
at once in a single array. The functions for manipulating kvea
arrays can be found at toplevel within theak module in OCaml’s
standard library.

4, Adding weak arraysto OCaml

This section describes the issues raised by the additioneakw
arrays to the OCaml system.

41

In OCaml, ’a Weak.t is the type of weak arrays ofa. Such
arrays can be created, modified and accessed with the fafjowi
primitives:

Interface of the Wweak module

type ’a t

val create : int -> ’a t

val set : ’a t -> int -> ’a option -> unit
val get : ’a t -> int -> ’a option

val get_copy : ’a t -> int -> ’a option
val check : ’a t -> int -> bool

roots

\ N\
\ \ minor heap
A B C D E F G
1A
//f ref
table
vy W/ =
H | K/l It/ let"
weak
ref
) \ table
™~
A ~
major heap

weak list head

Figure2. OCaml memory with weak arrays

The functionget_copy returns a shallow copy of the stored
value. The utility of this function will be explained in semt 7.2.

4.2

Weak arrays are allocated directly in the major heap for ity

They are materialized as blocks with thestract_tag, which
means that the contents of these blocks are not traversacnedy

by the major collection. Thébstract_tag has always existed in

the current implementation of OCaml's GC. Itis habitualbed for

data (such as floating-point values) whose bits should noebgéed

as though they composed an address. In the case of a weak array
the values inside the block are indeed addresses, but theydsh
not be traversed by the GC because that would make them alive,
which is precisely what is not wanted. If there are otherprair
pointers pointing to a block referenced from a weak arra, tihe
traversal of these pointers that will make the block alifehére
aren’t, the block will eventually be reclaimed as dead ardvtiiue

of the weak pointer changed to a sentinel that means the blagk
become dead.

The first word of each block representing a weak array is re-
served for chain-linking all the weak array blocks togetfduis is
illustrated in figure 2, where J and K are the weak arrays. e
because of thébstract_tag, this chain-linking does not make
the weak array blocks automatically alive. The livenestustaf
a weak array block is determined like that of any other bldik,
the presence of a live conventional pointer to it in the h@dpe
contents of the block representing a weak array, from therskec
word until the last one, are the actual weak references. Arsgn
weak_none, iS used to indicate that a particular weak reference was
referencing a value that has been reclaimed.

The fact that the weak array blocks are chain-linked togethe
allows to traverse them in a special phase of the garbagectiolh
that takes place right after the major collectioivsrk phase is
finished. At that point during the major GC cycle, the blodkatt
are going to be considered live and those that are going to be
reclaimed are clearly marked as such in tiodor field of their
respective headers. It is during this special phase thatveak
pointers found to be pointing tavhite blocks — blocks that are

Implementation



going to be reclaimed as dead in the upconfiwgeephase — are
replaced by the sentingkak_none.

guages. Indeed, OCaml’'s weak hashtables are implementieoliyi
relying on any primitive feature other than weak pointersereas

Besides, live blocks may also be moved around by the major GC many variations on the theme of weak hashtables have beaedefi

in a phase calle@ompactionand unlikeref _table in the case of
the blocks moving from the minor heap to the major heap, there
isn't a convenient complete list of locations of pointeraufmate.
The GC knows how to correctly update all the pointers to mgvin
blocks that it has traversed, but since it does not travleseveak
array blocks at all while examining the heap, this needs tddre

in another specific phase by traversal of the weak array chain

4.3 Pitfalls

The description above corresponds exactly to Ocaml 39%
plementation: when a pointer into the minor heap is writteary
location in the major heap, the location is added torté®_table

so that it can later be updated when the pointed block is moved
Since weak arrays are mutable structures allocated in therma
heap, the above conditions apply in particular each timegthalue
from the minor heap is added to a weak array. In Ocaml 3.08e3, t
location inside the weak array would be added toibe_table
like any other major heap location updated with a pointeratals
the minor heap. However, this could incur a significant mgmor
waste in some circumstances. This section explains why.

The major GC is incremental. When blocks are copied to it from
the minor heap, these blocks are automatically marked \aes. &t
normal circumstances, they are alive, for the major GC'qdefn
of liveness as “reachability at the beginning of the majariey
— since they have been copied, they definitely were reachable
Except, of course, for blocks in the minor heap whose onlirtla
to reachability was a reference in a weak array. For thesajshal
algorithm of “copy block to the major heap, mark block as aliv
and update the pointing location”, while not being obsaovetily
wrong, is sub-optimal. These blocks, if not referred to tigio a
normal pointer (that would either be registered in € _table
or that would have been discovered by the minor heap tradyersa
can rightfully be considered as dead, because there are mo no
weak references to them at that instant. For these blockd)eht
algorithm to apply is “reclaim the block and change the weak
pointer accordingly”. Applying the usual algorithm to theneans
that they will stay in memory on average one major cycle analfa h
longer than necessary.

(Haible 2005; Li 2007), some of which require more suppothin
language core than simple weak pointers. OCaml’s weak &asht
bles are not hashed maps but hashed sets, where only therkeys a
stored. While this means that some sophisticated usagegaif w
pointers are disallowed, it will be seen in section 6 thatdreew-
backs when implementing hashconsing are minimal.

This is the interface of weak hashtables:

module type S = sig
type data
type t
val create :
val merge :

int -> t
t -> data -> data

end
module Make (H : Hashtbl.HashedType) :

S with type data = H.t

The functorWeak.Make takes a moduldl that contains a type
t of the data to be hashconsed, and functibash and equal;
it creates a weak hashtable Bft. It provides, among others, a
create function to allocate new hashtables, angeage function
to look up or add a piece of data in a given hashtable. Thistéunc
is part of the OCaml standard library, and it is written ezisirin
ML, relying only on the “weak arrays” primitive. A weak hasble,
like a normal hashtable, is represented as an array of iCkieé
basic idea is to represent each bucket as a weak array dogtain
the values that have beerrged into the table at this point. The
functionmerge applies the hash function to the passed vallend
infers from the result which bucketshould go into — or already is
in. It can then compare to the values already stored in the bucket
in order to decide which case applies, return the found vaiuié
it finds one such thatequal v v1) is true, or addr to the bucket
and return the value otherwise.

OCaml’'s weak hashtable implementation distinguishedfitse
from some others (Peyton-Jones et al. 1999; Haible 200%)an t
it allows arbitrary ML functions to be used as the equality #me

In OCaml 3.10.2, in order to handle the case of these weak eduality-compatible hash function on keys. In practice, @Caml

references more appropriately, the locations inside weedkys
being updated with a pointer to the minor heap are recorded in
different structure, theeak_ref_table. Only the locations in the
ref_table are treated as roots for the minor collection. Right after
the minor collection is finished, theeak_ref_table is analyzed

in an additional step. Locations recorded in tlek_ref_table

weak hashtable library is presented as a functor to be apfdia
module that provides these functions. For instance, asguthiat
the moduleL is a module of lists with th&ashtbl . HashedType
interface (i.e. providing a type and functionshash andequal), a
weak hashtable of lists can be created with:

that contain the address of a block that was moved to the major module ListWeakHashtbl = Weak.Make (L)

heap are updated with the new address, while the locatiats th
contain the address of a block that was not visited duringrtimer
heap traversal are marked as being weak pointers that have be
reclaimed.

Let us go back to figure 2 for an example. In this figure, K is a
weak array and theeak_ref_table points toit. K points to E, but
the minor collection will not copy E into the major heap, leave it
to be reclaimed along with B, D, and G. Then the additionakpha
will erase the pointer from K to E, replacing it witlkeak_none.

Note that the implementation of theeak_ref_table shares
most of its code with the existingef_table, hence this new
feature does not add significant complexity to the runtinstesy.

5. Adding weak hashtablesto OCami

The weak hashtables described here provide slightly diffiiunc-
tionality than typically found in weak hashtables in othan

This feature is vital, for example in the Zenon theorem prove
(Bonichon et al. 2007), to make weak hashtables of firstrdetes
modulo alpha-conversion, and in Frama-C (Frama-C devetopm
team 2008) where AVL trees are stored in weak hashtables, and
must be compared modulo rebalancing.

Note that it is not necessary for a programming language to
have a sophisticated module system in order to provide the fe
ture “weak hashtable with user-defined equality and (etysali
compatible) hash function”. Any language where functions a
first-class citizens could provide a similar feature. Stbhme of
the pitfalls to be described in section 7 come from the faat the
equality and hash functions are ordinary, user-definedtims:
The authors did not notice these pitfalls mentioned in tterd:
ture, perhaps because this feature was never providedaygeith
incremental garbage collection.



6. Hashconsing

In this section, we will illustrate the use of OCaml’s flavdr o
weak hashtables with the example of the hashconsing of a list
type. The explanations given here are solely for the purmdse
showing one concrete use of weak hashtables. The impletimmta
of hashconsing in OCaml is described in much more detail in
(Filliatre and Conchon 2006).

Creating a hashconsed list type is little more than definimg a
adequateons function that takes a headand a tailt and creates
the listCons (h, t). Thecons function should guarantee that only
one instance of th@ons constructor applied to a giveh,(t) pair
is visible at any time. In other programming languages, ¢fffisct
can be obtained by use of a weak mapping flerand t to the
constructed list. In OCaml, because the weak hashtabldn fret
hashsets, théons constructor should be applied tentatively to form
alist1 similar to the one that is desired, and then the weak haghtabl
should be looked up for a value that isqual” to 1.

let cons h t
let 1 = Cons(h, t) in
ListWeakHashtbl.merge tbl 1

In the rest of this section we will slightly abuse the defuoniti
of OCaml's physical equality primitive=, and assume that it is
possible to use it to compare two values if both these valage h
been hashconsed in the same table. This abuse is widespoe#d,
still is an abuse: for immutable objects, the only formalrgméee
concerning physical equality is that it implies structueguality.
In theory, the OCaml implementation reserves the right taresh
or duplicate structurally equal immutable values. In pgoactwe
know that== has the behavior we need on thens cells. A better
implementation would not use= for comparing lists, but instead
either arrange to physically compare mutable objects (foiciv
== provides more guarantees) or tag the applicatioréat with
unique integers. In our example, the abuse allows for ceneiss
in the definition of equality on hashconsed lists as the maysi
equality:

let list_equal 11 12 (11 == 12)

The equality to use during weak hashtable lookups should not
be the equality defined above. Indeed, during a lookup, one of
the values in the comparison isCans that was applied without
knowing yet whether this application was redundant. On thero
hand, the equality to use for the lookup in the weak hashtednhe
assume by induction that the hashconsed children of itszegt
nodes are equal iff they are physically equal. In other woitdis
equality, which is only useful for lookups, can be definedrathe
following module:

module L =
struct
type t = Empty | Cons of value * t
let equal 11 12 =
match 11, 12 with
(Cons(hl, t1)), (Cons(h2, t2)) ->
(list_equal t1 t2) &% (element_equal hl h2)
| ...
let hash 1
end

This moduleL is the one that should be passed to the func-
tor Weak.Make in section 5. Thehash function inside the mod-
ule L should be defined with identical care for identical reasons.
If the programmer’s decision was to tag the applicationSafs
with unique integers, these tags make a fine hash functidmefsin-
consed lists, but the functidn. hash should not use its argument

node’s tag as a hash value, because its argument has notdsten h
consed yet (th&€ons constructor was applied tentatively with a
fresh tag). Instead, the functidn hash should be defined so as
to make use of the tags of the children of the node it is appbed
Similarly to the functiorL. equal, it does not need to look deeper
into its argument than the first level.

To reiterate, while the module defined here should be the
one passed to the funct@eak.Make in order to create a weak
hashtable module able to soundly store and recover listsgbei
hashconsed, its functions should not be used for anythisey ek
there are better implementations available when the argt(s)e
are lists that have already been hashconsed.

7. Pitfallsin the implementation of weak
hashtables

Along with the performance issues already mentioned inrie-t
ment of weak arrays by the runtime system, the introductibn o
hashconsing in Frama-C revealed issues that were specifie to
weak hashtable layer. A common theme underlying thesedssue
that the resemblance of weak hashtables to standard hkeshgdb
the interface level is misleading: performance can be dirnapif
weak hashtables are implemented too similarly to standastith-
bles.

7.1 Deciding when to resize weak hashtables or buckets

OCaml’s standard hashtables, as well as weak hashtabdeabler

to resize themselves dynamically as the number of elembats t
contain is growing. For a standard hashtable, the decisioesize

is easy to take: itis only a matter of counting the elemerasgb in

and come out, and to allocate a new, bigger array of bucke¢mwh

a fixed average number of elements per bucket has been reached
In the case of a weak hashtable, however, the problem is more
complicated. What the standard hashtable is doing, by guunt
the elements that go in and come out of the table, is to keep a
count of the number of elements inside the table. In the cése o
a weak hashtable as used for hashconsing, the elements nome i
and eventually evaporate silently. At cruising speed, thentjty

of live data inside the hashtable remains about constariéweiv
values come in all the time, so that for a program running for a
unbounded time, the total amount of data that has been pdeins
the table may be unbounded. But without additional supporhf

the GC, itis not known how many live elements are inside thakwe
hashtable and therefore it is difficult to make an informediod
about resizing.

The same problem exists at the level of the individual budket
strategy that may seem both reasonable and simple to imptesne
the following: grow each bucket when it needs to, otherwisepk
them the same size. This strategy does not work so well for the
hypothetical program above that runs an unbounded timeevakl
ways keeping a bounded amount of live data inside the talgle. B
cause of inevitable statistical fluctuations, each buck#tatvone
time or another grow past any fixed size — and then empty itself
back as the pointers are reclaimed and the statistical tmesito
another bucket. Eventually, the weak hashtable implemgrttie
“reasonable” strategy will have arbitrarily large bucketsitaining
almost exclusively reclaimed weak pointers.

In OCaml 3.10.2, each bucket in a weak hashtable is periodi-
cally checked for the possibility of being shortened (if thenber
of reclaimed pointers inside allows it). This check is perfed in-
crementally: a couple of buckets, chosen in a round-rotshiém,
are checked each time we need to grow a bucket. Furthernhere, t
table is resized according to an estimation of its fullnessell on
the number of buckets with a size above a fixed threshold. thate



the latter would not be an appropriate measure of fullnesisonrt
the former measure against buckets growing too large.

7.2 Avoid making stored values alive needlessly

In the basic implementation for weak hashtables mi#ege func-
tion, when applied to a value, finds the appropriate bucket and
comparess to each element it finds in the bucket. This means call-
ing the equality function on each element already in the etick
The equality function is a perfectly ordinary ML functionhigh
was provided through OCaml’s functor system. Like everyeoth
ML function, this function expects its arguments to be aliveit
would not, in fact, be prepared to handle an argument thab'tyas
because the equality function is likely to do some allocatidur-
ing its execution, which are possibly going to give contlhe
GC, which is possibly going to finish a cycle and reclaim a# th
dead blocks it can find. Therefore, it appears necessary ke ma
elements from the bucket alive at the time of passing therhéo t
equality function.

This wouldn't be a problem with a stop-the-world garbage col
lector, but OCaml’s incremental collector uses the snapatio
beginning technique, as described in (Wilson 1992). Ingkising,
making a block alive, even for a short time, means that it oann
be deallocated in the current major GC cycle. In case of #atju
access to a weak hashtable, some of its buckets may be &dvers
at least once during each GC cycle. In this case, their deadk®bl
will never be deallocated.

same bucket. But it pays to compare the full word of inforimmati
contained in the values’ hashes before callingeitpeal function.
Although it is called less frequently, the internalsize func-
tion inside theWeak.Make functor is subject to a similar remark.
This function is called when a weak hashtable is estimatéve
become too small for the number of elements it contains.Idt al
cates a new, bigger weak hashtable and copies the elements fr
the former into the latter. The pre-3.10.2 version of thischion
called the user-providdthsh function on each of the values stored
in the table, thus forcing the GC to keep them in memory for one
additional major cycle, even if they were about to be rectim
This function now makes use of the cached hash value for each
value in the old table. It avoids callingsh and is carefully written
so as to avoid forcing to life the referenced values. Thidiespis-
ing a runtime primitivejeak .blit, that was introduced in OCami
3.10.2 especially for this reason. The primitiveak .blit copies
values from a weak array to another weak array without making
them alive (using the OCaml functiow@ak .get andwWeak.set
would make the values alive).

8. A different weak hashtableimplementation

The weak hashtables implementation described above Wipleal
formance issues fixed is the version distributed with OCad0.2.
Another implementation was made for Frama-C, at a time when i
was not clear yet where the issues were in OCaml’s provided ve
sion. The purpose of this alternative implementation waswer

In fact, the bucket elements need not be made alive. OCaml’'s the memory overhead when storing a large number of elements i

weak arrays allow requesting a shallow copy of the contehts o
cell, and in this case, it is the copy that is forced to lifef tiee
original value. The copied block’s children, on the othendhaare
forced to life in the process, because they are referencexd the
copy. These children are the same as the original block’sif 8o
element in a weak hashtable is dead and the program is dootg a |
of lookups in the table, only the element’s top node is gusethto

a weak hashtable, and especially to lower it so it becamdlipess
to have an average of one element per bucket (to emphasied)spe
without unreasonable space overhead. At the time, one asst c
also made it seem like the inherent limitation of OCaml’s kvea
hashtables to 4 million buckets on 32-bit architectures arass-
sue, so another goal was to raise this limit. It only becarearcl
later that the issue exhibited with this test case was in attt

be reclaimed on the next GC cycle. The children of the node may dead values not being reclaimed quickly enough when theg wer

have been forced to life by lookups.

This scheme was originally thought to be sufficient... Anig,it
in away. Any non-circular dead hashconsed value will beaigatd
after enough GC cycles, even in the worse case where loolkagps k
making children of the current remaining subtree alive mg@ine
problem with the described scheme is that of circular vaitesed
in weak hashtables. The hashconsing of circular values &dan
vanced topic but can be encountered (Considine 2000; Mgunbor
2000). The circular hashconsed values may be kept in memery i
definitely by lookups, even when they are otherwise unrdaeha
Effectively, each lookup for another value that has the shash
will make all the descendants of the circular value aliveluding
itself. Another problem is more likely to be encountered wihe-
ing hashconsing techniques: if every node of a tree or DAG$hh
consed, as is for instance the case for Binary Decision Biagr
(Clarke et al. 1999), the deallocation of dead values caneog v
slow. Indeed, for a now-dead tree that is stored in a weakthblsh
the height of the dead subtrees that keep wasting heap sphce o
going down by one unit at each major GC cycle.

A solution for this issue relies on the fact that most of thestj it
is enough to know the hash of each of two values to decidelbgt t
are different (if their hashes are different, the valuesdifferent).

referred in a weak hashtable, and with improper heurisbcsd-
sizing weak hashtables.

The implementation can be found in the Frama-C distribuytion
in file buckx.m1 (the name is supposed to evoke hierarchical buck-
ets). This implementation attempts to reduce both wasteckspnd
overhead by mutualizing the space available to severalgisith a
single weak array. This implies the management of free aelisof
the cells allocated to each bucket very much as if each weiakguo
was a block in a filesystem, and each bucket a file. We will &l t
filesystem-like structure a “meta-bucket” in the rest o§théction.

At the time of creating a weak hashtable, its size can be chioge
selecting the appropriate number of meta-buckets. To stoedue
inside a weak hashtable composed of several meta-bucketsfp
the value’s hash is used to choose a meta-bucket, and thanregna
entropy is used to select a bucket inside the meta-bucket.

There is a compromise in the choice of the number of buck-
ets that compose a meta-bucket. An obvious advantage of-mutu
alizing many buckets it that the mutualization is more efiitj
whereas with smaller and more numerous meta-buckets, & meta
bucket may still have free cells while another is full andcés
the resizing of the table and the redistribution of preséarnents.
There are also less obvious advantages for the choice ofatimitu

The full hash value of each value stored in a weak hashtable ising a smaller number of buckets. One is that the “filesysti&ta*s
kept in a cache. Before comparing for equality the value to be overhead has a chance to be smaller when it takes fewer bits to
merged with a value already present in the same bucket, their hash encode the number of a weak cell in the common pool. Another

values are compared. If the full hash values do not match,nbt
necessary to call the user-providegal function on the values,
and thus the value from the bucket does not need to be made aliv
Of course, part of the information contained in the hashezotf
values is necessarily identical since their hashes lead tbethe

is that when looking for reclaimed pointers in the table, aken
meta-bucket allows for better locality of the required meynac-
cesses. The implementation settled on using the FAT filesyst
(Wikipedia 2008) from 20th-century operating systems fanm
aging one meta-bucket, mutualizing 254 weak pointeltssfersin



o |w
N[O
~N (O
w

instance, a bucket for 4 elements really contains room fdaking
meta-bucket free list both these biases into account, we arrive to an average S&@ o
(root directory) words per element for the weak arrays (and 2.6 words per aleme
*d *d for the integer arrays containing the hashes of the elefestsn

. er storing 100000 elements in a 100000-buckets weak hashfable

2 a total of roughly 31 bytes per element on a 32-bit archirectu

FAT 171711 ]4]|5]|6]7 It should be kept in mind, however, that the memory efficiency

v vA [ U AL AL A of OCaml’s weak hashtables improves when the average bucket
etd etd‘\j : UU\JAJd size grows larger than one. Also, the total size of thesethbks

: grows in a more progressive fashion (each bucket is resimdid i

data Blcl|cC vidually), whereas the mutualized buckets must be allacatieat

once when resizing one of the weak hashtables described here

Figure3. A 3-bit FAT 9. Benchmarks

Frama-C (Frama-C development team 2008; Monate and Signole
2008) is a framework for writing collaborating static armdys for
the C language. One of the existing analyzers inside FranssaC
value analysis based on abstract interpretation (Cousb€Cansot
1977). This analyzer computes over-approximated (buectrsu-
persets of the possible values for all variables at all goaftthe
analyzed program. One of the specificities of this analyzé¢hat
it keeps all the information thus computed (the values of/ail-
ables in all program points) so as to be able to answer regjfrogt
other analyzers when they need it. When using abstracpiretiet-
tion techniques to detect the possibilities for run-timees in the
analyzed program, only a small fraction of this informatiweds
to be retained at a given time of the analysis. The problennef t
increased memory consumption thus caused by the collaorat
approach of Frama-C was solved by using Patricia trees @Bkas
and Gill 1998) for the representation of memory states amus
hashconsing on these trees. The implementation of bigaarfei-
tricia trees was borrowed from Menhir (Pottier and Régiar@s
2005) and heavily adapted.

In order to compare the performance of the various weak
hashtable versions available, we launched four differgvaries of
the Frama-C value analyzer on the C program in appendix B. The
compiled source code for the analyzer was identical in easke c
except for the fact that, in two of the compilations, OCarstdlib

the FAT analogy) shared between 256 bucketst(directory en-
tries). Root directory entries and FAT entries can each be encoded
in one byte.

Figure 3 shows an example of a 3-bit FAT. In this figure, each
square box uses only 3 bits of memory, while the rectanguias o
are regular 32- or 64-bit values. Indexes into the FAT ramgaf0
to 6, and 7 represents Nil. There are 4 buckets in the metkebuc
(AtoD); Aand D are empty, B has one entry and C has two entries,
linked together via the FAT. The free entries are linked mnfeta-
bucket's free list.

A separate mechanism limits the ill side-effects of smaltane
buckets. It delays the resize operation when some metaetsick
become full before others, by spilling the additional elatsen
a second smaller structure. When benchmarking this mesinani
by storing only live values inside the table, the fill rate \bu
reach between 80% and 90% before a meta-bucket and its spill
bucket were both full, forcing to resize the table. Regaydime
dead data in the table, another ad-hoc mechanism makesotke ta
more aggressive in its collection of reclaimed weak posjtat the
cost of more CPU usage, when it looks like the available mgmor
or address space of a typical workstation would soon be etbdu

With the choice of an 8-bit FAT, assuming that the table i$ ful

2gghﬂ:e?értr?:n?\$rﬁ1%e tggfek?; (s)'rf: ﬁo?g%ﬁhtign;rgnc;gn?ﬁz:geg b version of weak hashtables were used and in the other twmd-ra

word for caching the hash value of the element, about onefby’te C's weak hashtables were used. Both ve“r’sions were compslag u

the bucket’s root directory entry, and a one-byt’e entry anFAT, b-Oth _OCamI 3'0.9'3 and OCaml| 3110'2' module has |Qen-
’ ! tical interfaces in these two versions, but OCaml 3.10.2ision

L‘?r ta.éoial of flOlbytes ton. a_3(;|2-b|t ?r?kr;ltelgtl:re. Unevtﬁnré%nsmel of the moduleWeak fixes the problems that are described in this
Istribution of elements Inside Meta-buckets mean thaatiea article. The results are reported in the first four lines bfddl.

average space occupied per element is between 11 and 12 bytes The analyzer is launched with options that force it to coraast

even just before resizing. precise a representation as it can of the memory state ahthefe

Wegll Cho;stﬂ?gbgsaltlhiuﬂ;::ﬁowerfcgﬂ silgg 02? (Ierlle(r)r?een?fw?)fj:lﬁn:)l: 3the executiof Additionally, after the analysis, for each statement,
! ry piec p a (possibly over-approximated) union of the states thae ot

words to store the element (3 words is the heap size occugied b curred at this statement is available for querying. Intefigie com-

a one-element weak array), 2 words to store the hash valueof t . . .
element in a normal array, and two words to index both the weak putations consume even more time and memory (the a'go”'“"‘m_s
analyzer relies on could be modified or improved, but we kelie

array and the normal array so that they can be accessed. t@histo ) .
X X that this does not make this benchmark less relevant as ampéxa
7 words (28 bytes on a 32-bit architecture). But when theagesr of the practical use of hashconsing).

number of elements per bucket is one, all buckets are umfately First and foremost, it should be pointed out that these mieasu

not of size one with usual hash functions. OCaml’s impleraigéon . . .
of weak hashtables cleverly shares all buckets of size zerthe are not comparisons of hashconsed implementations versus n

above estimation is wrong. The simulation in appendix A show

that assuming that the hash function is random, more thaindecth ?It is possible to use less time and memory to analyze this pro-
' gram, but then the optimal conclusion concerning the valde o

the buc_kets can be expected to be empty when 100000 elements a S (respectively [62475..62975], [499950..500950], [16EF41688925],

stored in a weak hashtable of 100000 buckets. On the othel, han [3999900..4001900] for values afbeing 50, 100, 150, 200) may not be

in order to avoid constant resizing of the buckets, the atioa reached. Indeed, the way the program is written, the anaheds to have

size for a bucket followsthe progression 0, 3, 7, 13, so that for  at one point a precise representation of a rather big mentaty & order
to reach this conclusion.

1The formula used to compute the new size when re-allocatingcket is 3 A bug in /usr/bin/time on the test platform prevents obtainthe maxi-
given by the functiomext_sz in file weak.ml. mum resident size when it is larger than 2GiB.




N=50| N=100| N=150| N=200 second ad-hoc mechanism mentioned in section 8). As a rédsailt
3.09.3 stdlib 78.3s 2952s 23582s| 101815s time/space ratio seems uninteresting for N=150, value faoickv
114MiB | 732 MiB | 1629MiB | >2GiB® the analyzer just entered its memory-saving mode at the kitsl o
3.09.3 buckx 52.2s 1149s 9427s| 44714s analysis without the fix and does not enter it any longer wlih t
98MiB | 349MiB | 654MiB | 991MiB fix. For other values of N, the advantage is clearer, althauliftie
3.10.2 stdlib 49.1s 1018s 7936s| 37472s more memory is used for N=200 compared to the “3.10.2 buckx”
85MiB | 326MiB | 624MiB | 936MiB version. The obvious meta-conclusion is that, if the curdasign
3.10.2 buckx 50.6s 1106s 8908s| 43896s for efficient hashconsing in OCaml was considered final,egith
95MiB | 350MiB 560MiB | 836MiB weak hashtable implementation would probably benefit fremdp
3.10.2 buckx+ 50.0s 1038s 8615s| 40269s fine-tuned with the help of additional, representative hemarks.
89MiB | 320MiB | 598MiB | 854MiB

Table 1. User time and maximum RSS as reported by 10. Related work

/usr/bin/time -1 o0na 2.66GHz 5150 Intel Xeon Mac Pro with . . - .
8GiB of memory (Mac Os X 10.5.2) It is natural to use hashconsing to limit space and time usdiga

implementing abstract interpretation algorithms, aneérss to be
what is done in (Mauborgne 2000) (for the more difficult pesbl

hashconsed ones. While unfortunately the non-hashconsele-i of cyclic values), although the article does not make mentb
mentation of Frama-C is no longer available for referentsere- weak references. i _
sults would be out of the chart here, willat_of _memory excep- (Filliatre and Conchon 2006) details a way to implement hash

tions starting earlier than N = 100 for a 32-bit address shakdee consing in OCaml (based on the weak arrays provided by the run

improvements by a factor of more than two in time and memory {iMme), relying on types to ensure that a non-hashconsee les
usage that appear in these results are with respect to admssitt not get mistaken with a hashconsed one by accident, andngachi

version of the software that was already much improved coetpa  the hash value. That article mostly assumes that efficiertkwe

to the non-hashconsed one. hashtables are available and puts the emphasis on the wag to g
If we look at the results of table 1 in a little more detail,gt i ~ hashconsing from them, whereas here we describe the calistru
apparent that using either Frama-C’s own implementationestk of efficient weak hashtables in OCaml's flavor. The articlesys
hashtables or OCaml 3.10.2 makes the analysis significkather as we do, the physical equality- (between hashconsed values, of
and faster than the OCaml 3.09.3 native version of weak hblgst. ~ COUrse). The “type-safe” qualifier in the article’s titlerses from
Comparing the rows “3.09.3 buckx” and “3.09.3 stdlib” show the fact that the type system will prevent values of the hassed
that Frama-C's own implementation of weak hashtables fagepl ~ YPe from being created by direct application of the coresons, as

an important role as a stop-gap measure to make Frama-C fiaore e OPP0sed to the maximal-sharing-preserving function tiplies
ficient when the latest available version of OCaml was 3.0as3  the constructor tentatively, looks it up in the hashcondaige,
mentioned previously, the analysis of one C program did ece and returns tht_a new value only if it was not already in theeabl
the maximum number of buckets a stdlib weak hashtable cam hayv |t should be pointed out, however, that this assumes thaesatan
when the analyzer was compiled with OCaml 3.09.3. The advan- Only be created by application of their constructors. Thecfion
tage it provides is no longer so clear with OCaml 3.10.2. Thlg o Array.get may create a new value if the value is stored unboxed
difference that remains visible between the two weak hastga  InSide the array (this is already the case wfitlats, and the prac-
implementations when run on the same 3.10.2 runtime is in the {iceé might be generalized in some future version of OCantie T
tradeoff between space and CPU usage. The native one itea litt Marshal.from_x functions,even when used in a type-safe way
faster at the expense of a little additional memory usage. also allocate new values which break the hashconsing avaih-
The differences between the “3.09.3 buckx” and “3.10.2 atick ~ ¢identally, the functioeak . get_copy has the same property, and
versions can be attributed to the improvements in the rentim It iS not considered type-unsafe. Comparing unique tagsaisof
between the two versions of Ocaml (section 4.3: the addition USing== prevents observing any ill side-effects from the use of
of weak_ref_table). The expected improvement depends on Array.get Or Weak.get_copy, although of course the program

whether the program creates short-lived hashconsed véltesa- will still behave incorrectly if it marshals a hashconsetligesome-
Cis in this case, and the run-time improvement is smallis§%) where, the heap version of the value is later found to be dead,
and the memory size improvement is about 15%. On an off-topic ¢laimed by the GC, re-created by application of the consiriiand
note, the problem of the hashconsing of short-lived valaegven the program then un-marshals the original, previously helesi

an interesting twist in (Appel and Gongalves 1993), althotie value. Besides, the implementation proposed in (.FI||I6.ltTd. Con-
ideas there do not seem to apply directly to the framework de- €hon 2006) caches the hash of each value as a field insidepée ty
scribed here. ’a hash_consed. As we found out (section 7.2), this means by

The wider gap between “3.09.3 stdlib” and “3.10.2 stdlitkas construction that the value will be forced to life when thetwed

into account both the improvements in the runtime and in teekv ~ h@sh value is read. The hash value should ideally be stop se
hashtables implementation. rately from the stored value, so that it can be accessed uiitiee

The row “3.10.2 buckx+" in table 1 corresponds to a recent Auiring acall to eitheWeak. get orWeak. get_copy on the stored
version of the buckx weak hashtables where a performance bugVa/ue-

was identified and fixed. Fixing this bug should make the arealy The WEAK structure of SML/NJ (Appel and MacQueen 1991)
both faster and more memory efficient. In practice, the bugjgr provides a different interface from OCaml, with immutableak
displaces the equilibrium point the analyzer tries to rdaetween pointers and a small set of primitives, which was used sstakp

the total memory used and the time spent collecting garbdige (N (Shao 1997). We had to provide a more complex interface tha
gives more control to the user in order to cope with the diffies

4Frama-C is supported on all the 64-bit architectures thatsapported ~ introduced by the incremental GC of OCaml. Moreover, thedra
by OCaml, but because of the increased word size, and uniessping is offs in OCaml's weak pointers are geared toward hashconsing
acceptable to the user, there needs to be at least 6GiB aflalsRAM to rather than general use. The primitives provided by SML/MMen

start improving on the results of the 32-bit version it natural to use a different design for the weak hashtabdédts.



This reflects the influence of the design of weak referencat®n
design of efficient weak hashtables.

11. Futuredirections

OCaml’'s weak pointers make it possible to build weak hadbsab
but the approach taken here is not ideal. The weak hashtaéées
to be periodically polled for reclaimed pointers. This isiadkof
garbage collection happening within the hashtable, and itot
easy to synchronize with the GC. If the hashtable collestiep-
pen too frequently, it is a waste of time because there arerrmtgh
reclaimed pointers to make them worthwhile. If they happmsm t
seldom, space is wasted because of the numerous reclairimd po
ers using up the room in the table.

It seems clear, as already remarked in (Peyton-Jones €98) 1
that weak references and finalization should not be coreider

separately. The solution to the above dilemma is to let the GC

take an appropriate bookkeeping action when reclaiming akwe
pointer. The nature of the action that would be best for angid
the need to self-garbage-collect weak hashtables remaire t
defined. It is possible to experiment in this direction byngsi
finalization functions to do the bookkeeping but, for periance
and scalability, once the appropriate finalization actias been
found, it may need to receive special support in the OCantime
in order to avoid excessive overhead.

Acknowledgments

The authors are thankful to Benjamin Monate, Virgile Prévps
Didier Rémy and Julien Signoles for reading early versidrihis
document and providing useful insights. The anonymouseef
contributions were very valuable even though time was tawtsh
to implement all their suggestions before the final revisidition
Pariente (Dassault Aviation) provided the example C prnogrthat
made it clear that hashconsing was needed in Frama-C.

References

Andrew W. Appel and Marcelo J. R. Gongalves. Hash-consimpage
collection. Technical Report CS-TR-412-93, Computer smeDepart-
ment, 1993. URLciteseer.ist.psu.edu/111544 .html.

Andrew W. Appel and David B. MacQueen. Standard ML of New&grin
J. Maluszyiski and M. Wirsing, editorsProceedings of theThirdInter-
national Symposium on Programming Language Implememtadiad
Logic Programming number 528, pages 1-13. Springer Verlag, 1991.
URL citeseer.ist.psu.edu/appel91standard.html.

Henry G. Baker. List processing in real-time on a serial com-
puter. Communications of the ACM21(4):280-94, 1978. URL
http://citeseer.ist.psu.edu/baker78list.html.

David Beazley and Guido Van Rossufython; Essential Referenchlew
Riders Publishing, Thousand Oaks, CA, USA, 1999. ISBN 009517.

Richard Bonichon, David Delahaye, and Damien Doligez. Zenén
extensible automated theorem prover producing checkablefg In
Nachum Dershowitz and Andrei Voronkov, editok®AR volume 4790
of Lecture Notes in Computer Scieng@ages 151-165. Springer, 2007.
ISBN 978-3-540-75558-6.

Emmanuel Chailloux, Pascal Manoury, and Bruno PagBéwveloppement
d’'applications avec Objective CamD’Reilly, 2000.

Edmund M. Clarke, Orna Grumberg, and Doron A. PeMddel Checking
The MIT Press, 1999.

Sylvain Conchon and Evelyne Contejean. The Alt-Ergo autimtizeorem
prover, 2006. URLhttp://alt-ergo.lri.fr/.

Jeffrey Considine. Efficient hash-consing of recursiveey®000. URL
http://citeseer.ist.psu.edu/article/rey0Oecient.html.

P. Cousot and R. Cousot. Abstract interpretation: a unifiticé model
for static analysis of programs by construction or appration of

fixpoints. InConference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languagages
238-252, Los Angeles, California, 1977. ACM Press, New YdIK

Conal Elliott and Paul Hudak. Functional reactive animatioln In-
ternational Conference on Functional Programming997. URL
http://conal.net/papers/icfp97/.

Jean-Christophe Fillidtre and Sylvain Conchon. Type-sadelular hash-
consing. InML '06: Proceedings of the 2006 workshop on Miages
12-19, New York, NY, USA, 2006. ACM. ISBN 1-59593-483-9. URL
http://doi.acm.org/10.1145/1159876.1159880.

Frama-C development team. Frama-C: Framework for moduokdysis of
C, 2008. URLhttp://frama-c.cea.fr/.

James Gosling, Bill Joy, Guy Steele, and Gilad Braclava Language
Specification, Second Edition: The Java Serigddison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2000. ISBN 0200332.

Eiichi Goto. Monocopy and associative algorithms in an redésl lisp.
Technical Report TR 74-03, University of Tokyo, 1974.

Bruno Haible. Weak References, Data Types and Implementati
2005. URL http://www.haible.de/bruno/papers/cs/weak/
WeakDatastructures-writeup.html.

Xavier  Leroy. The Objective Caml system, release
1.07, Documentation and user's manual, 1997. URL
http://caml.inria.fr/pub/distrib/ocaml-1.07/
ocaml-1.07-refman.txt.

Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rém
and Jérdbme \ouillon. The Objective Caml system, re-
lease 3.10, Documentation and user's manual, 2007. URL

http://caml.inria.fr/pub/distrib/ocaml-3.10/
ocaml-3.10-refman.txt.

Zheng Li. Weaktbl, a weak hash table library for OCaml, 2007.
http://www.pps.jussieu.fr/~1i/software/weaktbl/README.

Laurent Mauborgne. Improving the representation of irgitiees to deal
with sets of trees. In G. Smolka, editdEuropean Symposium on
Programming (ESOP 2000yolume 1782 ofecture Notes in Computer
Sciencepages 275-289. Springer-Verlag, 2000.

Benjamin Monate and Julien Signoles. Slicing for securityagle. InTrust
2008 Lecture Notes in Computer Science. Springer-Verlag, 2008

Chris Okasaki and Andrew Gill. Fast mergeable integer
maps. In Workshop on ML pages 77-86, 1998. URL
http://citeseer.ist.psu.edu/okasaki98fast.html.

Simon L. Peyton-Jones, Simon Marlow, and Conal Elliott.eftiing the
storage manager: Weak pointers and stable names in habkéthple-
mentation of Functional Languaggsages 37-58, 1999. URittp://
citeseer.ist.psu.edu/peytonjones99stretching.html.

Frangois Pottier and Yann Régis-Gianas. Menhir, Decemb@5.2 URL
http://cristal.inria.fr/~fpottier/menhir/.

Zhong Shao. An overview of the FLINT/ML compiler. Proc. 1997 ACM
SIGPLAN Workshop on Types in Compilation (TIC'9&msterdam,
The Netherlands, June 1997.

Wikipedia. File  Allocation Table, 2008.
http://en.wikipedia.org/wiki/File_Allocation_Table.

Paul R. Wilson.  Uniprocessor garbage collection techrique In
Proc. Int. Workshop on Memory Managemenhumber 637
in LNCS, Saint-Malo (France), 1992. Springer-Verlag. URL
http://citeseer.ist.psu.edu/wilson92uniprocessor.html.

URL

A. Appendix: Simulation

The following is the OCaml code used to evaluate the distidbu
of the respective sizes of 100000 buckets where 100000 atsme
have been stored in them.

let n = 100000
let t = Array.create n 0
let ¢ = Array.create n O

(* continued on next page *)



let () =

for i = 0 to n-1 do
let r = Random.int n in
t.(xr) <- t.(xr) + 1
done;
for i = 0 to n-1 do
c. (t. (1)) <= c.(t.(i)) + 1
done;
for i = 0 to n-1 do

Format.printf "%6d -> %6d@\n" i c. (i)
done

Results:

number of buckets
containing n elements
36767
36799
18406
6138
1546
281
57
4
2

QO N[O O W N~ OS5

Estimation of the number of memory words used by weak arrays
when storing 100000 elements in one of OCaml’s weak hasgabl

let w = 0 *x 36767 +
5 x (36799 + 18406 + 6138) +
9 * (1546 + 281 + 57 + 4) +
15 * 2 ;3

val w : int = 323737

Estimation of the number of memory words used by the integer
arrays for hashes when storing 100000 elements in one of C&Cam
weak hashtables:

let h = 0 *x 36767 +
4 x (36799 + 18406 + 6138) +
8 * (1546 + 281 + 57 + 4) +
14 * 2 ;;

val h : int = 260504

B. Appendix: Benchmark

The following is the C code passed to Frama-C's value arsfgsi
benchmarking various implementations of hashconsing.

#define N 150

#include ".../share/builtin.h"
#define FRAMA_C_MALLOC_INDIVIDUAL
#include ".../share/malloc.c"

struct S { int s ; int **t; };
struct S tt[N];
int *P[N];

void init(struct S *ps)
{
int j,size;
size = ps->s;
ps->t[0] = malloc(sizeof(int));
*(ps->t[0]) = Frama_C_interval(O,

10);

for (j = 1; j < size; j++)

{
ps->t[j] = malloc(sizeof(int));
*(ps->t[j1) = size + j;
P[Frama_C_interval(0, j-1)]1 = ps->t[jl;

}
int S;

int sum(struct S *ps)
{
int j, size, s;
size = ps->s;
s 0;
for (j = 0; j < size; j++)
s = s + x(ps->t[j1);
return s;

}

int main(void)
{
int
int
for
{
p = (int **) malloc((i+l) * sizeof(int));
tt[i]l.s = i+1;
tt[i]l.t = p;
init (&tt[il);

i;
**p;
(i=0; i<N; i++)

}

for (i=0; i<N; i++)
¢ S =8 + sum(&tt[il);
}

*(P[10]) = -1;

return S;

Note that Frama-C does not handle well the analysis of pro-
grams where there is non-determinism in the shape of thesaid
memory blocks. The calls tealloc here are only a convenient
way to create large memory states (eaahloc call is equivalent
to creating a fresh variable). In a typical embedded progthere
would not be any dynamic allocation but there would be numero
global variables, some of them being complicated strusturbe
version of Frama-C used for this benchmark is 20080301. The p
gram is analyzed with the following command line:
toplevel.opt -val bench.c .../share/builtin.c

-slevel 210

C. For those who kept reading after the credits

The program in appendix B is incorrect: the poinkdrio] may

not have been initialized when it is accessed at the very étiteo
program. Frama-C warns about this, but does not emit anyr othe
alarm. This means that Frama-C guarantees that this lihe irtly

one where there might be an invalid memory access in thiganog



